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FRECHET SPACES WITH NO INFINITE-DIMENSIONAL
BANACH QUOTIENTS

ANGELA A. ALBANESE AND JOSE BONET

ABSTRACT. We exhibit examples of Fréchet Montel spaces E which have a non-
reflexive Fréchet quotient but such that every Banach quotient is finite dimen-
sional. The construction uses a method developed by Albanese and Moscatelli
and requires new ingredients. Some of the main steps in the proof are presented
in Section 2. They are of independent interest and show for example that the
canonical inclusion between James spaces J, C J,,1 < p < g < oo, is strictly
cosingular. This result requires a careful analysis of the block basic sequences of
the canonical basis of the dual J;, of the James space J,, and permits us to show
that the Fréchet space J,+ = Ng>pJy has no infinite-dimensional Banach quo-
tients. Plichko and Maslyuchenko had proved that it has no infinite—dimensional
Banach subspaces.

1. INTRODUCTION.

It is well known that every quotient of a reflexive Banach space is also reflexive.
Grothendieck [13] discovered that there are Kothe echelon spaces of order one which
are Montel, hence reflexive, but have a quotient isomorphic to ¢; (see also [19, §31,
p.433]). Following Grothendieck [13, Définition 2, p.99], a lcHs X is called totally
reflezive if every quotient of X is reflexive. Answering a question of Grothendieck
[13, Probl. 9|, Valdivia proved in [29, Theorem 3| that a Fréchet space X is totally
reflexive if and only if it is the reduced projective limit of a sequence of reflexive
Banach spaces. The aim of this paper is to give examples of non-totally reflexive,
reflexive Fréchet spaces with no infinite-dimensional Banach quotients in Theorem
3.2 and non-Schwartz, Montel Fréchet spaces with no infinite-dimensional Banach
quotients in Theorem 3.1. More concrete examples are given in Example 3.3. These
examples answer in the negative the natural question whether every Fréchet space
with a non reflexive quotient has a non reflexive Banach quotient. The question
treated here is related to recent work of Bonet and Wright [6] on factorization of
weakly compact operators between Banach spaces and Fréchet or (LB)-spaces. The
construction uses a method to exhibit Fréchet spaces due to Albanese and Moscatelli
[1]. However, the main step is accomplished in Section 2. There we prove in Theorem
2.10 that the canonical inclusion between James spaces J, C Jy,1 < p < g < o0,
is strictly cosingular. This results requires a careful analysis of the block basic
sequences of the canonical basis of the dual leo of the James space Jp, and permits
us to show in Theorem 2.11 that the Fréchet space J,+ = Ng>pJy and the (LB)-
space Jp- = Ui<g<pJq have no infinite-dimensional Banach quotients. Plichko and
Maslyuchenko had proved in 28| that they have no infinite-dimensional Banach
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2 A.A. ALBANESE AND J. BONET

subspaces. Some positive results are included in Section 4. An Appendix collects
technical results needed in the proofs.

Notation. Let E be a locally convex Hausdorfl space (IcHs, briefly) and I'p a
system of continuous seminorms determining the topology of E. Denote by L(FE)
the space of of all continuous linear operators from FE to itself (from E to another
IcHs F' we write L(E, F')). The collection of all bounded subsets of E is denoted
by B(E). E, stands for E equipped with its weak topology o(E, E’), where E’ is
the topological dual space of E. The strong topology in E (resp. E’) is denoted
by B(E,E') (resp. B(E',E)) and we write Eg (vesp. Ej). The strong dual space
(Ej)5 of Ej is denoted by Ej. Ep. stands for E' equipped with its weak-star
topology o(E',E). Given T € L(FE), its dual operator T': E' — FE’ is defined by
(x,T'2"y = (Tx,2') for all x € E, 2’ € E'. It is known that 7" € L(FE!) and
T € L'(Ezg) For a quotient space of a IlcHs F we always mean a separated quotient
of ¥ endowed with its quotient lc—topology. For two IcHs E and F', we write £ ~ F
to mean that E is topologically isomorphic to F.

For undefined notation about functional analysis and locally convex spaces, and
about Banach spaces we refer to [19, 22, 13] and [10, 21, 32], respectively. Our
notation for Kéthe echelon spaces is as in [3].

2. THE JAMES FRECHET SPACES J,+, p > 1

It is known that the space Jy,+ = Ng>pJy, p > 1, is a non-reflexive Fréchet space
with no infinite-dimensional Banach subspaces, [28]. Our aim is to show that J,+,
p > 1, is also a Fréchet space with no infinite-dimensional Banach quotients. For
this purpose, we first collect some results about block basic sequences of (e,)>°  in
the dual James space J,, 1 < p < oo ((e},)nZ; denotes the canonical Schauder basis
of J}’D). Then, we study the topological structure of the closed infinite—dimensional

subspaces of lev and hence, of the infinite-dimensional quotients of .Jj,.

Let 1 < p < oo. For each sequence z = (a;);2; of real numbers, set

1 n—1 1/p
|z, == —=sup (\akn —ap, [P+ lag, — akmlp) ; (2.1)
2 i=1
where the supremum is taken over all n € N with n > 2, and all choices of integers
(ki)i—y with 1 < kg < ko <...<kp.
Recall that the p'" James space is defined by

Jpi={r=(a:))21 CR: x € ¢y and |z s, < oo}

Then (Jp, || [|s,) is a Banach space. The unit vectors e, = (din)i2;, n € N, form
a monotone and shrinking basis for J, with respect to the norm (2.1). So, the
biorthogonal functionals (e},)52; C J, associated with (e,)pZ; form a boundedly
complete basis of the dual space leo of Jp. The sequence (z,)72; C J, defined by
Tn = > i€, for n € N, is a boundedly complete basis for J,, with biorthogonal
functionals (x7,)52, C J, given by x;, = e}, —e;, 4, for n € N. The bidual space J, of
Jpp consists of all sequences (a;)72; of real numbers for which the variation norm (2.1)
is finite. Since the finiteness of the norm (2.1) implies the existence of lim; . a;, one
infers that J;,’ is the linear span of J, (more precisely, of the canonical image of J),
in J;') and the functional z{ defined by z((e;,) = 1 for all n € N, i.e., the functional
which corresponds to the sequence 1 = (1,1,1,...). It follows that the canonical
image of J,, in its bidual space J, has codimension 1 and hence, J,, is quasi-reflezive
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of order 1. In particular, the space (Jp, || ||;,) is isometric to its bidual space J;). For
p = 2 these results have been shown in [15] (or see [21, Example 1.d.2, pp.25-26]);
for an arbitrary 1 < p < oo the proofs are similar.

Now, we observe that

Proposition 2.1. Let 1 < p < oo and o' = Y 7% ae; € J,. Then the following
assertions hold.

(i) If a; > 0 for all i € N, then Hx’”fjp =32 a.
(it) [l2"]; = %(E;ﬁl |a;| )19, where 1 < q < 0o is the conjugate exponent of
p.
Proof. (i). Since [[1]|; = 1, we have }>;%; a; = (1,2') < [|2|]; and hence, 0 <
<, a; < oo. On the other hand, ||z'||; <Y 52, a;. So, the result follows.
i=1 Jp i=1
(ii). Let g be the conjugate exponent of p. Observe that (2.1) and (|z| + |y|)P <
20~ L(|xP + |y|P), for =, y € R, imply that

n

1 " cueills, < V200 leulP)' P
=1

i=1
for every n € N and (a;).; C R. Set «; := |a;|7 'sign (a;) for all i € N. Then, it
follows that

n n n
1> Jail*sign (a)eil|s, < V203 il TIP)VP = 9203 |ai )P, neN,
i=1 i=1 i=1
and hence,
n n n
D lail = O lai|* sign (ai)es, ') < 2|1, V20> lai| )P, neN.
i=1 i=1 i=1
So, we obtain that
1 n
2 > — ai|HV9, neN,
12°l[7, \q@(;! )

and the thesis follows letting n — oo. g

Let X be a Banach space. A sequence (xy,)22 in X is called semi-normalized if
there exists a constant C' > 0 such that C~! < ||z,|| < C for all n € N. A sequence
(xn)22; in X is called basic sequence if it is a Schauder basis for its closed linear

span [(z5)02;]. If (z,)02, is a Schauder basis for X, a sequence (y,)2%; in X is

called block basic sequence of (z,,)22, if yp, = Z?ﬁgiﬂ a;z;, k € N, for some sequence

0=n1 <ng <...ngp<ngp <...of integers and some sequence (a,)5>; of scalars.

Proposition 2.2. Let 1 < p < oo and (2)72, be a block basic sequence in J, with
2y = ?ﬁ;;ﬂ a;e;. Suppose that Z?:k;,i_u a; = K > 0 for all k € N. Then the
following estimate holds:

oo o0
1Y bezelly, = KNI brei ), - (2.2)
k=1 k=1
If, in addition, a; > 0 for oll i € N, then the converse estimates also holds, i.e.,
o0 oo
1> bezlly, < V2K breilly, (2.3)
k=1 k=1

where 1 < q < 00 is the conjugate exponent of p.
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Proof. Let © = "2, cie; € Jp. Observe that ||z ;, = || > 50, ck(zzn’“;g;“ ei)lls,
and that
Ng41 NEk+1 o) o] o]
KICI SIS URTED SULED SIFEYD RS h 9t SUet)
k=1 i=ng+1 = i=ni+1 k=1 k=1 k=1

From where it follows

o D oo
KIS ener S bieid] < llals, - 1S buzals,.
k=1 k=1 k=1

which implies

o o oo
K| by, =K sup |3 eren, Y beei)| < 1Y bzl
k=1 k=1 k=1 k=1

|z||.5p=
e., (2.2) is proved.
Suppose a; > 0 for all i« € N and define ¢ := % ZZL:’“;;H a;c; for every k € N.
Then (2.1) implies that

Nk+1 Nk+1
Hzckekﬂ.fp = HZCk > ey, < \fHZ > el
k=1 t=ni+1 k=1 t=ni+1
and hence,
00 00 [ee] Nk+1 00
(e S hadl =30 > el = K13 i
k=1 = k=1 i=ngk+1 -
o o
= Z rep)| < K| chekHJp [ Zbkek”Jp
k=1 k=1 k=1 k=1

< V2K|| chekHJp | ZkaZHfm
k=1 k=1

This implies

||Zbkzk||J = sup chemzbkzk )| < \[KHZbkekHJ

(|| \Jp—l
and (2.3) is proved. O
An immediate consequence of Proposition 2.2 is the following result.

Corollary 2.3. Let 1 < p < co. Then the unit vector basis (e},)5°, of J’ 1S equiva-
lento to each of its subsequences, i.e., it is spreading.

Proposition 2.4. Let 1 < p < oo and (21)72, a semi-normalized block basic se-
quence in J), with z, = :L:kzltJrl a;ei. Suppose that 3 1@ =0 for all k € N.
Then (z1)72, is equivalent to the unit vector basis of £q, with 1 < q < oo the conjugate

exponent of p, and [(z1)72,] is a complemented subspace of J,.

Proof. Since (e],)s° ; is spreading, we may assume that a,, = 0 for all kK € N.

Consider the operator P: J, — J, defined by

NE+1

Zalez. Zank+1 Z ei |, (ai)iZy € Jp.
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Then P is an idempotent operator (i.e., a projection on Jp) such that ImP ~ J,
and Ker P = [{e; : j # ny Vk € N}] is reflexive, see |7, Corollary 3 and Theorem
5] for p = 2, [20, Lemma 4.2] for 1 < p < oo. Moreover, Ker P is isomorphic

to the direct sum (@Jénk)> (in the sense of £,) of {J,ﬁ”’”}g‘;l, where ngnk) is the
p

finite-dimensional Banach space defined by
ngnk) = [enk—i-la Cnp+25--- 7€nk+1—1]7 ke N,

and equipped with the norm it inherits from J,, see |7, Lemma 2| for p = 2, |20,

Proposition 4.4(iv)] for 1 < p < oo. Observe that J,En’“) C Ker P for all k € N.
For each k € N let Qg: J, — J, denote the natural projection of J, (and also,

of Ker P) onto ngn’“) (ie., QX2 aiei) = Zn’““_i ase; for (a;)2, € Jp). Then

i=ng+
(I — P)Q is again a projection of J, (and also, of Ker P) onto ngn’“) for all £k € N.
So, Q'(I — P') is a projection of J, (and also, of (Ker P)’) onto (Jggnk))’ for all
k € N. Since a,, = 0 for all k& € N, we have that Q'(I — P')z; = 2 so that
zK € (J;,gn’“))’ C (Ker P)’ for all k € N. Since (Ker P)’ is a (complemented) closed

subspace of J, and isomorphic to <@(J,§”k‘))’ > , and the semi-normalized sequence
q
(z1)72, < (@(J}gn’“))’) is equivalent to the standard basis of ¢, in (EB(J;”’“))’) and
q q
[(2)72] is a complemented subspace of (@(Jénk))’) , the result follows. O
q

Proposition 2.5. Let 1 < p < oo and (21)72, a semi-normalized block basic se-

quence in J), with zp = :L:k;iﬂ a;e;. Suppose that ZL:’“;;H a; = K > 0 for all

k € N. Then (21)72, is equivalent to the basis (€))7, of Jp, and [(zx)72,] is a
complemented subspace of ngy

Proof. Proposition 2.2 implies that || 3232 beey[l; < K->, bz, for every
sequence (bg)72; for which the serie ) 2%, bp2p, converges in J,. To establish the
other inequality, it suffices to show that the convergence of the series Y p-  bie} in
JZ’) implies the convergence of the series Y po | byzy in ‘]z/r So, we first observe that

Nk+1 K Nk+1 Nk+1 K
2 : / 2 : ! } : /
2L = e, = ———————— €; + (ai — ) €;

n —n n -—n
imnp+1 k+1 k . k+1 k

i=ng+1 1=ng+1
= ugp+uvr, keN,

where |lug|’, = K for all k € N by Proposition 2.1(i) and hence, there is M > 0
such that [Jvg|’; < M as (2)72, is a semi-normalized sequence. If now > ope brey,
converges in J), then from Proposition 2.2 it follows that ) %, bru converges in
Jp, and from Propositions 2.1(ii) and 2.5 that )2, byvy converges in .J). Hence,
> k1 brzx converges in Jy. Thus, (2;)72, is equivalento to (€},)72 .

As in the proof of |2, Proposition 6|, we can show that the operator P: J, — J,
defined by

P(Z cie;) == %Z Z a;C; Z ei | (ci)iZ1 € Jp,
i=1 i 2
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is a projection on Jp, with dual map P’ given by

o0 ng
P <Zdie§> :Z i d; | 2.
=1

k=1 i=ni+1
So, ImP" = [(21,)32,] and hence, [(2x)32,] is a complemented subspace of Jj,. O

Remark 2.6. For p = 2 the results collected above are known and due to Andrew
[2]-

The following result is the basic step towards Theorem 2.10 and seems new even
for the case p = 2.

Theorem 2.7. Let 1 < p,q < oo with q the conjugate exponent of p. If X is an
infinite—dimensional closed subspace of JI’,, then X contains a subspace isomorphic
to £y and complemented in J,,.

Proof. Since JZ’) is a quasi-reflexive space, each infinite-dimensional closed subspace
of J’ contains an infinite-dimensional reflexive subspace, see [14, Lemma 2|. So,
X contalns a sequence of norm one vectors (y)p>; which O'(JI/,, J,) )—converges to 0.
By [21, Proposition 1.a.12] we may assume that (yz)32, is equivalent to a semi-
normalized block basic sequence (z)2; of (e})72,. Consequently, (2x)72, also
o(Jy, Jy )-converges to 0 and hence, (1, z;) — 0 as k — oo: i.e., suppose, for every
keN, that z,, =), k;;_ﬂ a;e}, we have 0y, := Z?k#-u a; — 0 as k — oo.

To finish the proof we have to consider two cases: (a) dp = 0 for infinitely many
indices k; (b) there exists ko € N such that J; # 0 for every k > ko.

(a) Let (kj);?‘;l be a strictly increasing sequence of positive integers such that
ok; = 0 for every j € N. Then, from Proposition 2.4 it follows that (z,)72, is
equivalent to the unit vector basis of {4 and, [(zx;)32] is a complemented subspace
of J,. Since (yx;)52; is equivalent to (zx; )32, (yYk;)72; is also equivalent to the unit
vector basis of £, and [(yx,)52,] is a complemented subspace of .Jj,.

(b) By passing to a subsequence if necessary, we may suppose that each d; > 0
and Y p2, 0k =: d < 1. Then we may write

5 Nk+1 Nk+1

k /

2= ——— e + —— e =up+vp, keN,
e+l = T %:4-1 ngl < Me+1 nk) l

with ||u;€||’ = 0, by Proposition 2.1(i) and ZZZfl ( - nk+61k nk) = 0 for every

k € N. So, by Propositon 2.4 (v)2, is equivalent to the unit vector basis of /4 and,
[(vr)721] is a complemented subspace of J;,. Moreover, we have

o0 o0
> ek —wlly, =D k=0 <1.
k=1 k=1

It follows that the block basic sequence (21)32, is equivalent to the block basic
sequence (vx)7, [21, Proposition 1.a.9(ii)] and hence, to the unit vector basis of /4,
and that [(z,)72,] is complemented in J, (taking ¢ small enough). Since (yx)32, is
equivalent to (2x)72,, (yx)5>, is also equivalent to the unit vector basis of ¢, and,
the subspace [(yx)72,] is complemented in J,. O

The next result for p = 2 is due to Andrew [2, Theorem 2|.
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Theorem 2.8. Let 1 < p < oo. If X is a non—reflexive subspace of lew then X
contains a subspace isomorphic to Jz,) and, complemented in JI’,.

Proof. Since X is a non-reflexive subspace of J:,’), there exists a sequence of norm
one vectors (yx)ie; € X with no o(J,, J;)-convergent subsequences. Since J, is
separable, the unit ball of J]f7 is U(J;,,Jp)fcompact and so, we may suppose that
(Ye)i2y € X has a U(J’ Jp)-limit y € lem by eventually passing to a subsequence.

We ﬁrst consider the case when y € X. In such a case, we may suppose y =
0. Since (yx)72; does not o(J), Jy)-converges to 0, there exists z € J so that
(x,yx) 7 0 as k — oo. But, x = g + Al for some zo € J, and A € R. So, the
o(J}, Jp)—convergence of (yx)p2; to 0 implies that A # 0 and that (1,yx) / 0 as
k — oo. It follows that (1,yx) > & for some € > 0, by eventually passing to a
subsequence. We can now construct a closed subspace of X which is isomorphic to
Jp, and complemented in .Jj,.

Assume yr, = > 2 q; (k) ,for k € N. Then 1 > >, a;" = (1,y;) > € for
k e N. Fix € €]0,1], (e )k 1 _]0 00) so that Y oo, e < 5/2 Ple ng € N such that

AL = 2721 M) > z and HZ aVel|l, < erE. I we set 21 = A;L Y02 ale

i>ng z z z’
then ||z1 — AT y1||Jp < A\['8e1 < 1. Now, the o (Jp, Jp)—convergence of (yx)2, to 0
ensures that there exists ko > k1 := 1 such that

€98
s%2p|a | < — 2 k> ko.
i=1 2ny’
This implies that
— no
k € k €2€
Z ag ) 3 and || Zag )e;||f]p < 5 k > ko.
i>ng =
Hence, there exists ng > m2 (n; := 0) such that )\2 = Z?:Smﬂ aEkQ) > % and

I ZD% al(-kQ)e;H’Jp 525 If we set z2 = Ay ZZ iyt 1 @ )eg, then || 22 —/\gly;@Hf]p <
Ay 126y < 2e9. Proceedlng in this way, we construct a sequence ()\j);"il of scalars, a
sequence (z;)72, of vectors and two increasing sequences (k;)72; and (n;)72, of pos-
itive integers such that § <\; <1, z; = A7 Z;‘ZEH agk )ei and ||z; — )\j Yk; HJp
2¢; for every j € N. It follows that, for each j € N, 1 —¢ < )\j_l — 2 < |zl <
2e; + )\_1 <e+2 (1,z) =1, and >z llz — )\j_lyijf]p < e. This implies
that (/\ Yk;)521 C X is equivalent to (z])] 1- But, by Proposition 2.5 the semi-
normahzed block basic sequence (2;)32; is equivalent to the basis (€})2; of J,, and
[(27)524] is a complemented subspace of J,. So, also ()\ Yk )32y C X is equlvalent
to the basis (€})32; of J,, and [(y;)32,] C X is a complemented subspace of J,, (as
soon as € is small enough).

We now consider the case when X contains no sequences O'(J}/), Jp)—converging to
0 but failing to o(J, J,)—converge to 0. In such a case, we observe that (yx)32, is a
sequence of norm one vectors of X @ [y] with no o(J, J,)—convergent subsequences
and o(J}, Jp)-convergent to y € X @ [y]. So, proceeding as above, we can conclude
that there exists a semi-normalized sequence (z)32; € X @ [y] such that (z;)72,
is o(Jp, Jp)—convergent to 0, (1,2;) # 0 as k — o0, (2)72; is equivalent to the
basis ( )32 of Jp, and [(2)72,] € X @ [y] is a complemented subspace of Jj,. Since
(), CXaly }, we have, for every k € N, that z; = ug + apy with ux € X and
ap € R. The assumption on X ensures that we may suppose that (ax)72, has a

J=1
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non—zero cluster point. So, by perturbing and eventually passing to a subsequence,
we may assume that zx = ur + ay with a # 0 for every k£ € N. Tt follows that
2k — 21 = Yk — Yut1 € X for every k € N. On the other hand, (2 — zx+1)52,
is equivalent to (e}, — ej )72 - So, [(yx — Yrs1)pey] = [(e}, — epr)izy]. Since
(e — €hr1)pey is the dual basis of the boundedly complete basis (zx)32, for J,
and hence, [(e}, — €,,,1)72,]" =~ Jp, [21, Proposition 1.b.4], we obtain that [(yr —
Yk+1)72,]" =~ Jp. Since the predual of J, is isomorphic to J;), [11, Theoreme 10],
it follows that [(yx — Yr+1)72,] =~ J, and hence, X contains an isomorphic copy of
Jy. Moreover, [(yx — Yr+1)52;]) is a one-codimensional closed subspace of [(zx)72 ]
and hence, it is complemented in [(2z)72,]. Since [(z1)32,] is complemented in J),
it follows that also [(yx — yr+1)52,] is complemented in J,. O

Let T: E — F be a continuous linear operator between Banach spaces E and
F. The operator T is called strictly singular if the restriction of T to any infinite—
dimensional subspace of E is not an isomorphism, [18]. The operator T is called
strictly cosingular if the only Banach spaces G for which there exist surjective con-
tinuous linear operators (i.e., quotient maps) qg: E — G and qp: F — G such that
qr = qr o T are finite—dimensional, [25]. The class of strictly singular operators is
somewhat related by duality to the class of strictly cosingular operators. Indeed, if
the dual operator T" of an operator T is strictly singular (strictly cosingular, resp.),
then T is strictly cosingular (strictly singular, resp.), [25]. However, the converse
statements are not true in general. But, we clearly have:

Remark 2.9. Let E, F' be Banach spaces and T € L(E, F). If E is reflexive, then
the operator T is strictly singular (strictly cosingular, resp.) if and only if its dual
operator T" is strictly cosingular (strictly singular, resp.). Indeed, the reflexivity of
E implies that the bidual operator 7" coincides with T' and hence, the results follows
by duality.

Let 1 < p,q < oo with p < ¢. Since || ||, is defined as the supremum of £,-norms
of certain sequences, || ||¢, < || |l¢, implies || [|;, < || [|7, on Jp. So, J, € Jg and the
canonical inclusion map ¢}: J, < J, is continuous with norm 1 and dense range.
Moreover, the operator ¢} is strictly singular (it easily follows from the fact that
each subspace of J), contains a subspace isomorphic to ¢,, |28, Proposition 1|). On
the other hand, Theorem 2.7 ensures that each subspace of J(’I contains a subspace
isomorphic to £, and hence, implies that the dual operator (¢3)': J, < .J) is also
strictly singular. Therefore, we easily obtain that

Theorem 2.10. Let 1 < p < q < 00 and 1}: J, — J, denote the canonical inclusion
map. Then v} and its dual map ()" are both strictly singular and strictly cosingular.

Proof. Since (1) is strictly singular by Theorem 2.7, ¢} is strictly cosingular, [25].
Hence, it remains to show only that (u})’ is strictly cosingular. This follows from
the fact the bidual map (¢2)”: (Jp)" — (J,)" is strictly singular as (Jp)" =~ Jp,
(Jg)" =~ J, and, each subspace of J, contains a subspace isomorphic to £,, [28,
Proposition 1]. O

Recall that, for 1 < p < oo, Jj,+ denotes the Fréchet space N>y J, with its natural
projective topology (i.e., if g, | p, then J,+ = Nj2,J,, ) and that, for 1 < p < oo, J,,-

n=1
denotes the (LB)-space Ui<¢<pJq again endowed with its natural inductive topology
(ie,if 1 <gn Tp, then J,- = U532, J,,), [28]. In the sequel, for each ¢ > p (¢ < p,
resp.), we denote by t4: Jp+ — Jy (19: Jy < Jp—, resp.) the canonical inclusion

P
map. So, for p < g2 < qu, Lg, = L&y 0 tgy, and, for 1 < ¢1 < ga < p, 1B =120 f.
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In [28, Propostion 2, Theorem| it is shown that the locally convex spaces Jp+
and Jp,~ are quasi-reflexive of order one with no infinite-dimensional Banach spaces.

Now, as an immediate consequence of Theorem 2.10 we obtain the following results.

Theorem 2.11. Let 1 < p < occ. Then J,+ and J,- (p > 1) are non-reflexive locally
conver spaces with no infinite—-dimensional Banach quotients.

Proof. For the space J,+: Suppose that the Banach space X is a quotient of Jp+
and denote by Q: J,+ — X the quotient map. Since Jp+ = N2, J,, with ¢, | p,
there exists ng € N so that X is a quotient of Jgny+ 1-€., there exists a quotient map
Qno: Jg,, — X such that @ = Qn, © g, . Then X must also to be a quotient of

Jgngr1 (here, gnor1 < Gng), i-e., there exists a quotient map Qnot1: Jg, 01 — X

an
such that @ = Qno+1 0 tg, ;- 1t follows that Qny © 1,041 © Lggi1 = @no © Lgny =

— ng
Q = Qno+1 © tg,,+, and hence, Qn, 0 tg,0 1 = @no+1 8 Lg, ., has dense range. By

Theorem 2.10 this equality forces X to be finite—dimensional.

For the space J,~ (p > 1): Suppose that the Banach space X is a quotient of
J,— and denote by Q: J,- — X the quotient map. Since Jp,- is a (DF)-space, there
exists B € B(J,-) such that Q(B) 2 Bx, where Bx denotes the closed unit ball of
X. This together with the regularity of the (LB)-space J,,- (see, [28]) imply that X
must be a quotient of Jy, for some ng € N, i.e., there exists Qn,: Jg,, — X such
that Qn, = Qow0. Then X must also to be a quotient of Jy, ., (here, gng+1 > Gny),

Le., there exists a quotient map Qny+1: Jg,,1 — X such that Qno41 = Q o LIt

It follows that Q,, = Q o 190 = @Q o 1%+ o nggﬂ = Qny+1 © ngg“. By Theorem

2.10 this equality forces X to be finite-dimensional. O

3. REFLEXIVE (MONTEL) FRECHET SPACES WITH NO INFINITE-DIMENSIONAL
BANACH QUOTIENTS

The aim of this section is to exhibit examples of non—totally reflexive, reflex-
ive Fréchet spaces and of non—Schwartz, Montel Fréchet spaces with no infinite—
dimensional Banach quotients. The construction is based on a method given in
[1].

Let (En, jiy1)pe1 be a reduced projective sequence of Banach spaces such that the
Fréchet space E := proj,, £y, C Jp+ and the inclusion map u: £ — J,,+ is continuous
with dense range, for some p > 1. For each n € N, denote by j,: E — E, the
canonical projection of E into Ej, so that j;,; o jn41 = jn and, by || ||, a norm
defining the topology of E,. If J,+ = N32,J,, with ¢, | p, then we may suppose
that, for every n € N there exists a continuous linear map wu,: E,4+1 — Jg, with
dense range such that ¢4, o u = uy, o jn41 (eventually, by passing to a subsequence).

Further, let (Ly,)22, be a reduced projective sequence of normal Banach sequence
spaces such that L,11 C Ly and the inclusion map py,,1: Lpt1 — Ly is continuous
with dense range. Let L := N2, L, be the Fréchet space endowed with its natural
projective topology. For each n € N, denote by p,: L — L, the canonical inclusion
of L into Ly, so that p}; ; 0 ppy1 = pp and, by | |, a norm defining the topology
of L,. Moreover, suppose that each normal Banach sequence space L,, satisfies the
property (¢), i.e., |a — ((ax)r<h, (0)k>r)|n — 0 as h — oo for every a = (ax)>, € Ly,
(cf. Appendix).

Following [1], for every n € N, we define the Banach space

M'I‘L = L’ﬂ((Xn)k<n7 (an)kzn)a
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ie.,

M, = {((xk)k<n7 (yk)kzn) DX € Env Yk € any ((||xk||n)k<m (Hkaan)an) S Ln}
with the topology generated by the norm

(k) k<ns (Yr)kzn) = [(([Zxlln)k<ns (YKl 10, Jezn)ln-

Then the maps j, 1, tar, |, together with the maps u,, induce continuous linear maps
Uji1: Myy1 — M, defined by

n

Un'p1 ((@r)k<nsts k) kzne1) = (Ungr (@) kans tn(@n), (g, (k) kzns1)- (3.1)
So, we may form the reduced projective limit
M(E, J,+; L) := proj My,
n

which is a Fréchet space, [1, Proposition 1|. Note that the definition above is not
as general as the one given in [1]. Constructions of Fréchet spaces of this type have
been used since the paper of Moscatelli [24] several times to exhibit variuos coun-
terexamples. Bonet and Dierolf thoroughly investigated this type of constructions
in [4]. We refer the reader to the survey paper [5] for more information on the topic.

Recall that a Fréchet space E is called Schwartz (infra—Schwartz, resp.) if for every
n € N there is m > n such that the canonical map j2: E,, — E, (j2 :=j" lo...0
Jmy1) is compact (weakly compact, resp.), [17]. Infra-Schwartz Fréchet spaces are
projective limits of sequences of reflexive Banach spaces, [17, 7.5.3]. Valdivia proved
in [29, Theorem 3] that a Fréchet space E is infra-Schwartz if and only if it is totally
reflexive, i.e., every quotient of F is reflexive.

Combining |1, Theorem 2, Corollaries 2 and 3| with Theorem 2.10, we easily obtain
the following results.

Theorem 3.1. Let 1 < p < oo. If L and E are Schwartz Fréchet spaces, then the
space M(E, J,+; L) is a non-Schwartz, non—totally reflexive, Montel Fréchet space
with no infintte—dimensional Banach quotient.

Proof. Theorem 2 together with Corollary 2 in [1] ensure that the Fréchet space
M(E, J,+; L) is Montel but not Schwartz and not totally reflexive. Now suppose that
the Banach space X is a quotient of M (E, J,+; L). Then, using the same arguments
of the proof of Theorem 2.11, one obtains that there exist ng € N and quotient maps
Qng: Myy — X, Quo+1: Mpy+1 — X such that @, o T’;‘gﬂ = Qng+1. Since L and
E are both Schwartz Fréchet spaces, there is no loss of generality in assuming that
all the maps j; 11 Eny1 — En, un: Enyp1r — Jg, and pyy 1 L1 < Ly are compact
and that all the dual spaces L] satisfy the property (¢). On the hand hand, by
Theorem 2.10 the maps ¢gr,, : Jg.., < Jq, are strictly cosingular. This implies by
(3.1) that the maps U}, are also strictly cosingular in virtue of Proposition 5.4 in
the Appendix and Remark 2.9. Hence, the equality @y, © gg 1 = Qno+1 forces X
to be finite-dimensional. O

Theorem 3.2. Let 1 < p < oo. If L is a Schwartz Fréchet space, E is a totally
reflevive Fréchet space such that the maps jy | and u, are strictly cosingular, then
the space M(E,J,+; L) is a non-totally reflexive, reflexive Fréchet space with no
infinite—dimensional Banach quotients.

Proof. Theorem 2 together with Corollary 3 in [1] ensure that the Fréchet space
M(E, Jy+; L) is reflexive but not totally reflexive. Suppose that the Banach space
X is a quotient of M(E, J,+;L). Then, as in the proof of Theorem 3.1, we obtain
that there exist ngp € N and quotient maps Qn,: My, — X, Qno+1: Mpo41 — X
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such that Qn, o U | = Qug+1. Since L (E, resp.) is a Schwartz Fréchet space
(infra—Schwartz Fréchet space, resp.), there is no loss of generality in assuming that
all the maps pji,: Lyt1 = L, are compact and that all the dual spaces L;, satisfy
the property (g). On the hand hand, by Theorem 2.10 the maps tdr,, : Jg, ., < Jq,
are strictly cosingular. This implies via (3.1) that the maps U]} ; are also strictly
cosingular by Proposition 5.4 in the Appendix and Remark 2.9. So, the equality

Qn, © ggﬂ = Qny+1 implies that X is finite-dimensional. g

We observe that non—Schwartz, Montel Fréchet spaces with no infinite-dimensional
Banach quotients have been already exhibited in [1, §4, Theorem 3]. But, as observed
in [1, §4, Remark 9], all such spaces are totally reflexive. So, Theorem 3.1 ensures
the existence of non—totally reflexive, non—Schwartz, Montel Fréchet spaces with no
infinite-dimensional Banach quotients.

Applying Theorems 3.1 and 3.1 we obtain that

Example 3.3. (1) Let E be the nuclear Fréchet space s = N02,41(j™) of all rapidly
decreasing sequences. Then, for every 1 < p < oo, the space M (s, J,+;5) is a non-
Schwartz, non-totally reflexive, Montel Fréchet space with no finite-dimensional
Banach quotients.

(2) Let E be the totally reflexive Fréchet space £,+ = Ng>ply for some p > 1
(see [23] for more information on this space). Then, for every for ¢ €|p,c0), the
space M (£,+, Jy+;s) is a non-totally reflexive, reflexive Fréchet space with no finite—
dimensional Banach quotients.

4. SOME POSITIVE RESULTS

Theorem 2.11 ensures that the space J,+, p > 1, is an example of a non-reflezive
Fréchet space with no infinite—dimensional Banach quotients. In this section we show
that in some case the weaker condition every Banach quotient is reflexive implies
that the underlying Fréchet space is reflezive or totally reflezive.

Proposition 4.1. Let A be a Kéthe matriz and E = A\,(A) with p € {0,1,00}. If
every Banach quotient space of E is reflexive, then E is quasinormable and totally
reflexive.

Proof. The result follows from [31, Ch. 2, §2, 3(14) and 3(15), p.226] for p = 1 and
from [31, Ch. 2, §4, 3(11) and 3(12), p.266] for p = 0.

Set E' = Aso(A) and suppose E is not quasinormable. Then [9, Theorem 2| implies
that E has a Banach quotient space X which is isomorphic to ¢g. So, E has a Banach
quotient space which is not reflexive. Next, suppose that E = A\ (A) is not reflexive.
Therefore, E is not Montel and hence, E' admits a sectional subspace X which is
isomorphic to lo, [31, Ch. 2, §4, 2(2) and 2(7), pp.262—264]|. As X is a sectional
subspace of E, X is a complemented subspace of E and hence, a quotient space of
E. Finally, since E is reflexive and quasinormable, by a result of Grothendieck [13,
Corollary 3, p.115] we have E is totally reflexive. O

A IcHs E is said to have the Grothendieck property if every sequence in E’ which
is convergent in (E',0(E’, E)) is also convergent in (E',o(E’, E")). Clearly, every
reflexive 1cHs sayisfies the Grothendieck property.

Proposition 4.2. Let E be a quasinormable Fréchet space with the Grothendieck
property. Then E is totally reflezive.
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Proof. Suppose E is not totally reflexive. Then a result of Valdivia [29, Theorem 2]
implies that E has a Fréchet quotient space with a Schauder basis (hence, a separable
quotient space) which is not reflexive. This contradicts |9, Proposition 4]. O

Proposition 4.3. Let E be a separable and o(E, E')—sequentially complete Fréchet
space. If every Banach quotient space of E is reflexive, then E is also reflexive.

Proof. Suppose that E is not reflexive. Then E contains a bounded sequence (z,,)72

with no o(E, E')—convergent subsequences. So, there exists a subsequence (2, )%,
of (2,,)5% such that (xy,)22, is either o(E, E')~Cauchy or equivalent to the unit
vector basis of (1, [8, Lemma 3] (see also [30]). Since E is o(FE, E')-sequentially
complete, the sequence (xy, )22 is necessarily equivalent to the unit vector basis of
0. Then X = [(z,)5 ;] is a closed subspace of E isomorphic to ¢;. This implies
that the Banach space C([0, 1]) is isomorphic to a quotient space of E and the proof
follows now similarly as in the case of Banach spaces, [26, Theorem 3.4], [10, Ch.XI,
pp.213-214]. Indeed, consider the Banach space C(A) where A denotes the Cantor
set (recall that C'(A) and C([0, 1]) are isomorphic). Since C'(A) is a separable Banach
space, C'(A) is a quotient space of ¢1 via some continuous linear operator ¢. On the
other hand, C'(A) is a closed subspace of o (A). So, ¢ € L(¢1,¢5(A)) and hence, we
may extend ¢ to a continuous linear operator Q: E — (o (A), [16, Corollary 7.4.5,
p.133]. It follows that Q(E) is a separable closed subspace of £s(A) and hence, it
is isometric to a closed subspace of C(A). On the other hand, ¢(¢1) = Q(¢1) is a
closed subspace of Q(FE) isomorphic to C'(A) (actually, = C(A)). So, by a result
of Pelezynski, [27], [10, Ch.XI, p.214], we can conclude that ¢(¢1) = Q(¢1) contains
a closed subspace Y which is isometric to C'(A) and complemented in Q(E) by a
norm one projection P. Set R = Po@. Then R € L(E,Y) and is a quotient map
with R(E) =Y ~ C(A). This completes the proof.

We have so shown that the non-reflexive Banach space C(]0, 1]) is a quotient space
of E; a contradiction. O

Corollary 4.4. Let E be a separable, o(E, E")-sequentially complete and quasi-
normable Fréchet space. If every Banach quotient space of E 1is reflexive, then E is
totally reflexive.

Proof. From Proposition 4.3 it follows that E is reflexive and hence, E satisfies
the Grothendieck property. Then E is necessarily totally reflexive by Proposition
4.2. O

5. APPENDIX

In this section we prove a technical result which was needed in the proof of the
main Theorems 3.1 and 3.2.

Let (L,]|| ||) be a normal Banach sequence space, i.e., a Banach sequence space
satisfying the following properties:

(o) ¢ € L C w and the inclusion (L, || ||) < w is continuous,
(B) Ya = (ag)i2, € L, Vb = (br)32; € w such that |by| < |ai| for Vk € N, we
have b € L and ||b|| < ||al|.
We say that a normal Banach sequence space (L, || ||) satisfies the property (g) if
(e) |la = ((ar)k<ns (0)k>n)|| — 0 as n — oo for every a = (ax)7>, € L.
If the sequence space (L, || ||) satisfies (), then the vectors e, := (dxn)3>, € L form
a Schauder basis for L and its topological dual can be identified with its a—dual [19,
§30]; hence, (L', || ||') is also a normal Banach sequence space. Typical examples of
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normal Banach sequence spaces are the Banach spaces £, 1 < p < 00, ¢g and their
diagonal transforms. In particular, the Banach spaces ¢, for 1 < p < oo, and ¢
satisfy (e).

Further, let (Ey, || ||x)32, be a sequence of Banach spaces. Then the Banach space
E := L((Ek)ken) is defined as the linear space

E= {0, € [[ Be: (lanll)iy € L}
k=1

endowed with the norm r(z) := ||(||xk||x);2, || for © = (xx)32, € E.

For each n € N, let J,: [[,_y Ex — E and P,: E — [[,_; Ex be the con-
tinuous linear maps respectively defined by Jp(2k)k>n = ((Tk)k<n, (0)g>n) and
Py (x1)32 == (Tk)k<n. Clearly, we have P, o J, = I for every n € N.

Lemma 5.1. Let (L, || ||) be a normal Banach sequence space satisfying the property
(e) and (Eg, || [|k)32, be a sequence of Banach spaces. If X is an infinite-dimensional
closed subspace of E := L((Ex)ken). Then either X contains an infinite—dimensional
closed subspace which is isomorphic to a subspace of some Ey or X contains an
infinite—dimensional closed subspace which is isomorphic to a subspace of L.

Proof. For each n € N, let introduce the map Q,: E — E,, defined by Qn(x;)52, =
Zy. If there exists ng € N so that the restriction map @, |x is not strictly singular,
then X contains an infinite-dimensional closed subspace which is isomorphic to a
subspace of Ey,.

Suppose that each @, |x is strictly singular and in this case, for every n € N the
restriction of P, = > ;_; Qk to X is also strictly singular, [12, Theorem II1.2.4,
p.86]. Let (dn)22, be any decreasing sequence of positive numbers convergent to 0
with di < 1/2 and, for each n € N, let 7, := [|((1)k<n, (0)g>n)||. By () we may
suppose that each 7, > 1. Next, let y° € X with r(y°) = 1. Since (L, || ||) satisfies
the property (¢), we can choose k1 € N so that 7(y" — Ji, P, y°) < di. Since Py, |x
is strictly singular, there is y! € X with 7(y') = 1 such that 221:1 il < di/7s, -
Applying again the property (g), we can choose ko > ki such that 7(y' — Ji, Pr,y') <
do. Iterating this procedure, we can find a sequence (y")n>0 C X, y" = (y7)52,, and
an increasing sequence (ky, )22 ; of positive integers satisfying the following properties:

T(yn> =1, r(yn - Jkn+1pkn+1yn) <dpt1, n=>0, (51)
k7l
> MRk < dn/7,, n €N (5.2)
k=1

For n = 0 define zg = yg if1 <k<k and zg := 0 otherwise. For n > 1, define
2" = yp if by < k < kyq1 and 27 := 0 otherwise. Then, for every n > 0, we have
2= ()72, € B, r(2") < 1by (5.1) and (8), r(Jk, Pr,y") < Tk, 227;1 [y lle < dn
by (5.2) and (). So, by (5.1) it follows that

r(2°) = r(Je P y® — 4° +4°) > r(@°) — r(y° — Jp Peyy®) > 1 —dy > 0,

T(Zn) T(Jk"n+1pkn+lyn - JknPknyn + yn - yn)
r(yn) - T(JknPknyn) - r(yn - Jkn+1Pkn+lyn)

1—dy—dpi1>1-2dy >0, n>1.

VAR
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Moreover, for every m < n and for evry choice (ay)j’, of scalars we have

m n
r (Z akzk> <r (Z akzk> ,
k=0 k=0

as it is easily to verify. Hence, (2"),>0 is a semi—normalized basic sequence of E.
Define Z := [(2")n>0]. Then Z is isomorphic to a closed subspace of L. To show
this, we observe that the vectors e, := (0n1)72;, for n € N, form a Schauder basis of
L via () and that the vectors wy = Z’l?:l [y |ker and w,, = Z’,zf}c;“ ||y ||kek, for
n > 1, form a semi-normalized block basic sequence of (€)% . Let W := [(wp)n>0]
and S: Z — W be the operator defined by setting

o (o] o
S(Z akzk) = Zakwk, z= Zakzk cZ.
k=0 k=0 k=0

Then W is a closed subspace of L and S is an isomorphism onto by (3).
Finally, put Y := [(y")n>0] € X and observe that, by (5.1) we have

[e.e] o0 [ee]

Zr(y" —2") = Zr(y” —2") < de.

k=0 k=0 k=1
So, if we choose the sequence (d,)5 satisfying Y po, dr < ¢ << 1, then by [21,
Proposition 1.a.9(i)] we obtain that (y"),>0 is a basic sequence equivalent to (2p)n>0-
Therefore, Y ~ Z ~ W and the proof is complete. O

Proposition 5.2. Let (L, || ||z), (M,|| ||ar) be normal Banach sequence spaces sat-
isfying the property (), (Ex, || k)31, (Fk,| |k)32; be sequences of Banach spaces
and, for each k € N, let T, € L(Ey, Fy,) with K = suppcy ||Tx|| < 0o. If L is com-
pactly embedded in M and each operator Ty, is strictly singular, then the continuous
linear operator T': L((Ex)ken) — M ((Fk)ren) defined by T((xr)572,) = (Thar)i, is
also strictly singular.

Proof. Define E := L((Ey)ken) and F' := M((F))ren) and denote by r and ¢ the
norm of F and F respectively. Suppose that X is an infinite-dimentional closed
subspace of E such that T'|x is an isomorpshim into. Then there exist ¢, d > 0 such
that
cr(z) <t(Tx) <dr(z), ze€X, (5.3)

and hence, T'(X) is an infinite-dimensional closed subspace of F'. By Lemma 5.1 the
space T'(X) must contain an infinite-dimensional closed subspace which is isomorphic
either to a closed subspace of Fj,, for some ky € N, or to a closed subspace of M.

Suppose that T'(X) contains an infinite-dimensional closed subspace Z which is
isomorphic to a closed subspace of Fy,. Hence, there exist ¢/, d’ > 0 such that

C,|Z:’€0‘ko <t(z) < d/|zko|kov = (Zk)iozl €z (5.4)
Set Y := (T|x)~'(Z) C X. Then Y is also an infinite-dimensional closed subspace
of X such that
1yrollko < 7507 (y) < T H(Ty) < 780 d | Tagyng o < 70 || Tio |y I

for all y = (yx)32, € Y, as it follows from (5.3) and (5.4) (here, 7% := ||ek,||1).
The inequalities above ensure that Q,(Y) is an infinite-dimensional subspace of
E}, such that Tko’Qko(Y) is an isomorphism into; a contradiction.

Next, suppose that T'(X) contains an infinite-dimensional closed subspace which is
isomorphic to a closed subspace of M. So, as it follows from the proof of Lemma 5.1,
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this is the case when X contains a sequence (y")p>0 such that ¢(T'y") =1 for n > 0,
(T'y")n>0 is a semi-normalized basic sequence and t(Jy,,,, Pr, ., TY" — Ji, P, Ty") >
1 —2d; > 0 for n > 1 and for a suitable increasing sequence (k)52 of positive
integers. But, the inclusion map L — M is compact and hence, for any ¢ > 0
there exists k € N such that [[((0)~7%, (ak)s5)llv < €ll((0)4>7, (ak),7)| |z for all
a = ((0);57 (ak),~5) € L. Therefore, by (3) and (5.3) it follows that

1-2d; < t(Jkn+1Pkn+1Tyn — JknPknTyn)
K[[((0)k<kn > (Y |16 kn<k<hnsrs (O k>kp a2z

eK|[((0)k<n > (YR k) kn <k <hnirs (O)k>kn i)l
< eKr(y") < eKc !

<
<

for all n > 7 with @ := min{n e N: k,, > E} So, we obtain again a contradiction as
we can take € small enough that eKc¢™! < 1 — 2d;. This completes the proof. O

Remark 5.3. Let (L, | [|z), (M, ] [la), (B, | 10)7Z1, (Fe, | [1)32; and (Tk)z2, as
in Proposition 5.2. If all the maps T} are weakly compact, then T is also weakly
compact.

Proposition 5.4. Let (L,|| ||z) and (M, || ||ar) be normal Banach sequence spaces
such that L and M together with their duals satisfy the property (€), (Ei, | ||lk)52q,
(Fi» | k)3, be sequences of Banach spaces and, for each k € N, let T}, € L(Ey, Fy,)
with K := supyey ||Tk|| < 0o. If L is compactly embedded in M with dense range
and each dual operator T}, is strictly singular, then the continuous linear operator
T: L((Eg)ken) — M((Fi)ren) defined by T((xr)3,) = (Thar)ie, is strictly cosin-
gular.

Proof. The proof follows by duality from Proposition 5.2 after having observed that
the spaces (L', | ||7), (M, || ||};) are normal Banach sequence spaces satisfying the
property (€), that (L((Ek)ken))” = L'((E})ken) and (M((Fk)ken))' = M'((F})ken)
[4, Lemma 2.2], that M’ is compactly embedded in L' and that T'(y") = (Ty,)72,
for y’ S M/((F];)keN)- ]
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