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FRÉCHET SPACES WITH NO INFINITE�DIMENSIONAL
BANACH QUOTIENTS

ANGELA A. ALBANESE AND JOSÉ BONET

Abstract. We exhibit examples of Fréchet Montel spaces E which have a non-
re�exive Fréchet quotient but such that every Banach quotient is �nite dimen-
sional. The construction uses a method developed by Albanese and Moscatelli
and requires new ingredients. Some of the main steps in the proof are presented
in Section 2. They are of independent interest and show for example that the
canonical inclusion between James spaces Jp ⊂ Jq, 1 < p < q < ∞, is strictly
cosingular. This result requires a careful analysis of the block basic sequences of
the canonical basis of the dual J ′p of the James space Jp, and permits us to show
that the Fréchet space Jp+ = ∩q>pJq has no in�nite�dimensional Banach quo-
tients. Plichko and Maslyuchenko had proved that it has no in�nite�dimensional
Banach subspaces.

1. Introduction.
It is well known that every quotient of a re�exive Banach space is also re�exive.

Grothendieck [13] discovered that there are Köthe echelon spaces of order one which
are Montel, hence re�exive, but have a quotient isomorphic to `1 (see also [19, �31,
p.433]). Following Grothendieck [13, Dé�nition 2, p.99], a lcHs X is called totally
re�exive if every quotient of X is re�exive. Answering a question of Grothendieck
[13, Probl. 9], Valdivia proved in [29, Theorem 3] that a Fréchet space X is totally
re�exive if and only if it is the reduced projective limit of a sequence of re�exive
Banach spaces. The aim of this paper is to give examples of non-totally re�exive,
re�exive Fréchet spaces with no in�nite�dimensional Banach quotients in Theorem
3.2 and non-Schwartz, Montel Fréchet spaces with no in�nite�dimensional Banach
quotients in Theorem 3.1. More concrete examples are given in Example 3.3. These
examples answer in the negative the natural question whether every Fréchet space
with a non re�exive quotient has a non re�exive Banach quotient. The question
treated here is related to recent work of Bonet and Wright [6] on factorization of
weakly compact operators between Banach spaces and Fréchet or (LB)�spaces. The
construction uses a method to exhibit Fréchet spaces due to Albanese and Moscatelli
[1]. However, the main step is accomplished in Section 2. There we prove in Theorem
2.10 that the canonical inclusion between James spaces Jp ⊂ Jq, 1 < p < q < ∞,
is strictly cosingular. This results requires a careful analysis of the block basic
sequences of the canonical basis of the dual J ′p of the James space Jp, and permits
us to show in Theorem 2.11 that the Fréchet space Jp+ = ∩q>pJq and the (LB)-
space Jp− = ∪1<q<pJq have no in�nite�dimensional Banach quotients. Plichko and
Maslyuchenko had proved in [28] that they have no in�nite�dimensional Banach
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2 A.A. ALBANESE AND J. BONET

subspaces. Some positive results are included in Section 4. An Appendix collects
technical results needed in the proofs.
Notation. Let E be a locally convex Hausdor� space (lcHs, brie�y) and ΓE a

system of continuous seminorms determining the topology of E. Denote by L(E)
the space of of all continuous linear operators from E to itself (from E to another
lcHs F we write L(E,F )). The collection of all bounded subsets of E is denoted
by B(E). Eσ stands for E equipped with its weak topology σ(E, E′), where E′ is
the topological dual space of E. The strong topology in E (resp. E′) is denoted
by β(E,E′) (resp. β(E′, E)) and we write Eβ (resp. E′

β). The strong dual space
(E′

β)′β of E′
β is denoted by E′′

β . E′
σ∗ stands for E′ equipped with its weak�star

topology σ(E′, E). Given T ∈ L(E), its dual operator T ′ : E′ → E′ is de�ned by
〈x, T ′x′〉 = 〈Tx, x′〉 for all x ∈ E, x′ ∈ E′. It is known that T ′ ∈ L(E′

σ) and
T ′ ∈ L(E′

β). For a quotient space of a lcHs E we always mean a separated quotient
of E endowed with its quotient lc�topology. For two lcHs E and F , we write E ' F
to mean that E is topologically isomorphic to F .

For unde�ned notation about functional analysis and locally convex spaces, and
about Banach spaces we refer to [19, 22, 13] and [10, 21, 32], respectively. Our
notation for Köthe echelon spaces is as in [3].

2. The James Fréchet spaces Jp+, p ≥ 1

It is known that the space Jp+ = ∩q>pJq, p ≥ 1, is a non�re�exive Fréchet space
with no in�nite-dimensional Banach subspaces, [28]. Our aim is to show that Jp+ ,
p ≥ 1, is also a Fréchet space with no in�nite-dimensional Banach quotients. For
this purpose, we �rst collect some results about block basic sequences of (e′n)∞n=1 in
the dual James space J ′p, 1 < p < ∞ ((e′n)∞n=1 denotes the canonical Schauder basis
of J ′p). Then, we study the topological structure of the closed in�nite�dimensional
subspaces of J ′p and hence, of the in�nite�dimensional quotients of Jp.

Let 1 < p < ∞. For each sequence x = (ai)∞i=1 of real numbers, set

‖x‖Jp :=
1
p
√

2
sup

(
|akn − ak1 |p +

n−1∑

i=1

|aki − aki+1 |p
)1/p

, (2.1)

where the supremum is taken over all n ∈ N with n ≥ 2, and all choices of integers
(ki)n

i=1 with 1 ≤ k1 < k2 < . . . < kn.
Recall that the pth James space is de�ned by

Jp := {x = (ai)∞i=1 ⊆ R : x ∈ c0 and ‖x‖Jp < ∞}.
Then (Jp, ‖ ‖Jp) is a Banach space. The unit vectors en := (δin)∞i=1, n ∈ N, form
a monotone and shrinking basis for Jp with respect to the norm (2.1). So, the
biorthogonal functionals (e′n)∞n=1 ⊆ J ′p associated with (en)∞n=1 form a boundedly
complete basis of the dual space J ′p of Jp. The sequence (xn)∞n=1 ⊆ Jp de�ned by
xn =

∑n
i=1 ei, for n ∈ N, is a boundedly complete basis for Jp, with biorthogonal

functionals (x′n)∞n=1 ⊆ J ′p given by x′n = e′n−e′n+1, for n ∈ N. The bidual space J ′′p of
Jp consists of all sequences (ai)∞i=1 of real numbers for which the variation norm (2.1)
is �nite. Since the �niteness of the norm (2.1) implies the existence of limi→∞ ai, one
infers that J ′′p is the linear span of Jp (more precisely, of the canonical image of Jp

in J ′′p ) and the functional x′′0 de�ned by x′′0(e
′
n) = 1 for all n ∈ N, i.e., the functional

which corresponds to the sequence 1 = (1, 1, 1, . . .). It follows that the canonical
image of Jp in its bidual space J ′′p has codimension 1 and hence, Jp is quasi�re�exive
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of order 1. In particular, the space (Jp, ‖ ‖Jp) is isometric to its bidual space J ′′p . For
p = 2 these results have been shown in [15] (or see [21, Example 1.d.2, pp.25�26]);
for an arbitrary 1 < p < ∞ the proofs are similar.

Now, we observe that
Proposition 2.1. Let 1 < p < ∞ and x′ =

∑∞
i=1 aie

′
i ∈ J ′p. Then the following

assertions hold.
(i) If ai ≥ 0 for all i ∈ N, then ‖x′‖′Jp

=
∑∞

i=1 ai.
(ii) ‖x′‖′Jp

≥ 1
q√2

(
∑∞

i=1 |ai|q)1/q, where 1 < q < ∞ is the conjugate exponent of
p.

Proof. (i). Since ‖1‖′′Jp
= 1, we have

∑∞
i=1 ai = 〈1, x′〉 ≤ ‖x′‖′Jp

and hence, 0 ≤∑∞
i=1 ai < ∞. On the other hand, ‖x′‖′Jp

≤ ∑∞
i=1 ai. So, the result follows.

(ii). Let q be the conjugate exponent of p. Observe that (2.1) and (|x| + |y|)p ≤
2p−1(|x|p + |y|p), for x, y ∈ R, imply that

‖
n∑

i=1

αiei‖Jp ≤ q
√

2(
n∑

i=1

|αi|p)1/p

for every n ∈ N and (αi)n
i=1 ⊆ R. Set αi := |ai|q−1sign (ai) for all i ∈ N. Then, it

follows that

‖
n∑

i=1

|ai|q−1sign (ai)ei‖Jp ≤ q
√

2(
n∑

i=1

|ai|(q−1)p)1/p = q
√

2(
n∑

i=1

|ai|q)1/p, n ∈ N,

and hence,
n∑

i=1

|ai|q = 〈
n∑

i=1

|ai|q−1sign (ai)ei, x
′〉 ≤ ‖x′‖′Jp

q
√

2(
n∑

i=1

|ai|q)1/p, n ∈ N.

So, we obtain that

‖x′‖′Jp
≥ 1

q
√

2
(

n∑

i=1

|ai|q)1/q, n ∈ N,

and the thesis follows letting n →∞. ¤
Let X be a Banach space. A sequence (xn)∞n=1 in X is called semi�normalized if

there exists a constant C > 0 such that C−1 ≤ ||xn|| ≤ C for all n ∈ N. A sequence
(xn)∞n=1 in X is called basic sequence if it is a Schauder basis for its closed linear
span [(xn)∞n=1]. If (xn)∞n=1 is a Schauder basis for X, a sequence (yn)∞n=1 in X is
called block basic sequence of (xn)∞n=1 if yk =

∑nk+1

i=nk+1 aixi, k ∈ N, for some sequence
0 = n1 < n2 < . . . nk < nk+1 < . . . of integers and some sequence (an)∞n=1 of scalars.
Proposition 2.2. Let 1 < p < ∞ and (zk)∞k=1 be a block basic sequence in J ′p with
zk =

∑nk+1

i=nk+1 aie
′
i. Suppose that

∑nk+1

i=nk+1 ai = K > 0 for all k ∈ N. Then the
following estimate holds:

‖
∞∑

k=1

bkzk‖′Jp
≥ K‖

∞∑

k=1

bke
′
k‖′Jp

. (2.2)

If, in addition, ai ≥ 0 for all i ∈ N, then the converse estimates also holds, i.e.,

‖
∞∑

k=1

bkzk‖′Jp
≤ q
√

2K‖
∞∑

k=1

bke
′
k‖′Jp

, (2.3)

where 1 < q < ∞ is the conjugate exponent of p.
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Proof. Let x =
∑∞

i=1 ciei ∈ Jp. Observe that ‖x‖Jp = ‖∑∞
k=1 ck(

∑nk+1

i=nk+1 ei)‖Jp

and that

〈
∞∑

k=1

ck

nk+1∑

i=nk+1

ei,
∞∑

k=1

bkzk〉 =
∞∑

k=1

bkck

nk+1∑

i=nk+1

ai = K
∞∑

k=1

bkck = K〈
∞∑

k=1

ckek,
∞∑

k=1

bke
′
k〉.

From where it follows

K|〈
∞∑

k=1

ckek,

∞∑

k=1

bke
′
k〉| ≤ ‖x‖Jp · ‖

∞∑

k=1

bkzk‖′Jp
,

which implies

K‖
∞∑

k=1

bke
′
k‖′Jp

= K sup
‖x‖Jp=1

|〈
∞∑

k=1

ckek,
∑

k=1

bke
′
k〉| ≤ ‖

∞∑

k=1

bkzk‖′Jp
,

i.e., (2.2) is proved.
Suppose ai ≥ 0 for all i ∈ N and de�ne ck := 1

K

∑nk+1

i=nk+1 aici for every k ∈ N.
Then (2.1) implies that

‖
∞∑

k=1

ckek‖Jp = ‖
∞∑

k=1

ck(
nk+1∑

i=nk+1

ei)‖Jp ≤ q
√

2‖
∞∑

k=1

(
nk+1∑

i=nk+1

ciei)‖Jp

and hence,

|〈
∞∑

k=1

ckek,

∞∑

k=1

bkzk〉| = |
∞∑

k=1

bk

nk+1∑

i=nk+1

aici| = K|
∞∑

k=1

bkck|

= K|〈
∞∑

k=1

ckek,
∞∑

k=1

bke
′
k〉| ≤ K‖

∞∑

k=1

ckek‖Jp · ‖
∞∑

k=1

bke
′
k‖′Jp

≤ q
√

2K‖
∞∑

k=1

ckek‖Jp · ‖
∞∑

k=1

bke
′
k‖′Jp

.

This implies

‖
∞∑

k=1

bkzk‖′Jp
= sup
‖x‖Jp=1

|〈
∞∑

k=1

ckek,
∞∑

k=1

bkzk〉| ≤ q
√

2K‖
∞∑

k=1

bke
′
k‖′Jp

and (2.3) is proved. ¤
An immediate consequence of Proposition 2.2 is the following result.

Corollary 2.3. Let 1 < p < ∞. Then the unit vector basis (e′n)∞n=1 of J ′p is equiva-
lento to each of its subsequences, i.e., it is spreading.
Proposition 2.4. Let 1 < p < ∞ and (zk)∞k=1 a semi�normalized block basic se-
quence in J ′p with zk =

∑nk+1

i=nk+1 aie
′
i. Suppose that

∑nk+1

i=nk+1 ai = 0 for all k ∈ N.
Then (zk)∞k=1 is equivalent to the unit vector basis of `q, with 1 < q < ∞ the conjugate
exponent of p, and [(zk)∞k=1] is a complemented subspace of J ′p.

Proof. Since (e′n)∞n=1 is spreading, we may assume that ank
= 0 for all k ∈ N.

Consider the operator P : Jp → Jp de�ned by

P (
∞∑

i=1

αiei) :=
∞∑

k=1

αnk+1




nk+1∑

i=nk+1

ei


 , (αi)∞i=1 ∈ Jp.
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Then P is an idempotent operator (i.e., a projection on Jp) such that ImP ' Jp

and KerP = [{ej : j 6= nk ∀k ∈ N}] is re�exive, see [7, Corollary 3 and Theorem
5] for p = 2, [20, Lemma 4.2] for 1 < p < ∞. Moreover, KerP is isomorphic
to the direct sum

(
⊕J

(nk)
p

)
p
(in the sense of `p) of {J (nk)

p }∞k=1, where J
(nk)
p is the

�nite�dimensional Banach space de�ned by

J (nk)
p := [enk+1, enk+2, . . . , enk+1−1], k ∈ N,

and equipped with the norm it inherits from Jp, see [7, Lemma 2] for p = 2, [20,
Proposition 4.4(iv)] for 1 < p < ∞. Observe that J

(nk)
p ⊆ KerP for all k ∈ N.

For each k ∈ N let Qk : Jp → Jp denote the natural projection of Jp (and also,
of KerP ) onto J

(nk)
p (i.e., Qk(

∑∞
i=1 αiei) =

∑nk+1−1
i=nk+1 αiei for (αi)∞i=1 ∈ Jp). Then

(I − P )Q is again a projection of Jp (and also, of KerP ) onto J
(nk)
p for all k ∈ N.

So, Q′(I − P ′) is a projection of J ′p (and also, of (KerP )′) onto (J (nk)
p )′ for all

k ∈ N. Since ank
= 0 for all k ∈ N, we have that Q′(I − P ′)zk = zk so that

zk ∈ (J (nk)
p )′ ⊆ (KerP )′ for all k ∈ N. Since (KerP )′ is a (complemented) closed

subspace of J ′p and isomorphic to
(
⊕(J (nk)

p )′
)

q
, and the semi�normalized sequence

(zk)∞k=1 ⊆
(
⊕(J (nk)

p )′
)

q
is equivalent to the standard basis of `q in

(
⊕(J (nk)

p )′
)

q
and

[(zk)∞k=1] is a complemented subspace of
(
⊕(J (nk)

p )′
)

q
, the result follows. ¤

Proposition 2.5. Let 1 < p < ∞ and (zk)∞k=1 a semi�normalized block basic se-
quence in J ′p with zk =

∑nk+1

i=nk+1 aie
′
i. Suppose that

∑nk+1

i=nk+1 ai = K > 0 for all
k ∈ N. Then (zk)∞k=1 is equivalent to the basis (e′k)

∞
k=1 of J ′p, and [(zk)∞k=1] is a

complemented subspace of J ′p.

Proof. Proposition 2.2 implies that ‖∑∞
k=1 bke

′
k‖′Jp

≤ K−1‖∑∞
k=1 bkzk‖′Jp

for every
sequence (bk)∞k=1 for which the serie

∑∞
k=1 bkzk converges in J ′p. To establish the

other inequality, it su�ces to show that the convergence of the series
∑∞

k=1 bke
′
k in

J ′p implies the convergence of the series
∑∞

k=1 bkzk in J ′p. So, we �rst observe that

zk =
nk+1∑

i=nk+1

aie
′
i =

K

nk+1 − nk

nk+1∑

i=nk+1

e′i +
nk+1∑

i=nk+1

(
ai − K

nk+1 − nk

)
e′i

=: uk + vk, k ∈ N,

where ‖uk‖′Jp
= K for all k ∈ N by Proposition 2.1(i) and hence, there is M > 0

such that ‖vk‖′Jp
≤ M as (zk)∞k=1 is a semi�normalized sequence. If now

∑∞
k=1 bke

′
k

converges in J ′p, then from Proposition 2.2 it follows that
∑∞

k=1 bkuk converges in
J ′p, and from Propositions 2.1(ii) and 2.5 that

∑∞
k=1 bkvk converges in J ′p. Hence,∑∞

k=1 bkzk converges in J ′p. Thus, (zk)∞k=1 is equivalento to (e′k)
∞
k=1.

As in the proof of [2, Proposition 6], we can show that the operator P : Jp → Jp

de�ned by

P (
∞∑

i=1

ciei) :=
1
K

∞∑

k=1




nk+1∑

i=nk+1

aici







nk+1∑

i=nk+1

ei


 , (ci)∞i=1 ∈ Jp,
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is a projection on Jp with dual map P ′ given by

P ′
( ∞∑

i=1

die
′
i

)
=

∞∑

k=1


 1

K

nk+1∑

i=nk+1

di


 zk.

So, ImP ′ = [(zk)∞k=1] and hence, [(zk)∞k=1] is a complemented subspace of J ′p. ¤

Remark 2.6. For p = 2 the results collected above are known and due to Andrew
[2].

The following result is the basic step towards Theorem 2.10 and seems new even
for the case p = 2.

Theorem 2.7. Let 1 < p, q < ∞ with q the conjugate exponent of p. If X is an
in�nite�dimensional closed subspace of J ′p, then X contains a subspace isomorphic
to `q and complemented in J ′p.

Proof. Since J ′p is a quasi�re�exive space, each in�nite�dimensional closed subspace
of J ′p contains an in�nite�dimensional re�exive subspace, see [14, Lemma 2]. So,
X contains a sequence of norm one vectors (yk)∞k=1 which σ(J ′p, J ′′p )�converges to 0.
By [21, Proposition 1.a.12] we may assume that (yk)∞k=1 is equivalent to a semi�
normalized block basic sequence (zk)∞k=1 of (e′k)

∞
k=1. Consequently, (zk)∞k=1 also

σ(J ′p, J ′′p )�converges to 0 and hence, 〈1, zk〉 → 0 as k → ∞: i.e., suppose, for every
k ∈ N, that zk =

∑nk+1

i=nk+1 aie
′
i, we have δk :=

∑nk+1

i=nk+1 ai → 0 as k →∞.
To �nish the proof we have to consider two cases: (a) δk = 0 for in�nitely many

indices k; (b) there exists k0 ∈ N such that δk 6= 0 for every k ≥ k0.
(a) Let (kj)∞j=1 be a strictly increasing sequence of positive integers such that

δkj = 0 for every j ∈ N. Then, from Proposition 2.4 it follows that (zkj )
∞
j=1 is

equivalent to the unit vector basis of `q and, [(zkj )
∞
j=1] is a complemented subspace

of J ′p. Since (ykj )
∞
j=1 is equivalent to (zkj )

∞
j=1, (ykj )

∞
j=1 is also equivalent to the unit

vector basis of `q and [(ykj )
∞
j=1] is a complemented subspace of J ′p.

(b) By passing to a subsequence if necessary, we may suppose that each δk > 0
and

∑∞
k=1 δk =: δ < 1. Then we may write

zk =
δk

nk+1 − nk

nk+1∑

i=nk+1

e′i +
nk+1∑

nk+1

(
ai − δk

nk+1 − nk

)
e′i =: uk + vk, k ∈ N,

with ‖uk‖′Jp
= δk by Proposition 2.1(i) and

∑nk+1

nk+1

(
ai − δk

nk+1−nk

)
= 0 for every

k ∈ N. So, by Propositon 2.4 (vk)∞k=1 is equivalent to the unit vector basis of `q and,
[(vk)∞k=1] is a complemented subspace of J ′p. Moreover, we have

∞∑

k=1

‖zk − vk‖′Jp
=

∞∑

k=1

δk = δ < 1.

It follows that the block basic sequence (zk)∞k=1 is equivalent to the block basic
sequence (vk)∞k=1, [21, Proposition 1.a.9(ii)] and hence, to the unit vector basis of `q,
and that [(zk)∞k=1] is complemented in J ′p (taking δ small enough). Since (yk)∞k=1 is
equivalent to (zk)∞k=1, (yk)∞k=1 is also equivalent to the unit vector basis of `q and,
the subspace [(yk)∞k=1] is complemented in J ′p. ¤

The next result for p = 2 is due to Andrew [2, Theorem 2].
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Theorem 2.8. Let 1 < p < ∞. If X is a non�re�exive subspace of J ′p, then X
contains a subspace isomorphic to J ′p and, complemented in J ′p.

Proof. Since X is a non�re�exive subspace of J ′p, there exists a sequence of norm
one vectors (yk)∞k=1 ⊆ X with no σ(J ′p, J ′′p )�convergent subsequences. Since Jp is
separable, the unit ball of J ′p is σ(J ′p, Jp)�compact and so, we may suppose that
(yk)∞k=1 ⊆ X has a σ(J ′p, Jp)�limit y ∈ J ′p, by eventually passing to a subsequence.

We �rst consider the case when y ∈ X. In such a case, we may suppose y =
0. Since (yk)∞k=1 does not σ(J ′p, J ′′p )�converges to 0, there exists x ∈ J ′′p so that
〈x, yk〉 6→ 0 as k → ∞. But, x = x0 + λ1 for some x0 ∈ Jp and λ ∈ R. So, the
σ(J ′p, Jp)�convergence of (yk)∞k=1 to 0 implies that λ 6= 0 and that 〈1, yk〉 6→ 0 as
k → ∞. It follows that 〈1, yk〉 > ε for some ε > 0, by eventually passing to a
subsequence. We can now construct a closed subspace of X which is isomorphic to
J ′p and complemented in J ′p.

Assume yk =
∑∞

i=1 a
(k)
i e′i, for k ∈ N. Then 1 ≥ ∑∞

i=1 a
(k)
i = 〈1, yk〉 > ε for

k ∈ N. Fix ε ∈]0, 1[, (εk)∞k=1 ⊆]0,∞) so that
∑∞

k=1 εk < ε/2. Pick n2 ∈ N such that
λ1 :=

∑n2
i=1 a

(1)
i > ε and ‖∑

i>n2
a

(1)
i e′i‖′Jp

< ε1ε. If we set z1 = λ−1
1

∑n2
i=1 a

(1)
i e′i,

then ‖z1− λ−1
1 y1‖′Jp

< λ−1
1 εε1 < ε1. Now, the σ(J ′p, Jp)�convergence of (yk)∞k=1 to 0

ensures that there exists k2 > k1 := 1 such that
n2sup
i=1

|a(k)
i | < ε2ε

2n2
, k ≥ k2.

This implies that
∑

i>n2

a
(k)
i >

ε

2
and ‖

n2∑

i=1

a
(k)
i e′i‖′Jp

<
ε2ε

2
, k ≥ k2.

Hence, there exists n3 > n2 (n1 := 0) such that λ2 :=
∑n3

i=n2+1 a
(k2)
i > ε

2 and
‖∑

i>n3
a

(k2)
i e′i‖′Jp

< ε2ε
2 . If we set z2 = λ−1

2

∑n3
i=n2+1 a

(k2)
i e′i, then ‖z2−λ−1

2 yk2‖′Jp
<

λ−1
2 εε2 < 2ε2. Proceeding in this way, we construct a sequence (λj)∞j=1 of scalars, a

sequence (zj)∞j=1 of vectors and two increasing sequences (kj)∞j=1 and (nj)∞j=1 of pos-
itive integers such that ε

2 < λj ≤ 1, zj = λ−1
j

∑nj+1

i=nj+1 a
(kj)
i e′i and ‖zj − λ−1

j ykj‖′Jp
<

2εj for every j ∈ N. It follows that, for each j ∈ N, 1 − ε < λ−1
j − 2εj < ‖zj‖ <

2εj + λ−1
j < ε + 2

ε , 〈1, zj〉 = 1, and
∑∞

j=1 ‖zj − λ−1
j ykj‖′Jp

< ε. This implies
that (λ−1

j ykj )
∞
j=1 ⊆ X is equivalent to (zj)∞j=1. But, by Proposition 2.5 the semi�

normalized block basic sequence (zj)∞j=1 is equivalent to the basis (e′j)
∞
j=1 of J ′p, and

[(zj)∞j=1] is a complemented subspace of J ′p. So, also (λ−1
j ykj )

∞
j=1 ⊆ X is equivalent

to the basis (e′j)
∞
j=1 of J ′p, and [(yj)∞j=1] ⊆ X is a complemented subspace of J ′p (as

soon as ε is small enough).
We now consider the case when X contains no sequences σ(J ′p, Jp)�converging to

0 but failing to σ(J ′p, J ′′p )�converge to 0. In such a case, we observe that (yk)∞k=1 is a
sequence of norm one vectors of X ⊕ [y] with no σ(J ′p, J ′′p )�convergent subsequences
and σ(J ′p, Jp)�convergent to y ∈ X ⊕ [y]. So, proceeding as above, we can conclude
that there exists a semi�normalized sequence (zk)∞k=1 ⊆ X ⊕ [y] such that (zk)∞k=1
is σ(J ′p, Jp)�convergent to 0, 〈1, zk〉 6→ 0 as k → ∞, (zk)∞k=1 is equivalent to the
basis (e′j)

∞
j=1 of J ′p, and [(zk)∞k=1] ⊆ X ⊕ [y] is a complemented subspace of J ′p. Since

(zk)∞k=1 ⊆ X ⊕ [y], we have, for every k ∈ N, that zk = uk + aky with uk ∈ X and
ak ∈ R. The assumption on X ensures that we may suppose that (ak)∞k=1 has a
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non�zero cluster point. So, by perturbing and eventually passing to a subsequence,
we may assume that zk = uk + ay with a 6= 0 for every k ∈ N. It follows that
zk − zk+1 = yk − yk+1 ∈ X for every k ∈ N. On the other hand, (zk − zk+1)∞k=1
is equivalent to (e′k − e′k+1)

∞
k=1. So, [(yk − yk+1)∞k=1] ' [(e′k − e′k+1)

∞
k=1]. Since

(e′k − e′k+1)
∞
k=1 is the dual basis of the boundedly complete basis (xk)∞k=1 for Jp

and hence, [(e′k − e′k+1)
∞
k=1]

′ ' Jp, [21, Proposition 1.b.4], we obtain that [(yk −
yk+1)∞k=1]

′ ' Jp. Since the predual of Jp is isomorphic to J ′p, [11, Theoreme 10],
it follows that [(yk − yk+1)∞k=1] ' J ′p and hence, X contains an isomorphic copy of
J ′p. Moreover, [(yk − yk+1)∞k=1] is a one�codimensional closed subspace of [(zk)∞k=1]
and hence, it is complemented in [(zk)∞k=1]. Since [(zk)∞k=1] is complemented in J ′p,
it follows that also [(yk − yk+1)∞k=1] is complemented in J ′p. ¤

Let T : E → F be a continuous linear operator between Banach spaces E and
F . The operator T is called strictly singular if the restriction of T to any in�nite�
dimensional subspace of E is not an isomorphism, [18]. The operator T is called
strictly cosingular if the only Banach spaces G for which there exist surjective con-
tinuous linear operators (i.e., quotient maps) qE : E → G and qF : F → G such that
qE = qF ◦ T are �nite�dimensional, [25]. The class of strictly singular operators is
somewhat related by duality to the class of strictly cosingular operators. Indeed, if
the dual operator T ′ of an operator T is strictly singular (strictly cosingular, resp.),
then T is strictly cosingular (strictly singular, resp.), [25]. However, the converse
statements are not true in general. But, we clearly have:
Remark 2.9. Let E, F be Banach spaces and T ∈ L(E, F ). If E is re�exive, then
the operator T is strictly singular (strictly cosingular, resp.) if and only if its dual
operator T ′ is strictly cosingular (strictly singular, resp.). Indeed, the re�exivity of
E implies that the bidual operator T ′′ coincides with T and hence, the results follows
by duality.

Let 1 < p, q < ∞ with p < q. Since ‖ ‖Jp is de�ned as the supremum of `p�norms
of certain sequences, ‖ ‖`q ≤ ‖ ‖`p implies ‖ ‖Jq ≤ ‖ ‖Jp on Jp. So, Jp ⊆ Jq and the
canonical inclusion map ιqp : Jp ↪→ Jq is continuous with norm 1 and dense range.
Moreover, the operator ιqp is strictly singular (it easily follows from the fact that
each subspace of Jp contains a subspace isomorphic to `p, [28, Proposition 1]). On
the other hand, Theorem 2.7 ensures that each subspace of J ′q contains a subspace
isomorphic to `q and hence, implies that the dual operator (ιqp)′ : J ′q ↪→ J ′p is also
strictly singular. Therefore, we easily obtain that
Theorem 2.10. Let 1 < p < q < ∞ and ιqp : Jp ↪→ Jq denote the canonical inclusion
map. Then ιqp and its dual map (ιqp)′ are both strictly singular and strictly cosingular.
Proof. Since (ιqp)′ is strictly singular by Theorem 2.7, ιqp is strictly cosingular, [25].
Hence, it remains to show only that (ιqp)′ is strictly cosingular. This follows from
the fact the bidual map (ιqp)′′ : (Jp)′′ ↪→ (Jq)′′ is strictly singular as (Jp)′′ ' Jp,
(Jq)′′ ' Jq and, each subspace of Jp contains a subspace isomorphic to `p, [28,
Proposition 1]. ¤

Recall that, for 1 ≤ p < ∞, Jp+ denotes the Fréchet space ∩q>pJq with its natural
projective topology (i.e., if qn ↓ p, then Jp+ = ∩∞n=1Jqn) and that, for 1 < p ≤ ∞, Jp−

denotes the (LB)�space ∪1<q<pJq again endowed with its natural inductive topology
(i.e., if 1 < qn ↑ p, then Jp− = ∪∞n=1Jqn), [28]. In the sequel, for each q > p (q < p,
resp.), we denote by ιq : Jp+ ↪→ Jq (ιq : Jq ↪→ Jp− , resp.) the canonical inclusion
map. So, for p < q2 < q1, ιq1 = ιq1

q2 ◦ ιq2 , and, for 1 < q1 < q2 < p, ιq1 = ιq2 ◦ ιq2
q1 .
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In [28, Propostion 2, Theorem] it is shown that the locally convex spaces Jp+

and Jp− are quasi-re�exive of order one with no in�nite�dimensional Banach spaces.
Now, as an immediate consequence of Theorem 2.10 we obtain the following results.

Theorem 2.11. Let 1 ≤ p < ∞. Then Jp+ and Jp− (p > 1) are non-re�exive locally
convex spaces with no in�nite�dimensional Banach quotients.

Proof. For the space Jp+ : Suppose that the Banach space X is a quotient of Jp+

and denote by Q : Jp+ → X the quotient map. Since Jp+ = ∩∞n=1Jqn with qn ↓ p,
there exists n0 ∈ N so that X is a quotient of Jqn0

, i.e., there exists a quotient map
Qn0 : Jqn0

→ X such that Q = Qn0 ◦ ιqn0
. Then X must also to be a quotient of

Jqn0+1 (here, qn0+1 < qn0), i.e., there exists a quotient map Qn0+1 : Jqn0+1 → X

such that Q = Qn0+1 ◦ ιqn0+1 . It follows that Qn0 ◦ ι
qn0
qn0+1 ◦ ιqn0+1 = Qn0 ◦ ιqn0

=
Q = Qn0+1 ◦ ιqn0+1 and hence, Qn0 ◦ ι

qn0
qn0+1 = Qn0+1 as ιqn0+1 has dense range. By

Theorem 2.10 this equality forces X to be �nite�dimensional.
For the space Jp− (p > 1): Suppose that the Banach space X is a quotient of

Jp− and denote by Q : Jp− → X the quotient map. Since Jp− is a (DF)�space, there
exists B ∈ B(Jp−) such that Q(B) ⊇ BX , where BX denotes the closed unit ball of
X. This together with the regularity of the (LB)�space Jp− (see, [28]) imply that X
must be a quotient of Jqn0

for some n0 ∈ N, i.e., there exists Qn0 : Jqn0
→ X such

that Qn0 = Q◦ιqn0 . Then X must also to be a quotient of Jqn0+1 (here, qn0+1 > qn0),
i.e., there exists a quotient map Qn0+1 : Jqn0+1 → X such that Qn0+1 = Q ◦ ιqn0+1 .
It follows that Qn0 = Q ◦ ιqn0 = Q ◦ ιqn0+1 ◦ ι

qn0+1
qn0

= Qn0+1 ◦ ι
qn0+1
qn0

. By Theorem
2.10 this equality forces X to be �nite�dimensional. ¤

3. Reflexive (Montel) Fréchet spaces with no infinite�dimensional
Banach quotients

The aim of this section is to exhibit examples of non�totally re�exive, re�ex-
ive Fréchet spaces and of non�Schwartz, Montel Fréchet spaces with no in�nite�
dimensional Banach quotients. The construction is based on a method given in
[1].

Let (En, jn
n+1)

∞
n=1 be a reduced projective sequence of Banach spaces such that the

Fréchet space E := proj n En ⊆ Jp+ and the inclusion map u : E → Jp+ is continuous
with dense range, for some p ≥ 1. For each n ∈ N, denote by jn : E → En the
canonical projection of E into En so that jn

n+1 ◦ jn+1 = jn and, by ‖ ‖n a norm
de�ning the topology of En. If Jp+ = ∩∞n=1Jqn with qn ↓ p, then we may suppose
that, for every n ∈ N there exists a continuous linear map un : En+1 → Jqn with
dense range such that ιqn ◦ u = un ◦ jn+1 (eventually, by passing to a subsequence).

Further, let (Ln)∞n=1 be a reduced projective sequence of normal Banach sequence
spaces such that Ln+1 ⊆ Ln and the inclusion map ρn

n+1 : Ln+1 ↪→ Ln is continuous
with dense range. Let L := ∩∞n=1Ln be the Fréchet space endowed with its natural
projective topology. For each n ∈ N, denote by ρn : L → Ln the canonical inclusion
of L into Ln so that ρn

n+1 ◦ ρn+1 = ρn and, by | |n a norm de�ning the topology
of Ln. Moreover, suppose that each normal Banach sequence space Ln satis�es the
property (ε), i.e., |a− ((ak)k≤h, (0)k>h)|n → 0 as h →∞ for every a = (ak)∞k=1 ∈ Ln

(cf. Appendix).
Following [1], for every n ∈ N, we de�ne the Banach space

Mn := Ln((Xn)k<n, (Jqn)k≥n),



10 A.A. ALBANESE AND J. BONET

i.e.,
Mn = {((xk)k<n, (yk)k≥n) : xk ∈ En, yk ∈ Jqn , ((‖xk‖n)k<n, (‖yk‖Jqn

)k≥n) ∈ Ln}
with the topology generated by the norm

rn((xk)k<n, (yk)k≥n) := |((‖xk‖n)k<n, (‖yk‖Jqn
)k≥n)|n.

Then the maps jn
n+1, ιqn

qn+1 , together with the maps un induce continuous linear maps
Un

n+1 : Mn+1 → Mn de�ned by
Un

n+1((xk)k<n+1, (yk)k≥n+1) = ((jn
n+1(xk))k<n, un(xn), (ιqn

qn+1
(yk))k≥n+1). (3.1)

So, we may form the reduced projective limit
M(E, Jp+ ; L) := proj

n
Mn

which is a Fréchet space, [1, Proposition 1]. Note that the de�nition above is not
as general as the one given in [1]. Constructions of Fréchet spaces of this type have
been used since the paper of Moscatelli [24] several times to exhibit variuos coun-
terexamples. Bonet and Dierolf thoroughly investigated this type of constructions
in [4]. We refer the reader to the survey paper [5] for more information on the topic.

Recall that a Fréchet space E is called Schwartz (infra�Schwartz, resp.) if for every
n ∈ N there is m > n such that the canonical map jn

m : Em → En (jn
m := jm−1

m ◦ . . .◦
jn
n+1) is compact (weakly compact, resp.), [17]. Infra�Schwartz Fréchet spaces are
projective limits of sequences of re�exive Banach spaces, [17, 7.5.3]. Valdivia proved
in [29, Theorem 3] that a Fréchet space E is infra�Schwartz if and only if it is totally
re�exive, i.e., every quotient of E is re�exive.

Combining [1, Theorem 2, Corollaries 2 and 3] with Theorem 2.10, we easily obtain
the following results.
Theorem 3.1. Let 1 ≤ p < ∞. If L and E are Schwartz Fréchet spaces, then the
space M(E, Jp+ ; L) is a non�Schwartz, non�totally re�exive, Montel Fréchet space
with no in�nite�dimensional Banach quotient.
Proof. Theorem 2 together with Corollary 2 in [1] ensure that the Fréchet space
M(E, Jp+ ;L) is Montel but not Schwartz and not totally re�exive. Now suppose that
the Banach space X is a quotient of M(E, Jp+ ;L). Then, using the same arguments
of the proof of Theorem 2.11, one obtains that there exist n0 ∈ N and quotient maps
Qn0 : Mn0 → X, Qn0+1 : Mn0+1 → X such that Qn0 ◦ Un0

n0+1 = Qn0+1. Since L and
E are both Schwartz Fréchet spaces, there is no loss of generality in assuming that
all the maps jn

n+1 : En+1 → En, un : En+1 → Jqn and ρn
n+1 : Ln+1 ↪→ Ln are compact

and that all the dual spaces L′n satisfy the property (ε). On the hand hand, by
Theorem 2.10 the maps ιqn

qn+1 : Jqn+1 ↪→ Jqn are strictly cosingular. This implies by
(3.1) that the maps Un

n+1 are also strictly cosingular in virtue of Proposition 5.4 in
the Appendix and Remark 2.9. Hence, the equality Qn0 ◦ Un0

n0+1 = Qn0+1 forces X
to be �nite�dimensional. ¤
Theorem 3.2. Let 1 ≤ p < ∞. If L is a Schwartz Fréchet space, E is a totally
re�exive Fréchet space such that the maps jn

n+1 and un are strictly cosingular, then
the space M(E, Jp+ ;L) is a non�totally re�exive, re�exive Fréchet space with no
in�nite�dimensional Banach quotients.
Proof. Theorem 2 together with Corollary 3 in [1] ensure that the Fréchet space
M(E, Jp+ ;L) is re�exive but not totally re�exive. Suppose that the Banach space
X is a quotient of M(E, Jp+ ; L). Then, as in the proof of Theorem 3.1, we obtain
that there exist n0 ∈ N and quotient maps Qn0 : Mn0 → X, Qn0+1 : Mn0+1 → X
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such that Qn0 ◦ Un0
n0+1 = Qn0+1. Since L (E, resp.) is a Schwartz Fréchet space

(infra�Schwartz Fréchet space, resp.), there is no loss of generality in assuming that
all the maps ρn

n+1 : Ln+1 ↪→ Ln are compact and that all the dual spaces L′n satisfy
the property (ε). On the hand hand, by Theorem 2.10 the maps ιqn

qn+1 : Jqn+1 ↪→ Jqn

are strictly cosingular. This implies via (3.1) that the maps Un
n+1 are also strictly

cosingular by Proposition 5.4 in the Appendix and Remark 2.9. So, the equality
Qn0 ◦ Un0

n0+1 = Qn0+1 implies that X is �nite�dimensional. ¤

We observe that non�Schwartz, Montel Fréchet spaces with no in�nite�dimensional
Banach quotients have been already exhibited in [1, �4, Theorem 3]. But, as observed
in [1, �4, Remark 9], all such spaces are totally re�exive. So, Theorem 3.1 ensures
the existence of non�totally re�exive, non�Schwartz, Montel Fréchet spaces with no
in�nite�dimensional Banach quotients.

Applying Theorems 3.1 and 3.1 we obtain that

Example 3.3. (1) Let E be the nuclear Fréchet space s = ∩∞n=1`1(jn) of all rapidly
decreasing sequences. Then, for every 1 ≤ p < ∞, the space M(s, Jp+ ; s) is a non�
Schwartz, non�totally re�exive, Montel Fréchet space with no �nite�dimensional
Banach quotients.

(2) Let E be the totally re�exive Fréchet space `p+ = ∩q>p`q for some p > 1
(see [23] for more information on this space). Then, for every for q ∈]p,∞), the
space M(`p+ , Jq+ ; s) is a non�totally re�exive, re�exive Fréchet space with no �nite�
dimensional Banach quotients.

4. Some positive results
Theorem 2.11 ensures that the space Jp+ , p ≥ 1, is an example of a non�re�exive

Fréchet space with no in�nite�dimensional Banach quotients. In this section we show
that in some case the weaker condition every Banach quotient is re�exive implies
that the underlying Fréchet space is re�exive or totally re�exive.

Proposition 4.1. Let A be a Köthe matrix and E = λp(A) with p ∈ {0, 1,∞}. If
every Banach quotient space of E is re�exive, then E is quasinormable and totally
re�exive.

Proof. The result follows from [31, Ch. 2, �2, 3(14) and 3(15), p.226] for p = 1 and
from [31, Ch. 2, �4, 3(11) and 3(12), p.266] for p = 0.

Set E = λ∞(A) and suppose E is not quasinormable. Then [9, Theorem 2] implies
that E has a Banach quotient space X which is isomorphic to c0. So, E has a Banach
quotient space which is not re�exive. Next, suppose that E = λ∞(A) is not re�exive.
Therefore, E is not Montel and hence, E admits a sectional subspace X which is
isomorphic to `∞, [31, Ch. 2, �4, 2(2) and 2(7), pp.262�264]. As X is a sectional
subspace of E, X is a complemented subspace of E and hence, a quotient space of
E. Finally, since E is re�exive and quasinormable, by a result of Grothendieck [13,
Corollary 3, p.115] we have E is totally re�exive. ¤

A lcHs E is said to have the Grothendieck property if every sequence in E′ which
is convergent in (E′, σ(E′, E)) is also convergent in (E′, σ(E′, E′′)). Clearly, every
re�exive lcHs sayis�es the Grothendieck property.

Proposition 4.2. Let E be a quasinormable Fréchet space with the Grothendieck
property. Then E is totally re�exive.
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Proof. Suppose E is not totally re�exive. Then a result of Valdivia [29, Theorem 2]
implies that E has a Fréchet quotient space with a Schauder basis (hence, a separable
quotient space) which is not re�exive. This contradicts [9, Proposition 4]. ¤
Proposition 4.3. Let E be a separable and σ(E,E′)�sequentially complete Fréchet
space. If every Banach quotient space of E is re�exive, then E is also re�exive.
Proof. Suppose that E is not re�exive. Then E contains a bounded sequence (xn)∞n=1

with no σ(E, E′)�convergent subsequences. So, there exists a subsequence (xkn)∞n=1

of (xn)∞n=1 such that (xkn)∞n=1 is either σ(E,E′)�Cauchy or equivalent to the unit
vector basis of `1, [8, Lemma 3] (see also [30]). Since E is σ(E, E′)�sequentially
complete, the sequence (xkn)∞n=1 is necessarily equivalent to the unit vector basis of
`1. Then X = [(xkn)∞n=1] is a closed subspace of E isomorphic to `1. This implies
that the Banach space C([0, 1]) is isomorphic to a quotient space of E and the proof
follows now similarly as in the case of Banach spaces, [26, Theorem 3.4], [10, Ch.XI,
pp.213-214]. Indeed, consider the Banach space C(∆) where ∆ denotes the Cantor
set (recall that C(∆) and C([0, 1]) are isomorphic). Since C(∆) is a separable Banach
space, C(∆) is a quotient space of `1 via some continuous linear operator q. On the
other hand, C(∆) is a closed subspace of `∞(∆). So, q ∈ L(`1, `∞(∆)) and hence, we
may extend q to a continuous linear operator Q : E → `∞(∆), [16, Corollary 7.4.5,
p.133]. It follows that Q(E) is a separable closed subspace of `∞(∆) and hence, it
is isometric to a closed subspace of C(∆). On the other hand, q(`1) = Q(`1) is a
closed subspace of Q(E) isomorphic to C(∆) (actually, = C(∆)). So, by a result
of Pelczynski, [27], [10, Ch.XI, p.214], we can conclude that q(`1) = Q(`1) contains
a closed subspace Y which is isometric to C(∆) and complemented in Q(E) by a
norm one projection P . Set R = P ◦ Q. Then R ∈ L(E, Y ) and is a quotient map
with R(E) = Y ' C(∆). This completes the proof.

We have so shown that the non�re�exive Banach space C([0, 1]) is a quotient space
of E; a contradiction. ¤
Corollary 4.4. Let E be a separable, σ(E,E′)�sequentially complete and quasi-
normable Fréchet space. If every Banach quotient space of E is re�exive, then E is
totally re�exive.
Proof. From Proposition 4.3 it follows that E is re�exive and hence, E satis�es
the Grothendieck property. Then E is necessarily totally re�exive by Proposition
4.2. ¤

5. Appendix
In this section we prove a technical result which was needed in the proof of the

main Theorems 3.1 and 3.2.
Let (L, || ||) be a normal Banach sequence space, i.e., a Banach sequence space

satisfying the following properties:
(α) ϕ ⊆ L ⊆ ω and the inclusion (L, || ||) ↪→ ω is continuous,
(β) ∀a = (ak)∞k=1 ∈ L, ∀b = (bk)∞k=1 ∈ ω such that |bk| ≤ |ak| for ∀k ∈ N, we

have b ∈ L and ||b|| ≤ ||a||.
We say that a normal Banach sequence space (L, || ||) satis�es the property (ε) if

(ε) ||a− ((ak)k≤n, (0)k>n)|| → 0 as n →∞ for every a = (ak)∞k=1 ∈ L.
If the sequence space (L, || ||) satis�es (ε), then the vectors en := (δkn)∞k=1 ∈ L form
a Schauder basis for L and its topological dual can be identi�ed with its α�dual [19,
�30]; hence, (L′, || ||′) is also a normal Banach sequence space. Typical examples of
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normal Banach sequence spaces are the Banach spaces `p, 1 ≤ p ≤ ∞, c0 and their
diagonal transforms. In particular, the Banach spaces `p, for 1 ≤ p < ∞, and c0

satisfy (ε).
Further, let (Ek, ‖ ‖k)∞k=1 be a sequence of Banach spaces. Then the Banach space

E := L((Ek)k∈N) is de�ned as the linear space

E = {(xk)∞k=1 ∈
∞∏

k=1

Ek : (‖xk‖k)∞k=1 ∈ L}

endowed with the norm r(x) := ‖(‖xk‖k)∞k=1‖ for x = (xk)∞k=1 ∈ E.
For each n ∈ N, let Jn :

∏n
k=1 Ek → E and Pn : E → ∏n

k=1 Ek be the con-
tinuous linear maps respectively de�ned by Jn(xk)k≥n := ((xk)k≤n, (0)k>n) and
Pn(xk)∞k=1 := (xk)k≤n. Clearly, we have Pn ◦ Jn = I for every n ∈ N.
Lemma 5.1. Let (L, || ||) be a normal Banach sequence space satisfying the property
(ε) and (Ek, ‖ ‖k)∞k=1 be a sequence of Banach spaces. If X is an in�nite�dimensional
closed subspace of E := L((Ek)k∈N). Then either X contains an in�nite�dimensional
closed subspace which is isomorphic to a subspace of some Ek or X contains an
in�nite�dimensional closed subspace which is isomorphic to a subspace of L.

Proof. For each n ∈ N, let introduce the map Qn : E → En de�ned by Qn(xk)∞k=1 :=
xn. If there exists n0 ∈ N so that the restriction map Qn0 |X is not strictly singular,
then X contains an in�nite�dimensional closed subspace which is isomorphic to a
subspace of En0 .

Suppose that each Qn|X is strictly singular and in this case, for every n ∈ N the
restriction of Pn =

∑n
k=1 Qk to X is also strictly singular, [12, Theorem III.2.4,

p.86]. Let (dn)∞n=1 be any decreasing sequence of positive numbers convergent to 0
with d1 < 1/2 and, for each n ∈ N, let τn := ||((1)k≤n, (0)k>n)||. By (α) we may
suppose that each τn ≥ 1. Next, let y0 ∈ X with r(y0) = 1. Since (L, || ||) satis�es
the property (ε), we can choose k1 ∈ N so that r(y0 − Jk1Pk1y

0) < d1. Since Pk1 |X
is strictly singular, there is y1 ∈ X with r(y1) = 1 such that

∑k1
k=1 ||y1

k‖k < d1/τk1 .
Applying again the property (ε), we can choose k2 > k1 such that r(y1−Jk2Pk2y

1) <
d2. Iterating this procedure, we can �nd a sequence (yn)n≥0 ⊆ X, yn = (yn

k )∞k=1, and
an increasing sequence (kn)∞n=1 of positive integers satisfying the following properties:

r(yn) = 1, r(yn − Jkn+1Pkn+1y
n) < dn+1, n ≥ 0, (5.1)

kn∑

k=1

||yn
k ||k < dn/τkn , n ∈ N. (5.2)

For n = 0 de�ne z0
k := y0

k if 1 ≤ k ≤ k1 and z0
k := 0 otherwise. For n ≥ 1, de�ne

zn := yn
k if kn < k ≤ kn+1 and zn

k := 0 otherwise. Then, for every n ≥ 0, we have
zn := (zn

k )∞k=1 ∈ E, r(zn) ≤ 1 by (5.1) and (β), r(JknPknyn) ≤ τkn

∑kn
k=1 ||yn

k ||k < dn

by (5.2) and (β). So, by (5.1) it follows that

r(z0) = r(Jk1Pk1y
0 − y0 + y0) ≥ r(y0)− r(y0 − Jk1Pk1y

0) > 1− d1 > 0,

r(zn) = r(Jkn+1Pkn+1y
n − JknPknyn + yn − yn)

≥ r(yn)− r(JknPknyn)− r(yn − Jkn+1Pkn+1y
n)

> 1− dn − dn+1 ≥ 1− 2d1 > 0, n ≥ 1.
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Moreover, for every m < n and for evry choice (ak)m
k=0 of scalars we have

r

(
m∑

k=0

akz
k

)
≤ r

(
n∑

k=0

akz
k

)
,

as it is easily to verify. Hence, (zn)n≥0 is a semi�normalized basic sequence of E.
De�ne Z := [(zn)n≥0]. Then Z is isomorphic to a closed subspace of L. To show
this, we observe that the vectors en := (δnk)∞k=1, for n ∈ N, form a Schauder basis of
L via (ε) and that the vectors w0 =

∑k1
k=1 ||y0

k||kek and wn :=
∑kn+1

k=kn+1 ||yn
k ||kek, for

n ≥ 1, form a semi�normalized block basic sequence of (en)∞n=1. Let W := [(wn)n≥0]
and S : Z → W be the operator de�ned by setting

S(
∞∑

k=0

akz
k) =

∞∑

k=0

akwk, z =
∞∑

k=0

akz
k ∈ Z.

Then W is a closed subspace of L and S is an isomorphism onto by (β).
Finally, put Y := [(yn)n≥0] ⊆ X and observe that, by (5.1) we have

∞∑

k=0

r(yn − zn) =
∞∑

k=0

r(yn − zn) ≤
∞∑

k=1

dk.

So, if we choose the sequence (dn)∞n=1 satisfying
∑∞

k=1 dk < c << 1, then by [21,
Proposition 1.a.9(i)] we obtain that (yn)n≥0 is a basic sequence equivalent to (zn)n≥0.
Therefore, Y ' Z ' W and the proof is complete. ¤
Proposition 5.2. Let (L, || ||L), (M, || ||M ) be normal Banach sequence spaces sat-
isfying the property (ε), (Ek, ‖ ‖k)∞k=1, (Fk, | |k)∞k=1 be sequences of Banach spaces
and, for each k ∈ N, let Tk ∈ L(Ek, Fk) with K := supk∈N ||Tk|| < ∞. If L is com-
pactly embedded in M and each operator Tk is strictly singular, then the continuous
linear operator T : L((Ek)k∈N) → M((Fk)k∈N) de�ned by T ((xk)∞k=1) = (Tkxk)∞k=1 is
also strictly singular.
Proof. De�ne E := L((Ek)k∈N) and F := M((Fk)k∈N) and denote by r and t the
norm of E and F respectively. Suppose that X is an in�nite�dimentional closed
subspace of E such that T |X is an isomorpshim into. Then there exist c, d > 0 such
that

cr(x) ≤ t(Tx) ≤ dr(x), x ∈ X, (5.3)
and hence, T (X) is an in�nite�dimensional closed subspace of F . By Lemma 5.1 the
space T (X) must contain an in�nite�dimensional closed subspace which is isomorphic
either to a closed subspace of Fk0 , for some k0 ∈ N, or to a closed subspace of M .

Suppose that T (X) contains an in�nite�dimensional closed subspace Z which is
isomorphic to a closed subspace of Fk0 . Hence, there exist c′, d′ > 0 such that

c′|zk0 |k0 ≤ t(z) ≤ d′|zk0 |k0 , z = (zk)∞k=1 ∈ z. (5.4)
Set Y := (T |X)−1(Z) ⊆ X. Then Y is also an in�nite�dimensional closed subspace
of X such that
||yk0 ||k0 ≤ τk0r(y) ≤ τk0c−1t(Ty) ≤ τk0c−1d′|Tk0yk0 |k0 ≤ τk0c−1d′||Tk0 || ||yk0 ||k0

for all y = (yk)∞k=1 ∈ Y , as it follows from (5.3) and (5.4) (here, τk0 := ||ek0 ||L).
The inequalities above ensure that Qk0(Y ) is an in�nite�dimensional subspace of
Ek0 such that Tk0 |Qk0

(Y ) is an isomorphism into; a contradiction.
Next, suppose that T (X) contains an in�nite�dimensional closed subspace which is

isomorphic to a closed subspace of M . So, as it follows from the proof of Lemma 5.1,
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this is the case when X contains a sequence (yn)n≥0 such that t(Tyn) = 1 for n ≥ 0,
(Tyn)n≥0 is a semi�normalized basic sequence and t(Jkn+1Pkn+1Tyn−JknPknTyn) >
1 − 2d1 > 0 for n ≥ 1 and for a suitable increasing sequence (kn)∞n=1 of positive
integers. But, the inclusion map L ↪→ M is compact and hence, for any ε > 0
there exists k ∈ N such that ||((0)k≥k, (ak)k>k)||M ≤ ε||((0)k≥k, (ak)k>k)||L for all
a = ((0)k≥k, (ak)k>k) ∈ L. Therefore, by (β) and (5.3) it follows that

1− 2d1 < t(Jkn+1Pkn+1Tyn − JknPknTyn)
≤ K||((0)k≤kn , (||yn

k ||k)kn<k≤kn+1 , (0)k>kn+1)||M
≤ εK||((0)k≤kn , (||yn

k ||k)kn<k≤kn+1 , (0)k>kn+1)||L
≤ εKr(yn) ≤ εKc−1

for all n ≥ n with n := min{n ∈ N : kn ≥ k}. So, we obtain again a contradiction as
we can take ε small enough that εKc−1 < 1− 2d1. This completes the proof. ¤
Remark 5.3. Let (L, || ||L), (M, || ||M ), (Ek, ‖ ‖k)∞k=1, (Fk, | |k)∞k=1 and (Tk)∞k=1 as
in Proposition 5.2. If all the maps Tk are weakly compact, then T is also weakly
compact.
Proposition 5.4. Let (L, || ||L) and (M, || ||M ) be normal Banach sequence spaces
such that L and M together with their duals satisfy the property (ε), (Ek, ‖ ‖k)∞k=1,
(Fk, | |k)∞k=1 be sequences of Banach spaces and, for each k ∈ N, let Tk ∈ L(Ek, Fk)
with K := supk∈N ||Tk|| < ∞. If L is compactly embedded in M with dense range
and each dual operator T ′k is strictly singular, then the continuous linear operator
T : L((Ek)k∈N) → M((Fk)k∈N) de�ned by T ((xk)∞k=1) = (Tkxk)∞k=1 is strictly cosin-
gular.
Proof. The proof follows by duality from Proposition 5.2 after having observed that
the spaces (L′, || ||′L), (M ′, || ||′M ) are normal Banach sequence spaces satisfying the
property (ε), that (L((Ek)k∈N))′ = L′((E′

k)k∈N) and (M((Fk)k∈N))′ = M ′((F ′
k)k∈N)

[4, Lemma 2.2], that M ′ is compactly embedded in L′ and that T ′(y′) = (T ′ky
′
k)
∞
k=1

for y′ ∈ M ′((F ′
k)k∈N). ¤
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