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Abstract

Concurrent languages are increasingly present in our society, both in new
technologies and in the systems used on a daily basis. Moreover, given the
current systems distribution and their internal architecture, one can expect
that this remains so in the coming years. In this context, the development of
tools to support the implementation of concurrent programs becomes essen-
tial. Futhermore, the behavior of concurrent systems is particularly difficult
to analyse, so that any tool that helps in this task, even if in a limited way,
will be very useful. For example, one can find tools for debugging, analysis,
testing, optimisation, or simplification of programs, which are widely used
by programmers nowadays.

The purpose of this thesis is to introduce, through various concurrent pro-
gramming languages, some analysis techniques that can help to improve the
experience of the software development and release for concurrent models.
This thesis introduces both static (approximating all possible executions) and
dynamic (considering a specific execution) analysis. The topics considered
here differ enough from each other to be fully independent. Nevertheless,
they have a common link: they can be used to analyse properties of a con-
current programming language. All the analyses presented here have been
formally defined and their correctness have been proved, ensuring that the
results will have the reliability degree which is needed for some systems (for
instance, for critical systems). It also includes a description of the software
tools that implement the different ideas proposed. This gives the work a use-
fulness well beyond the theoretical aspect, allowing us to put it in practice
and to test the different analyses with real-world examples.
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All the ideas here presented are, by themselves, approaches that can be ap-
plied in many current contexts and problems. Moreover, individually they
serve as a starting point for other derived analysis, as well as for the adap-
tation to other languages of the same family. This gives an added value to
this work, a fact confirmed by some later works that are already benefiting
from the results obtained in this thesis.
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Resumen

Los lenguajes concurrentes están cada d́ıa más presentes en nuestra sociedad,
tanto en las nuevas tecnoloǵıas como en los sistemas utilizados de manera
cotidiana. Más aún, dada la actual distribución de los sistemas y su arqui-
tectura interna, cabe esperar que este hecho siga siendo una realidad en los
próximos años. En este contexto, el desarrollo de herramientas de apoyo a
la implementación de programas concurrentes se vuelve esencial. Además,
el comportamiento de los sistemas concurrentes es especialmente dif́ıcil de
analizar, por lo que cualquier herramienta que ayude en esta tarea, aún
cuando sea limitada, será de gran utilidad. Por ejemplo, podemos encon-
trar herramientas para la depuración, análisis, comprobación, optimización,
o simplificación de programas. Muchas de ellas son ampliamente utilizadas
por los programadores hoy en d́ıa.

El propósito de esta tesis es introducir, a través de diferentes lenguajes de
programación concurrentes, técnicas de análisis que puedan ayudar a mejorar
la experiencia del desarrollo y publicación de software para modelos concur-
rentes. En esta tesis se introducen tanto análisis estáticos (aproximando
todas las posibles ejecuciones) como dinámicos (considerando una ejecución
en concreto). Los trabajos aqúı propuestos difieren lo suficiente entre śı
para constituir ideas totalmente independientes, pero manteniendo un nexo
común: el hecho de ser un análisis para un lenguaje de programación concur-
rente. Todos los análisis presentados han sido definidos formalmente y se ha
probado su corrección, asegurando que los resultados obtenidos tendrán el
grado de fiabilidad necesario en sistemas que lo requieran, como por ejemplo,
en sistemas cŕıticos. Además, se incluye la descripción de las herramientas
software que implementan las diferentes ideas propuestas. Esto le da al tra-
bajo una utilidad más allá del marco teórico, permitiendo poner en práctica
y probar con ejemplos reales los diferentes análisis.
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Todas las ideas aqúı presentadas constituyen, por śı mismas, propuestas apli-
cables en multitud de contextos y problemas actuales. Además, individual-
mente sirven de punto de partida para otros análisis derivados, aśı como
para la adaptación a otros lenguajes de la misma familia. Esto le da un valor
añadido a este trabajo, como bien atestiguan algunos trabajos posteriores
que ya se están beneficiando de los resultados obtenidos en esta tesis.
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Resum

Els llenguatges concurrents estan cada dia més presents en la nostra soci-
etat, tant a les noves tecnologies com en els sistemes utilitzats de manera
quotidiana. Encara més, donada l’actual distribució dels sistemes i la seva
arquitectura interna, cal esperar que aquest fet segueixi sent una realitat en
els propers anys. En aquest context, el desenvolupament d’eines de suport a
la implementació de programes concurrents es torna essencial. A més, el com-
portament dels sistemes concurrents és especialment dif́ıcil d’analitzar, pel
que qualsevol eina que ajudi en aquesta tasca, tot i que sigui limitada, serà
de gran utilitat. Per exemple, podem trobar eines per a la depuració, anàlisi,
comprovació, optimització, o simplificació de programes. Moltes d’elles són
àmpliament utilitzades pels programadors avui en dia.

El propòsit d’aquesta tesi és introduir, a través de diferents llenguatges de
programació concurrents, tècniques d’anàlisi que puguin ajudar a millorar
l’experiència del desenvolupament i publicació de software per a models con-
currents. En aquesta tesi s’introdueixen tant anàlisis estàtics (aproximant
totes les possibles execucions) com dinàmics (considerant una execució en
concret). Els treballs aqúı proposats difereixen prou entre si per constituir
idees totalment independents, però mantenint un nexe comú: el fet de ser
un anàlisi per a un llenguatge de programació concurrent. Tots els anàlisis
presentats han estat definits formalment i s’ha provat la seva correcció, as-
segurant que els resultats obtinguts tindran el grau de fiabilitat necessari en
sistemes que ho requereixin, com per exemple, en sistemes cŕıtics. A més,
s’inclou la descripció de les eines software que implementen les diferents idees
propostes. Això li dóna al treball una utilitat més enllà del marc teòric, per-
metent posar en pràctica i provar amb exemples reals els diferents anàlisis.
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Totes les idees aqúı presentades constitueixen, per si mateixes, propostes
aplicables en multitud de contextos i problemes actuals. A més, individual-
ment serveixen com a punt de partida per a altres anàlisis derivats, aix́ı com
per a l’adaptació a altres llenguatges de la mateixa famı́lia. Això li dóna un
valor afegit a aquest treball, com bé testifiquen alguns treballs posteriors que
ja s’estan beneficiant dels resultats obtinguts en aquesta tesi.
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Chapter 1

Introduction: Motivation and
Contributions

1.1 Concurrent Programming Languages

Nowadays, few computers are based on a single processor architecture. Con-
trarily, modern architectures are based on multiprocessor systems such as
the dual-core or the quad-core; and a challenge of manufacturer companies is
to increase the number of processors integrated into the same motherboard.
In order to take advantage of these new hardware systems, software must
be prepared to work with parallel and heterogeneous components that work
concurrently. This is also a necessity of the widely generalized distributed
systems, and it is the reason why the industry invests millions of dollars in the
research and development of concurrent languages that can produce efficient
programs for these systems, and that can be automatically verified thanks
to the development of modern techniques for the analysis and verification of
such languages.

Concurrency refers to two or more tasks of a computer system which are in
progress simultaneously and communicate with each other occasionally. It
has been studied since the first concurrency issues appeared in the Operating
Systems in the early 1960s. One of the first proposals to model the concur-
rency was the Petri Nets formalism [74]. In the years since, a wide variety
of approaches has been announced and discussed, and the number is still
increasing nowadays mainly due to the increase of multi-core processors and
the Internet model of communication. Notable examples of these approaches
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are the Parallel Random Access Machine [33], the Actor model [4] or pro-
cess calculi [65] such as Ambient calculus [20], Calculus of Communicating
Systems (CCS) [65], Communicating Sequential Processes (CSP) [41, 80] or
π-calculus [67].

Concurrent programming puts all these ideas in practice. This computing
paradigm has many advantages over others. One of the most important is to
allow various tasks to run in parallel in order to improve the performance.
Additionally, this paradigm is the most suitable to code some problems. Try-
ing to define such problems in another paradigm could be a difficult task and
result in error prone solutions. Basically, it is a form of computing in which
programs are designed as processes which are able to communicate with other
processes. Interaction between processes fells in one of the following cases:

Shared memory communication All the processes have access to a com-
mon shared memory, and the communication is made through it. Com-
monly, this kind of communication requires to use lockers (e.g. mutexes,
semaphores, or monitors) to coordinate all the processes. Java or C#
are maybe the most known languages using this type of communication.

Message passing communication The communication is made by ex-
changing messages. The exchange could be synchronous (when the
sender does not progress until the receiver has received the message) or
asynchronous (when the sender delivers a message to the receiver and
continues its execution without waiting for the receiver to get the mes-
sage). This kind of communication is usually more robust and easier to
model. Most mathematical theories in concurrency allow to understand
and analyze this class of communication, including the Actor model [4],
and several process calculi [41, 80, 67]. Notable examples of languages
using this type of communication are Scala [71] and Erlang [7].

The specification and simulation of complex concurrent systems is a difficult
task due to the intricate combinations of message passing and synchroniza-
tions that can occur between the components of the system. In particular, the
non-deterministic execution order of processes and the restrictions imposed
on this order by synchronizations make the comprehension and development
of such systems a costly task. For these reasons, different formalisms exist
that are specially useful to solve these problems.

In this thesis we focus on two of the most important concurrent formalisms:
the Communicating Sequential Processes (CSP) [41, 80] and the Petri nets
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[68, 73]. Both formalisms are extensively used to specify, verify and simulate
distributed systems.

Communicating Sequential Processes

Process algebras such as Communicating Sequential Processes (CSP) [41,
80], π-calculus [66] or LOTOS [10] and process modeling languages such as
Promela [42, 70] allow us to specify complex systems with multiple interacting
processes. One of the most widespread concurrent specification languages is
CSP [41, 80] whose operational semantics supports the combination of par-
allel, non-deterministic and non-terminating processes. All these features
make CSP a powerful language for specifying and verifying concurrent sys-
tems. CSP is an expressive process algebra with a big collection of software
tools for the specification and verification of complex systems. In fact, CSP
is currently one of the most extended concurrent specification languages and
it is being successfully used in several industrial projects [17, 36].

Petri Nets

Another extended model is the formalism of Petri nets [68, 73], that are very
useful for simulation because they allow us to graphically animate specifi-
cations step by step. A Petri net is a graphic, mathematical tool used to
model and verify the behavior of systems that are concurrent, asynchronous,
distributed, parallel, non-deterministic and/or stochastic. As a graphic tool,
they provide a visual understanding of the system; as a mathematical tool,
they facilitate its formal analysis.

1.2 Program Analysis of Concurrent

Languages

Program analysis of concurrent languages is a complex task due to the non-
deterministic execution order of processes. If the concurrent language being
studied supports process synchronization, then the analyses are even more
complex (and thus expensive), e.g., due to the phenomenon of deadlock.
Many analyses such as deadlock analysis [49], reliability analysis [46], and
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refinement checking [81] try to predict properties of the specification which
can guarantee the quality of the final system.

Many of these analyses for concurrent languages have been successfully ap-
plied in different industrial projects. However, the cost of the analyses per-
formed is usually very high, and sometimes prohibitive.

State space methods are the most popular approach to automatic verification
of concurrent systems. In their basic form, these methods explore the transi-
tion system associated with the concurrent system. The transition system is
a graph, known as the reachability graph, that represents the system’s reach-
able states as nodes: there is an arc from one state s to another s1, whenever
the system can evolve from s to s1. In the worst case, state space methods
have to explore all the nodes and transitions in the transition system. This
makes the method useless in practice, even though it is simple in concept,
due to the state-explosion problem that occurs when it is applied to non-
trivial real problems. The technique is costly even in bounded contexts with
a finite number of states since, in the worst case, the reachable states are
multiplied beyond any primitive recursive function. For this reason, various
approaches have been proposed to minimize the number of system states to
be studied in a reachability graph [78].

Program Slicing

Program slicing is a method for decomposing programs by analyzing their
data and control flow in order to extract parts of them—called program
slices—which are of interest. This technique was first defined by Mark Weiser
[88] in the context of program debugging of imperative programs. In par-
ticular, Weiser’s proposal was aimed at using program slicing for isolating
the program staments that may contain a bug, so that finding this bug be-
comes simpler for the programmer. In general, program slicing extracts those
statements that are (potentially) determining the values computed at some
program point and/or variable of interest, referred to as slicing criterion.
This technique is also useful as a program comprehension technique [82].

Let us illustrate this technique with an example taken from [86]. Fig-
ure 1.1(a) shows a simple program that requests a positive integer number n
and computes the sum and the product of the first n positive integer num-
bers. Figure 1.1(b) shows a slice of this program w.r.t. the slicing criterion
(10,product), i.e., variable product in line 10. As it can be seen in the
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(1)  read(n) ;
(2)  i := 1 ;
(3)  sum := 0 ;
(4)  product := 1 ;
(5)  while i <= n do

begin
(6)        sum := sum + i ;
(7)        product := product * i ;
(8)        i := i + 1 ;

end ;
(9)  write (sum) ;
(10) write (product) ;

(a) Example program.

read(n) ;
i := 1 ;

product := 1 ;
while i <= n do

begin

product := product * i ;
i := i + 1 ;

end ;

write (product) ;

(b) Program slice w.r.t. (10,product).

Figure 1.1: Sub-figures 1.1(a) and 1.1(b) show an example of program slicing.

figure, all the computations that do not contribute to the final value of the
variable product have been removed from the slice.

Program slices are usually computed from a Program Dependence Graph
(PDG) [32] that makes explicit both the data and control dependencies for
each operation in a program. The work by Weiser has inspired a lot of dif-
ferent approaches to compute slices which include generalizations and con-
cretizations of the initial approach. In general, all of them are classified into
two classes: static and dynamic. A slice is said to be static if the input
of the program is unknown (this is the case of Weiser’s approach). On the
other hand, it is said to be dynamic if a particular input for the program is
provided, i.e., a particular computation is considered. A survey on program
slicing can be found, e.g., in [84].

Tracing

One of the most important techniques for program understanding and de-
bugging is tracing [25]. A trace gives the user access to otherwise invisible
information about a computation. Due to their inherent complexity, in con-
current languages tracers become essential to explore, understand and debug
concurrent computations.

5



Chapter 1. Introduction: Motivation and Contributions

Translation

Translation is generally known as semantics encoding. The most common
form of translation is the compilation of source program into byte-code [5].
However, sometimes it is needed or useful to translate between different pro-
gramming languages or formalisms. There are several successful examples
of translation used nowadays [45, 11, 24, 6]. A translation needs to pre-
serve a number of properties such as: composition, reductions, termination,
equivalence and, in the context of concurrent languages, distribution [87].

There are some notable examples of translations for concurrent programming
languages[29, 34, 72, 30, 83, 12]. Their similar features make feasible these
translations. Once translation has been defined, a programmer can have the
advantages of both languages.

1.3 Main Goals and Contributions

The main goal of this thesis is to introduce different analyses techniques for
concurrent languages. Concretely, the analyses presented are:

1. a static analysis technique based on program slicing for explicitly syn-
chronized languages in general, and CSP in particular;

2. theoretical basis for tracking concurrent and explicitly synchronized
computations in process algebras such as CSP;

3. a new technique that allows us to automatically transform a CSP spec-
ification into an equivalent Petri Net; and

4. two dynamic slicing techniques for Petri Nets

In particular the main contributions of this thesis are the following:

1. Static Slicing of Explicitly Synchronized Languages

We summarize the contributions in the following list:

(a) We define two new static analyses for process algebras and propose
algorithms for their implementation. Despite their clear usefulness
we have not found similar static analyses in the literature. This
work is explained in detail in Paper 1 (see Appendix A).
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(b) We define the context-sensitive synchronized control flow graph
and show its advantages over its predecessors. This is a new data
structure able to represent all computations of a specification tak-
ing into account the context of process calls; and it is particularly
interesting for slicing languages with explicit synchronization. A
detailed description of this data structure is included in Paper 1.
An algorithm to construct it, based on an instrumentation of the
operational semantics of CSP, is presented in Paper 2.

(c) We have implemented our technique and integrated it in ProB
[51, 18, 52]. We present the implementation and the results ob-
tained with several benchmarks. All information about the imple-
mentation can be found in Paper 1.

2. Tracking CSP Computations

The main contributions in the subject are:

(a) The formal definition of tracks.

(b) The definition of the first tracking semantics for CSP and the
proof that the trace of a computation can be extracted from the
track of this computation.

(c) An instrumentation of the standard operational semantics of CSP
in such a way that the execution of the semantics produces as a
side-effect the track of the computation. It should be clear that
the track of an infinite computation is also infinite. However, we
design the semantics in such a way that the track is produced in-
crementally step by step. Therefore, if the execution is stopped
(e.g., by the user because it is non-terminating or because a limit
in the size of the track was specified), then the semantics produces
the track of the computation performed so far. This semantics can
serve as a theoretical foundation for tracking CSP computations
because it formally relates the computations of the standard se-
mantics with the tracks of these computations.

(d) The implementation of the first CSP tracker.

All this work led to Paper 3.

3. From CSP Specfications to Petri Nets

We define a fully automatic transformation that allows us to transform
a CSP specification into an equivalent Petri net (i.e., the sequences of
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observable events produced are exactly the same). This result is very
interesting because it allows CSP developers not only to graphically
animate their specifications through the use of the equivalent Petri
nets, but it also allows them to use all the tools and analysis techniques
developed for Petri nets. Concretely, the contributions are:

(a) An instrumentation of the standard CSP operational semantics
that produces as a side-effect a Petri net equivalent to the com-
putations performed with the semantics.

(b) Simplification algorithms that significantly reduce the size of the
Petri nets generated while keeping the equivalence properties.

(c) An implementation of a fully automatic translator from CSP spec-
ifications to Petri nets that has been made public (both the source
code and an online version).

(d) Proofs of technical results. They prove the termination of the
transformation algorithm, and the equivalence between the pro-
duced Petri net and the original CSP specification.

This work is presented in Paper 4.

4. Dynamic Slicing Techniques for Petri Nets

We explore two different alternatives for the dynamic slicing of Petri
nets.

(a) Firstly, we present a slicing technique that extends the Rakow’s al-
gorithm [75, 76] considering an initial marking. We show that this
information can be useful when analyzing Petri nets and, more-
over, it allows us to significantly reduce the size of the computed
slice. Furthermore, we show that our algorithm is, in the worst
case, as precise as Rakow’s algorithm. The cost is bounded by
the number of transitions in the Petri net. Therefore, it can be
considered a lightweight approach.

(b) Then, we present a second approach that further reduces the
size of the computed slice by only considering a particular exe-
cution—here, a sequence of transition firings. Clearly, in this case
the computed slice is only useful to analyze the considered firing
sequence.

Complete information of this work can be found in Paper 5.
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1.4 Organization of the Thesis

The thesis has been organized in two parts. The first part is an introduction
describing its main contributions without detailed descriptions. All technical
details are in the second part that includes all the papers which led to this
thesis.

In Chapter 2 we give an overview of the syntax and semantics of a process
algebra (CSP) and the formal basis of Petri Nets (PN).

Chapter 3 begins with a short description of the analyses using an intuitive
example. In Section 3.1 we show that previous data structures used in pro-
gram slicing are inaccurate or inappropriate in our context, and we introduce
the Context-sensitive Synchronized Control Flow Graph (CSCFG) as a solu-
tion and discuss its advantages over its predecessors. A description of the
algorithm used to produce this data structure is also included in this section.
Our slicing technique is presented in Section 3.2 where we introduce two al-
gorithms to slice CSP specifications from their CSCFGs. In Section 3.3 we
present our implementation, describe its architecture, and show the results of
some experiments that illustrate the efficiency and performance of the tool.
Finally, we discuss some related work in Section 3.4.

Chaper 4 describes the work done for tracking CSP specificatons. The chap-
ter starts with a brief introduction. Then, in Section 4.1, we define the
concept of track for CSP. In Section 4.2, we explain how we instrument the
CSP operational semantics in such a way that its execution produces as a
side-effect the track associated with the computation performed. We describe
the implementation of the idea in Section 4.3. Finally, Section 4.4 presents
and discusses the related work.

The translation from CSP to Petri nets is introduced in Chapter 5. The
chapter starts with an introduction that uses an example to present the main
ideas. Then, in Section 5.1 the concept of equivalence used in this work is
introduced. Section 5.2 presents an algorithm able to generate a Petri net
which is equivalent to a given CSP specification. To obtain the Petri net,
the algorithm uses an instrumentation of the standard operational semantics
of CSP which is also introduced in this section. Then, in Section 5.3 we
introduce some algorithms to further transform the generated Petri nets.
The transformation simplifies the final Petri net producing a reduced version
that is still equivalent to the original CSP specification. In Section 5.4, we
describe the CSP2PN tool, our implementation of the proposed technique.
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Finally, Section 5.5 overviews related work and previous approaches to the
transformation of CSP into Petri nets.

Lately, in Chapter 6 we describe our dynamic slicing techniques for Petri
nets. Section 6.1 describes our first technique to slice Petri nets, while the
second technique is introduced in Section 6.2. The chapter concludes with
Section 6.3 that discusses some related work.

Finally, Chapter 7 concludes and presents some ideas for future work.
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Chapter 2

Preliminaries

In order to make the thesis self-contained, we recall in this chapter the syntax
and semantics of CSP, as well as the formal basis for Petri nets.

2.1 The Syntax and the Semantics of CSP

Figure 2.1 summarizes the syntax constructs used in CSP specifications. A
specification is viewed as a finite set of process definitions. The left-hand
side of each definition is the name of a process, which is defined in the right-
hand side (abbreviation rhs) by means of an expression that can be a call to
another process or a combination of the following operators:

(Prefixing) It specifies that the compound object CO must happen before
process P . Compound objects represent events and communications.

(Internal choice) One of the two processes P orQ is chosen non-deterministically.

(External choice) It is identical to internal choice but the choice comes from
the external environment (e.g., the user).

(Conditional choice) It is a choice that depends on a condition, i.e., it is
equivalent to if Bool then P else Q.

(Sequential composition) It specifies a sequence of two processes. If the first
one (successfully) finishes, the second can start.
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Domains
M,N . . . P N (Process names)
P,Q . . . P P (Processes)
a, b . . . P Σ (Events)
x, y . . . P ΣV (Events with variables)

S ::“ tD1, . . . , Dnu (Entire specification)
D ::“ N “ P (Process definition)

| NpEVnq “ P (Parameterized process) EVn “ EV1, . . . , EVn

P ::“ M (Process call)

| MpEVnq (Parameterized process call)
| CO Ñ P (Prefixing)
| P [ Q (Internal choice)
| P l Q (External choice)
| P ć Bool č Q (Conditional choice)
| P ; Q (Sequential composition)
| P ||

tEVnu

Q (Synchronized parallelism)

| P ||| Q (Interleaving)

| P ztEVnu (Hiding)
| P rr<ss (Renaming) < : ΣV Ñ ΣV
| SKIP (Skip)
| STOP (Stop)

CO ::“ EV | CO?EV | CO!EV (Compound Object)

EV ::“ a | v | v : T | EV.EV (Event with Variables) T Ď Σ,
v is a variable

Bool ::“ true | false | Bool_ Bool (Boolean expression)
| Bool ^Bool |  Bool
| EV1 “ EV2 | EV1 ‰ EV2

Figure 2.1: Syntax of CSP specifications
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(Synchronized parallelism) Both processes are executed in parallel with a set
tEVnu of synchronized events. In absence of synchronizations both
processes can execute in any order. Whenever a synchronized event
a P tEVnu happens in one of the processes it must also happen in the
other at the same time. Whenever the set of synchronized events is not
specified, it is assumed that processes are synchronized in all common
events. A particular case of parallel execution is interleaving (|||) where
no synchronizations exist (i.e., tEVnu “ H).

(Hiding) Process P is executed with a set of hidden events tEVnu. Hidden
events are not observable from outside the process, and thus, they
cannot synchronize with other processes.

(Renaming) Process P is executed with a set of renamed events specified with
the total mapping <. An event a renamed as b behaves internally as a
but it is observable as b from outside the process.

(Skip) It successfully finishes the current process. It allows us to continue
the next sequential process if any.

(Stop) Synonymous with deadlock. It finishes the current process and it will
not allow the next sequential process to continue if any.

The domain Σ of events contains basic symbols such as a that can be com-
pounded to produce communications:

(Input) It is used to receive a message from another process. For instance,
if A Ď Σ is any set of events and, for each x P A, we have defined a
process P pxq, then c?x : A Ñ P pxq defines the process which accepts
any element a of A and then behaves like the appropriate P paq.

(Output) It is complementary to the input. In this case, c!x is used to send
message x.

We allow events that have been constructed out of any finite number of parts
using the infix dot ‘.’ (which is assumed to be associative), e.g., c.a.

We use labels (that we call specification positions) to uniquely identify each
literal in a specification which roughly corresponds to nodes in the CSP
specification’s abstract syntax tree. We define a function Pos to obtain the
specification position of an element of a CSP specification and it is defined
over nodes of the abstract syntax tree of this CSP specification. Formally,
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Definition 2.1.1. (Specification position) A specification position is a pair
pN,wq where N P N and w is a sequence of natural numbers (we use Λ to
denote the empty sequence). We let Posptq denote the specification position
of a term t. Each (parameterized) process definition N “ P or Npxnq “ P
of a CSP specification is labeled with specification positions. The speci-
fication position of its left-hand side is respectively PospNq “ pN, 0q or
PospNpxnqq “ pNpxnq, 0q.
The right-hand side is labeled with the call AddSpPospP, pN,Λqq; where func-
tion AddSpPos is defined as follows:

AddSpPospP, pN,wqq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

MpN,wq if P “M ^ M P N
MpN,wqpxnq if P “Mpxnq

^M P N ^ xn P ΣV

STOPpN,wq if P “ STOP

SKIPpN,wq if P “ SKIP

copN,w.1q ÑpN,wq AddSpPospQ, pN,w.2qq if P “ coÑ Q

AddSpPospQ, pN,w.1qqzpN,wqB if P “ QzB

AddSpPospQ, pN,w.1qqrr<sspN,wq if P “ Qrr<ss
AddSpPospQ, pN,w.1qq oppN,wq AddSpPospR, pN,w.2qq if P “ Q op R

@ op P t[,l,ćč, ||, ; u

In the following, specification positions will be represented with greek letters
(α, β, . . .) and we will often use indistinguishably a term and its correspond-
ing specification position when it is clear from the context.

We now recall the standard operational semantics of CSP as defined by A.W.
Roscoe [80]. It is presented in Fig. 2.2 as a logical inference system. A state
of the semantics is a process to be evaluated called the control. The inference
system starts with an initial state, and the rules of the semantics are used
to infer how this state evolves. When no rules can be applied to the current
state, the computation finishes. The rules of the semantics change the states
of the computation due to the occurrence of events. The set of possible
events is Σ Y tτ,Xu. Events in Σ “ ta, b, . . .u are visible from the external
environment, and can only happen with its co-operation (e.g., actions of the
user). The special event τ cannot be observed from outside the system and it
is an internal event that happens automatically as defined by the semantics.
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X is a special event representing the successful termination of a process.
We use the special symbol Ω to denote any process that has successfully
terminates.

In order to perform computations, we construct an initial state (e.g., MAIN)
and (non-deterministically) apply the rules of Fig. 2.2. The intuitive meaning
of each rule is the following:

((Parameterized) Process Call) In a process call, the call is unfolded and the
right-hand side of process N becomes the new control. In a parame-
terized process call, the behavior is the same, but in this case we use
function subs to substitute in rhspNq all variables xn by the actual
values of the parameters an.

(Prefixing) When event co occurs, process P becomes the new control. The
only way communications are introduced into the operational seman-
tics is via the prefixing operation co Ñ P . In general, co may be a
compound object, perhaps involving much computation to work out
what it represents. The prefix co may represent a range of possible
communications and bind one or more identifiers in P . commspcoq is
the set of communications described by co [80, Chapter 7]. We deal
only with closed terms: processes with no free identifiers. Using this,
it is possible to handle most of the situations that can arise, making
sure that each identifier has been substituted by a concrete value by
the time we need to know it. For a P commspcoq, subspa, co, P q is the
result of substituting the appropriate part of a for each identifier in P
bound by co. This equals P if there are no identifiers to be bound.

(SKIP) After SKIP, the only possible event is X, which denotes the successful
termination of the (sub)computation with the special symbol Ω. There
is no rule for Ω (neither for STOP), hence, this (sub)computation has
finished.

(Internal Choice 1 and 2) The system, with the occurrence of the internal
event τ , (non-deterministically) selects one of the two processes P or
Q which is the new control.

(External Choice 1, 2, 3 and 4) The occurrence of τ develops one of the branches.
The occurrence of an event e ‰ τ is used to select one of the two pro-
cesses P or Q and the control changes according to the event.

(Conditional Choice 1 and 2) The condition Bool is evaluated. If it is true,
process P is put in the control, if it is false, process Q is.
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(Sequential Composition 1) In P ;Q, P can evolve to P 1 with any event except
X. Hence, the control becomes P 1;Q.

(Sequential Composition 2) When P successfully finishes (with event X), Q
can start. Note that X is hidden from outside the whole process be-
coming τ .

(Synchronized Parallelism 1 and 2) When an event e R X or events τ or X
occur in a branch, the corresponding process (either P or Q) evolves
accordingly. Note that X is hidden from outside the whole process
becoming τ .

(Synchronized Parallelism 3) When a visible event a P X happens, it is re-
quired that both processes synchronize, P and Q are executed at the
same time and the control becomes P 1 ||

X

Q1.

(Synchronized Parallelism 4) When both processes have successfully termi-
nated the control becomes Ω and the event X is visible from outside.

(Hiding 1 and Hiding 2) When event a P B (B Ď Σ) occurs in P , it is hidden,
and thus changed to τ so that it is not observable from outside P .
Contrarily, when event a R B occurs in P , it behaves normally.

(Hiding 3) When P finishes (X happens), the control becomes Ω.

(Renaming 1) Whenever an event a happens in P , it is renamed to b (a < b)
so that, externally, only b is visible. Renaming has no effect on events
renamed to themselves (a < a), τ and X.

(Renaming 2) When P finishes (X happens), the control becomes Ω.

We illustrate the semantics with the following example.

Example 2.1.1. Consider the next CSP specification:

MAIN “ pbÑ STOPq rr b < a ss }
tau

pP l pbÑ STOPqq

P “ paÑ SKIPq ; STOP

If we use MAIN as the initial state to execute the semantics, we get the compu-
tation shown in Fig. 2.3 where the final state is STOP rr b < a ss }

tau

STOP. This
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(Process Call) (Parameterized Process Call)

N
τ
ÝÑ rhspNq Npanq

τ
ÝÑ subspan, xn, rhspNqq

where Npxnq “ rhspNq P S
with xn P ΣV ^ an P Σ

(Prefixing) (SKIP)

pcoÑ P q
a
ÝÑ subspa, co, P q

a P commspcoq
SKIP

X
ÝÑ Ω

(Internal Choice 1) (Internal Choice 2)

pP [Qq
τ
ÝÑ P pP [Qq

τ
ÝÑ Q

(External Choice 1) (External Choice 2)

P
τ
ÝÑ P 1

pP l Qq
τ
ÝÑ pP 1 l Qq

Q
τ
ÝÑ Q1

pP l Qq
τ
ÝÑ pP l Q1q

(External Choice 3) (External Choice 4)

P
e
ÝÑ P 1

pP l Qq
e
ÝÑ P 1

e P Σ Y tXu Q
e
ÝÑ Q1

pP l Qq
e
ÝÑ Q1

e P Σ Y tXu

(Conditional Choice 1) (Conditional Choice 2)

pP ć Bool č Qq
τ
ÝÑ P

if Bool “ true
pP ć Bool č Qq

τ
ÝÑ Q

if Bool “ false

(Sequential Composition 1) (Sequential Composition 2)

P
e
ÝÑ P 1

pP ;Qq
e
ÝÑ pP 1;Qq

e P Σ Y tτu
P

X
ÝÑ Ω

pP ;Qq
τ
ÝÑ Q

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

P
e1
ÝÝÑ P 1

pP ||
X
Qq

e
ÝÑ pP 1 ||

X
Qq

pe “ e1 P ΣzXq _
pe “ τ ^ e1 P tτ,Xuq

Q
e1
ÝÝÑ Q1

pP ||
X
Qq

e
ÝÑ pP ||

X
Q1q

pe “ e1 P ΣzXq _
pe “ τ ^ e1 P tτ,Xuq

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

P
a
ÝÑ P 1 Q

a
ÝÑ Q1

pP ||
X
Qq

a
ÝÑ pP 1 ||

X
Q1q

a P X
pΩ ||
X

Ωq
X
ÝÑ Ω

(Hiding 1) (Hiding 2)

P
a
ÝÑ P 1

pP zBq
τ
ÝÑ pP 1zBq

a P B
P

e
ÝÑ P 1

pP zBq
e
ÝÑ pP 1zBq

pe P Σ^ e R Bq _ pe “ τq

(Hiding 3)

P
X
ÝÑ Ω

pP zBq
X
ÝÑ Ω

(Renaming 1) (Renaming 2)

P
e1
ÝÝÑ P 1

pP rr<ssq e
ÝÑ pP 1rr<ssq

pe, e1 P Σ ^ e1 < eq _
pe “ e1 “ τq

P
X
ÝÑ Ω

pP rr<ssq X
ÝÑ Ω

Figure 2.2: CSP’s operational semantics
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(Process Call)
MAIN

τ
ÝÑ ppbÑ STOPqrr b < a ss }

tau

pPlpbÑ STOPqqq

(Synchronized
Parallelism 2)

(External Choice 1)

(Process Call)
P
τ
ÝÑ paÑ SKIPq; STOP

pPlpbÑ STOPqq
τ
ÝÑ pppaÑ SKIPq; STOPqlpbÑ STOPqq

pbÑ STOPqrr b < a ss }
tau

pPlpbÑ STOPqqq
τ
ÝÑ State1

where State1 “pbÑ STOPqrr b < a ss }
tau

pppaÑ SKIPq; STOPqlpbÑ STOPqq

(Synchronized

Parallelism 3)
Der1 Der2

State1
a
ÝÑ pSTOPrr b < a ss }

tau

pSKIP; STOPqq

where Der1 “(Renaming 1)

(Prefixing)
pbÑ STOPq

b
ÝÑ STOP

pbÑ STOPqrr b < a ss
a
ÝÑ STOPrr b < a ss

Der2 “(External Choice 3)

(Sequential Composition 1)

(Prefixing)
paÑ SKIPq

a
ÝÑ SKIP

ppaÑ SKIPq; STOPq
a
ÝÑ pSKIP; STOPq

pppaÑ SKIPq; STOPqlpbÑ STOPqq
a
ÝÑ pSKIP; STOPq

(Synchronized
Parallelism 2)

(Sequential Composition 2)

pSKIPq

SKIP
X
ÝÑ Ω

pSKIP; STOPq
τ
ÝÑ STOP

pSTOPrr b < a ss }
tau

pSKIP; STOPqq
τ
ÝÑ pSTOPrr b < a ss }

tau

STOPq

Figure 2.3: A computation with the operational semantics in Fig. 2.2

computation corresponds to the execution of the left branch of the choice
(i.e., P) and thus event a occurs forcing a synchronization between both pro-
cesses. Each inference step is labeled with the applied rule, and the example
should be read from top to bottom.

2.2 Formal Definition and Basic Terminology

of Petri Nets

A Petri net [68, 73] is a directed bipartite graph, whose two essential elements
are called places (represented by circles) and transitions (represented by bars
or rectangles). The edges of the graph form the arcs, which are labelled with
a positive integer known as weight. Arcs run from places to transitions and
vice versa. The state of the system modeled by the net is represented by
assigning non-negative integers to places. This is known as a marking, and
is shown graphically by adding small black circles to the places, known as
tokens. The dynamic behavior of the system is simulated by changes in the
markings of a Petri net, a process which is carried out by the firing of the
transitions. The basic concepts of Petri nets are formalised as follows:
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Definition 2.2.1. A Petri net [68, 73] is a tuple N “ pP, T, F q, where:

• P is a set of places.

• T is a set of transitions, such that P X T “ H and P Y T ‰ H.

• F is the flow relation that assigns weights to arcs: F : PˆT Y TˆP Ñ
N.

The marking M of a Petri net is defined over the set of places P . For each
place p P P we let Mppq denote the number of tokens contained in p.

A marked Petri net Σ is a pair pN,Mq where N is a Petri net and M is a
marking. We denote by M0 the initial marking of the net.

In the following, given a marking M and a set of places P , we denote by M |P
the restriction of M over P , i.e., M |P ppq “ Mppq for all p P P and M |P is
undefined otherwise.

Definition 2.2.2. [73] Given a Petri net N “ pP, T, F q, we say that a
marking M 1 covers a marking M if M 1 ě M , i.e., M 1ppq ě Mppq for each
p P P .

Given a Petri net N “ pP, T, F q, we say that a place p P P is an input (resp.
output) place of a transition t P T iff there is an input (resp. output) arc from
p to t (resp. from t to p). Given a transition t P T , we denote by ‚t and t‚

the set of all input and output places of t, respectively. Analogously, given a
place p P P , we denote ‚p and p‚ the set of all input and output transitions
of p, respectively.

Definition 2.2.3. Let Σ “ pN,Mq be a marked Petri net, with N “

pP, T, F q. We say that a transition t P T is enabled in M , in symbols M
t
ÝÑ,

iff for each input place p P P of t, we have Mppq ě F pp, tq. A transition may
only be fired if it is enabled.

The firing of an enabled transition t in a marking M eliminates F pp, tq tokens
from each input place p P ‚t and adds F pt, p1q tokens to each output place

p1 P t‚, producing a new marking M 1, in symbols M
t
ÝÑM 1.

We say that a marking Mn is reachable from an initial marking M0 if there

exists a firing sequence σ “ t1t2 . . . tn such that M0
t1
ÝÑM1

t2
ÝÑ . . .

tn
ÝÑMn.
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In this case, we say that Mn is reachable from M0 through σ, in symbols
M0

σ
ÝÑ Mn. This notion includes the empty sequence ε; we have M

ε
ÝÑ M

for any marking M . We say that a firing sequence is initial if it starts from
an initial marking.

The set of all possible markings which are reachable from an initial marking
M0 in a marked Petri net Σ “ pN,M0q is denoted by RpN,M0q (or simply
by RpM0q when N is clear from the context).

The following notion of subnet will be particularly relevant in the context of
slicing (roughly speaking, we will identify a slice with a subnet). Let P 1ˆT 1 Y
T 1ˆP 1 Ď PˆT Y TˆP , we say that a flow relation F 1 : P 1ˆT 1 Y T 1ˆP 1 Ñ N
is a restriction of another flow relation F : P ˆ T Y T ˆ P Ñ N over P 1

and T 1, in symbols F |pP 1,T 1q, if F 1 is defined as follows: F 1px, yq “ F px, yq if
px, yq P P 1 ˆ T 1 Y T 1 ˆ P 1 and F 1 is not defined otherwise.

Definition 2.2.4. [31] A subnet N 1 “ pP 1, T 1, F 1q of a Petri net N “

pP, T, F q is a Petri net such that P 1 Ď P , T 1 Ď T and F 1 is a restriction
of F over P 1 and T 1, i.e., F 1 “ F |pP 1,T 1q.
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Chapter 3

Static Slicing of Explicitly
Synchronized Languages

In this chapter we introduce a static analysis technique based on program
slicing [88] for concurrent and explicitly synchronized languages in general,
and CSP in particular. Our technique allows us to extract the part of a
specification related to a given point (referred to as the slicing criterion) in
the specification. This technique can be very useful to debug, understand,
maintain and reuse specifications; but also as a preprocessing stage of other
analyses and/or transformations in order to reduce the complexity of the
specification. In particular, given a point (e.g., an event) in a specification,
our technique allows us to extract those parts of the specification that must
be executed before the specified point (thus they are an implicit precondi-
tion); and those parts of the specification that could be executed before it.
Therefore, the other parts of the specification cannot be executed before this
point.

Consider the specification of Figure 3.1. In this specification we have three
processes (STUDENT, PARENT and COLLEGE) executed in parallel and synchro-
nized on common events. Process STUDENT represents the three-year aca-
demic courses of a student; process PARENT represents the parent of the stu-
dent who gives her a present when she passes a course; and process COLLEGE
represents the college who gives a prize to those students that finish without
any fail.

We are interested in determining what parts of the specification must be
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MAIN = (STUDENT }
tpassu

PARENT) }
tpass,failu

COLLEGE

STUDENT = year1 Ñ (pass Ñ YEAR2 l fail Ñ STUDENT)

YEAR2 = year2 Ñ (pass Ñ YEAR3 l fail Ñ YEAR2)

YEAR3 = year3 Ñ (pass Ñ graduate Ñ STOP l fail Ñ YEAR3)

PARENT = pass Ñ present Ñ PARENT

COLLEGE = fail Ñ COLLEGE l pass Ñ C1

C1 = fail Ñ COLLEGE l pass Ñ C2

C2 = fail Ñ COLLEGE l pass Ñ prize Ñ STOP

Figure 3.1: Example of a CSP specification

executed before the student fails in the second year, hence, we mark event
fail of process YEAR2 (thus the slicing criterion is (YEAR2, fail), marked
by a box in Figure 3.1). Our slicing technique automatically extracts the
slice consisting of the expressions in black. We can additionally be interested
in knowing what parts could be executed before the same event. In this
case, our technique adds to the slice the underscored parts because they
could be executed (in some executions) before the marked event (observe
that the result of this analysis is always a superset of the result obtained by
the previous analysis). Therefore, this analysis could be used for program
comprehension. Note, for instance, that in order to fail in the second year,
the student has necessarily passed the first year. But, the parent may or
may not have given a present to his daughter (even if she passed the first
year) because this specification does not force the parent to give a present to
his daughter until she has passed the second year. Moreover, note that the
choice of process C1 belongs also to the slice. This is due to the fact that
the slicing criterion must synchronize with the event fail of this process;
therefore, the choice must be executed before the slicing criterion.1 This is
not so obvious from the specification, and the slice can help to understand
the actual meaning of the specification.

Computing the parts of the specification that could be executed before the

1We could have chosen also to include the fail event of C1 into the slice. This is
definitely a design decision.
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slicing criterion can be useful, e.g., for debugging. If the slicing criterion is
an event that was executed incorrectly (i.e., it should not happen), then the
slice produced contains all the parts of the specification that could produce
the wrong behavior.

A third application is program specialization. Note that the slices produced
are not executable, but, in both cases, the slices could be made executable
by replacing the removed parts by “STOP” or by “Ñ STOP” if the removed
expression has a prefix. Hence, we have defined a further transformation that
allows us to extract executable slices. The specialized specification contains
all the necessary parts of the original specification whose execution leads to
the slicing criterion (and then, the specialized specification finishes).

It should be clear that computing the minimum slice of an arbitrary CSP
specification is an undecidable problem. Consider for instance the following
CSP specification:

MAIN = P [ Q

P = X ; Q

Q = a Ñ STOP

X = Infinite Process

together with the slicing criterion (Q, a). Determining whether X does not
belong to the slice implies determining whether X terminates, which is unde-
cidable.

Our technique is based on a new data structure that extends the Synchronized
Control Flow Graph (SCFG) [19]. We show that this new data structure
improves the SCFG by taking into account the context in which processes
are called and, thus, it makes the slicing process more precise. In Paper 1 we
define a data structure called Context-sensitive Synchronized Control-Flow
Graph (CSCFG) that allows us to statically simplify a specification before
the analyses. This simplification is automatic and thus it is very useful as
a preprocessing stage of other analyses. The CSCFG is a graph that allows
us to finitely represent possibly infinite computations, and it is particularly
interesting because it takes into account the context of process calls, and
thus it allows us to produce analyses that are very precise.
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However, computing the CSCFG is a complex task due to the non-determinis-
tic execution of processes, deadlocks, non-terminating processes and synchro-
nizations. We present a correctness result which formally relates the CSCFG
of a specification to its execution. This result is needed to prove important
properties (such as correctness and completeness) of the techniques based on
the CSCFG.

We also introduce an algorithm able to automatically generate this data
structure from a CSP specification. We formally define the CSCFG and a
technique to produce the CSCFG of a given CSP specification. In Paper 2 we
introduce a new formalization of the CSCFG that directly relates the graph
construction to the control-flow of the computations it represents. Roughly,
we instrument the CSP standard semantics (Chapter 7 in [80]) in such a
way that the execution of the instrumented semantics produces as a side-
effect the portion of the CSCFG associated with the performed computation.
Then, we define an algorithm which uses the instrumented semantics to build
the complete CSCFG associated with a CSP specification. This algorithm
executes the semantics several times to explore all possible computations
of the specification, producing incrementally the final CSCFG. Algorithms
to construct CSCFGs have been implemented and integrated into the most
advanced CSP environment ProB [51].

The algorithm has been proved correct in Paper 1. We state the correctness
of the proposed algorithm by showing that (i) the graph produced by the
algorithm for a CSP specification is its CSCFG; and (ii) the algorithm ter-
minates, even if non-terminating computations exist for a given specification.

The technique has been implemented and tested with real specifications,
showing good results. We describe our tool, its architecture, its main appli-
cations and the results obtained from several experiments conducted in order
to measure the performance of the tool. The result is the first program slicer
for CSP specifications. In our implementation, the slicing process is com-
pletely automatic. Once the user has loaded a specification, she can select
(with the mouse) the point she is interested in. Obviously, this simple action
is enough to define a slicing criterion because the tool can automatically de-
termine the process and the source position of interest. Our tool that has
been integrated in the system ProB [51, 18], an animator and model checker
for B and CSP.
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3.1 Context-Sensitive Synchronized Control

Flow Graph

As usual in static analysis, we need a data structure capable of finitely repre-
senting the (often infinite) computations of our specifications. Unfortunately,
we cannot use the standard Control Flow Graph (CFG) [86], nor the Inter-
procedural Control Flow Graph (ICFG) [37] because they cannot represent
multiple threads and, thus, they can only be used with sequential programs.
In fact, for CSP specifications, being able to represent multiple threads is
a necessary but not sufficient condition. For instance, the threaded Control
Flow Graph (tCFG) [47, 48] can represent multiple threads through the use
of the so called “start thread” and “end thread” nodes; but it does not han-
dle synchronization between threads. Callahan and Sublok introduced in [19]
the Synchronized Control Flow Graph (SCFG), a data structure proposed in
the context of imperative programs where an event variable is always in one
of two states: clear or posted. The initial value of an event variable is always
clear. The value of an event variable can be set to posted with the POST
statement; and a WAIT statement suspends execution of the thread that ex-
ecutes it until the specified event variable value is set to posted. The SCFG
explicitly represents synchronization between threads with a special edge for
synchronization flows. According to Callahan and Sublok [19]:

“A synchronized control flow graph is a control flow graph aug-
mented with a set Es of synchronization edges. pb1, b2q P Es if the
last statement in block b1 is POST pevq and the first statement in
block b2 is WAIT pevq where ev is an event variable.”

In order to adapt the SCFG to CSP, we extend it with the “start thread” and
“end thread” notation from tCFGs. Therefore, in the following we will work
with graphs where nodes N are labeled with positions and “start”, “end”
labels. We also use this notation, “end z” and “end vw”, to denote the end
of a hiding, respectively a renaming operator.

Given a CSP specification S, Callahan and Sublok [19] define its Synchro-
nized Control Flow Graph as a graph G “ pN,Ec, Esq where nodes in N are
specification positions or start and end nodes. Edges are divided into two
groups, control-flow arcs (Ec) and synchronization edges (Es). Es is a set of
edges (drawn as dotted arrows) representing the possible synchronization of
two (event) nodes. Ec is a set of arcs (drawn as plain arrows) representing
the control flow.
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MAINpMAIN,0q = (BUSpMAIN,1.1q||pMAIN,1qP1pMAIN,1.2q);pMAIN,Λq(BUSpMAIN,2.1q||pMAIN,2qP2pMAIN,2.2q)

BUSpBUS,0q = boardpBUS,1qÑpBUS,ΛqalightpBUS,2.1qÑpBUS,2qSKIPpBUS,2.2q

P1pP1,0q = waitpP1,1qÑpP1,ΛqboardpP1,2.1qÑpP1,2qalightpP1,2.2.1qÑpP1,2.2qSKIPpP1,2.2.2q

P2pP2,0q = waitpP2,1qÑpP2,ΛqboardpP2,2.1qÑpP2,2qpaypP2,2.2.1qÑpP2,2.2qalightpP2,2.2.2.1q

ÑpP2,2.2.2qSKIPpP2,2.2.2.2q

Figure 3.2: Simplification of a benchmark to simulate a bus line

There is only one node in the SCFG for each position of the specification,
and specification positions are finite and unique. Therefore, the size of the
SCFG is Opnq being n the number of positions in the specification. To be
fully precise, there is exactly one node for each specification position and two
extra nodes for each process (the start process and end process nodes) and
one extra node for the hiding and renaming operators (the end hiding and
the end renaming). Hence, the size of a SCFG associated to a specification
with p processes and n positions with r hiding and renaming operators is
2p` n` r.

The SCFG can be used for slicing CSP specifications. Consider the speci-
fication of Figure 3.2. It is a simplification of a benchmark by Simon Gay
to simulate a bus line. Its associated SCFG is shown in Figure 3.3(a); for
the sake of clarity we show the expression represented by each specification
position. If we select the node labeled (P1,alight) and traverse the SCFG
backwards in order to identify the nodes on which (P1,alight) depends, we
get the grey nodes of the graph.

The purpose of this example is twofold: on the one hand, it shows that the
SCFG can be used for static slicing of CSP specifications. On the other hand,
it shows that it is still too imprecise to be used in practice. The cause of
this imprecision is that the SCFG is context-insensitive, because it connects
all the calls to the same process with a unique set of nodes. This causes
the SCFG to mix different executions of a process with possibly different
synchronizations, and, thus it loses precision. For instance, in the CSP spec-
ification of Figure 3.2 process BUS is called twice in different contexts. It
is first executed in parallel with P1 producing the synchronization of their
board and alight events. Then, it is executed in parallel with P2 produc-
ing the synchronization of their board and alight events. This makes the
process P2 (except nodes Ñ, SKIP and end P2) be part of the slice. This is
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Figure 3.3: SCFG and CSCFG of the program in Figure 3.2

suboptimal because process P2 is always executed after P1.

To the best of our knowledge, there do not exist other data structures that
face the problem of representing concurrent and explicitly synchronized com-
putations in a context-sensitive manner. In the rest of this section, we pro-
pose a new version of the SCFG, the context-sensitive synchronized control
flow graph (CSCFG) which is context-sensitive because it takes into account
the different contexts on which a process can be executed. Intuitively speak-
ing, the context of a node represents the set of processes in which a particular
node is being executed. This is represented by the set of process calls in the
computation that were done before the specified node.
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MAINpMAIN,0q “ papMAIN,1.1q Ñ pMAIN,1qSTOPpMAIN,1.2qq }
tau
pMAIN,Λq

pPpMAIN,2.1qlpMAIN,2qpapMAIN,2.2.1q Ñ pMAIN,2.2qSTOPpMAIN,2.2.2qqq

PpP,0q “ bpP,1q Ñ pP,ΛqSTOPpP,2q

(a) CSP specification
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(b) CSCFG

Figure 3.4: CSP specification and its associated CSCFG

For instance, the CSCFG associated with the specification in Figure 3.4(a)
is shown in Fig. 3.4(b). In this graph we have that Conp4q“t0, 3u, i.e., b is
being executed after having called processes MAIN and P. By focussing on a
process call node we can use the context to identify loops.

In contrast to the SCFG, the same specification position can appear multiple
times inside a CSCFG. Hence, in the following we will use a refined notion of
the “start thread” and “end thread” so that in each “start α” and “end α”
node used to represent a process, α is now any specification position repre-
senting a process call instead of a process definition. Using the specification
position of the process call allows us to distinguish between different process
calls to the same process.
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The main difference between the SCFG and the CSCFG is that the SCFG
represents a process with a single collection of nodes (each specification po-
sition in the process is represented with a single node, see Figure 3.3(a)); in
contrast, the CSCFG represents a process with multiple collections of nodes,
each collection representing a different call to this process (i.e., a different
context in which it is executed. For instance, see Figure 3.3(b) where pro-
cess BUS is represented twice). Therefore, the notion of control flow used in
the SCFG is insufficient for the CSCFG, and we need to extend it to also
consider the context of process calls. Additionally, we add a new set of arcs
(El) that represents loops.

Therefore, each process call is connected (with a control-flow edge) to a sub-
tree which contains the right-hand side of the called process. Each subtree is
a new subgraph except if a loop is detected. Consider again the specification
of Fig. 3.4(a) and its associated CSCFG, shown in Fig. 3.4(b). For the time
being, the reader can ignore the color of the nodes; they will be explained in
Section 3.1.1. Each process call is connected to a subgraph which contains the
right-hand side of the called process. For convenience, in this example there
are no loop edges; there are control-flow edges and one synchronization edge
between nodes pMAIN, 2.2.1q and pMAIN, 1.1q representing the synchronization
of event a.

Loop edges allow us to finitely represent infinite computations. They are used
when the same process call appears twice in a path starting from MAIN, and
the first process has not been terminated. Consider the CSP specification of
Figure 3.5(a). This specification can produce the sequence of events ta, au
and its associated CSCFG is shown in Fig. 3.5(b), where there are a loop
edge from node 8 to node 2 and two synchronization edges between nodes 4
and 3 and nodes 6 and 3.

Another important difference between the SCFG and the CSCFG is that the
latter unfolds every process call node except those that belong to a loop.
This is very convenient for slicing because every process call that is executed
in a different context is unfolded and represented with a different subgraph,
thus, slicing does not mix computations. Moreover, it allows us to deal with
recursion and, at the same time, it prevents infinite unfolding of process calls
thanks to the loop arcs that are used when the context is repeated. Loops
are unfolded only once because the second time they are going to be unfolded
the context of the process call node is repeated, and thus a loop arc is used
to prevent the unfolding. Process calls only have one outgoing arc, and thus,
they cannot have a control arc if there is already a loop arc. This property
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MAIN “ apMAIN,1.1q Ñ pMAIN,1qapMAIN,1.2.1q Ñ pMAIN,1.2qSTOPpMAIN,1.2.2q
}
tau
pMAIN,ΛqPpMAIN,2q

P “ apP,1q Ñ pP,ΛqPpP,2q
(a) CSP specification
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(b) CSCFG

Figure 3.5: CSP specification with a looped process and its associated
CSCFG

ensures finiteness.

We state that the CSCFG is complete because all possible derivations of a
CSP specification S are represented in the CSCFG associated with S. Of
course, because it is a static representation of any possible execution, the
CSCFG also introduces a source of imprecision. This imprecision happens
when loop arcs are introduced in a CSCFG, because a loop arc summarizes
the rest of a computation with a single collection of nodes, and this collec-
tion could mix synchronizations of different iterations. However, note that
all process calls of the specification are unfolded and represented with an
exclusive collection of nodes, and loop arcs are only introduced if the same
call is repeated again. This produces a high level of precision for slicing
algorithms.
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Note that the CSCFG shows the exact processes that have been evaluated
with an explicit causality relation; and, in addition, it shows the specification
positions that have been evaluated and in what order. Therefore, it is not
only useful as a program comprehension tool, but it can be used for program
simplification. For instance, in the CSP specification of Figure 3.4(a), with
a simple backwards traversal from a, the CSCFG reveals that the only part
of the code that can be executed before a is the following underlined part:

MAIN = (a Ñ STOPq }
tau

pP l (a Ñ STOPqq

P “ bÑ STOP

Hence, the specification can be significantly simplified for those analyses
focussing on the occurrence of event a.

Apart from a declarative definition, we also provide a constructive method
for the CSCFG that is the basis of our implementation. In particular, the
CSCFG can be constructed starting from MAIN, and connecting each process
call to a subgraph that contains the right-hand side of the process called .
Each right-hand side is a new subgraph except if a loop is detected.

3.1.1 An Algorithm to Generate the CSCFG

This section introduces an algorithm which is able to generate the CSCFG
associated to a CSP specification. The algorithm uses an instrumented op-
erational semantics of CSP which (i) generates as a side-effect the CSCFG
associated to the computation performed with the semantics; (ii) controls
that no infinite loops are executed; and (iii) ensures that the execution is
deterministic.

Algorithm 3.1 controls that the semantics is executed repeatedly in order
to deterministically execute all possible computations—of the original (non-
deterministic) specification—and the CSCFG for the whole specification is
constructed incrementally with each execution of the semantics. The key
point of the algorithm is the use of a stack that records the actions that can
be performed by the semantics. In particular, the stack contains tuples of the
form prule, rulesq where rule indicates the rule that must be selected by the
semantics in the next execution step, and rules is a set with the other possible
rules that can be selected. The algorithm uses the stack to prepare each
execution of the semantics indicating the rules that must be applied at each
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Algorithm 3.1 General Algorithm

Build the initial state of the semantics:
state “ pMAINpMAIN,0q,H, ‚, pH,Hq,H,Hq

repeat
repeat

Run the rules of the instrumented semantics with the state state
until no more rules can be applied
Get the new state: state “ p , G, , pH, S0q, , ζq
state“pMAINpMAIN,0q, G, ‚, pUpdStackpS0q,Hq,H,Hq

until UpdStackpS0q “ H

return G
where function UpdStack is defined as follows:
UpdStackpSq “

$

&

%

prule, rulesztruleuq : S 1 if S “ p , rulesq : S 1 and rule P rules
UpdStackpS 1q if S “ p ,Hq : S 1

H if S “ H

step. For this, it is used function UpdStack that basically avoids to repeat
the same computation with the semantics. When the semantics finishes,
the algorithm prepares a new execution of the semantics with an updated
stack. This is repeated until all possible computations are explored (i.e., until
the stack is empty). Additionally, we have to consider that the standard
operational semantics of CSP [80] can be non-terminating due to infinite
computations. Therefore, the instrumentation of the semantics incorporates
a loop-checking mechanism to ensure termination.

The instrumented semantics is an operational semantics where we assume
that every literal in the specification has been labelled with its specification
position. In this semantics, a state is a tuple pP,G,m, pS, S0q,∆, ζq, where
P is the process to be evaluated (the control), G is a directed graph (i.e.,
the CSCFG constructed so far), m is a numeric reference to the current
node in G, pS, S0q is a tuple with two stacks that contains the rules to apply
and the rules applied so far, ∆ is a set of references to nodes used to draw
synchronizations in G, and ζ is a graph like G, but it only contains the part
of the graph generated for the current computation, and it is used to detect
loops. The basic idea of the graph construction is to record the current
control with a fresh reference n by connecting it to its parent m.

The complete instrumented semantics is presented in Figure 3.6. A brief
explanation for the most significant rules of the semantics follows.
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(Process Call)

pNα, G,m, pS, S0q,∆, ζq
τ
ÝÑ pP 1, G1, n, pS, S0q,H, ζ1q

pP 1, G1, ζ1q “ LoopCheckpN,n,Grn
m
ÞÑ αs, ζ Y tn

m
ÞÑ αuq

(Prefixing)

paα Ñβ P,G,m, pS, S0q,∆, ζq
a
ÝÑ pP,Grn

m
ÞÑ α, o

n
ÞÑ βs, o, pS, S0q, tnu, ζ Y tn

m
ÞÑ α, o

n
ÞÑ βuq

(Choice)

pP [α Q,G,m, pS, S0q,∆, ζq
τ
ÝÑ pP 1, Grn

m
ÞÑ αs, n, pS1, S10q,H, ζ Y tn

m
ÞÑ αuq

pP 1, pS1, S10qq “ SelectBranchpP [α Q, pS, S0qq

(STOP)

pSTOPα, G,m, pS, S0q,∆, ζq
τ
ÝÑ pK, Grn

m
ÞÑ αs, n, pS, S0q,H, ζ Y tn

m
ÞÑ αuq

Figure 3.6: An instrumented operational semantics that generates the
CSCFG

(Process Call) The called process is unfolded and a node with a fresh reference
is added to the graph. The new expression in the control is computed with
function LoopCheck that prevents infinite unfolding. Intuitively, this function
checks whether the process call in the control has not been already executed
(if so, we are in a loop). When a loop is detected, a loop edge is added to
the graph; and the right-hand side of the called process is labelled with a
special symbol ös. This label is later used by rule (Synchronized Parallelism

4) to decide whether the process must be stopped. The loop symbol ö is
labelled with the position s of the process call of the loop. This is used to
know what is the reference of the process’ node if it is unfolded again.
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Figure 3.6: An instrumented operational semantics that generates the
CSCFG (cont.)
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3.1 Context-Sensitive Synchronized Control Flow Graph

(Choice) The only sources of non-determinism are choice operators (different
branches can be selected for execution) and parallel operators (different order
of branches can be selected for execution). Therefore, every time the seman-
tics executes a choice or a parallelism, they are made deterministic thanks
to the information in the stack S. Both internal and external can be treated
with a single rule because the CSCFG associated to a specification with ex-
ternal choices is identical to the CSCFG associated to the specification with
the external choices replaced by internal choices.

Function SelectBranch is used to produce the new control and the new tuple
of stacks by selecting a branch using the information of current stacks. Given
a choice P [Q and stacks pS, S0q, if the last element of the stack S indicates
that the first branch of the choice (C1) must be selected, then P is the new
control. If the second branch must be selected (C2), the new control is Q.
In any other case the stack is empty, and thus this is the first time that this
choice is evaluated. Then, we select the first branch (P is the new control)
and we add pC1, tC2uq to the stack S0 indicating that C1 has been fired, and
the remaining option is C2.

For instance, when the CSCFG of Fig. 3.4(b) is being constructed and we
reach the choice operator (i.e., pMAIN, 2q), then the left branch of the choice is
evaluated and pC1, tC2uq is added to the stack to indicate that the left branch
has been evaluated. The second time it is evaluated, the stack is updated
to pC2,Hq and the right branch is evaluated. Therefore, the selection of
branches is predetermined by the stack, thus, the algorithm can decide what
branches are evaluated by conveniently handling the information of the stack.

(Synchronized Parallelism 1 and 2) The stack determines what rule to use when
a parallelism operator is in the control. If the last element in the stack is SP1,
then (Synchronized Parallelism 1) is used. If it is SP2, (Synchronized Parallelism

2) is used.

In a synchronized parallelism composition, both parallel processes can be in-
tertwiningly executed until a synchronized event is found. Therefore, nodes
for both processes can be added interwoven to the graph. Hence, the seman-
tics needs to know in every state the references to be used in both branches.
This is done by labelling each parallelism operator with a tuple of the form
pα, n1, n2,Υq where α is the specification position of the parallelism oper-
ator; n1 and n2 are respectively the references of the last node introduced
in the left and right branches of the parallelism, and they are initialised to
‚; and Υ is a node reference used to decide when to unfold a process call
(in order to avoid infinite loops), also initialised to ‚. If the graph of the
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current computation remains the same, meaning that nothing has change in
this derivation, this rule detects that the parallelism is in a loop; and thus, in
the new control the parallelism operator is labelled with ö and all the other
loop labels are removed from it.

These rules develop the branches of the parallelism until they are finished
or until they must synchronize. They introduce the parallelism into the
graph the first time it is executed and only if it has not been introduced in
a previous computation. For instance, consider a state where a parallelism
operator is labelled with ppMAIN,Λq, ‚, ‚, ‚q. Therefore, it is evaluated for the
first time, and thus, when, e.g., rule (Synchronized Parallelism 1) is applied,
a node which refers to the parallelism operator, is added to the graph and
the parallelism operator is relabelled to ppMAIN,Λq, x, ‚, ‚q where x is the new
reference associated with the left branch.

(Synchronized Parallelism 3) It is applied when the last element in the stack
is SP3. It is used to synchronize the parallel processes. In this rule, Υ is
replaced by ‚, meaning that a synchronization edge has been drawn and the
loops could be unfolded again if it is needed. All the events that have been
executed in this step must be synchronized. Therefore, all the events occurred
in the subderivations of the paralleled processes are mutually synchronized
and added to the graph.

(Synchronized Parallelism 4) This rule is applied when the last element in the
stack is SP4. It is used when none of the parallel processes can proceed
(because they already finished, deadlocked or were labelled with ö). When
a process is labelled as a loop with ö, it can be unlabelled to unfold it once2

in order to allow the other processes to continue. This happens when the
looped process is in parallel with other process and the later is waiting to
synchronize with the former. In order to perform the synchronization, both
processes must continue, thus the loop is unlabelled. Hence, the system
must stop only when both parallel processes are marked as a loop. This
task is done by function LoopControl that decides if the branches of the
parallelism should be further unfolded or they should be stopped (e.g., due
to a deadlock or an infinite loop).

When one of the branches has been labelled as a loop, there are three options:
(i) The other branch is also a loop. In this case, the whole parallelism is
marked as a loop labelled with its parent, and Υ is put to ‚. (ii) Either it

2Only once because it will be labelled again by rule (Process Call) when the loop is
repeated.
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is a loop that has been unfolded without drawing any synchronization (this
is known because Υ is equal to the parent of the loop), or the other branch
already terminated (i.e., it is K). In this case, the parallelism is also marked
as a loop, and the other branch is put to K (this means that this process has
been deadlocked). Also here, Υ is put to ‚. (iii) If we are not in a loop, then
we allow the parallelism to proceed by unlabelling the looped branch. When
none of the branches has been labelled as a loop, K is returned representing
that this is a deadlock, and thus, stopping further computations.

(Synchronized Parallelism 5) This rule is used when the stack is empty. It
basically analyses the control and decides what are the set of rules that can
be applied to a synchronized parallelism.

Essentially, it decides what rules are applicable depending on the events that
could happen in the next step. These events can be inferred by using function
AppRules that, given a process P , returns the set of events that can fire a
rule in the semantics using P as the control. Therefore, rule (Synchronized

Parallelism 5) prepares the stack allowing the semantics to proceed with the
correct rule.

Consider again the specification in Figure 3.4(a). Due to the choice oper-
ator, in this specification two different events can occur, namely b and a.
Therefore, the algorithm performs two iterations (one for each computation)
to generate the final CSCFG. Figure 3.4(b) shows the CSCFG generated
where white nodes were produced in the first iteration; and grey nodes were
produced in the second iteration.

3.1.2 Using the CSCFG for Program Slicing

For slicing purposes, the CSCFG is interesting because we can use the edges
to determine if a node must be executed or not before another node, thanks
to the following properties:

• if a control edge exists from n to n1 then n must be executed before n1

in all executions.

• if a loop edge exists from n to n1 then n1 must be executed before n in
all executions.

• if a synchronization edge exists between n and n1 then n and n1 are
executed at the same time in all executions.
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Thanks to the fact that loops are unfolded only once, the CSCFG ensures
that all the specification positions inside the loops are in the graph and can
be collected by slicing algorithms. For slicing purposes, this representation
also ensures that every possibly executed part of the specification belongs to
the CSCFG because only loops (i.e., repeated nodes) are missing.

Consider the specification of Figure 3.2 and its associated CSCFG shown in
Figure 3.3(b). If we select the node labeled (P1,alight) and traverse the
CSCFG backwards in order to identify the nodes on which this node depends,
we only get the nodes of the graph colored in gray. This particular slice is
minimal and, therefore, much smaller than the slice obtained when we select
the same node (P1,alight) in the SCFG (see Figure 3.3(a)).

The CSCFG provides a different representation for each context in which
a process call is made. This can be seen in Figure 3.3(b) where process
BUS appears twice to account for the two contexts in which it is called. In
particular, in the CSCFG we have a fresh node to represent each different
process call, and two nodes point to the same process if and only if they are
the same call (they are labeled with the same specification position) and they
belong to the same loop. This property ensures that the CSCFG is finite.

The specification in Figure 3.7 makes clear the difference between the SCFG
and the CSCFG. While the SCFG only uses one representation for the process
P (there is only one start P), the CSCFG uses four different representations
because P could be executed in four different contexts. Note that due to the
infinite loops, some parts of the graph are not reachable from start MAIN;
i.e., there is no possible control flow to end MAIN.

3.2 Static Slicing of CSP Specifications

We want to perform two kinds of analysis. Given a point in the specifica-
tion, we want, on the one hand, to determine what parts of the specification
MUST be executed before (MEB) it (in every possible execution); and, on
the other hand, we want to determine what parts of the specification COULD
be executed before (CEB) it (in any possible execution). Both analyses are
closely related but they must be computed differently. While MEB is mainly
based on backward slicing, CEB is mainly based on forward slicing to explore
what could be executed in parallel processes.

In our approach the slicing criterion is a specification position. Clearly,
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Figure 3.7: SCFG and CSCFG representing an infinite computation

the slicing criterion points to a set of nodes in the CSCFG, because the
same specification position can happen in different contexts and, thus, it is
represented in the CSCFG with different nodes. This means that a slicing
criterion C is used to produce a slice with respect to all possible executions
of C. As an example, consider the slicing criterion (BUS,alight) for the
specification in Figure 3.2, and observe in its CSCFG in Figure 3.3(b) that
two different nodes are identified by the slicing criterion.

Note that the slicing criterion could point to nodes that are not reachable
from MAIN such as dead code (see, e.g., Figure 3.7). Therefore, we exclude
these nodes so that only feasible computations (starting from MAIN) are con-
sidered. Moreover, the slicing criterion could also point to different nodes
that represent the same specification position that is executed many times
in a (sub)computation (see, e.g., specification position pP, Λq in the CSCFG
of Figure 3.7). Thus, we only select the first occurrence of this specification
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position in the computation.

Given a slicing criterion, we use the CSCFG to approximate MEB and CEB.
Computing correct slices is known as an undecidable problem even in the
sequential setting (see, e.g., [88]). Therefore, our MEB and CEB analyses
are an over-approximation. Technical results that ensure the completeness
of the analyses can be found in Paper 1.

Regarding the MEB analysis, one could consider that a simple backwards
traversal of the graph from the slicing criterion’s nodes would produce a
correct slice. However, this would produce a rather imprecise slice because
this would include both branches of the choices in the path from MAIN to to
the slicing criterion even if they do not need to be executed before it (consider
for instance the process ((aÑSKIP)l(bÑSKIP));P and the slicing criterion
P). The union of paths from MAIN to the slicing criterion’s nodes is not a
solution, either, because it would be too imprecise by including in the slice
parts of code that are executed before the slicing criterion only in some
executions. For instance, in the process (bÑaÑSKIP)l(cÑaÑSKIP), c

belongs to one of the paths to a, but it must be executed before a or not
depending on the choice. The intersection of paths is not a solution, either, as
it can be seen in the process aÑ((bÑSKIP)||(cÑSKIP));P where b must
be executed before P, but it does not belong to all the paths from MAIN to P.

In Paper 1 we formally define the notion of MEB slice and introduce an
algorithm that can be used to compute the MEB analysis. It basically com-
putes for each node in slicing criterion’s nodes a set containing the part of
the specification that must be executed before it. Then, it returns MEB as
the intersection of all these sets. Each set, which is represented by Meb,
is computed with an iterative process that takes a node and performs the
following actions:

1. It starts with an initial set of nodes computed by collecting those nodes
that were executed just before the initial node (i.e., they are connected
to it or to a node synchronized with it with a control arc).

2. The initial set Meb is the backwards traversal of the CSCFG from the
initial set following control arcs.

3. Those nodes that could not be executed before the initial node are
added to a blacklist. The nodes in the blacklist are discarded because
they are either a successor of the nodes in the slicing criterion (and thus
they are executed always after it), or they are executed in a branch
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of a choice that cannot lead to the slicing criterion. The blacklist is
computed by iteratively collecting all the nodes that are a (control)
successor of the nodes in the previous blacklist (initially the slicing
criterion); and it also adds to the blacklist those nodes that are only
synchronized with nodes in the blacklist.

4. A set of pending nodes that should be considered is computed. This
set contains nodes that are synchronized with the nodes in Meb (thus
they are executed at the same time). Therefore, synchronizations are
followed in order to reach new nodes that must be executed before
the slicing criterion. These steps are repeated until no new nodes are
reached.

This algorithm always terminates as is proved in Paper 1.

The CEB analysis computes the set of nodes in the CSCFG that could be
executed before a given node n. This means that all those nodes that must
be executed before n are included, but also those nodes that are executed
before n in some executions, and they are not in other executions (e.g., due
to non-synchronized parallelism). Therefore, MEB Ď CEB .

The algorithm to compute the CEB analysis is presented in Paper 1. It,
roughly, traverses the CSCFG forwards following all the paths that could be
executed in parallel to nodes in MEB . In particular, the algorithm computes
for each node in slicing criterion’s nodes a set containing the part of the
specification that could be executed before it. Then, it returns CEB as the
union of all these sets. Each set Ceb is computed as follows:

1. First, the set Ceb is initialized with all those specification positions
that must be executed before a node n because, trivially, they could be
executed before it.

2. After, the set loopnodes is initialized. This set represents the nodes that
belong to a loop in the computation executed before the slicing criterion
was reached. For instance, in the process A=(aÑA)l(bÑSKIP) the left
branch of the choice is a loop that could be executed several times before
the slicing criterion, say b, was executed. Initially, this set contains the
first node in a branch of a choice operator that does not belong to Ceb
but can reach Ceb through a loop arc.

3. The set loopnodes is computed in the first loop of the algorithm and
they are finally added to the slice (i.e., Ceb). The idea is to check that
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the whole loop could be executed before the slicing criterion. If some
sentence of the loop could not be executed before (e.g., because it is
synchronized with an event that must occur after the slicing criterion),
then the loop is discarded and not included in the slice.

4. A second loop of the algorithm is used to collect all those nodes that
could be executed in parallel to the nodes in the slice (in Ceb). In par-
ticular, it traverses branches executed in parallel to nodes in Ceb until
a node that could not be executed before the slicing criterion is found.
For instance, consider the process A=(aÑbÑSKIP)||tbu(cÑbÑSKIP);
and let us assume that the slicing criterion is c. Similarly to the first
loop of the algorithm, the second loop traverses the left branch of the
parallelism operator forwards until an event that could not be executed
before the slicing criterion is found (in this example, b). Therefore, aÑ
would be included in the slice.

The algorithms presented can extract a slice from any specification built
from the considered CSP’s syntax. However, note that only two operators
have a special treatment in the algorithms: choices (because they introduce
alternative computations) and synchronized parallelism constructs (because
they introduce synchronization). Other operators such as prefixing, inter-
leaving or sequential composition are only taken into account in the CSCFG
construction phase; and they can be treated similarly in the algorithm (i.e.,
they are traversed forwards or backwards by the algorithm when exploring
computations).

3.3 Implementation

We have implemented the MEB and CEB analyses and the algorithms to
build the CSCFG for ProB. ProB [51] is an animator for the B-Method
which also supports other languages such as CSP [18, 52]. ProB has been
implemented in Prolog and it is publicly available [3].

Our tool is called SOC (which stands for Slicing Of CSP) and it is a devel-
opment branch of ProB that is distributed and maintained for Mac, Linux
and Windows. In SOC, the slicing process is completely automatic. Once
the user has loaded a CSP specification, she can select (with the mouse) the
event, operator or process call she is interested in. Obviously, this simple
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3.3 Implementation

Figure 3.8: Slice of a CSP specification produced by SOC

action is enough to define a slicing criterion because the tool can automat-
ically determine the process and the source position of interest. Then, the
tool internally generates an internal data structure (the CSCFG) that rep-
resents all possible computations, and uses the MEB and CEB analyses to
construct the slices. The result is shown to the user by highlighting the part
of the specification that must (respectively could) be executed before the
specified event. Figure 3.8 shows a screenshot of the tool showing a slice of
the specification in Figure 3.1. SOC also includes a transformation to con-
vert slices into executable programs. This allows us to use SOC for program
specialization. The specialized versions can be directly executed in ProB.
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Figure 3.9: Slicer’s Architecture

3.3.1 Architecture of SOC

SOC has been implemented in Prolog and it has been integrated in ProB.
Therefore, SOC can take advantage of ProB’s graphical features to show
slices to the user. In order to be able to color parts of the code, it has been
necessary to implement the source code positions detection in such a way
that ProB can color every subexpression that is sliced away by SOC.

Figure 3.9 summarizes the internal architecture of SOC. Note that both the
graph compaction module and the slicing module take a CSCFG as input,
and hence, they are independent of CSP. Apart from the interface module
for the communication with ProB, SOC has three main modules that we
describe in the following:

Graph Generation

The first task of the slicer is to build a CSCFG. The module that generates the
CSCFG from the source program is the only module that is CSP dependent.
This means that SOC could be used with other languages by only changing
the graph generation module.

44



3.3 Implementation

Nodes and arcs are built following the algorithm described in Paper 2. For
efficiency reasons, the implementation of the CSCFG makes some simplifi-
cations that reduce the size of the graph. For instance, “start” and “end”
nodes are not present in the graph. Another simplification to reduce the size
of the graph is graph compaction (described below).

We have implemented two versions of this module. The first version aims to
producing a precise analysis. For this purpose, the original notion of con-
text is modified to introduce loop arcs in the graph whenever a specification
position is repeated in a loop. However, this notion of context can produce
big CSCFGs for some examples. This implies more memory usage and more
time to compute the graphs and the slices. In such cases, the user could be
interested in producing the CSCFG as fast as possible; for instance, when
the analysis is used as a preprocessing stage of another analysis. Therefore,
we have produced a lightweight version to produce a fast analysis when nec-
essary. This second version uses a relaxed notion of context that allows the
CSCFG to cut more branches of the graph with loop arcs. In the fast anal-
ysis, we skip the restriction that a specification position must be repeated.
Therefore, while the precise context only introduces a loop arc in the CSCFG
when the same specification position is repeated in a branch, the fast con-
text introduces a loop arc when the same process call is repeated, even if the
specification position of the call is different.

Consider again the CSCFG in Figure 3.7. This CSCFG corresponds to the
precise context, and thus loop arcs are only used when the same specification
position is repeated. In contrast, the CSCFG constructed using the fast
context uses loop arcs whenever the same process call is repeated (i.e., the
literal). It is depicted in Figure 3.10.

1

5

10

2

3

6

4

7

8

9

control flow

synchronization

loop

Node         Sequence of nodes

1 start (MAIN,0), P (MAIN,1), start (MAIN,1)

2 Q (P,!), start (P,!)

3 P (Q,!), start (Q,!)

4 Q (P,!)

5 end (Q,!), end (P,!), end (MAIN,1), ; (MAIN,!)

6 P (MAIN,2), start (MAIN,2)

7 Q (P,!), start (P,!)

8 P (Q,!), start (Q,!)

9 Q (P,!)

10 end (Q,!), end (P,!), end (MAIN,2), end (MAIN,0)

Figure 3.10: CSCFG of the specification in Figure 3.7 using the fast context.

Both analyses have been compared with several benchmarks. The results are
presented in Section 3.3.2.
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Graph Compaction

For the sake of clarity, the definition of CSCFG proposed so far does not
take into account efficiency. In particular, it includes several nodes that
are unnecessary from an implementation point of view. Therefore, we have
implemented a module that reduces the size of the CSCFG by removing
superfluous nodes and by joining together those nodes that form paths that
the slicing algorithms must traverse in all cases. This compaction not only
reduces the size of the stored CSCFG, but it also speeds up the slicing process
due to the reduced number of nodes to be processed.

For instance, the graph of Figure 3.11 is the compacted version of the CSCFG
in Figure 3.3(b). Here, e.g., node 2 accounts for the sequence of nodes BUS

and start BUS. The compacted version is a very convenient representation
because the reduced data structure speeds up the graph traversal process.
In practice, the graph compaction phase reduces the size of the graph up to
40% on average.
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7 8

end
MAIN
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board

!

alight alight

11

9

boardboard
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alight

4

board

!

alight

10

           Node         Sequence of nodes

1 start MAIN, ||

2 BUS, start BUS

3 P1, start P1, wait, !

4 !, SKIP, end BUS

5 !, SKIP, end P1

6 ; , ||

7 BUS, start BUS

8 P2, start P2, wait, !

9 !, pay, !

10 !, SKIP, end BUS

11 !, SKIP, end P2

Figure 3.11: Compacted version of the CSCFG in Figure 3.3(b)

Slicing Module

This is the main module of the tool. It is further composed of two submod-
ules that implement the algorithms to perform the MEB and CEB analyses
on the compacted CSCFGs. This module extracts two subgraphs from the
compacted CSCFG using both MEB and CEB. Then, it extracts from the
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(a) Benchmark time results for the FAST CONTEXT

Benchmark CSCFG MEB CEB Total

ATM.csp 805 ms. 36 ms. 67 ms. 908 ms.
RobotControl.csp 277 ms. 39 ms. 21 ms. 337 ms.
Buses.csp 29 ms. 2 ms. 1 ms. 32 ms.
Prize.csp 55 ms. 35 ms. 10 ms. 100 ms.
Phils.csp 72 ms. 12 ms. 4 ms. 88 ms.
TrafficLights.csp 103 ms. 20 ms. 12 ms. 135 ms.
Processors.csp 10 ms. 4 ms. 2 ms. 16 ms.
ComplexSync.csp 212 ms. 264 ms. 38 ms. 514 ms.
Computers.csp 23 ms. 6 ms. 1 ms. 30 ms.
Highways.csp 11452 ms. 100 ms. 30 ms. 11582 ms.

(b) Benchmark time results for the PRECISE CONTEXT

Benchmark CSCFG MEB CEB Total

ATM.csp 10632 ms. 190 ms. 272 ms. 11094 ms.
RobotControl.csp 2603 ms. 413 ms. 169 ms. 3185 ms.
Buses.csp 25 ms. 1 ms. 0 ms. 26 ms.
Prize.csp 352 ms. 317 ms. 79 ms. 748 ms.
Phils.csp 96 ms. 12 ms. 8 ms. 116 ms.
TrafficLights.csp 2109 ms. 1678 ms. 416 ms. 4203 ms.
Processors.csp 15 ms. 2 ms. 5 ms. 22 ms.
ComplexSync.csp 23912 ms. 552 ms. 174 ms. 24638 ms.
Computers.csp 51 ms. 4 ms. 6 ms. 61 ms.
Highways.csp 58254 ms. 1846 ms. 2086 ms. 62186 ms.

Table 3.1: Benchmark time results for the FAST and PRECISE CONTEXT

subgraphs the part of the source code which forms the slice. This informa-
tion can be extracted directly from the graph because its nodes are labeled
with the specification positions to be highlighted. If the user has selected
to produce an executable slice, then the slice is further transformed to be-
come executable (it mainly fills gaps in the produced slice in order to respect
the syntax of the language). The final result is then returned to ProB in
such a way that ProB can either highlight the final slice or save a new CSP
executable specification in a file.

3.3.2 Benchmarking the Slicer

In order to measure the performance and the slicing capabilities of our tool,
we conducted some experiments over the following benchmarks:
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(a) Benchmark size results for the FAST CONTEXT

Benchmark Ori CSCFG Com CSCFG (%) MEB Slice CEB Slice

ATM.csp 156 nodes 99 nodes 63.46 % 32 nodes 45 nodes
RobotControl.csp 337 nodes 121 nodes 35.91 % 22 nodes 109 nodes
Buses.csp 20 nodes 20 nodes 90.91 % 11 nodes 11 nodes
Prize.csp 70 nodes 52 nodes 74.29 % 25 nodes 42 nodes
Phils.csp 181 nodes 57 nodes 31.49 % 9 nodes 39 nodes
TrafficLights.csp 113 nodes 79 nodes 69.91 % 7 nodes 60 nodes
Processors.csp 30 nodes 15 nodes 50.00 % 8 nodes 9 nodes
ComplexSync.csp 103 nodes 69 nodes 66.99 % 37 nodes 69 nodes
Computers.csp 53 nodes 34 nodes 64.15 % 18 nodes 29 nodes
Highways.csp 103 nodes 62 nodes 60.19 % 41 nodes 48 nodes

(b) Benchmark size results for the PRECISE CONTEXT

Benchmark Ori CSCFG Com CSCFG (%) MEB Slice CEB Slice

ATM.csp 267 nodes 165 nodes 61.8 % 52 nodes 59 nodes
RobotControl.csp 1139 nodes 393 nodes 34.5 % 58 nodes 369 nodes
Buses.csp 22 nodes 20 nodes 90.91 % 11 nodes 11 nodes
Prize.csp 248 nodes 178 nodes 71.77 % 15 nodes 47 nodes
Phils.csp 251 nodes 56 nodes 22.31 % 9 nodes 39 nodes
TrafficLights.csp 434 nodes 267 nodes 61.52 % 7 nodes 217 nodes
Processors.csp 37 nodes 19 nodes 51.35 % 8 nodes 14 nodes
ComplexSync.csp 196 nodes 131 nodes 66.84 % 18 nodes 96 nodes
Computers.csp 109 nodes 72 nodes 66.06 % 16 nodes 67 nodes
Highways.csp 503 nodes 275 nodes 54.67 % 47 nodes 273 nodes

Table 3.2: Benchmark size results for the FAST and PRECISE CONTEXT

• ATM.csp. This specification represents an Automated Teller Machine.
The slicing criterion is (Menu,getmoney), i.e., we are interested in de-
termining what parts of the specification must be executed before the
menu option getmoney is chosen in the ATM.

• RobotControl.csp. This example describes a game in which four
robots move in a maze. The slicing criterion is (Referee,winner2),
i.e., we want to know what parts of the system could be executed before
the second robot wins.

• Buses.csp. This example describes a bus service with two buses run-
ning in parallel. The slicing criterion is (BUS37, pay90), i.e., we are
interested in determining what could and could not happen before the
user payed at bus 37.

• Prize.csp. This is the specification of Figure 3.1. Here, the slicing
criterion is (YEAR2, fail), i.e., we are interested in determining what
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parts of the specification must be executed before the student fails in
the second year.

• Phils.csp. This is a simple version of the dining philosophers problem.
In this example, the slicing criterion is (PHIL221, DropFork2), i.e., we
want to know what happened before the second philosopher dropped
the second fork.

• TrafficLights.csp. This specification defines two cars driving in par-
allel on different streets with traffic lights for cars controlling. The slic-
ing criterion is (STREET3,park), i.e., we are interested in producing an
executable version of the specification in which we could simulate the
executions where the second car parks on the third street.

• Processors.csp. This example describes a system that, once con-
nected, receives data from two different machines. The slicing criterion
is (MACH1,datreq) to know what parts of the example must be exe-
cuted before the first machine requests data.

• ComplexSync.csp. This specification defines five routers working in
parallel. Router i can only send messages to router i` 1. Each router
can send a broadcast message to all routers. The slicing criterion is
(Process3,keep), i.e., we want to know what parts of the system
could be executed before router 3 keeps a message.

• Computers.csp. This benchmark describes a system in which a user
can surf internet and download files. The computer can check wether
files are infected by virus. The slicing criterion is (USER,consult file),
i.e., we are interested in determining what parts of the specification
must be executed before the user consults a file.

• Highways.csp. This specification describes a net of spanish highways.
The slicing criterion is (HW6,Toledo), i.e., we want to determine what
cities must be traversed in order to reach Toledo from the starting
point.

All the source code and other information about the benchmarks can be
found at [53].

For each benchmark, Table 3.0(a) and Table 3.0(b) summarize the time spent
to generate the compacted CSCFG (this includes the generation plus the
compaction phases), to produce the MEB and CEB slices (since CEB analy-
sis uses MEB analysis, CEB’s time corresponds only to the time spent after
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performing the MEB analysis), and the total time. Table 3.0(a) shows the
results when using the fast context and Table 3.0(b) shows the results associ-
ated to the precise context. Clearly, the fast context achieves a significative
time reduction. In these tables we can observe that Highways.csp needs
more time even though the size of its associated CSCFG is similar to the
other examples. Almost all the time needed to construct the CSCFG is used
in computing the synchronizations. The high number of synchronizations
performed in Highways.csp is the cause of its expensive cost.

Table 3.1(a) and Table 3.1(b) summarize the size of all objects participating
in the slicing process for both the fast and the precise contexts respectively:
Column Ori CSCFG shows the size of the CSCFG of the original program.
Observe that the precise context can increase the size of the CSCFG up to
four times with respect to the fast context. Column Com CSCFG shows the
size of the compacted CSCFG. Column (%) shows the percentage of the
compacted CSCFG’ size with respect to the original CSCFG. Note that in
some examples the reduction is almost 70% of the original size. Finally,
columns MEB Slice and CEB Slice show respectively the size of the MEB
and CEB CSCFG’ slices. Clearly, CEB slices are always equal or greater
than their MEB counterparts.

The CSCFG compaction technique seems to be useful. Experiments show
that the size of the original specification is substantially reduced using this
technique. The size of both MEB and CEB slices obviously depends on the
slicing criterion selected. Table 3.1(a) and Table 3.1(b) compare both slices
with respect to the same criterion but different contexts and, therefore, they
give an idea of the difference between them.

SOC is open and publicly available. All the information related to the ex-
periments, the source code of the benchmarks, the slicing criteria used, the
source code of the tool and other material related to the project can be found
at [53].

3.4 Related work

Program slicing has been already applied to concurrent programs of different
programming paradigms, see e.g. [89, 90]. As a result, different graph repre-
sentations have arisen to represent synchronization. The first proposal of a
program slicing method for concurrent programs by Cheng [23] was later im-
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proved by Krinke [47, 48] and Nanda [69]. All these approaches are based on
the so called threaded control flow graph and the threaded program dependence
graph. Unfortunately, their approaches are not appropriate for slicing CSP,
because their work is based on a different kind of synchronization. They use
the following concept of interference to represent program synchronization.

(Interference) A node S1 is interference dependent on a node S2 if S2 defines
a variable v, S1 uses the variable v and S1 and S2 execute in parallel.

In CSP, in contrast, a synchronization happens between two processes if the
synchronized event is executed at the same time by both processes. In ad-
dition, both processes cannot proceed in their executions until they have
synchronized. This is the key point that underpin our MEB and CEB anal-
yses. This idea has been already exploited in the concurrent control flow
graph [35] which allows us to model the phenomenon known as fully-blocking
semantics where a process sending a message to other process is blocked un-
til the other receives the message and vice versa. This is equivalent to our
synchronization model. In these graphs, as in previous approaches (and in
conventional program slicing in general), the slicing criterion is a variable in
a point of interest, and the slice is formed by the sentences that influence
this variable due to control and data dependences. For instance, consider the
following program fragment:

(1) readpxq;
(2) printpxq;
(3) if x ą 0
(4) then y “ x´ 1;
(5) else y “ 42;
(6) printpyq;
(7) z “ y;

A slice with respect to p7, zq would contain sentences (1), (3), (4) and (5);
because z data depends on y, y data depends on x and (4) and (5) control
depend on (3). Sentences (2) and (6) would be discarded because they are
print statements and thus, they do not have an influence on z.

In contrast, in our technique, if we select (7) as the slicing criterion, we get
sentences (1), (2), (3) and (6) as the MEB slice because these sentences must
be executed before the slicing criterion in all executions. The CEB slice
would contain the whole program.

51



Chapter 3. Static Slicing of Explicitly Synchronized Languages

Therefore, the purpose of our slicing technique is essentially different from
previous work: while other approaches try to answer the question “what parts
of the program can influence the value of this variable at this point?”, our
technique tries to answer the question “what parts of the program must be
executed before this point? and what parts of the program can be executed
before this point?”. Therefore, our slicing criterion is different, but also the
data structure we use for slicing is different. In contrast to previous work,
we do not use a PDG like graph, and use instead a CFG like graph, because
we focus on control flow rather than control and data dependence.

Despite the problem being undecidable, determining the MEB and CEB slices
can be very useful and has many different applications such as debugging,
program comprehension, program specialization and program simplification.
Surprisingly, to the best of our knowledge, our approach is the first one to
address the problem in a concurrent and explicitly synchronized context. In
fact, the data structure most similar to the CSCFG is the SCFG by Callahan
and Sublok [19] (see Section 3.1 for a description of this data structure, and
a comparison with our CSCFG). Unfortunately, the SCFG does not take the
calling context into account and thus it is not appropriate for the MEB and
CEB analyses.

Our technique is not the first approach that applies program slicing to CSP
specifications. Program slicing has also been applied to CSP by Bruckner
and Wehrheim who introduced a method to slice CSP-OZ specifications [16].
Nevertheless, their approach ignores CSP synchronization and focus instead
on the OZ’s variables. As in previous approaches, their slicing criterion is
an LTL formulae constructed with OZ’s variables; and they use the standard
PDG to compute the slice with a backwards reachability analysis.
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Tracking CSP Computations

In this chapter, we introduce the theoretical basis for tracking concurrent
and explicitly synchronized computations in process algebras such as CSP.
Tracking computations is a difficult task due to the subtleties of the under-
lying operational semantics which combines concurrency, non-determinism
and non-termination. In CSP a trace is a sequence of events. Concretely,
the operational semantics of CSP is an event-based semantics in which the
occurrence of events fires the rules of the semantics. Hence, the final trace
of the computation is the sequence of events occurred (see Chapter 8 of [80]
for a detailed study of this kind of traces).

In this work we introduce an essentially different notion of trace [25] called
track. In our setting, a track is a data structure which represents the se-
quence of expressions that have been evaluated during the computation, and
moreover, this data structure is labelled with the location of these expres-
sions in the specification. Therefore, a CSP track is much more informative
than a CSP trace since the former not only contains a lot of information
about original program structures but also explicitly relates the sequence of
events with the parts of the specification that caused these events.

Consider the CSP specification shown in Figure 4.1. This specification mod-
els several gambling activities running in parallel and modelled by process
GAMBLING. One of the games is the casino. A CASINO is modelled as the
interaction of three parallel processes, namely a PLAYER, a ROULETTE, and
a CROUPIER. The player bets for red, and she can win a prize or not. The
roulette simply takes a color (either red or black); and the croupier checks
the bet and the color of the roulette in order to give a prize to the player or
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MAIN “ CASINO || GAMBLING

CASINO “ pPLAYER ||| ROULETTEq }
tbetred,red,black,prizeu

CROUPIER

PLAYER “ betredÑ pprizeÑ STOP l noprizeÑ STOPq

ROULETTE “ redÑ STOP l blackÑ STOP

CROUPIER “ pbetredÑ redÑ prizeÑ STOPq

l pbetredÑ blackÑ prizeÑ STOPq

l pbetblackÑ blackÑ prizeÑ STOPq

l pbetblackÑ redÑ getmoneyÑ STOPq

GAMBLING “ Complex Composite Processes

Figure 4.1: CSP specification of gambling activities

just get the bet money.

This specification contains an error, because it allows the trace of events
t “ xbetred, black, prizey where the player bets for red and she wins a
prize even though the roulette takes black.

Now assume that we execute the specification and discover the error after
executing trace t. A track can be very useful to understand why the error
was caused, and what part of the specification was involved in the wrong
execution. For instance, if we look at the track of Fig. 4.2, we can easily see
that the three processes run in parallel, and that the prize is given because
there is a synchronization (dashed edges represent synchronizations) between
CROUPIER and PLAYER that should never happen. Observe that the track
is intuitive enough as to be a powerful program comprehension tool that
provides much more information than the trace.

Moreover, observe that the track contains explicit information about the
specification’s expressions that were involved in the execution. Therefore,
it can be used for program slicing (see [86, 84] for an explanation of the
technique and Paper 1 for an adaptation of program slicing to CSP). In
particular, in this example, we can use the track to extract the part of the
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CASINO
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black
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MAIN

prize

!

CROUPIER

betred

black

prize

!

!

!

!

!
!

!

STOP

STOP

STOP

Figure 4.2: Track of the program in Figure 4.1

program that was involved in the execution—note that this is the only part
that could cause the error—. This part has been underscored in the example.
With a quick look, one can see that the underscored part of process CROUPIER
produced the wrong behavior. Event prize should be replaced by getmoney.

Another interesting application of tracks is related to component extraction
and reuse. If we are interested in a particular trace, and we want to extract
the part of the specification that models this trace to be used in another
model, we can simply produce a slice, and slightly augment the code to
make it syntactically correct (see Paper 1 for an example and an explanation
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of this transformation). In our example, even though the system is very big
due to process GAMBLING, the track is able to extract the only information
related to the trace.

In Paper 3 we define an instrumented operational semantics that generates
as a side-effect an appropriate data structure (a track) that can be used to
track computations. Formal definition of a tracking semantics improves the
understanding of the tracking process, but also, it allows us to formally prove
the correctness of the computed tracks.

Additionally, we have implemented the first tool [57] able to produce tracks
automatically.

4.1 Tracking Computations

A track is formed by the sequence of expressions that are evaluated during
an execution. These expressions are conveniently connected to form a graph.
However, several program analysis techniques such as program slicing make
use of the locations of program expressions, and thus, this notion of track is
insufficient for them. Therefore, we want our tracks to also store the location
of each literal (i.e., events, operators and process names) in the specification
so that the track can be used to know what portions of the source code have
been executed and in what order. The inclusion of source positions in the
track implies an additional level of complexity in the semantics, but the ben-
efits of providing our tracks with this additional information are clear and,
for some applications, essential. Therefore, we use labels (that we call spec-
ification positions) to uniquely identify each literal in a specification which
roughly corresponds to nodes in the CSP specification’s abstract syntax tree.
Consider, for example, the CSP specification of Figure 4.3 where literals are
labelled with their associated specification positions (they are underlined) so
that labels are unique.

In order to introduce the definition of track, we need first to define the
concept of control-flow, which refers to the order in which the individual
literals of a CSP specification are executed. Intuitively, the control can pass
from a specification position α to a specification position β iff an execution
exists where α is executed before β. This notion of control-flow is similar
to the control-flow used in the control-flow graphs (CFG) [86] of imperative
programming. We have adapted the same idea to CSP where choices and
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MAINpMAIN,0q = (apMAIN,1.1qÑpMAIN,1qSTOPpMAIN,1.2q) }
tau
pMAIN,Λq

(PpMAIN,2.1qlpMAIN,2q(apMAIN,2.2.1qÑpMAIN,2.2qSTOPpMAIN,2.2.2q))

PpP,0q = bpP,1qÑpP,ΛqSKIPpP,2q

Figure 4.3: Labelled CSP specification

parallel composition appear; and in a similar way to the CFG, we use this
definition to draw control arcs in our tracks. Indeed, this notion of control-
flow is the same used in Chapter 3 to build the CSCFG.

For instance, in the specification of Figure 4.3, we can see how the control can
pass from a specification position to another one, e.g., we have pMAIN, 2q ñ
pMAIN, 2.1q and pMAIN, 2q ñ pMAIN, 2.2.1q. And pMAIN, 2.2.1q ñ pMAIN, 2.2q;
pMAIN, 2.2q ñ pMAIN, 2.2.2q and pMAIN, 2.1q ñ pP, 1q.

Control-flow is defined statically and says whether the control can pass from α
to β in some derivation. However, the track is a dynamic structure produced
for a particular derivation. Therefore, we produce a dynamic version of the
definition of control-flow which is defined for a particular derivation. For ex-
ample, consider again the specification of Figure 4.3. We show in Fig. 4.4(a)
one possible derivation (ignoring subderivations) of this specification (for the
time being, the underlined part should be ignored). Its associated track is
shown in Fig. 4.4(b). In the example, we see that the track is a connected
and directed graph. Apart from the control-flow edges, there is one synchro-
nization edge between nodes pMAIN, 1.1q and pMAIN, 2.2.1q representing the
synchronization of event a.

The trace associated with the derivation in Fig. 4.4(a) is xay. Therefore, note
that the track is much more informative: it shows the exact processes that
have been evaluated with an explicit causality relation; and, in addition, it
shows the specification positions that have been evaluated and in what order.
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MAIN ù
pPCq

paÑ STOPq }
tau

pPlpaÑ STOPqq

ù
pSP3q
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Figure 4.4: Derivation and track associated with the specification of Fig. 4.3

4.2 Instrumenting the Semantics for

Tracking

The generation of tracks in CSP is a task that must overcome challenges such
as non-deterministic execution of processes, deadlocks, non-terminating pro-
cesses and synchronizations. In this work, we design a solution that success-
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MAINÑ pMAIN,0q “ apMAIN,1.1q Ñ pMAIN,1qapMAIN,1.2.1q Ñ pMAIN,1.2qSTOPpMAIN,1.2.2q

}
tau
pMAIN,ΛqPpMAIN,2q

PpP,0q “ apP,1q Ñ pP,ΛqPpP,2q
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Figure 4.5: CSP specification with two synchronized processes and its corre-
sponding track

fully faces these difficulties. Firstly, we generate tracks with an augmented
semantics that is conservative with respect to the standard operational se-
mantics. Therefore, the execution order is the standard order, thus non-
determinism and synchronizations are solved by the semantics. Moreover,
the semantics generates the track incrementally, step by step. Therefore,
infinite computations can be tracked until they are stopped. Hence, it is not
needed to actually finish a computation to get the track of the subcompu-

59



Chapter 4. Tracking CSP Computations

MAINpMAIN,0q “ pPpMAIN,1q }
tau
pMAIN,ΛqPpMAIN,2qq

PpP,0q “ apP,1q Ñ pP,ΛqPpP,2q

(a) CSP specification
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Figure 4.6: CSP specification of two infinite processes mutually synchronized
and its corresponding track

tations performed. For example, consider the CSP specification of Figure
4.5(a) where each (sub)process has been labelled with its associated specifi-
cation position (underlining). The final track computed is the graph of Fig.
4.5(b). Another interesting example is illustrated by the CSP specification of
Figure 4.6(a) where two non-terminating processes run in parallel and syn-
chronize infinitely. Because the computation is infinite, the track (shown in
Fig. 4.6(b)) is also infinite.

In order to solve the problem of deadlocks (that stop the computation), and
have a representation for them in the tracks, when a deadlock happens, the
semantics performs some additional steps to be able to generate a part of the
track that represents the deadlock. These additional steps do not influence
the other rules of the semantics, thus it remains conservative.
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(Process Call)
pNα, G,m,∆q

τ
ÝÑ prhspNq, Grm ÞÑ

n
αs, n,Hq

(Prefixing)
paα Ñβ P,G,m,∆q

a
ÝÑ pP,Grm ÞÑ

n
α, n ÞÑ

p
βs, p, tmuq

(SKIP)
pSKIPα, G,m,∆q

X
ÝÑ pΩ, Grm ÞÑ

n
αs, n,Hq

(STOP)
pSTOPα, G,m,∆q

τ
ÝÑ pK, Grm ÞÑ

n
αs, n,Hq

(Internal
Choice 1)

pP [α Q,G,m,∆q
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ÝÑ pP,Grm ÞÑ

n
αs, n,Hq

(Internal
Choice 2)

pP [α Q,G,m,∆q
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n
αs, n,Hq

(External
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pP1, G
1, n1,∆q

τ
ÝÑ pP 1, G2, n2,Hq

pP1 ˝ pα,n1,n2qP2, G,m,∆q
τ
ÝÑ pP 1 ˝ pα,n2,n2qP2, G2,m,Hq

where pG1, n1q “ FirstEvalpG,n1,m, αq

(External
Choice 2)

pP2, G
1, n1,∆q

τ
ÝÑ pP 1, G2, n2,Hq
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2qP
1, G2,m,Hq
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(External
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pP1, G
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e
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e P Σ Y tXu
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(Sequential
Composition 1)
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(Sequential
Composition 2)
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X
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(Synchronized
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X
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r
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q
P G where q P tn1, n2uus

Figure 4.7: An instrumented operational semantics to generate CSP tracks
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This section introduces an instrumented operational semantics of CSP that
generates as a side-effect the tracks associated with the computations per-
formed with the semantics. The tracking semantics is shown in Figure 4.7,
where we assume that every literal in the program has been labelled with its
specification position (denoted by a subscript, e.g., Pα). In the semantics,
a state is a tuple pP,G,m,∆q, where P is the process to be evaluated (the
control), G is a directed graph (i.e., the track built so far), m is a numeric
reference to the current node in G, and ∆ is a set of references to nodes
that may be synchronized. Concretely, m references the node in G where the
specification position of the control P must be stored. Reference m is a fresh1

reference generated to add new nodes to G. The basic idea of the graph con-
struction is to record the current control with the current reference in every
step by connecting it to its parent. Every time an external event happens
during the computation, this event is stored in the set ∆ of the current state.
Therefore, when a synchronized parallelism is evaluated, all the events that
must be synchronized are in ∆. We use the special symbol K to denote any
process that is deadlocked. In order to perform computations, we construct
an initial state (e.g., pMAIN,H, 0,Hq) and (non-deterministically) apply the
rules of the instrumented semantics. When the execution has finished or has
been interrupted, the semantics has produced the track of the computation
performed so far.

In order to give a general idea of how the semantics works, a brief explanation
for the most relevant rules of the semantics follows:

(External Choice) This operator can develop both branches while τ events
happen, until an external event or X occurs. This means that the semantics
can add nodes to both branches of the track alternatively, and thus, it needs
to store the next reference to use in every branch of the choice. This is done
by labelling choice operators with a tuple of the form pα, n1, n2q where α is the
specification position of the choice operator; and n1 and n2 are respectively
the references to be used in the left and right branches of the choice, and
they are initialized to ‚, a symbol used to express that the branch has not
been evaluated yet.

(Sequential Composition) Two rules correspond the operation P ;Q. The first
one is used to evolve process P until it is finished. P is evolved to a new
process which is put into the control. When P successfully finishes (it be-
comes Ω), X happens. Then, the second rule is used and Q is put into the
control. The sequential composition operator ; is added to the graph with

1We assume that fresh references are numeric and generated incrementally.
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successor the reference to be used in the first node added in the subderivation
associated with Q.

(Synchronized Parallelism) In a synchronized parallel composition, both par-
allel processes can be intertwiningly executed until a synchronized event is
found. Therefore, nodes from both processes can be added interwoven to the
graph. Hence, each parallelism operator is labelled with a tuple of the form
pα, n1, n2q as it happens with external choices.

Four rules are used for this operator. The first two rules develop the branches
of the parallelism until they are finished or until they must synchronize.
The third rule is used to synchronize the parallel processes. In this case,
both branches must perform a rewriting step with the same visible (and
synchronized) event. Each branch derivation has a non-empty set of events
(∆1, ∆2) to be synchronized (note that this is a set because many parallelism
operators could be nested). Then, all references in the sets ∆1 and ∆2 are
mutually linked with synchronization edges. Both sets are joined to form the
new set of synchronized events. Finally, the fourth rule is used when none of
the parallel processes can proceed because they already successfully finished.
In this case, the control becomes Ω indicating the successful termination of
the synchronized parallelism. This rule also adds to the graph the arcs from
all the parents of the last references of each branch to the fresh reference in
the new state. Note that the fact of generating the next reference in each
rule allows this rule to connect the final node of both branches to the next
node. This simplifies other rules such as (Sequential Composition) that in this
way already have the references of the nodes ready.

We illustrate the semantics with a simple example. Consider again the specifi-
cation in Example 4.3. Figure 4.4(a) shows one possible derivation (excluding
subderivations) for this example. Note that the underlined part corresponds
to the additional rewriting steps performed by the tracking semantics. This
derivation corresponds to the execution of the instrumented semantics with
the initial state pMAIN,H, 0,Hq. This computation corresponds to the exe-
cution of the right branch of the choice (i.e., a Ñ STOP). The final state is
pK }
tau
ppMAIN,Λq,9,10qK, G

1, 1,Hq. The final track G1 computed for this execution

is depicted in Fig. 4.4(b) where we can see that nodes are numbered with the
references generated by the instrumented semantics. Note that nodes 9 and
10 were prepared by the semantics (edges to them were produced) but never
used because the subcomputations were stopped in STOP. Note also that the
track contains all the parts of the specification executed by the semantics.
This means that if the left branch of the choice had been developed (i.e.,
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Phasbeenunfolded), this branch would also belong to the track.

We prove the correctness of the tracking semantics in Paper 3 by showing
that

i) the computations performed by the tracking semantics are equivalent to
the computations performed by the standard semantics; and

ii) the graph produced by the tracking semantics is the track of the deriva-
tion.

We also prove that the trace of a derivation can be automatically extracted
from the track of this derivation. Consequently, two theorems are defined.
The first theorem states that the computations performed with the tracking
semantics are all and only the computations performed with the standard se-
mantics. The only difference between them from an operational point of view
is that the tracking semantics needs to perform one step when a STOP is eval-
uated (to add its specification position to the track) and then finishes, while
the standard semantics finishes without performing any additional step. The
second theorem states the correctness of the tracking semantics by ensuring
that the graph produced is the track of the computation.

4.3 Implementation

We have developed a tool called CSP-Tracker that implements a CSP in-
terpreter with a tracker. The interpreter executes a CSP specification and
simultaneously produces the track associated to the performed derivation.
CSP-Tracker incorporates mechanisms to produce colored graphs that rep-
resent the tracks in a very intuitive way. CSP-Tracker implements the in-
strumented semantics in Figure 4.7, and thus it can generate the track of
a (partial) derivation until it finishes or is stopped. This is specially useful
for the analysis of non-termination. In CSP-Tracker, the tracking process
is completely automatic. Once the user has loaded a CSP specification, she
can (automatically) produce a derivation and the tool internally generates
the associated track. Both the track and the trace can be stored in a file, or
displayed in the screen by generating Graphviz 2 graphs. Figure 4.8 shows a
screenshot of an interface of the tool showing the track and the trace of the
specification in Example 4.1.

2http://www.graphviz.org/
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Figure 4.8: Track of a CSP specification produced by CSP-Tracker

4.3.1 Architecture of CSP-Tracker

The information collected by CSP-tracker is dynamic, and thus the subse-
quent analyses performed are very precise. We would like to allow the user
to combine this information with other analyses that already exist for CSP.
Therefore, we have integrated CSP-Tracker with the tool SOC (described in
Chapter 3) that is able to perform different static analyses such as static
slicing. Both tools are complementary and together can provide useful infor-
mation, e.g., in debugging and program comprehension.

While SOC was implemented in Prolog, CSP-Tracker has been implemented
in Erlang3. The election of Erlang was very conscious because Erlang is one
of the most efficient languages for the use of multiple threads and parallelism;
and it provides concurrent capabilities that enhance the execution of CSP
specifications with the use of efficient message passing. In particular, with
Erlang we can use truly concurrent processes to implement interleaving and
synchronized parallelism.

All modules except the parser and the graph generator were implemented in
Erlang. The CSP parser translates CSP to a Prolog representation that can
be used by SOC. This parser is part of ProB [51, 52] which is one of the most
extended IDE for CSP. Once CSP is translated to Prolog, we use a Prolog
module to translate the resulting code to an Erlang structure. Note that this

3http://www.erlang.org/
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Figure 4.9: CSP-Tracker’s Architecture

last step is somehow easy, because the syntax of Erlang was initially based
on Prolog, so there are many similarities between them. In order to be able
to graphically show tracks, we use Graphviz.

Figure 4.9 summarizes the internal architecture of CSP-Tracker. In the fig-
ure, the dark rectangles represent modules that are described in the following:

• ProB’s CSP parser: It translates a CSP specification into a Prolog
representation. This Prolog structure acts as an intermediate language
that is used by SOC to perform complementary static analyses. This
module is in charge of assigning specification positions. Observe in
Fig. 4.10 that, for the sake of clarity, the tool uses lines and columns to
identify literals. For instance, node 5 with literal b has the specification
position from (4,10) to (4,11); which means that b appears in the
source code between columns 10 and 11 of line 4.

• Translator Prolog - Erlang: It produces an Erlang representation
equivalent to the Prolog structure.

• csp tracker: This module initializes the other modules. First, it loads
the Erlang code produced and then it creates all the Erlang processes
needed by the tool. Finally, it starts the execution of CSP process
MAIN.

• codeserver: This module specifies a process that runs uninterruptedly
during the generation of the track. It behaves as a server that stores
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all the information about the code of the CSP processes. It waits for
requests and serves them. A request is in fact a message that contains a
process call. Then, codeserver returns a message containing the right
hand side of the called process with the parameters substituted by the
actual values of the arguments in the call.

• printer: This module also specifies a process that runs uninterruptedly
and acts as a server. In this case, the requests contain information that
should be used to print the trace of the execution or to generate the
part of the track that represents the ongoing execution.

• csp process: This module creates one Erlang process for each CSP
process in the specification. All created processes run in parallel and
synchronize via message passing when needed. Each of these processes
interacts with codeserver and printer to perform process calls and
generate the graph when required. For instance, the execution of a
prefixing a Ñ P calls printer to print a in the shell, and then calls
codeserver to create a new process that represents P.

• csp parsing: This module is basically a library with common func-
tionality for the other modules.

4.3.2 Using CSP-Tracker

CSP-Tracker is publicly available including its source code as a GitHub repos-
itory [57]. There is also a web interface useful to test the tool. It can be
found at [58].

This section shows the use of CSP-Tracker’s web interface with three illus-
trative scenarios. The first scenario shows a specification that successfully
finishes, the second scenario shows the case where the program is deadlocked
and the third shows the case where the program produces an infinite com-
putation.

In the first scenario, we consider a simple modification of Example 2.1.1,
where all STOP terms have been replaced by SKIP. This change makes the
process to finish successfully. We just load the first example and press the
button Generate Track:
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0 .- MAIN
from (0,0) to (0,0)

1 .- [|{|a,b|}|]
from (4,33) to (4,44)

2 .- []
from (4,48) to (4,50)

3 .- [[b <- a]]
from (4,21) to (4,31)

4 .- P
from (4,46) to (4,47)

5 .- b
from (4,10) to (4,11)

7 .- a
from (6,6) to (6,7)

6 .- ->
from (4,12) to (4,14)

9 .- SKIP
from (4,15) to (4,19)

8 .- ->
from (6,8) to (6,10)

10 .- SKIP
from (6,11) to (6,15)

11 .- ;
from (6,17) to (6,18)

12 .- SKIP
from (6,19) to (6,23)

Figure 4.10: A track generated by CSP-Tracker

Creating the Erlang representation of the CSP file...

...

Created.

-> START TRACE

tau -> Call to process MAIN

tau -> Call to process P

a

tau

tau

tick

<- FINISH TRACE

Once the execution is finished, a file track.pdf is produced containing the
track associated to the execution of the CSP specification. The track gener-
ated by CSP-Tracker for this example is shown in Fig. 4.10.

During the execution, the trace produced is shown in the Log window. In the
previous case, this trace was formed by both the internal and the external
events fired by the semantics. This is interesting for a programmer that wants
to analyse the behavior of CSP from a semantic point of view. However, the
conventional programmer is only interested in the usual trace, only formed
by external events. This can be obtained by unchecking the option Show
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internal events?:

-> START TRACE

a

<- FINISH TRACE

Our second scenario is Example 4.1, that produces a deadlock. In this case,
the tool automatically detects the deadlock and produces the trace until the
deadlock happens. We have the following trace:

-> START TRACE

betred

black

prize

<- STOPPED TRACE (deadlock)

Our third scenario is Example 4.6(a) that produces an infinite loop. However,
this is not a problem for the tracker, that can still run the specification and
generate the track until it is stopped or a timeout is reached. We have the
following trace:

-> START TRACE

a

...

a

Timeout.

4.4 Related Work

In languages such as Haskell, the tracks (see, e.g., [25, 27, 26, 13]) are the
basis of many analysis methods and tools. However, computing CSP tracks
is a complex task due to the non-deterministic execution of processes, dead-
locks, non-terminating processes and synchronizations. This is probably the
reason why no correctness result exists that formally relates the track of a
specification to its execution. This semantics is needed because it would al-
low us to prove important properties (such as correctness and completeness)
of the techniques and tools based on tracking.

To the best of our knowledge, there is only one attempt to define and build
tracks for CSP [15]. Their notion of track is based on the standard program
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dependence graph [32]; therefore it is useful for program slicing but it is
insufficient for other analyses that need a context-sensitive graph [48] (i.e.,
each different process call has a different representation). Moreover, their
notion of track does not include synchronizations. Our tracks are able to
represent synchronizations, and they are context-sensitive.
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From CSP Specifications to
Petri Nets

This chapter introduces a new technique that allows us to automatically
transform a CSP specification into an equivalent Petri net. The transforma-
tion is formally defined by instrumenting the operational semantics of CSP.
Because the technique uses a semantics-directed transformation, it produces
Petri nets that are closer to the CSP specification and thus easier to under-
stand. This result is interesting because it allows CSP developers not only
to graphically animate their specifications through the use of the equivalent
Petri net, but it also allows them to use all the tools and analysis techniques
developed for Petri nets. For these reasons, attempts to combine both models
exist (see, e.g., [9]).

Transforming CSP to Petri nets is known to be useful since almost their
origins, because it not only has a clear practical utility, but it also has a
wide theoretical interest because both concurrent models are very different,
and establishing relations between them allows us to extend results from one
model to the other. In fact, the problem of transforming a CSP specification
into an equivalent Petri net is complex due to the big differences that exist
between both formalisms. For this reason, some previous approaches aiming
to transform CSP to Petri nets have been criticized because, even though
they are proved equivalent, it is hardly possible to see a relation between the
generated Petri net and the initial CSP specification (i.e., when a transition of
the Petri net is fired, it is not even clear to what CSP process corresponds this
transition). In this respect, the transformation presented here is particularly
interesting because the Petri net is generated directly from the operational
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semantics in such a way that each syntactic element of the CSP specification
has a representation in the Petri net. And, moreover, the sequences of steps
performed by the CSP semantics are directly represented in the Petri net.
Hence, it is not difficult to map the animation of the Petri net to the CSP
specification.

Our transformation is based on an instrumentation of the CSP’s operational
semantics. Roughly speaking, we define an algorithm that explores all com-
putations of a CSP specification by using the instrumented semantics. The
execution of the semantics produces as a side-effect the Petri net associated
with each computation, and thus the final Petri net is produced incremen-
tally. Additionally, we state the correctness of the transformation from CSP
to Petri nets. In particular, we prove that given a CSP specification, the
exploring algorithm produces in finite time an equivalent Petri net.

5.1 Equivalence between CSP and Petri Nets

In order to formally prove the correctness of the transformation, we need
a notion of equivalence that, in our case, is based on the traces generated
by the initial CSP and the language produced by the final Petri net. In
particular, given a CSP specification, the Petri net generated by our algo-
rithm is equivalent to the CSP in the sense that the sequences of observable
events produced are exactly the same in both models (i.e., they are equiva-
lent modulo a given alphabet). In CSP terminology, these sequences are the
so-called traces (see, e.g., chapter 8.2 of [80]). In Petri nets they correspond
to transition firing sequences (see, e.g., [68]).

The Petri net produces a language modulo the alphabet Σ that contains
all the external events of S. CSP’s traces only contains events that are
external (i.e., observable from outside the system). Therefore, this notion
of equivalence implies that, if we ignore internal events such as τ , then the
sequences of (observable) actions of both systems are exactly the same.
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5.2 Transformation of a CSP Specification into

an Equivalent Petri Net

This section introduces an algorithm to transform a CSP specification into
an equivalent Petri net. In summary, the steps performed by the transfor-
mation are the following: firstly, the algorithm takes a CSP specification
and executes the extended semantics with an empty store. The execution
of the semantics produces a Petri net that represents the performed compu-
tation. When the computation is finished, the extended semantics returns
to the algorithm a new store with the information about the choices that
have been executed. Then, the algorithm determines with this information
whether new computations not explored exist yet. If this is the case, the
semantics is executed again with an updated store. This is repeated until all
possible computations have been explored. This sequence of steps gradually
augments the Petri net produced. When the algorithm detects that no more
computations are possible (i.e., the store is empty), it outputs the current
Petri net as the final result.

Even though the transformation is controlled by an algorithm, the generation
of the final Petri net is carried out by an instrumented operational semantics
of CSP. In particular, the algorithm fires the execution of the semantics that
generates incrementally, as a side effect, the Petri net.

The instrumentation of the semantics performs three main tasks:

1. It produces a computation and generates as a side-effect a Petri net
associated with the computation.

2. It controls that no infinite loops are executed.

3. It ensures that the execution is deterministic.

Algorithm 5.1 drives the transformation, controls the execution of the seman-
tics and repeatedly uses it to deterministically execute all possible computa-
tions—of the original (non-deterministic) specification—and the Petri net is
constructed incrementally with each execution of the semantics. Namely,
each time the semantics is executed, it produces as a result a portion of the
Petri net. This result is the input of the next execution of the semantics
that adds a new part of the Petri net. This process is repeated until all
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Algorithm 5.1 General Algorithm

Input: A CSP specification S with initial process MAIN

Output: A labeled Petri net N equivalent to S

Build the initial state of the semantics: state “ pMAIN, p0,N0, prs, rsq,Hq
where N0 “ pxtp0u,H,Hy,M0,P , T ,LP ,LT q, M0pp0q “ 1,
P “ NamesY tl,[u, T “ Στ Y t}, C1, C2u.
repeat

repeat
Run the rules of the instrumented semantics with the state state

until no more rules can be applied
Get the new state state “ p , ,N , prs, Sq, q
state“pMAIN, p0,N , pUpdStorepSq, rsq,Hq

until UpdStorepSq “ rs
return N

where function UpdStore is defined as follows:

UpdStorepSq “

$

&

%

prule, rulesztruleuq :S 1 if S“p , rulesq :S 1 ^ rulePrules
UpdStorepS 1q if S“p ,Hq :S 1

rs if S“rs
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possible executions have been explored and thus the complete Petri net has
been produced.

The key point of the algorithm is the use of a store that records the actions
that can be performed by the semantics. In particular, the store is an ordered
list of elements that allows us to add and extract elements from the beginning
and the end of the list; and it contains tuples of the form prule, rulesq where

• rule indicates the rule that must be selected by the semantics in the
next execution step, when different possibilities exist. They are indi-
cated with intuitive abreviatures of the semantics rules. Thanks to rule
the semantics is deterministic because it knows at every step what rule
must be applied.

• rules is a set containing the other possible rules that can be selected
with the current control. Therefore, rules records at every step all
the possible rules not applied so that the algorithm will execute the
semantics again with these rules.

Algorithm 5.1 uses the store to prepare each execution of the semantics in-
dicating the rules that must be applied at each step. For this, function
UpdStore is used. It avoids to repeat the same computation with the seman-
tics. When the semantics finishes, the algorithm prepares a new execution
of the semantics with an updated store. This is repeated until all possible
computations are explored (i.e., until the store is empty).

Considering that the original semantics can be non-terminating (it can pro-
duce infinite computations), the instrumented semantics could be also non-
terminating if a loop-checking mechanism is not incorporated to ensure ter-
mination. In order to ensure termination of all computations, the instrumen-
tation of the semantics incorporates a mechanism to stop the computation
when the same process is repeated in the same context (i.e., the same control
appears twice in a (sub)derivation of the semantics).

In the instrumented semantics a state is a tuple pP, p,N , pS, S0q,∆q, where:

• P is the process to be evaluated (the control),

• p is the last place added to the Petri net N ,

• pS, S0q is a tuple with two stores (where the empty store is denoted by
rs) that contains the rules to apply and the rules applied so far, and
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• ∆ is a set of references used to insert synchronizations in N .

The basic idea of the Petri net construction is to generate the Petri net
associated with the current control and connect this net to the last place
added to N .

(Process Call - Sequential)

pM,p,N , pS, S0q, q
τ
ÝÑ pP, p1,N 1, pS, S0q,Hq

pP, p1,N 1q “ LoopCheckpM,p,N q

LoopCheckpM,p,N q “
#

pöpMq, p,N rt ÞÑ qM sq if N rqM ÞÑ , t ÞÑ ps

prhspMq, p2,N rpM ÞÑ tτ ÞÑ p2sq otherwise

(Process Call - Parallel)

pM♦, p,N , pS, S0q, q
τ
ÝÑ prhspMq, p1,N rpM ÞÑ tτ ÞÑ p1s, pS, S0q,Hq

(Prefixing)

paÑ P, p,N , pS, S0q, q
a
ÝÑ pP, p1,N rp ÞÑ ta ÞÑ p1s, pS, S0q, tpp, ta, p1quq

(Choice)

pP aQ, p,N , pS, S0q, q
τ
ÝÑ pP 1, p1,N 1, pS1, S10q,Hq

a P tl,\u

pP 1, p1,N 1, pS1, S10qq “ SelectBranchpP a Q, p,N , pS, S0qq

SelectBranchpP a Q, p,N , pS, S0qq“

$

’

’

’

’

’

&

’

’

’

’

’

%

pP, p1,N rpa ÞÑ tC1 ÞÑ p1s, pS1, pC1, tC2uq :S0qq

if S “ S1 :pC1, tC2uq

pQ, p1,N rpa ÞÑ tC2 ÞÑ p1s, pS1, pC2,Hq :S0qq

if S “ S1 :pC2,Hq

pP, p1,N rpa ÞÑ tC1 ÞÑ p1s, prs, pC1, tC2uq :S0qq otherwise

Figure 5.1: An instrumented operational semantics that generates a Petri
net

The rules of the instrumented semantics are presented in Figure 5.1. A brief
explanation for the most relevant rules of the semantics follows:

(Process Call - Sequential) In the instrumented semantics, there are two ver-
sions of the standard rule for process call. The first version is used when
a process call is made in a sequential process. The second version is used
for process calls made inside parallelism operators. The sequential version
basically decides whether process P must be unfolded or not. This is done
to avoid infinite unfolding of the same process. Once a (sequential) process
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5.2 Transformation of a CSP Specification into an Equivalent PN

has been unfolded once, it is not unfolded again. If the process has been
previously unfolded, then we are in a loop, and P is marked as a loop with
the special symbol ö. This label avoids to unfold the process again because
no rule is applicable. In this case, to represent the loop in the Petri net, we
add a new arc from the last added transition to the place labelled with the
corresponding specification position. If P has not been previously unfolded,
then its right-hand side becomes the new control. Moreover, the new Petri
net contains a place that represents the process call and a transition that
represents the occurrence of event τ .

(Process Call - Parallel) When a process call is made inside a parallelism oper-
ator, it is always unfolded. We do not worry about infinite unfolding because
the rules for synchronized parallelism already control non-termination. In or-
der to distinguish between process calls made sequentially or in parallel, we
use a special symbol ♦. Therefore, for simplicity, we assume that all process
calls inside a parallelism operator are labeled with ♦, and thus, the semantics
can decide what rule should be used.

(Choice) The only sources of non-determinism are choice operators (differ-
ent branches can be selected for execution) and parallel operators (different
order of branches can be selected for execution). Therefore, every time the
semantics executes a choice or a parallelism, they are made deterministic
thanks to the information in the store. In the case of choices, both internal
and external can be treated with a single rule. In this rule, a function is
used to produce the new control and the new tuple of stores, by selecting a
branch with the information of the store. Given a choice operation P l Q (or
P [Q), if the last element of the store indicates that the first branch of the
choice (C1) must be selected, then P is the new control. If the second branch
must be selected (C2), the new control is Q. In any other case the store is
empty, and thus this is the first time that this choice is evaluated. Then, we
select the first branch (P is the new control) and we add pC1, tC2uq to the
store indicating that C1 has been chosen, and the remaining option is C2.
Moreover, this rule creates a new transition for each branch that represents
the τ event.

(Synchronized Parallelism 1 and 2) The store determines what rule to use when
a parallelism operator is in the control. If we are not in a loop (this is known
because the same control has not appeared before, and the last element
in the store is SP1, then (Synchronized Parallelism 1) is used. If it is SP2,
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(Synchronized Parallelism 1)

pP1, p11,N 1, pS1, pSP1, rulesq : S0q, q
e
ÝÑ pP11, p21,N 2, pS2, S10q,∆q

pP1 }
X
labP2, p,N , pS1 : pSP1, rulesq, S0q, q

e
ÝÑ pP11 }

X
lab1P2, p,N 2, pS2, S10q,∆q

e P Στ zX

lab “ pp1, p2,Υq ^ pP1}P2, , q R Υ ^

pN 1, p11, p
1
2q “ InitBranchespN , p1, p2, pq ^ lab1 “ pp21, p

1
2, NewUpsilonpΥ, pP1}P2, p11, p

1
2qqq

(Synchronized Parallelism 2)

pP2, p12,N 1, pS1, pSP2, rulesq : S0q, q
e
ÝÑ pP21, p22,N 2, pS2, S10q,∆q

pP1 }
X
labP2, p,N , pS1 : pSP2, rulesq, S0q, q

e
ÝÑ pP1 }

X
lab1P21, p,N 2, pS2, S10q,∆q

e P Στ zX

lab “ pp1, p2,Υq ^ pP1}P2, , q R Υ ^

pN 1, p11, p
1
2q “ InitBranchespN , p1, p2, pq ^ lab1 “ pp11, p

2
2, NewUpsilonpΥ, pP1}P2, p11, p

1
2qqq

(Synchronized Parallelism 3)

Left Right

pP1 }
X
labP2, p,N , pS1 : pSP3, rulesq, S0q, q

e
ÝÑ pP11 }

X
lab1P21, p,Ns, pS3, S20 q,∆q

e P X

lab “ pp1, p2,Υq ^ pP1}P2, , q R Υ ^ pN 1, p11, p
1
2q “ InitBranchespN , p1, p2, pq ^

Left “ pP1, p11,N 1, pS1, pSP3, rulesq : S0q, q
e
ÝÑ pP11, p21,N 2, pS2, S10q,∆1q ^

Right “ pP2, p12,N 2, pS2, S10q, q
e
ÝÑ pP21, p22,N3, pS3, S20 q,∆2q ^

lab1 “ pp21, p
2
2, NewUpsilonpΥ, pP1}P2, p11, p

1
2qqq ^

Ns “ pN3 Y tpp ÞÑ te ÞÑ p1q | pp, , p1q P p∆1 Y∆2quqztpp ÞÑ t ÞÑ p1q | pp, t, p1q P p∆1 Y∆2qu

^ ∆ “ tpp, te, p1q | pp, , p1q P p∆1 Y∆2qu

InitBranchespN , p1, p2, pq “

#

pN rp ÞÑ t} ÞÑ p11, p ÞÑ t} ÞÑ p12s, p
1
1, p

1
2q if p1 “ K

pN , p1, p2q otherwise

NewUpsilonpΥ, pP1}P2, p1, p2qq “

#

Υ if HasLoopspP1}P2q

ΥY tpP1}P2, p1, p2qu otherwise

Figure 5.1: An instrumented operational semantics that generates a Petri
net (cont.)

(Synchronized Parallelism 2) is used. In a synchronized parallelism composition,
both parallel processes can be intertwiningly executed until a synchronized
event is found. Therefore, places and transitions for both processes can be
added interwoven to the Petri net. Hence, the semantics needs to know in
every state the references to be used in both branches. This is done by
labeling each parallelism operator with a tuple of the form pp1, p2,Υq where
p1 and p2 are respectively the last places added to the left and right branches
of the parallelism; and Υ records the controls of the semantics in order to
avoid repetition (i.e., it is used to avoid infinite loops). In particular, Υ is
a set of triples of the form: pP1}P2, p1, p2q where P1}P2 is the control of

78



5.2 Transformation of a CSP Specification into an Equivalent PN

a previous state of the semantics, and p1, p2 are the nodes in the Petri net
associated with P1 and P2. This tuple is initialized to pK,K,Hq for every
parallelism that is introduced in the computation. Here, we use symbol K
to denote an undefined place. The new label of the parallelism operator
contains a new Υ that has been updated with the current control only if it
does not contain any ö. This is done with a simple syntactic checking.

These rules develop the branches of the parallelism operator until they are
finished or until they must synchronize. The parallelism operator is repre-
sented in the Petri net with a transition t}. This transition is connected to
two new places, one for each branch.

(Synchronized Parallelism 3) It is applied when the last element in the store is
SP3 and no loop is detected. It is used to synchronize the parallel processes.
In this rule, all the events that have been executed in this step must be
synchronized. Therefore, all the events occurred in the subderivations of the
paralyzed processes are mutually synchronized. This is done in the Petri
net by removing the transitions that were added in each subderivation and
connecting all of them with a single transition. The new synchronization set
contains all the synchronizations occurred in both branches connected by the
new transition.

(Synchronized Parallelism 4) This rule is applied when the last element in
the store is SP4. It is used when none of the parallel processes can proceed
(because they already finished, deadlocked or were labeled with ö). When a
parallelism is labeled as a loop with ö, it can be unlabeled to unfold it once1

in order to allow the other processes to continue. This happens when the
looped process is in parallel with other process and the later is waiting to
synchronize with the former. In order to perform the synchronization, both
processes must continue, thus the loop is unlabeled. This task is done by
function LoopControl that decides whether the branches of the parallelism
should be further unfolded or they should be stopped (e.g., due to a deadlock
or an infinite loop). This function can detect three different situations:

(i) The parallelism is in a loop. In this case, the whole parallelism is marked
as a loop. This situation happens when one of the branches is marked as
looped (with ö), and the other branch is also looped, or it already terminated
(i.e., it is STOP), or the control of both branches of the parallelism have been

1Only once because it will be labeled again when the loop is repeated.
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(Synchronized Parallelism 4)

pP1 }
X
pp1,p2,ΥqP2, p,N , pS1 : pSP4, rulesq, S0q, q

τ
ÝÑ pP 1, p,N 1, pS1, pSP4, rulesq : S0q,Hq

pP 1,N 1q “ LoopControlpP1 }
X
pp1,p2,ΥqP2,N q

LoopControlpP1 }
X
pp1,p2,ΥqP2,N q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pöpP12 }
X
pp1

1,p
1
2,Υq

P22q,N q if P11“öpP12q ^ pP21“öpP22q_

ppP21“ STOP_pP12}P21, , q P Υq ^ P22 “ P21qq

pP13 }
X
pp1

1,p
1
2,Υq

P21,N 1q if P11“öpP12q ^ P21‰ öp q ^ P21‰ STOP^

pP12}P21, , q R Υ ^ pP13,N 1q “ DelEdgespP12,N q

pSTOP,N q otherwise
where pP11, p11, P21, p12q P tpP1, p1, P2, p2q, pP2, p2, P1, p1qu

DelEdgespP1 }
X
pp1,p2,ΥqP2,N q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pP11 }
X
pp1,p2,Υ1qP21,N 2q if pP1}P2, pp1, pp2q P Υ^Υ1 “ ΥztpP1}P2, pp1, pp2qu ^

ppP1 ‰ p } q ^N 1 “ N rt1 ÞÑ p1sztt1 ÞÑ pp1u ^ P11 “ P1q

_ pP1 “ p } q ^ pP11,N 1q “ DelEdgespP1,N qqq ^
ppP2 ‰ p } q ^N 2 “ N 1rt2 ÞÑ p2sztt2 ÞÑ pp2u ^ P21 “ P2q

_ pP1 “ p } q ^ pP21,N 2q “ DelEdgespP2,N 1qqq

pP1 }
X
pp1,p2,ΥqP2,N q otherwise

Figure 5.1: An instrumented operational semantics that generates a Petri
net (cont.)

repeated (i.e., they are in Υ).

(ii) The parallelism is not in a loop, and it should proceed. This situation
happens when one of the branches is marked as looped, and the other branch
is trying to synchronize with the first one. In this case, the branch marked
as a loop should continue to allow the synchronization. Therefore, the loop
symbol ö is removed and the loop arcs added to the Petri net are also
recursively removed.

(iii) The parallelism must be stopped. This happens for instance because
both branches terminated, therefore, the whole parallelism is replaced by
STOP, thus, stopping further computations.

(Synchronized Parallelism 5) This rule is used to detect loops (when the control
has been repeated and thus it appears in Υ, and SP1, SP2 or SP3 is the last
element in the store), and also to determine what rule must be applied (when
the store is empty).
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(Synchronized Parallelism 5)

pP, p,NP , pS1P , S0q, q
e
ÝÑ pP 1, p,N 1, pS1, S10q,∆q

pP1 }
X
pp1,p2,ΥqP2, p,N , pS, S0q, q

e
ÝÑ pP 2, p,N 2, pS2, S20 q,∆

1q
e P Στ

S “ rs _ ppS “ p : pSP1, qq _ S “ p : pSP2, qq _ S “ p : pSP3, qqq

^ pP1 }
X
P2, , q P Υq

^pP,NP , SP q “ CheckLoopspP1 }
X
pp1,p2,ΥqP2,N q

^ppS “ rs ^ SP “ rs ^ e “ τ ^ pP 2,N 2, pS2, S20 q,∆
1q “ pP,NP , prs, S0q,Hqq

_ ppS “ rs ^ SP ‰ rs ^ S
1
P “ SP q _ pS ‰ rs ^ S

1
P “ Sq

^ pP 2,N 2, pS2, S20 q,∆
1q “ pP 1,N 1, pS1, S10q,∆qqq

CheckLoopspP1 }
X
pp1,p2,ΥqP2,N q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pöpP1 }
X
pp1,p2,ΥqP2q,N3, rsq if pP1}P2, pp1, pp2q P Υ

^ ppN 2 “ N rt1 ÞÑ p1, t1 ÞÑ pp1s ^ P1 ‰ p } qq

_ pN 2 “ N ^ P1 “ p } qqq

^ ppN3 “ N 2rt2 ÞÑ p2, t2 ÞÑ pp2s ^ P2 ‰ p } qq

_ pN3 “ N 2 ^ P2 “ p } qqq
ppP1 }

X
pp1,p2,ΥqP2q,N1 YN2, S1q otherwise

where pP11,N1, S1q “

"

CheckLoopspP1,N q if P1 “ }

pP1,N , rsq otherwise

pP21,N2, S2q “

"

CheckLoopspP2,N q if P2 “ }

pP2,N , rsq otherwise

Rules “ AppRulespP11 }
X
P21q

S1 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

S2 : ptSP2u,Hq if P1 “ } ^ P2 ‰ } ^ S1 “ rs ^Rules “ tSP2u
S1 : ptSP1u,Hq if P1 ‰ } ^ P2 “ } ^ S2 “ rs ^Rules “ tSP1u
S1 : pr,Rulesztruq if P1 ‰ } ^ P2 ‰ } ^ SP4 R Rules

^ r P Rules^ p pS1 “ S1 ^ r “ SP1q
_ pS1 “ S2 ^ r “ SP2q
_ pS1 “ S2¨S1 ^ r “ SP3q q

rptSP4u,Hqs otherwise

AppRulespP1 }
X
P2q “

$

’

’

&

’

’

%

tSP1u if τ P FstEvspP1q
tSP2u if τ R FstEvspP1q ^ τ P FstEvspP2q
R if τ R FstEvspP1q ^ τ R FstEvspP2q ^ R ‰ H
tSP4u otherwise

where

$

&

%

SP1 P R if De P FstEvspP1q ^ e R X
SP2 P R if De P FstEvspP2q ^ e R X
SP3 P R if De P FstEvspP1q ^ De P FstEvspP2q ^ e P X

FstEvspP q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

tau if P “ aÑ Q
H if P “ öQ _ P “ STOP

tτu if P “M _ P “QlR _ P “pSTOP }
X
STOPq

_ P “pö Q }
X

öRq _ P “pö Q }
X
STOPq _ P “pSTOP }

X
öRq

_ pP “pö Q }
X
Rq ^ FstEvspRqĎXq _ pP “pQ }

X
öRq ^ FstEvspQqĎXq

_ pP “Q }
X
R^ FstEvspQqĎX ^ FstEvspRqĎX^

Ş

MPtQ,Ru

FstEvspMq“Hq

E otherwise, with P “ Q }
X
R^ E “ pFstEvspQq Y FstEvspRqqz

pX X pFstEvspQqzFstEvspRq Y FstEvspRqzFstEvspQqqq

Figure 5.1: An instrumented operational semantics that generates a Petri
net (cont.)
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In order to control non-termination, this rule checks whether the current
control or other parallelisms inside it has been already repeated in the com-
putation (this is done with the information in Υ). If this is the case, then
we are in a loop, and the parallelisms are labeled with the symbol ö; thus
it cannot continue unless this symbol is removed by other parallel process
that requires the unfolding of this process (to synchronize). In case of loop,
this function also adds the corresponding loop arcs to the Petri net. If a
loop is not detected in the control of the parallelism, then the parallelism
continues normally as in the standard semantics. If a loop is detected, then
a new control labeled with ö is returned directly without performing any
subderivation. Another important task performed by this rule is the prepa-
ration of the store. This function builds the new store indicating what rules
must be applied in the following derivations, also for its internal parallelisms.
Essentially, it decides what rules are applicable depending on the events that
could happen in the next step. Additionally, it implicitly imposes an order in
the execution, and this order avoids the repetition of redundant derivations.
For instance, if both branches of a parallelism can fire event τ in any order,
then it will be fired first in the first branch (using rule SP1) and then in the
second branch (using rule SP2). This avoids multiple unnecessary executions
such as SP1, SP2 and SP2, SP1 where only τ happens in both branches but in
different order. Therefore, rule (Synchronized Parallelism 5) prepares the store
allowing the semantics to proceed with the correct rule.

Consider the Moore machine [43] in Figure 5.2 to compute the remainder
of a binary number divided by three. The different values for the possible
remainders are 0, 1 and 2. Note that if a value n written in binary is followed
by a 0 then its value becomes 2n and if n is followed by a 1 then its value
becomes 2n`1. If the remainder of n{3 is r, then the remainder of 2n{3 is 2r
mod 3. If r “ 0, 1, or 2, then 2r mod 3 is 0, 2, or 1, respectively. Similarly,
the remainder of p2n` 1q{3 is 1, 0, or 2, respectively. So, this machine has 3
states: q0 is the start state and represents a remainder 0, state q1 represents
a remainder 1 and state q2 represents a remainder 2.

q
0
/0 q

1
/1 q

2
/2

0

01

1

Start

0 1

Figure 5.2: Moore machine to determine the remainder of a binary number
divided by three
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MAIN “ REM0

REM0 “ p0Ñ REM0q l p1Ñ REM1q l pdivisible3Ñ STOPq

REM1 “ p0Ñ REM2q l p1Ñ REM0q

REM2 “ p0Ñ REM1q l p1Ñ REM2q

Figure 5.3: CSP specification of the Moore Machine of Figure 5.2
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Figure 5.4: Petri net associated with the specification of Figure 5.3

The CSP specification of Figure 5.3 corresponds to the previous Moore ma-
chine with a slight modification: the fact that a binary number is divisible
by 3 is explicitly represented. Processes REM0, REM1 and REM2 are considered
as remainder 0, 1 and 2 states, respectively. We know that a number n is
divisible by 3 if the remainder of n{3 is 0. So, process REM0 also represents
that the number is divisible by 3 (represented with the event divisible3).
Using this specification as input for the transformation algorithm, we obtain
the Petri net drawn in Figure 5.4.

The CSP specification of Figure 5.5 is an extension of the previous CSP
specification to check whether a given binary number is divisible by 3.

MAIN “ REM0 }
t0,1,divisible3u

BINARY

REM0 “ p0Ñ REM0q l p1Ñ REM1q l pdivisible3Ñ STOPq

REM1 “ p0Ñ REM2q l p1Ñ REM0q

REM2 “ p0Ñ REM1q l p1Ñ REM2q

BINARY “ 1Ñ 1Ñ 0Ñ divisible3Ñ STOP.

Figure 5.5: Extension of the specification of Figure 5.3

Process BINARY represents a binary number; in this case, the binary number
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(a) PN generated with the transformation algorithm
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Figure 5.6: PN associated with the specification of Figure 5.5

110 (which corresponds to the decimal value 6). Processes REM0 and BINARY

are executed in parallel with t0, 1, divisible3u as the set of synchronized
events, i.e., whenever one of these synchronized events happens in process
REM0, it must also happen in process BINARY at the same time, and vice
versa. So, if event divisible3 occurs, it means that the binary number is
divisible by 3. When the binary number is not divisible by 3, the remainder
of its division between 3 will be 1 or 2 (processes REM1 or REM2), and then
event divisible3 will never happen.

Due to the set of synchronized events t0, 1, divisible3u in process MAIN

and to the choice operators in processes REM0 and REM1, this specification
can produce the set of finite sequences of observable events defined as:

tracespMAINq “ txy, x1y, x1, 1y, x1, 1, 0y, x1, 1, 0, divisible3yu

In particular, it can produce the sequence of events x1, 1, 0, divisible3y
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Figure 5.7: Petri net generated in the first and second iterations of the trans-
formation algorithm for the specification of Figure 5.5

before it is stopped (i.e. deadlocked). The transformation algorithm with this
specificification produces the Petri net shown in Figure 5.6(a). This Petri net
is generated after eight iterations of the algorithm (and thus eight executions
of the instrumented semantics). We first execute the semantics with the
initial state and get the computation that corresponds to the execution of
the left branch of the two choices of process REM0. The final state’s store
contains two pairs pC1, tC2uq to denote that the left branch of the choices has
been executed and the right branch is still pending. Then, the algorithm calls
the function that updates the store and executes the semantics again with a
new initial state. After this execution the Petri net shown in Figure 5.7 has
been computed. The first iteration generates the white nodes of Figure 5.7
and grey nodes are generated in the second iteration. Figure 5.6(a) shows
the final Petri net generated where white nodes were generated in the first
and second iterations, grey nodes were generated in the third iteration; and
black nodes were generated in the rest of iterations (from fourth to eighth).
The language produced by the labeled Petri net in Figure 5.6(a) is shown in
Figure 5.8

If we restrict the language to visible events, we get the language over the
alphabet Σ:

LΣpN q “ txy, x1y, x1, 1y, x1, 1, 0y, x1, 1, 0, divisible3yu

We can see that this language is exactly the same as the one produced by
tracespMAINq. Then, according to the definition of equivalence, the Petri net
generated by the transformation algorithm and the CSP specification of the
example are equivalent.
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LpN q “ txy, xτy, xτ, ||y, xτ, ||, τy, xτ, ||, τ, τy, xτ, ||, τ, τ, C2y, xτ, ||, τ, τ, C1y,
xτ, ||, τ, τ, C1, C2y, xτ, ||, τ, τ, C1, C1y, xτ, ||, τ, τ, C1, C2, 1y,
xτ, ||, τ, τ, C1, C2, 1, τy, xτ, ||, τ, τ, C1, C2, 1, τ, C1y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2y, xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τy,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C2y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C2y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τy,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C1y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C1, C1y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C1, C2y,
xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C2y,

xτ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C2, divisible3yu

Figure 5.8: Language produced by the PN in Fig. 5.6(a)

With the previous examples, it is easy to see that the Petri nets generated by
the transformation algorithm are very close to the CSP’s semantics behavior.
These Petri nets follow step by step the sequence of events (both internal and
external) that happened during the evaluation of the semantics. For instance,

• Each occurrence of a τ is explicitly represented in the Petri net with a
transition (labeled with the internal event τ) between two places:

!

• Each choice is represented with a place labeled with the choice operator
(l or [) and two transitions labeled with the first option (C1) and the
second option (C2):

!

!"

!#

• Each parallelism operator is represented with a transition labeled with
the parallelism operator || and two places:
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||

These properties make the generated Petri net to be compositional, and it
is easy to see that the Petri net is a graphical representation of the CSP’s
semantics derivations. In fact, this is a powerful tool for program compre-
hension because the Petri net is very similar to the so-called Control Flow
Graph (CFG) (see, e.g., [86]) of imperative languages. Note that the paths
followed by tokens are the possible execution paths in the semantics.

5.3 Tuning the Generated Petri Net

For some applications, we may be interested in producing a Petri net as
small as possible discarding internal events and only concentrating on exter-
nal ones. This simplified Petri net should keep the equivalence with the CSP
specification but still reduce its size. However, (part of) the connection with
the CSP semantics behavior would be lost. This section introduces a trans-
formation for Petri nets that can be applied to the Petri nets generated by
our technique. The transformation takes advantage of the particular shape of
the generated Petri nets to remove unnecessary parts that do not contribute
to the language produced by them.

Because both versions of the Petri net (the complete and the simplified)
are useful, we decided not to generate the simplified version directly from
the instrumented semantics, and do it with a post-process transformation.
This has the additional advantage of not introducing more complexity in the
instrumentation of the semantics. As an example consider the complete Petri
net in Figure 5.6(a) and its simplified version in Figure 5.6(b).

The algorithm that performs the simplification process of Petri nets is intro-
duced in Paper 4. This algorithm takes a Petri net and iteratively deletes
all parts of the net that are duplicated or useless, until a fix-point is reached
(i.e., no more simplifications can be done).

In order to delete duplicates, the algorithm traverses the Petri net from the
initial place (labeled with MAIN) following all paths. During the traversal, it
tries to identify repeated parts of the Petri net to remove the repetitions and
reuse one of them, whenever it is possible.
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Chapter 5. From CSP Specifications to Petri Nets

The task of deleting useless parts of the Petri net such as sequences of linear
non-observable transitions is independent of the previous algorithm. This
task is performed by a function that removes useless nodes by checking those
transitions that do not contribute to the final trace. We call these transi-
tions Candidates and they are initially those transitions labeled with τ, C1
and C2. The function checks whether a sequence of transitions of this kind
exists, and if so, they are removed. For instance, some clear opportunities
for optimization are the following:

• Removing useless transitions:
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• Removing sink places:
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• Removing final non-observable transitions:

!

"

"

!
!
!

"

"

!
!
!

!#! "#

In Figure 5.9 we show the optimized Petri net associated with the specifi-
cation of Figure 5.3. This Petri net is the output produced by the tuning
algorithm with the Petri net in Figure 5.4 as input.
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divisible3
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Figure 5.9: PN optimized associated with the specification of Figure 5.3

Turning back to the specification in Figure 5.5, its associated Petri net in
Figure 5.6(a) is optimized by the tuning algorithm producing the Petri net
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in Figure 5.6(b). Observe that in this simplified Petri net it has been made
clearly explicit the parallel execution of process BINARY with the sequential
execution of processes REM0 and REM1. It is also clear that event divisible3
can only happen if processes REM0, REM1, REM0 and REM0 are executed se-
quentially and they synchronize on events 1, 1, 0 and divisible3 with the
parallel execution of process BINARY.

5.4 Implementation

All the algorithms proposed and the instrumented operational semantics have
been implemented and integrated into a tool called CSP2PN. This tool allows
us to automatically generate a Petri net equivalent to a given CSP specifi-
cation. The tool has been implemented in Prolog and C. It has about 1800
LOC and generates Petri nets in the standard PNML format [1] (it can also
generate Petri nets in dot and jpg formats). Although CSP2PN implements
the technique described in this paper, the implemented algorithm is much
more complex due to efficiency reasons.

In particular, the implementation of the algorithm contains some improve-
ments that significantly speed up the Petri net construction. The most im-
portant improvement is to avoid repeated computations. This is done by: (i)
state memoization: once a state already explored is reached the algorithm
stops this computation and starts with another one; and (ii) skipping already
performed computations: computations do not start from MAIN, they start
from the next non-deterministic state in the execution (this is provided by
the information of the store).

The implementation is composed of eight different modules that interact to
produce the final Petri net:

Main: This is the main module that coordinates all the other modules.

Control Algorithm: Implements the transformation algorithm and the data
structures needed to communicate with the semantics (e.g., the store).

Semantics: Implements the CSP’s extended operational Semantics.

Optimization: Implements all the optimization technique (the tuning al-
gorithm).
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Pretty Printing: All the derivations performed by the semantics and the
logs of execution are printed with this module.

Graph Generation: It produces the final Petri nets with different formats
such as DOT and JPG.

PNML Construction: This is the only module written in C (the others
are written in Prolog). It basically reads the generated Petri net in
DOT format and transforms it into a standard PNML Petri net.

Tools: It contains common and auxiliary functions and tools used by the
other modules.

The implementation, source code and several examples are publicly available
at [59]. There is an online version of CSP2PN that can be used to test the
tool. This online version is publicly available at [60].

Figure 5.10 shows a screenshot of the online version of CSP2PN. You can
either write down the initial CSP specification or choose one from the list
of available examples. Once the Petri net is generated (Generate Petri net)
it is possible to visualize it (View Petri net) and to save it as pnml, jpg or
dot formats. The same options are available for the optimized Petri net. For
instance, the Petri net in Figure 5.4 has been automatically generated by
CSP2PN from the CSP specification of Example 5.3. After the Petri net is
generated, we also show the execution log of the instrumented semantics used
by the transformation technique. This log allows us to check the different
iterations of the algorithm and to follow the execution of the instrumented
semantics step by step.

The possibility of saving the generated Petri net as a pnml file allows us to
animate and analyze it with any standard Petri net tool. The results of these
analyses can be transferred easily to the CSP specification. For instance,
PIPE2 (Platform Independent Petri net Editor 2) [2] is a tool for creating
and analysing Petri nets that loads and saves nets in pnml. Therefore, the
optimized Petri nets generated by CSP2PN can be directly verified with the
analyses performed by PIPE2. Figure 5.11 shows a screenshot of PIPE2
with a Petri net generated by CSP2PN and one of the possible verification
analyses performed by PIPE2.
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Figure 5.10: Screenshot of the online version of CSP2PN

Figure 5.11: Screenshot of PIPE2
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5.5 Related Work

We can group all previous approaches aimed at transforming CSP to Petri
nets into two major research lines. The first line is based on traces describing
the behavior of the system. In [64], starting from a trace-based representa-
tion of the behavior of the system, according to a subset of the Hoare’s theory
where no sequential composition with recursion is allowed, a stochastic Petri
net model is built in a modular and systematic way. The overall model is
built by modeling the system’s components individually, and then putting
them together by means of superposition. The second line of research in-
cludes all methodologies that translate CSP specifications into Petri nets
directly from the CSP syntax. One of the first works translating CSP to
Petri nets was [29], where distributed termination is assumed but nesting of
parallel commands is not allowed. In [34], a CSP-like language is considered
and translated into a subclass of Pr/T nets with individual tokens, where
neither nesting of parallel commands is allowed nor distributed termination
is taken into account. Other papers in this area are [72] that considers a sub-
set of CCSP (the union of Milner’s CCS[65] and Hoare’s CSP[41]), and [30]
which provides full CSP with a truly concurrent and distributed operational
semantics based on Condition/Event Systems. There are also some works
that translate process algebras into stochastic or timed Petri nets in order to
perform real-time analyses and performance evaluation. Notable examples
are [83, 63] that translate CSP specifications and [79] that define a composi-
tional stochastic Petri net semantics for the stochastic process algebra PEPA
[40]. Even though this work is essentially different from ours because it is
based on different formalisms, its implementation [12] is somehow similar to
ours because the translation from PEPA to stochastic Petri nets is completely
automatic. As in our work, all these papers do not allow recursion of nested
parallel processes because the set of places of the generated Petri net would
be infinite. In some way, our new semantics-based approach opens a third
line of research where the transformation is directed by the semantics.
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Chapter 6

Dynamic Slicing Techniques for
Petri Nets

In this chapter, we propose the use of program slicing techniques to produce
subnets of a Petri net. Program slicing has a great potential here since
it allows us to syntactically reduce a model in such a way that the reduced
model is composed only of those parts that may influence the slicing criterion.
In the context of Petri nets, computing a net slice can be seen as a graph
reachability problem. We propose two different alternatives for dynamic
slicing of Petri nets that can be useful to reduce the size of the considered
net, thereby simplifying subsequent analysis and debugging tasks by standard
Petri net techniques. Firstly, we present a slicing technique that extends the
slicing criterion in [75, 76] in order to also consider an initial marking. We
show that this information can be very useful when analyzing Petri nets and,
moreover, it allows us to significantly reduce the size of the computed slice.
Furthermore, we show that our algorithm is, in the worst case, as precise
as algorithms of previous aproaches. This can still be seen as a lightweight
approach to slicing since its cost is bounded by the number of transitions in
the Petri net. Then, we present a second approach that further reduces the
size of the computed slice by only considering a particular execution—here,
a sequence of transition firings. Clearly, in this case the computed slice is
only useful to analyze the considered firing sequence.

93



Chapter 6. Dynamic Slicing Techniques for Petri Nets

6.1 Dynamic Slicing of Petri Nets

We say that our slicing technique is dynamic since an initial marking is taken
into account (in contrast to previous approaches, e.g., [21, 50, 75, 76]). Using
an initial marking can be useful, e.g., for debugging. Consider for instance
that the user is analyzing a particular trace for a marked Petri net (using
a simulation tool [39], which we assume correct), so that an erroneous state
is reached. Here, by erroneous state, we mean a marking in which some
places have an incorrect number of tokens. In this case, we are interested in
extracting the set of places and transitions (more formally, a subnet) that
may erroneously contribute tokens to the places of interest, so that the user
can more easily locate the bug.

Thus, a slicing criterion is a tuple xM0, Qy whereM0 is the initial marking and
Q is the set of places of interest. Given a slicing criterion for a Petri net N ,
we are interested in extracting a subnet with those places and transitions of
N which can contribute to change the marking of Q in any execution starting
in M0. A Petri net N 1 is a slice of another Petri net N if N 1 is a subnet of N
(i.e., no additional places nor transitions are added) and the behaviour of N
is preserved in N 1 for the restricted sets of places and transitions. Trivially,
given a Petri net N , the complete net N is always a correct slice w.r.t. any
slicing criterion. The challenge then is to produce a slice as small as possible.

Algorithm 6.1 describes our method to extract a dynamic slice from a Petri
net. Intuitively speaking, Algorithm 6.1 constructs the slice of a Petri net
pP, T, F q for a set of places Q Ď P as follows. The key idea is to capture the
token flow on places in Q. For this purpose,

• we first compute the possible paths that lead to the slicing criterion,

• then we also compute the paths that may be followed by the tokens of
the initial marking.

This can be done by taking into account that

(i) the marking of a place p depends on its input and output transitions,

(ii) a transition may only be fired if it is enabled, and

(iii) the enabling of a transition depends on the marking of its input places.
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Algorithm 6.1 Dynamic slicing of a marked Petri net.
Let N “ pP, T, F q be a Petri net and let xM0, Qy be a slicing criterion for N . First, we
compute a backward slice similar to that of [75]. This is obtained from b sliceN pQ, t uq,
where function b sliceN is defined as follows:

b sliceN pW,Wdoneq “

$

’

’

&

’

’

%

t u if W “ t u

T Y ‚T Y b sliceN pW zW 1
done,W

1
doneq

if W ‰ t u, where T “ ‚p, and W 1
done “Wdone Y tpu

for some p P P

Now, we compute a forward slice from

f sliceN ptp P P |M0ppq ą 0u, t u, tt P T |M0
t
ÝÑuq

where function f sliceN is defined as follows:

f sliceN pW,R, V q “

$

&

%

W YR if V “ t u
f sliceN pW Y V ‚, RY V, V 1q

if V ‰ t u, where V 1 “ tt P T zpRY V q | ‚t ĎW Y V ‚u

Then, the dynamic slice is finally obtained from the intersection of the backward and
forward slices. Formally, let

P 1 Y T 1 “ b sliceN pQ, t uq X f sliceN ptp P P |M0ppq ą 0u, t u, tt P T |M0
t
ÝÑuq

with P 1 Ď P and T 1 Ď T , the computed slice is

N 1 “ pP 1, T 1, F |pP 1,T 1qq
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The algorithm is divided into three steps:

• The first step is a backward slicing method (which is similar to the basic
slicing algorithm of [75]) that obtains a slice N1 “ pP1, T1, F1q defined
as the subnet of N that includes all input places of all transitions
connected to any place p in P1, starting with Q Ď P1.

• The second step is a forward slicing method that obtains a slice N2 “

pP2, T2, F2q defined as the subnet of N that includes all transitions
initially enabled in M0 as well as those transitions connected as output
transitions of places in P2, starting with p P P such that M0ppq ą 0.

• Finally, the third step obtains the slice N 1 “ pP 1, T 1, F 1q defined as
the subnet of N where P 1 is the intersection of P1 and P2, T 1 is the
intersection of T1 and T2, and F 1 is the restriction of F over P 1 and T 1,
i.e., the intersection of backward and forward slices.

Consider for example the Petri net N of Fig. 6.1(a) where the user wants
to produce a slice w.r.t. the slicing criterion xM0, tp5, p7, p8uy. Figure 6.1(b)
shows the slice N1 obtained in the first part of the algorithm. Figure 6.1(c)
shows the slice N2 obtained in the second part of the algorithm. The subnet
shown in Fig. 6.1(d) is the final result of the algorithm (the intersection of
N1 and N2). This slice contains all the places and transitions of the original
Petri net that can transmit tokens to the slicing criterion.

6.2 Extracting Slices from Traces

In this section, we present an alternative approach to dynamic slicing that
generally produces smaller slices by also considering a particular firing se-
quence.

In principle, Algorithm 6.1 should consider all possible executions of the Petri
net starting from the initial marking.This approach can be useful in several
static contexts but it is too imprecise for debugging when a particular simu-
lation has been performed. Therefore, in our second approach, we refine the
notion of slicing criterion so as to also include the firing sequence that rep-
resents the erroneous simulation. By exploting this additional information,
the new slicing algorithm will usually produce smaller slices.
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Figure 6.1: Example of an application of Algorithm 6.1

Now, a slicing criterion is a tuple xM0, σ,Qy where σ represents the set of
problematic firing sequences. Giving a slicing criterion for a Petri net, we are
interested in extracting a subnet with those places and transitions which are
necessary to move tokens to the places in Q. Trivially, given a marked Petri
net pN,M0q, the complete net N is always a correct slice w.r.t. any slicing
criterion. The challenge then is to produce a slice as small as possible.

Therefore, we have defined an algorithm to allow extracting slices from traces.
Given a slicing criterion xM0, σ,Qy, the slicing algorithm proceeds as follows:

• The core of the algorithm lies in an auxiliary function that is initially
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Algorithm 6.2 Extracting slices from traces.
Let N “ pP, T, F q be a Petri net and let xM0, σ,Qy be a slicing criterion for N , with
σ “ t1t2 . . . tn. Then, we compute a dynamic slice N 1 of N w.r.t. xM0, σ,Qy as follows:

• We have N 1 “ pP 1, T 1, F 1q, where M0
t1
ÝÑ M1

t2
ÝÑ . . .

tn
ÝÑ Mn, P 1 Y T 1 “

slicepMn, σ,Qq, P
1 Ď P , T 1 Ď T , and F 1 “ F |pP 1,T 1q. Auxiliary function slice is

defined as follows:

slicepMi, σ,W q “
$

&

%

W if i “ 0
slicepMi´1, σ,W q if @p PW. Mi´1ppq ěMippq, i ą 0
ttiu Y slicepMi´1, σ,W Y ‚tiq if Dp PW. Mi´1ppq ăMippq, i ą 0

• The initial marking M 1
0 is the restriction of M0 over P 1, i.e., M 1

0 “M0|P 1 .

called with the marking Mn which is reachable from M0 through σ,
together with the firing sequence σ and the set of places Q of the
slicing criterion.

• For a particular marking Mi, i ą 0, a firing sequence σ and a set of
places W , the function just moves “backwards” when no place in W
increased its tokens by the considered firing.

• Otherwise, the fired transition ti increased the number of tokens of some
place in W . In this case, the function already returns this transition ti
and, moreover, it moves backwards also adding the places in ‚ti to the
previous set W .

• Finally, when the initial marking is reached, the function returns the
accumulated set of places (which includes the initial places in Q).

Consider for example the Petri net N shown in Fig. 6.1(a), together with the
firing sequence σ shown in Fig. 6.2(b). The firing sequence σ “ t5t2t3t0t2t3
corresponds to the branch of the reachability graph shown in Fig. 6.2(a) that
goes from the root to the node M45. Then, the user can define the slicing
criterion xM0, σ, tp5, p7, p8uy for N ; where M0 is the initial marking for N
defined in Fig 6.1(a). Clearly, this slicing criterion focus on a particular
execution and thus the slice produced is more precise than the one produced
by the algorithm for dynamic slicing of a marked Petri net. In this case, the
slice of N w.r.t. xM0, σ, tp5, p7, p8uy is the Petri net shown in Fig. 6.2(c).
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Figure 6.2: Example of an application of Algorithm 6.2

6.3 Related Work

Since it was originally defined by Weiser, program slicing has been applied
to different formalisms that are not strictly programming languages, such
as attribute grammars [85], hierarchical state machines [38], Z and CSP-
OZ specifications [22, 14, 16], etc. Unfortunately, very little work has been
carried out on slicing for Petri nets (some notable exceptions are [21, 50, 75,
76]). For instance, Chang and Wang [21] present a static slicing algorithm
for Petri nets that slices out all sets of paths, known as concurrence sets,
so that all paths within the same set should be executed concurrently. In
[50], a static slicing technique for Petri nets is proposed in order to divide
enormous Place/Transition nets (that are often regarded as low-level Petri
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nets) into manageable modules so that the divided model can be analyzed
by a compositional reachability analysis technique. A Petri net model is
partitioned into concurrent units (Petri net slices) using minimal invariants.
In order to preserve all the information in the original model, uncovered
places should be added into minimally-connectable concurrent units since
minimal invariants may not cover all the places. Finally, in [75, 76], Rakow
presents another static slicing technique to reduce the Petri net size and,
thus, lessen the problem of state explosion that occurs in the model checking
[28] of Petri nets [8].

From the best of our knowledge, there is no previous proposal for dynamic
slicing of Petri nets. This is surprising because, as we state previously, con-
sidering an initial marking and/or a particular sequence of transition firings
allow us to further reduce the size of the slices and focus on a particular use
of the considered Petri net. For instance, the slice of Fig. 6.1(b) is a subset
of the slice produced by Rakow’s algorithm [75] (this algorithm would also
include transitions t4, t6 and t7). Clearly, this slice contains parts of the Petri
net that cannot be reached with the given initial marking (e.g., transition
t1 that could never be fired because place p2 is empty). Rakow’s algorithm
computes all the parts of the Petri net that could transmit tokens to the
slicing criterion and, thus, the associated slicing criterion is just xQy, where
Q Ď P is a set of places. In contrast, we compute all the parts of the Petri net
that could transmit tokens to the slicing criterion from the initial marking.
Therefore, our technique is essentially a generalization of Rakow’s technique
because the slice produced with Rakow’s algorithm w.r.t. xQy is the same as
the slice produced w.r.t. xM0, Qy if M0ppq ą 0 for all p P P and all t P T
are enabled transitions at M0. At the same time, it keeps its simplicity and
efficiency because we still use the Petri net structure to produce the slice. As
Rakow states in her PhD thesis [77], our algorithm is more aggressive (the
sliced net is smaller) and it is not concerned with conserving safety proper-
ties. Note that the last is not necessary in several analysis. She also states
that both variants produce the same results on strongly-connected nets. Our
first approach can be considered lightweight because its cost is bounded by
the number of transitions T of the original Petri net; namely, the cost of our
algorithm is Op2T q.

100



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we introduce different analyses for concurrent languages. Chap-
ter 1 provides a global vision of all these analyses, relating them to the differ-
ent chapters and their associated publications included in Appendix A, and
Chapter 2 introduces the formalisms and the terminology used.

Chapter 3 defines two new static analyses that can be applied to languages
with explicit synchronization such as CSP. Both techniques are based on
program slicing. In particular, we introduce a method to slice CSP specifi-
cations, in such a way that, given a CSP specification and a slicing criterion,
we produce a slice such that (i) it is a subset of the specification (i.e., it is
produced by deleting some parts of the original specification); (ii) it contains
all the parts of the specification that must be executed (in any execution)
before the slicing criterion (MEB analysis); and (iii) we can also produce an
augmented slice that also contains those parts of the specification that could
be executed (in some execution) before the slicing criterion (CEB analysis).

We have presented two algorithms to compute the MEB and CEB analyses
based on a new data structure, the CSCFG, that has shown to be more precise
than the previously used graph SCFG. A CSCFG is formed by the sequence
of expressions that are evaluated during an execution. These expressions are
conveniently connected to form a graph. In addition, the source position (in
the specification) of each literal (i.e., events, operators and process names)
is also included in the CSCFG. This is very useful because it provides the
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CSCFG with the ability to determine what parts of the source code have been
executed and in what order. The advantage of the CSCFG is that it cares
about contexts, and thus it is able to distinguish between different contexts
in which a process is called. This new data structure has been formalized
and compared with the predecessor SCFG. Additionally, we introduce an
algorithm to build the CSCFG associated with a CSP specification. The
algorithm uses an instrumentation of the standard CSP’s operational seman-
tics to explore all possible computations of a specification. The semantics is
deterministic because the rule applied in every step is predetermined by the
initial state and the information in the stack. Therefore, the algorithm can
execute the semantics several times to iteratively explore all computations
and hence, generate the whole CSCFG. The CSCFG is generated even for
non-terminating specifications due to the use of a loop detection mechanism
controlled by the semantics. This semantics is an interesting result because
it can serve as a reference to prove properties such as completeness of static
analyses based on the CSCFG. The way in which the semantics has been in-
strumented can be used for other similar purposes with slight modifications.

On the practical side, we have implemented a tool called SOC [55] which is
able to automatically generate the CSCFG of a CSP specification. It imple-
ments all the data structures and algorithms defined in Papers 1 and 2. We
have integrated it into the most extended CSP animator and model-checker
ProB [18, 51], that shows the maturity and usefulness of this tool and of
CSCFGs. The last release of SOC implements the algorithm described in
this chapter. However, in the implementation the algorithm is much more
complex because it contains some improvements that significantly speed up
the CSCFG construction. The implementation, source code and several ex-
amples are publicly available at [53]. Finally, a number of experiments con-
ducted with SOC have been presented and discussed. These experiments
demonstrated the usefulness of the technique for different applications such
as debugging, program comprehension, program specialization and program
simplification.

Chapter 4 introduces the first semantics of CSP instrumented for tracking.
Therefore, it is an interesting result because it can serve as a reference mark
to define and prove properties such as completeness of static analyses which
are based on tracks. The execution of the tracking semantics produces a
graph as a side effect which is the track of the computation. This track is
produced step by step from the semantics, and thus, it can also be used to
produce a track of an infinite computation until it is stopped. The generated
track can be useful not only for tracking computations but for debugging
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and program comprehension. This is due to the fact that our generated
track also includes the specification positions associated with the expressions
appearing in the track. Therefore, tracks could be used to analyse what parts
of the program are executed (and in what order) in a particular computation.
Also, this information allows a track viewer tool to highlight the parts of the
code that are executed in each step. Notable analyses that use tracks are
[25, 27, 26, 13]. The introduction of this semantics allows us to adapt these
analyses to CSP. On the practical side, we have implemented a tool called
CSP-Tracker [57] which is able to automatically generate tracks of a CSP
specification.

Chapter 5 introduces an algorithm to automatically build a Petri net which
produces the same sequences of observable events as a given CSP specifi-
cation. The algorithm uses an instrumentation of the standard CSP’s op-
erational semantics to explore all possible computations of a specification.
The semantics is deterministic because the rule applied in every step is pre-
determined by the initial configuration. Therefore, the algorithm can exe-
cute the semantics several times to iteratively explore all computations and
hence, generate the whole Petri net. The Petri net is generated even for
non-terminating specifications due to the use of a loop detection mechanism
controlled by the semantics. This semantics is an interesting result because
it explicitly relates the CSP model with the Petri net and the Petri net
generated is very similar (structurally) to the CSP specification.

The Petri net generated is closely related to the CSP specification because
all possible executions force tokens to follow the transitions in such a way
that they reproduce the steps of the CSP semantics. This is very interesting
compared to previous approaches where the relation between both models is
hardly noticeable. The main cause of this important property is that part of
the complexity needed to fill the gap between both models has been trans-
lated to the semantics (instead of translating it to the generated Petri net).
Hence, an important application of these Petri nets is program comprehen-
sion.

However, if we are interested in a reduced version of the Petri net we can
further transform it with a transformation defined to remove repeated or
unnecessary parts. The resulting Petri nets obtained with this transformation
are very compact and can be used to perform different Petri net analyses that
can be transferred to the CSP specification. Both transformations have been
proved correct and terminating.

On the practical side, we have implemented a tool called CSP2PN which is
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able to automatically generate a Petri net equivalent to a CSP specification.
The interested reader is referred to [59] where the implementation’s source
code and several examples are publicly available.

Finally, in Chapter 6 we have introduced two different techniques for dynamic
slicing of Petri nets. To the best of our knowledge, this is the first approach
to the dynamic slicing for Petri nets. The first analysis takes into account
the Petri net and an initial marking, but produces a slice w.r.t. any possibly
firing sequence. The second analysis further reduces the computed slice by
fixing a particular firing sequence. In general, our slices are smaller than
previous (static) approaches where no initial marking nor firing sequence
were considered.

7.2 Future Work

We plan to adapt some of the ideas presented in Chapter 3 to other concurrent
languages, for instance Erlang. The presented approach can be easily adapted
to other languages, as once the graph is built, the algorithms are independent
of the language. Similarly, the tracking approach of Chapter 4 could be
also adapted to other languages with event based semantics in order to ease
the user to match parts of the program with its execution. Regarding work
presented in Chapter 5, we plan to extend the set of CSP operators to include
sequential composition, parameterized process calls, hiding and renaming.
And also, we will study the failures and divergences models in addition to
the traces model. Finally, respecting ideas presented in Chapter 6, we plan
to carry on an experimental evaluation of our slicing techniques in order to
test their viability in practice. We also believe that it would be useful to
extend our slicing technique to other kinds of Petri nets (e.g., coloured Petri
nets [44] and marked-controlled reconfigurable nets [56]).

104



Bibliography

[1] The Petri Net Markup Language reference site. Available at
http://www.pnml.org/.

[2] PIPE2: Platform Independent Petri net Editor 2. Available at
http://pipe2.sourceforge.net/.

[3] The ProB animator and model checker. Available at
http://www.stups.uni-duesseldorf.de/ProB.

[4] G. Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

[5] A. V. Aho and J. D. Ullman. The theory of parsing, translation, and
compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

[6] G. Almási and D. Padua. Majic: Compiling matlab for speed and re-
sponsiveness. In ACM SIGPLAN Notices, volume 37(5), pages 294–303.
ACM, 2002.

[7] J. Armstrong, R. Virding, and M. Williams. Concurrent programming
in ERLANG. Prentice Hall, 1993.

[8] A. Bell and B. Haverkort. Sequential and distributed model checking
of Petri nets. International Journal on Software Tools for Technology
Transfer, 7(1):43–60, 2005.

[9] E. Best, R. Devillers, and M. Koutny. The box algebra=petri
nets+process expressions. Information and Computation, 178(1):44 –
100, 2002.

[10] T. Bolognesi and E. Brinksma. Introduction to the ISO specification
language LOTOS. Computer Networks, 14:25–59, 1987.

105

http://www.pnml.org/
http://pipe2.sourceforge.net/
http://www.stups.uni-duesseldorf.de/ProB


Bibliography

[11] W. N. Borst, V. V. Goldman, and J. A. van Hulzen. GENTRAN 90: a
REDUCE package for the generation of Fortran 90 code. In Proceedings
of the international symposium on Symbolic and algebraic computation,
ISSAC ’94, pages 45–51. ACM, 1994.

[12] J. T. Bradley and W. J. Knottenbelt. The ipc/HYDRA tool chain for
the analysis of PEPA models. In Proceedings of the First International
Conference on the Quantitative Evaluation of Systems, 2004 (QEST
2004), pages 334–335. IEEE Computer Society, 2004.

[13] B. Brassel, M. Hanus, F. Huch, and G. Vidal. A semantics for trac-
ing declarative multi-paradigm programs. In Proceedings of the 6th In-
ternational ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP ’04), pages 179–190. ACM, 2004.

[14] I. Brückner. Slicing CSP-OZ Specifications. In Proceedings of the 16th
Nordic Workshop on Programming Theory, number 2004-041 in Techni-
cal Reports of the Department of Information Technology, pages 71–73.
Uppsala University, Sweden, 2004.

[15] I. Brückner and H. Wehrheim. Slicing an integrated formal method
for verification. In Proceedings of the 7th International Conference on
Formal Engineering Methods (ICFEM 2005), Formal Methods and Soft-
ware Engineering, Lecture Notes in Computer Science, pages 360–374.
Springer, 2005.

[16] I. Brückner and H. Wehrheim. Slicing object-z specifications for veri-
fication. In Proceedings of the 4th International Conference of B and
Z Users (ZB 2005). Formal Specification and Development in Z and
B, volume 3455 of Lecture Notes in Computer Science, pages 414–433.
Springer, 2005.

[17] B. Buth, J. Peleska, and H. Shi. Combining methods for the livelock
analysis of a fault-tolerant system. In Proceedings of the 7th Inter-
national Conference on Algebraic Methodology and Software Technology
(AMAST ’98), volume 1548 of Lecture Notes in Computer Science, pages
124–139. Springer, 1999.

[18] M. J. Butler and M. Leuschel. Combining CSP and B for specification
and property verification. In Proceedings of the International Sympo-
sium of Formal Methods (FM 2005), volume 3582 of Lecture Notes in
Computer Science, pages 221–236. Springer, 2005.

106



Bibliography

[19] D. Callahan and J. Sublok. Static analysis of low-level synchronization.
In Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on
Parallel and distributed debugging, PADD ’88, pages 100–111. ACM,
1988.

[20] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical computer
science, 240(1):177–213, 2000.

[21] C. Chang and H. Wang. A Slicing Algorithm of Concurrency Modeling
Based on Petri Nets. In Proceedings of the International Conference on
Parallel Processing (ICPP’86), pages 789–792. IEEE Computer Society
Press, 1986.

[22] J. Chang and D. Richardson. Static and dynamic specification slicing.
In Proceedings of the Fourth Irvine Software Symposium. Irvine, CA,
1994.

[23] J. Cheng. Slicing Concurrent Programs - A Graph-Theoretical Ap-
proach. Automated and Algorithmic Debugging, pages 223–240, 1993.

[24] D. Chiou. Using GCC as an Efficient, Portable Back-End. In In Pro-
ceedings of the MIT Student Workshop for Scalable Computing, pages
800–1, 1995.

[25] O. Chitil. A semantics for tracing. In Draft Proceedings of the 13th
International Workshop on Implementation of Functional Languages,
IFL 2001, pages 249–254, 2001.

[26] O. Chitil and Y. Luo. Structure and properties of traces for functional
programs. Electronic Notes in Theoretical Computer Science, 176(1):39–
63, 2007.

[27] O. Chitil, C. Runciman, and M. Wallace. Transforming Haskell for
Tracing. In Revised Selected Papers of the 14th International Workshop
on Implementation of Functional Languages (IFL 2002), volume 2670
of Lecture Notes in Computer Science, pages 165–181. Springer, 2003.

[28] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press,
Cambridge, MA, 2000.

[29] F. de Cindio, G. de Michelis, L. Pomello, and C. Simone. A Petri
Net Model of CSP. In Proceedings of Convención Informática Latina
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Abstract

Static analysis of concurrent languages is a complex task due to the non-
deterministic execution of processes. If the concurrent language being studied
allows process synchronization, then the analyses are even more complex (and
thus expensive), e.g., due to the phenomenon of deadlock. In this work we
introduce a static analysis technique based on program slicing for concurrent
and explicitly synchronized languages in general, and CSP in particular. Con-
cretely, given a particular point in a specification, our technique allows us to
know what parts of the specification must necessarily be executed before this
point, and what parts of the specification could be executed before it. Our tech-
nique is based on a new data structure that extends the Synchronized Control
Flow Graph (SCFG). We show that this new data structure improves the SCFG
by taking into account the context in which processes are called and, thus, it
makes the slicing process more precise. The technique has been implemented
and tested with real specifications, producing good results. After formally defin-
ing our technique, we describe our tool, its architecture, its main applications
and the results obtained from several experiments conducted in order to measure
the performance of the tool.

Key words: Concurrent Programming, CSP, Program Slicing

1. Introduction

Process algebras such as CSP [9], π-calculus [19] or LOTOS [1] and process
modeling languages such as Promela [10, 21] allow us to specify complex sys-
tems with multiple interacting processes. The study and transformation of such
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systems often implies different analyses (e.g., deadlock analysis [14], reliability
analysis [11], refinement checking [24], etc.).

In this work we introduce a static analysis technique for process algebras
with explicit synchronization mechanisms, based on a well-known program com-
prehension technique called program slicing [26]. Program slicing is a method
for decomposing programs by analyzing their data and control flow. Roughly
speaking, a program slice consists of those parts of a program that are (poten-
tially) determining the values computed at some program point and/or variable,
referred to as a slicing criterion. Program slices are usually computed from a
Program Dependence Graph (PDG) [6] that makes explicit both the data and
control dependences for each operation in a program. Program dependences can
be traversed backwards or forwards (from the slicing criterion), that is known
as backward or forward slicing, respectively. Additionally, slices can be dynamic
or static, depending on whether a concrete program’s input is provided or not.
A survey on program slicing can be found, e.g., in [25].

Our technique allows us to extract the part of a specification related to a
given point (referred to as the slicing criterion) in the specification. This tech-
nique can be very useful to debug, understand, maintain and reuse specifications;
but also as a preprocessing stage of other analyses and/or transformations in
order to reduce the complexity of the specification. In particular, given a point
(e.g., an event) in a specification, our technique allows us to extract those parts
of the specification that must be executed before the specified point (thus they
are an implicit precondition); and those parts of the specification that could
be executed before it. Therefore, the other parts of the specification cannot be
executed before this point.

Example 1. Consider the following specification1:

MAIN = (STUDENT }
tpassu

PARENT) }
tpass,failu

COLLEGE

STUDENT = year1 Ñ (pass Ñ YEAR2 l fail Ñ STUDENT)

YEAR2 = year2 Ñ (pass Ñ YEAR3 l fail Ñ YEAR2)

YEAR3 = year3 Ñ (pass Ñ graduate Ñ STOP l fail Ñ YEAR3)

PARENT = pass Ñ present Ñ PARENT

COLLEGE = fail Ñ COLLEGE l pass Ñ C1

C1 = fail Ñ COLLEGE l pass Ñ C2

C2 = fail Ñ COLLEGE l pass Ñ prize Ñ STOP

In this specification we have three processes (STUDENT, PARENT and COLLEGE)
executed in parallel and synchronized on common events. Process STUDENT rep-
resents the three-year academic courses of a student; process PARENT represents
the parent of the student who gives her a present when she passes a course; and

1In the following, without lack of generality, we will use the Communicating Sequential
Processes (CSP) [9] language as the running language for our examples. We refer those
readers non familiar with CSP syntax to Section 2 where we provide a brief introduction to
CSP.

2



process COLLEGE represents the college who gives a prize to those students that
finish without any fail.

We are interested in determining what parts of the specification must be ex-
ecuted before the student fails in the second year, hence, we mark event fail of
process YEAR2 (thus the slicing criterion is (YEAR2, fail), marked by a box in
the above figure). Our slicing technique automatically extracts the slice consist-
ing of the expressions in black. We can additionally be interested in knowing
what parts could be executed before the same event. In this case, our technique
adds to the slice the underscored parts because they could be executed (in some
executions) before the marked event (observe that the result of this analysis is
always a superset of the result obtained by the previous analysis). Therefore,
this analysis could be used for program comprehension. Note, for instance, that
in order to fail in the second year, the student has necessarily passed the first
year. But, the parent may or may not have given a present to his daughter (even
if she passed the first year) because this specification does not force the parent to
give a present to his daughter until she has passed the second year. Moreover,
note that the choice of process C1 belongs also to the slice. This is due to the fact
that the slicing criterion must synchronize with the event fail of this process;
therefore, the choice must be executed before the slicing criterion.2 This is not
so obvious from the specification, and the slice can help to understand the actual
meaning of the specification.

Computing the parts of the specification that could be executed before the
slicing criterion can be useful, e.g., for debugging. If the slicing criterion is an
event that executed incorrectly (i.e., it should not happen in the execution), then
the slice produced contains all the parts of the specification that could produce
the wrong behavior.

A third application is program specialization. Note that the slices produced
are not executable, but, in both cases, the slices could be made executable by
replacing the removed parts by “STOP” or by “Ñ STOP” if the removed expression
has a prefix. Hence, we have defined a further transformation that allows us to
extract executable slices. The specialized specification contains all the necessary
parts of the original specification whose execution leads to the slicing criterion
(and then, the specialized specification finishes).

We have implemented our technique producing the first program slicer for
CSP specifications. In our implementation, the slicing process is completely
automatic. Once the user has loaded a specification, she can select (with the
mouse) the point she is interested in. Obviously, this simple action is enough
to define a slicing criterion because the tool can automatically determine the
process and the source position of interest. This implementation is a tool that
has been integrated in the system ProB [15, 3], an animator and model checker
for B and CSP. We will describe this tool in Section 5.

It should be clear that computing the minimum slice of an arbitrary CSP
specification is an undecidable problem. Consider for instance the following
CSP specification:

2We could have chosen also to include the fail event of C1 into the slice. This is a matter
of taste.
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MAIN = P [ Q

P = X ; Q

Q = a Ñ STOP

X = Infinite Process

together with the slicing criterion (Q, a). Determining whether X does not belong
to the slice implies determining whether X terminates, which is undecidable.

The main contributions of this work are the following:

• We define two new static analyses for process algebras and propose algo-
rithms for their implementation. Despite their clear usefulness we have
not found similar static analyses in the literature.

• We define the context-sensitive synchronized control flow graph and show
its advantages over its predecessors. This is a new data structure able to
represent all computations of a specification taking into account the con-
text of process calls; and it is particularly interesting for slicing languages
with explicit synchronization.

• We have implemented our technique and integrated it in ProB [15, 3, 16].
Current releases of ProB are distributed with the slicer as an analysis
tool. We present the implementation and the results obtained with several
benchmarks.

The rest of the paper is organized as follows. In Section 2 we give an overview
of the syntax and semantics of a process algebra (CSP) and introduce some no-
tation that will be used along the article. In this section we also introduce an
extension of the standard operational semantics of CSP. In Section 3 we show
that previous data structures used in program slicing are inaccurate or inap-
propriate in our context, and we introduce the Context-sensitive Synchronized
Control Flow Graph (CSCFG) as a solution and discuss its advantages over its
predecessors. Our slicing technique is presented in Section 4 where we introduce
two algorithms to slice CSP specifications from their CSCFGs. In Section 5 we
present our implementation, we describe the architecture of our tool SOC, and
we show the results of some experiments that reflect the efficiency and perfor-
mance of the tool. Next, we discuss some related work in Section 6 and, finally,
Section 7 concludes. All proofs of technical results can be found in Appendix A.

2. Communicating Sequential Processes

In order to keep the paper self-contained, in this section we recall the syntax
and the semantics of the constructs used in our process algebra specifications.
We use the CSP language [9], but the concepts and algorithms can also be
applied to other process algebras. We also introduce here some notation that
will be used along the paper.

Figure 1 summarizes the syntax constructions used in our CSP specifications.
More precisely, a specification S is a finite collection of definitions. The left-
hand side of each definition is the name of a different process, that is defined
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S ::� D1 . . . Dm (entire specification) Domains
M,N,O . . . P Names (names)
P,Q,R . . . P P (processes)
a, b, c . . . P Σ (events)
u, v, w . . . P V (variables)

D ::� M � P (process definition)
| Mpxnq � P (parameterized process) where xn � x1, . . . , xn

and xi P Σ Y V
P ::� M (process call)

| Mpxnq (parameterized process call)
| x Ñ P (prefixing)
| c?u Ñ P (input)
| c!u Ñ P (output)
| P [ Q (internal choice)
| P l Q (external choice)
| P ¢ bool £ Q (conditional choice) where bool P ttrue, falseu
| P ||| Q (interleaving)
| P }

X
Q (synchronized parallelism) where X � Σ Y V

| P ; Q (sequential composition)
| P zX (hiding)
| P vfw (renaming) where f :pΣ Y Vq Ñ pΣ Y Vq
| SKIP (skip)
| STOP (stop)

Figure 1: Syntax of CSP specifications

in the right-hand side (rhs) by means of an expression3 that can be a call to
another process or a combination of the following operators:

Prefixing. It specifies that event x (called the prefix) must happen before P .

Input. It is used to receive a message from another process. Message u is
received through channel c; then process P is executed.

Output. It is analogous to the input, but this is used to send messages. Mes-
sage u is sent through channel c; then process P is executed.

Internal choice. The system chooses (e.g., non-deterministically) to execute
one of the two expressions.

External choice. It is identical to internal choice but the choice comes from
outside the system (e.g., the user).

Conditional choice. It is a choice that depends on a condition, i.e., it is equiv-
alent to if bool then P else Q.

Interleaving. Both expressions are executed in parallel and independently.

Synchronized parallelism. Both expressions are executed in parallel with a
set of synchronized events. In absence of synchronization both expressions
can execute in any order. Whenever a synchronized event xi, 1 ¤ i ¤ n,
happens in one of the expressions it must also happen in the other at the

3Therefore a process is defined by an expression, and thus, we often use indistinguishably
these terms.
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same time. Whenever the set of synchronized events is not specified, it is
assumed that the expressions are synchronized in all common events.

Sequential composition. It specifies a sequence of two processes. When the
first (successfully) finishes, the second starts.

Hiding. Process P is executed with a set of hidden events txnu. Hidden events
are not observable from outside the process, and thus, they cannot syn-
chronize with other processes.

Renaming. Process P is executed with a set of renamed events specified with
the total mapping f . An event a renamed as b behaves internally as a but
it is observable as b from outside the process.

Skip. It finishes the current process. It allows the next sequential process to
continue.

Stop. It finishes the current process; but it does not allow the next sequential
process to continue.

Figure 2 shows the standard operational semantics of CSP as defined by A.
W. Roscoe [23]. This semantics is a logical inference system where a state is
formed by a single expression called the control. The system starts with an
initial state, and the rules of the semantics are used to infer how this state
evolves. When no rules can be applied to the current state, the computation
finishes. The rules of the semantics change the states of the computation due
to the occurrence of events. The set of possible events is ΣY tτ,Xu. Events in
Σ � ta, b, c . . .u are visible from the external environment, and can only happen
with its cooperation (e.g., actions of the user). The special event τ cannot be
observed from outside the system and it happens automatically as defined by
the semantics. X is a special event representing the successful termination of
a process. The special symbol J is used to denote any process that already
terminated.

The intuitive meaning of each rule is the following:

((Parameterized) Process Call) The call is unfolded and the right-hand
side of process M is added to the control.

(Prefixing) When event a occurs, process P is added to the control. This
rule is used both for prefixing and communication operators (input and
output). Given a communication expression, either c?uÑ P or c!uÑ P ,
this rule treats the expression as a prefixing except for the fact that the
set of messages appearing in P is replaced by the communicated events.

(SKIP) After SKIP, the only possible event is X, that denotes the end of the
(sub)com-putation with the special symbol J. There is no rule for J (nor
for STOP), hence, this (sub)computation has finished.

(Internal Choice 1 and 2) The system uses the internal event τ to (non-
deterministi-cally) select one of the two processes P or Q that is added to
the control.
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(Process Call) (Parameterized Process Call)

M
τÝÑ rhspMq Mpynq

τÝÑ rhs1pMq

where Mpxnq � rhspMq P S with xn, yn P Σ Y V and

rhs1pMq � rhspMq with xi replaced by yi, 1 ¤ i ¤ n

(Prefixing) (SKIP)

pa Ñ P q aÝÑ P SKIP
XÝÑ J

(Internal Choice 1) (Internal Choice 2)

pP [Qq τÝÑ P pP [Qq τÝÑ Q

(External Choice 1) (External Choice 2)

P
τÝÑ P 1

pP l Qq τÝÑ pP 1 l Qq

Q
τÝÑ Q1

pP l Qq τÝÑ pP l Q1q

(External Choice 3) (External Choice 4)

P
a or XÝÑ P 1

pP l Qq a or XÝÑ P 1

Q
a or XÝÑ Q1

pP l Qq a or XÝÑ Q1

(Conditional Choice 1) (Conditional Choice 2)

pP ¢ true £ Qq τÝÑ P pP ¢ false £ Qq τÝÑ Q

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

P
a or tτ or Xu

ÝÑ P 1

pP }
X

Qq a or τÝÑ pP 1 }
X

Qq
a R X

Q
a or tτ or Xu

ÝÑ Q1

pP }
X

Qq a or τÝÑ pP }
X

Q1q
a R X

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

P
aÝÑ P 1 Q

aÝÑ Q1

pP }
X

Qq aÝÑ pP 1 }
X

Q1q
a P X

pJ}
X

Jq XÝÑ J

Figure 2: CSP’s operational semantics

(External Choice 1, 2, 3 and 4) The occurrence of τ develops one of the
processes. The occurrence of an event a � τ is used to select one of the two
processes P or Q (the other process is discarded) and the control changes
according to the event.

(Conditional Choice 1 and 2) The condition bool is evaluated. If it is true,
process P is put in the control, if it is false, process Q is.

(Synchronized Parallelism 1 and 2) When event a R X or events τ or X
happen, one of the two processes P or Q evolves accordingly, but only a
is visible from outside the parallelism operator.
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(Sequential Composition 1) (Sequential Composition 2)

P
a or τÝÑ P 1

pP ;Qq a or τÝÑ pP 1;Qq

P
XÝÑ J

pP ;Qq τÝÑ Q

(Hiding 1) (Hiding 2) (Hiding 3)

P
aÝÑ P 1

pP zBq τÝÑ pP 1zBq
a P B

P
a or τÝÑ P 1

pP zBq a or τÝÑ pP 1zBq
a R B

P
XÝÑ J

pP zBq XÝÑ J

(Renaming 1) (Renaming 2) (Renaming 3)

P
aÝÑ P 1

pP rrRssq bÝÑ pP 1rrRssq
a R b

P
a or τÝÑ P 1

pP rrRssq a or τÝÑ pP 1rrRssq
a R a

P
XÝÑ J

pP rrRssq XÝÑ J

Figure 2: CSP’s operational semantics (cont.)

(Synchronized Parallelism 3) When event a P X happens, it is required
that both processes synchronize, P and Q are executed at the same time
and the control becomes P 1 }

X

Q1.

(Synchronized Parallelism 4) When both processes have successfully ter-
minated the control becomes J, performing X.

(Sequential Composition 1) In P ;Q, P can evolve to P 1 with any event
except X. Hence, the control becomes P 1;Q.

(Sequential Composition 2) When P finishes (with event X), Q starts.
Note that X is hidden from outside the whole process becoming τ .

(Hiding 1) When event a P B occurs in P , it is hidden, and thus changed to
τ so that it is not observable from outside P .

(Hiding 2 and Hiding 3) P can normally evolve (using rule 2) until it is
finished (X happens). When P finishes, rule 3 is used and the control
becomes J.

(Renaming 1) Whenever an event a happens in P , it is renamed to b (a R b)
so that, externally, only b is visible.

(Renaming 2 and 3) Renaming has no effect on either events renamed to
themselves (a R a), and τ or X events. The rules for renaming are similar
to those for hiding.

We illustrate the semantics with the following example.

Example 2. Consider the following CSP specification:

MAIN = (a Ñ STOP) }
tau

(P l (a Ñ STOP))

P = b Ñ SKIP

If we use rhspMAINq as the initial state to execute the semantics, we get the
computation (i.e., sequence of valid state transitions) shown in Figure 3 where

8



the final state is ppaÑ STOPq }
tau

Jq. This computation corresponds to the execu-

tion of the left branch of the choice (i.e., P) and thus only event b occurs. Each
rewriting step is labeled with the applied rule.

(Synchronized
Parallelism 2)

(External Choice 1)

(Process Call)
P

τÝÑ pb Ñ SKIPq

pPlpa Ñ STOPqq τÝÑ ppb Ñ SKIPqlpa Ñ STOPqq

ppa Ñ STOPq }
tau

pPlpa Ñ STOPqqq τÝÑ State1

where State1 �ppa Ñ STOPq }
tau

ppb Ñ SKIPqlpa Ñ STOPqqq

(Synchronized
Parallelism 2)

(External Choice 1)

(Prefixing)
pb Ñ SKIPq bÝÑ SKIP

ppb Ñ SKIPqlpa Ñ STOPqq bÝÑ SKIP

State1
bÝÑ ppa Ñ STOPq }

tau

SKIPq

(Synchronized

Parallelism 2)

(SKIP)
SKIP

XÝÑ J
ppa Ñ STOPq }

tau

SKIPq τÝÑ ppa Ñ STOPq }
tau

Jq

Figure 3: A computation with the operational semantics in Figure 2

We need to define the notion of specification position that, roughly speaking,
is a label that identifies a part of the specification. Formally,

Definition 1. (Position, Specification Position) Given a CSP specification S
and a process definition M � P in S, the positions in each P are represented by
a sequence of natural numbers, where Λ denotes the empty sequence (i.e., the
root position). They are used to address the literals of an expression viewed as
a tree, and are inductively defined as follows:

P |Λ � P
pP opq|1.w � P |w @ op P tz, vwu
pP op Qq|1.w � P |w @ op P tÑ,[,l,¢£, |||, ||, ; u
pP op Qq|2.w � Q|w @ op P tÑ,[,l,¢£, |||, ||, ; u

P |w is undefined otherwise.
A specification position is a pair pM,wq with M � P P S and w a sequence

of naturals, such that P |w is defined. We use the special specification position
pM, 0q for the left-hand side of the process definition M � P . We let PospSq
denote the set of all specification positions for processes in S.

In the following we will refer to the literal associated to a specification posi-
tion α with litpαq. For instance, in the specification of Example 3 where expres-
sions are labeled with their associated specification positions, litppMAIN, 1qq � ||
and litppMAIN, 1.1qq � BUS. As we will work with graphs whose nodes are la-
beled with specification positions, we often use PospNq to denote the set of all
specification positions associated with the set of nodes N .
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Example 3. In the following specification4 S each expression has been labeled
(in grey color) with its associated specification position so that all labels are
unique.

MAINpMAIN,0q = (BUSpMAIN,1.1q||pMAIN,1qP1pMAIN,1.2q);pMAIN,Λq
(BUSpMAIN,2.1q||pMAIN,2qP2pMAIN,2.2q)

BUSpBUS,0q = boardpBUS,1qÑpBUS,ΛqalightpBUS,2.1qÑpBUS,2qSKIPpBUS,2.2q

P1pP1,0q = waitpP1,1qÑpP1,ΛqboardpP1,2.1qÑpP1,2q

alightpP1,2.2.1qÑpP1,2.2qSKIPpP1,2.2.2q

P2pP2,0q = waitpP2,1qÑpP2,ΛqboardpP2,2.1qÑpP2,2qpaypP2,2.2.1qÑpP2,2.2q

alightpP2,2.2.2.1qÑpP2,2.2.2qSKIPpP2,2.2.2.2q

The notion of specification position allows us to determine what parts of the
specification are executed in a particular execution. For this purpose, we have
extended the semantics of Figure 2 in such a way that given a specification S
and an execution of S with the extended semantics, the semantics produces as
a side-effect the collection of specification positions that have been executed in
this particular execution.

The extended semantics is presented in Figure 4 where we assume that ev-
ery expression in the program has been labeled with its specification position
(denoted by a subscript, e.g., Pα). A state of the semantics is a tuple pP, ωq
where P is the control, i.e., the expression to be evaluated and ω represents
the set of specification positions already evaluated. When the computation has
finished or interrupted, ω contains the portion of the source code that has been
executed.

An explanation for each rule of the semantics follows:

((Parameterized) Process Call) The called process is unfolded and its
specification position α is added to the current set of specification positions
ω. The new expression in the control is rhspMq.

(Prefixing) Set ω is increased with the specification positions of the prefix
and the prefixing operator.

(SKIP and STOP) The specification position α of SKIP (respectively STOP)
is added to the current set of specification positions.

(Internal Choice 1 and 2) (Conditional Choice 1 and 2) The choice
operator is added to ω.

(External Choice 1, 2, 3 and 4) External choices can develop both branches
while τ events happen (rules 1 and 2), until an event in Σ Y tXu occurs
(rules 3 and 4). This means that the semantics can develop both branches
of the trace alternatively before selecting one branch. Of course, we want
the extended semantics to collect all specification positions that have been

4This is a simplification of a benchmark by Simon Gay to simulate a bus line.
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(Process Call) (Parameterized Process Call)

pMα, ωq
τ
ÝÑ prhspMq, ω Y tαuq pMαpynq, ωq

τ
ÝÑ prhs1pMq, ω Y tαuq

where Mpxnq � rhspMq P S
with xn, yn P Σ Y V
and rhs1pMq � rhspMq

with xi replaced by yi, 1 ¤ i ¤ n

(Prefixing)

paαÑβP, ωq
a
ÝÑ pP, ω Y tα, βuq

(SKIP) (STOP)

pSKIPα, ωq
X
ÝÑ pJ, ω Y tαuq pSTOPα, ωq

τ
ÝÑ pK, ω Y tαuq

(Internal Choice 1) (Internal Choice 2)

pP[αQ,ωq
τ
ÝÑ pP, ω Y tαuq pP[αQ,ωq

τ
ÝÑ pQ,ω Y tαuq

(External Choice 1) (External Choice 2)

pP, ωq
τ
ÝÑ pP 1, ω1q

pP l α Q,ωq
τ
ÝÑ pP 1 l α Q,ω1 Y tαuq

pQ,ωq
τ
ÝÑ pQ1, ω1q

pP l α Q,ωq
τ
ÝÑ pP l α Q1, ω1 Y tαuq

(External Choice 3) (External Choice 4)

pP, ωq
a or X
ÝÑ pP 1, ω1q

pP l α Q,ωq
a or X
ÝÑ pP 1, ω1 Y tαuq

pQ,ωq
a or X
ÝÑ pQ1, ω1q

pP l α Q,ωq
a or X
ÝÑ pQ1, ω1 Y tαuq

(Conditional Choice 1) (Conditional Choice 2)

pP ¢ true £α Q,ωq
τ
ÝÑ pP, ω Y tαuq pP ¢ false £α Q,ωq

τ
ÝÑ pQ,ω Y tαuq

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

pP, ωq
a or tτ or Xu

ÝÑ pP 1, ω1q

pP }
Xα

Q,ωq
a or τ
ÝÑ pP 1 }

X

Q,ω1 Y tαuq
a R X

pQ,ωq
a or tτ or Xu

ÝÑ pQ1, ω1q

pP }
Xα

Q,ωq
a or τ
ÝÑ pP }

X

Q1, ω1 Y tαuq
a R X

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

pP, ωq
a
ÝÑ pP 1, ω1q pQ,ωq

a
ÝÑ pQ1, ω2q

pP }
Xα

Q,ωq
a
ÝÑ pP 1 }

X

Q1, ω1 Y ω2 Y tαuq
a P X

pJ }
X

J, ωq
X
ÝÑ pJ, ωq

Figure 4: An instrumented operational semantics for CSP with specification positions

executed and thus, when rules 1 and 2 are fired several times to evolve
the branches of the choice, the corresponding specification positions are
added to the common set ω.

(Synchronized Parallelism 1 and 2) Because nodes from both parallel pro-
cesses can be executed interweaved, the parallelism operator is added to ω
together with the specification positions (ω1) executed of the correspond-
ing branch.

(Synchronized Parallelism 3) When a synchronization occurs, the paral-
lelism operator together with the specification positions executed in both
branches are added to ω.

(Synchronized Parallelism 4) It has no influence over the set ω because
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(Sequential Composition 1) (Sequential Composition 2)

pP, ωq
a or τ
ÝÑ pP 1, ω1q

pP ;Q,ωq
a or τ
ÝÑ pP 1;Q,ω1q

pP, ωq
X
ÝÑ pJ, ω1q

pP ;αQ,ωq
τ
ÝÑ pQ,ω1 Y tαuq

(Hiding 1) (Hiding 2)

pP, ωq
a
ÝÑ pP 1, ω1q

pP zαB,ωq
τ
ÝÑ pP 1zαB,ω1 Y tαuq

a P B
pP, ωq

a or τ
ÝÑ pP 1, ω1q

pP zαB,ωq
a or τ
ÝÑ pP 1zαB,ω1 Y tαuq

a R B

(Hiding 3)

pP, ωq
X
ÝÑ pJ, ω1q

pP zαB,ωq
X
ÝÑ pJ, ω1 Y tαuq

(Renaming 1) (Renaming 2)

pP, ωq
a
ÝÑ pP 1, ω1q

pP rrαRss, ωq
b
ÝÑ pP 1rrαRss, ω1 Y tαuq

a R b
pP, ωq

a or τ
ÝÑ pP 1, ω1q

pP rrαRss, ωq
a or τ
ÝÑ pP 1rrαRss, ω1 Y tαuq

a R a

(Renaming 3)

pP, ωq
X
ÝÑ pJ, ω1q

pP rrαRss, ωq
X
ÝÑ pJ, ω1 Y tαuq

Figure 4: An instrumented operational semantics for CSP with specification positions (cont.)

the processes already terminated, and thus, the parallelism operator is
already included in the set by the other rules.

(Sequential Composition 1 and 2) Sequential Composition 1 is used to add
to ω the specification positions executed in process P until it is finished.
When P finishes Sequential Composition 2 is used and the specification
position of ; is added to ω.

(Hiding 1, 2 and 3) ω is increased with the specification position of the
Hiding operator and the specification positions of the developed process
P .

(Renaming 1, 2 and 3) It is completely analogous to the previous case.

Example 4. Consider again the specification of Example 2 but now expressions
are labeled with their associated specification positions (in grey color) so that
labels are unique.

MAINpMAIN,0q = (apMAIN,1.1qÑpMAIN,1qSTOPpMAIN,1.2q) }
tau

pMAIN,Λq

(PpMAIN,2.1qlpMAIN,2q(apMAIN,2.2.1qÑpMAIN,2.2qSTOPpMAIN,2.2.2q))

PpP,0q = bpP,1qÑpP,ΛqSKIPpP,2q

The execution of the instrumented semantics in Figure 4 with the initial state
prhspMAINq,Hq produces the computation of Figure 5. Here, for clarity, each
computation step is labeled with the applied rule (EC 4 means External Choice 4);
in each state, the second component denotes the set of specification positions al-
ready evaluated. Note that the first rule applied is (Synchronized Parallelism 3) to
the initial expression rhspMAINq. This computation corresponds to the execution
of the right branch of the choice (i.e., aÑ STOP). The final state is pK }

tau

K, ω4q
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where ω4 � tpMAIN,Λq, pMAIN, 1.1q, pMAIN, 1q, pMAIN, 1.2q, pMAIN, 2q, pMAIN, 2.2.1q,
pMAIN, 2.2q, pMAIN, 2.2.2qu.

(Synchronized Parallelism 3)
L R

State 1
aÝÑ State 2

where

State 1 � ppa Ñ STOPq }
tau

pMAIN,ΛqpPlpa Ñ STOPqq,Hq

L � (Prefixing)
pa Ñ STOP,Hq aÝÑ pSTOP, ω0q

where ω0 � tpMAIN, 1.1q, pMAIN, 1qu

R � (EC 4)

(Prefixing)
pa Ñ STOP,Hq aÝÑ pSTOP, tpMAIN, 2.2.1q, pMAIN, 2.2quq

ppPlpMAIN,2qpa Ñ STOPqq,Hq aÝÑ pSTOP, ω1q

where ω1 � tpMAIN, 2.2.1q, pMAIN, 2.2qu Y tpMAIN, 2qu

and State 2 � ppSTOP }
tau

STOPq, ω2q where ω2 � ω0 Y ω1 Y tpMAIN,Λqu

(Synchronized Parallelism 1)

(STOP)
pSTOP, ω2q

τÝÑ pK, ω2 Y tpMAIN, 1.2quq

State 2
τÝÑ State 3

where State 3 � pK }
tau

STOP, ω3q and ω3 � ω2 Y tpMAIN, 1.2qu Y tpMAIN,Λqu

(Synchronized Parallelism 2)

(STOP)
pSTOP, ω3q

τÝÑ pK, ω3 Y tpMAIN, 2.2.2quq

State 3
τÝÑ State 4

where State 4 � pK }
tau

K, ω4q and ω4 � ω3 Y tpMAIN, 2.2.2qu Y tpMAIN,Λqu

Figure 5: An example of computation with the semantics in Figure 4

Definition 2. (Rewriting Step, Derivation) Given a state of the semantics s, a

rewriting step for s5 is the application of a rule of the semantics:
Θ

s
a or τ or XÝÑ s1

where Θ is a (possibly empty) set of rewriting steps. We say that the rewriting
step is simple iff Θ is empty. For the sake of concreteness, we often represent
the rewriting step for s as (s ÝÑ s1). Given a state of the semantics s0, we
say that the sequence s0 ÝÑ . . . ÝÑ sn�1, n ¥ 0, is a derivation of s0 iff
@ i, 0 ¤ i ¤ n, si ÝÑ si�1 is a rewriting step. We say that the derivation
is complete iff there is no possible rewriting step for sn�1. We say that the
derivation has successfully finished iff the control of sn�1 is J.

We use s1 ÝÑ� sn to denote a feasible (sub)derivation s0 ÝÑ . . . ÝÑ sn
that leads from s1 to sn; and we define Posps1 ÝÑ� snq � tPospciq | 1 ¤ i ¤

5Note that because s is a state, this definition is valid for both semantics presented so far.
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nu where ci is the control of state si. In the following, we will assume that
computations start from a distinguished process MAIN.

We also define the following notation for a given CSP specification S: CallspSq
is the set of specification positions for the process calls appearing in S. ProcpSq
is the set of specification positions in left-hand sides of the processes in S (i.e.,
ProcpSq � tα P PospSq | α � pM, 0qu).

In addition, given a set of specification positions A, we define choicespAq
as the subset of specification positions of operators that are either an internal
choice, an external choice or a conditional choice. For instance, in the specifi-
cation S of Example 3 we have CallspSq � tpMAIN, 1.1q, pMAIN, 1.2q, pMAIN, 2.1q,
pMAIN, 2.2qu and ProcpSq � tpMAIN, 0q, pBUS, 0q, pP1, 0q, pP2, 0qu.

3. Context-sensitive Synchronized Control Flow Graph

As usual in static analysis, we need a data structure capable of finitely rep-
resenting the (often infinite) computations of our specifications. Unfortunately,
we cannot use the standard Control Flow Graph (CFG) [25], nor the Interpro-
cedural Control Flow Graph (ICFG) [8] because they cannot represent multiple
threads and, thus, they can only be used with sequential programs. In fact,
for CSP specifications, being able to represent multiple threads is a necessary
but not a sufficient condition. For instance, the threaded Control Flow Graph
(tCFG) [12, 13] can represent multiple threads through the use of the so called
“start thread” and “end thread” nodes; but it does not handle synchroniza-
tion between threads. Callahan and Sublok introduced in [4] the Synchronized
Control Flow Graph (SCFG), a data structure proposed in the context of im-
perative programs where an event variable is always in one of two states: clear
or posted. The initial value of an event variable is always clear. The value of
an event variable can be set to posted with the POST statement; and a WAIT
statement suspends execution of the thread that executes it until the specified
event variableś value is set to posted. The SCFG explicitly represents synchro-
nization between threads with a special edge for synchronization flows. In words
by Callahan and Sublok [4]:

“A synchronized control flow graph is a control flow graph augmented
with a set Es of synchronization edges. pb1, b2q P Es if the last
statement in block b1 is POST pevq and the first statement in block
b2 is WAIT pevq where ev is an event variable.”

In order to adapt the SCFG to CSP, we extend it with the “start thread”
and “end thread” notation from tCFGs. Therefore, in the following we will work
with graphs where nodes N are labeled with positions and “start”, “end” labels
(we denote the label of node n with lpnq). We also use this notation, “end z”
and “end vw”, to denote the end of a hiding respectively a renaming operator.
In particular, @n P N, lpnq P PospSq Y StartpSq where:

StartpSq � t“start α”, “end α”| α P ProcpSqu
Y t“end α”| α P PospSq ^ litpαq P tz, vwuu

For the definition of SCFG, we need to provide a notion of control flow
between the nodes of a labeled graph.
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Definition 3. (Control flow) Given a CSP specification S and a set of labeled
nodes N such that @n P N, lpnq P PospSqYStartpSq, the control flow is a binary
relation between the nodes in N . Given two nodes n, n1 P N , we say that the
control of n can pass to n1 iff:

1. litplpnqq P t[,l,¢£, |||, ||u ^ lpnq � pM,wq ^
lpn1q P tfirstppM,w.1qq,firstppM,w.2qqu

2. litplpn1qq � Ñ ^ lpn1q � pM,wq ^ lpnq � pM,w.1q
3. litplpn1qq � ; ^ lpn1q � pM,wq ^ lpnq P lastppM,w.1qq
4. litplpnqq P tÑ, ; u ^ lpnq � pM,wq ^ lpn1q � firstppM,w.2qq
5. litplpnqq P tz, vwu ^ lpnq � pM,wq ^ lpn1q � firstppM,w.1qq
6. lpn1q � “end pM,wq” ^ litppM,wqq P tz, vwu ^ lpnq P lastppM,w.1qq

where firstppM,wqq is defined as follows:

firstppM,wqq �

$&
%

pM,w.1q if litppM,wqq � Ñ
firstppM,w.1qq if litppM,wqq � ;
pM,wq otherwise

and where lastppM,wqq is the set of possible termination points of pM,wq:

lastppM,wqq �$''''''''&
''''''''%

tpM,wqu if litppM,wqq � SKIP
H if litppM,wqq � STOP _ plitppM,wqq P t|||, ||u^

plastppM,w.1qq � H_ lastppM,w.2qq � Hqq
lastppM,w.1qq if litppM,wqq P t[,l,¢£u _ plitppM,wqq P t|||, ||u^
Y lastppM,w.2qq lastppM,w.1qq � H^ lastppM,w.2qq � Hq
lastppM,w.2qq if litppM,wqq P tÑ, ; u
t“end pM,wq”u if litppM,wqq P tz, vwu

Rather than using a declarative definition of SCFG, we provide a construc-
tive definition based on the control flow that allows us to compute the SCFG
from a CSP specification.

Definition 4. (Synchronized Control Flow Graph) Given a CSP specification
S, we define its Synchronized Control Flow Graph as a graph G � pN,Ec, Esq
where nodesN � PospSqYStartpSq. Edges are divided into two groups, control-
flow arcs (Ec) and synchronization edges (Es). Es is a set of edges (denoted by
e) representing the possible synchronization of two (event) nodes.6 Ec is a set
of arcs (denoted with ÞÑ) such that, given two nodes n, n1 P N , n ÞÑ n1 P Ec iff
the control of n can pass to n1 or one of the following is true:

• litplpnqq �M ^ lpn1q � “start pM, 0q” with lpnq P CallspSq

• lpnq � “start pM, 0q” ^ lpn1q � firstppM,Λqq

• lpnq P lastppM,Λqq ^ lpn1q � “end pM, 0q”

6Computing the events that will synchronize in a specification is a field of research by itself.
There are many approaches and algorithms to do this task. In our implementation, we use
the technique from [22].
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where lastppM,wqq with pM,wq P CallspSq is defined as lastppM,wqq � t“end pP,
0q”u.

Observe that the size of the SCFG is Opnq being n the number of positions
in the specification. This can be easily proved by showing that there is only
one node in the SCFG for each position of the specification, and specification
positions are finite and unique. To be fully precise, there is exactly one node
for each specification position and two extra nodes for each process (the start
process and end process nodes) and one extra node for the hiding and renaming
operators (the end hiding and the end renaming). Hence, the size of a SCFG
associated to a specification with p processes and n positions with r hiding
and renaming operators is 2p � n � r. The SCFG can be used for slicing CSP
specifications as it is described in the following example.

Example 5. Consider the specification of Example 3 and its associated SCFG
shown in Figure 6(a); for the sake of clarity we show the expression represented
by each specification position. If we select the node labeled (P1,alight) and tra-
verse the SCFG backwards in order to identify the nodes on which (P1,alight)

depends, we get the grey nodes of the graph.

start
MAIN,0

||
MAIN,1

BUS
MAIN,1.1

P1
MAIN,1.2

||
MAIN,2

BUS
MAIN,2.1

P2
MAIN,2.2

end
MAIN,0

start
P1,0

end
P1,0

start
P2,0

wait
P1,1

!
P1,"

board
P1,2.1

!
P1,2

alight
P1,2.2.1

!
P1,2.2

SKIP
P1,2.2.2

alight
P2,2.2.2.1

!
P2,2.2.2

SKIP
P2,2.2.2.2

end
P2,0

!
P2,2.2

pay
P2,2.2.1

!
P2,2

board
P2,2.1

!
P2,"

wait
P2,1

start
BUS,0

board
BUS,1

!
BUS,"

alight
BUS,2.1

!
BUS,2

SKIP
BUS,2.2

end
BUS,0

control flow

synchronization

;
MAIN,"

(a) SCFG

start
MAIN,0

||
MAIN,1

BUS
MAIN,1.1

P1
MAIN,1.2

;
MAIN,!

||
MAIN,2

BUS
MAIN,2.1

P2
MAIN,2.2

end
MAIN,0

start
MAIN,1.2

end
MAIN,1.2

start
MAIN,2.2

wait
P1,1

"
P1,!
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P1,2.1

"
P1,2

alight
P1,2.2.1

"
P1,2.2

SKIP
P1,2.2.2
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"
P2,2.2.2
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end
MAIN,2.2

"
P2,2.2
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P2,2.2.1

"
P2,2

board
P2,2.1

"
P2,!

wait
P2,1

start
MAIN,1.1
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BUS,1

"
BUS,!

alight
BUS,2.1

"
BUS,2

SKIP
BUS,2.2

end
MAIN,1.1

start
MAIN,2.1

board
BUS,1

"
BUS,!
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BUS,2.1

"
BUS,2

SKIP
BUS,2.2

end
MAIN,2.1

(b) CSCFG

Figure 6: SCFG and CSCFG of the program in Example 3

The purpose of this example is twofold: on the one hand, it shows that the
SCFG can be used for static slicing of CSP specifications. On the other hand,
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it shows that it is still too imprecise to be used in practice. The cause of this
imprecision is that the SCFG is context-insensitive, because it connects all the
calls to the same process with a unique set of nodes. This causes the SCFG to
mix different executions of a process with possibly different synchronizations,
and, thus it loses precision. For instance, in Example 3 process BUS is called
twice in different contexts. It is first executed in parallel with P1 producing
the synchronization of their board and alight events. Then, it is executed
in parallel with P2 producing the synchronization of their board and alight

events. This makes the process P2 (except nodes Ñ, SKIP and end P2) be part
of the slice. This is suboptimal because process P2 is always executed after P1.

To the best of our knowledge, there do not exist other data structures that
face the problem of representing concurrent and explicitly synchronized compu-
tations in a context-sensitive manner. In the rest of this section, we propose a
new version of the SCFG, the context-sensitive synchronized control flow graph
(CSCFG) which is context-sensitive because it takes into account the different
contexts on which a process can be executed.

In contrast to the SCFG, the same specification position can appear multiple
times inside a CSCFG. Hence, in the following we will use a refined notion of
the Start set so that in each “start α” and “end α” node used to represent a
process, α is now any specification position representing a process call instead
of a process definition (i.e., not necessarily α P ProcpSq):

StartpSq � t“start pMAIN, 0q”, “end pMAIN, 0q”u
Y t“start α”, “end α”| α P CallspSqu
Y t“end α”| α P PospSq ^ litpαq P tz, vwuu

Using the specification position of the process call allows us to distinguish be-
tween different process calls to the same process. Note that we also added
to the set the initial and ending nodes of the graph (“start pMAIN, 0q” and
“end pMAIN, 0q”).

Before we properly define the CSCFG, we provide a notion of path and
context.

Definition 5. (Path) Given a labeled graph G � pN,Ecq, a path between two
nodes n1, nk P N , represented by n1 ÞÑ� nk, is a sequence lpn1q, . . . , lpnk�1q
such that for all 1 ¤ i   k we have ni ÞÑ ni�1 P Ec. The path is loop-free if for
all i � j we have ni � nj .

Definition 6. (Context) Given a labeled graph G � pN,Ecq and a node n P N ,
the context of n, Conpnq � tm P N | lpmq � “start α”, α P CallspSq and there
exists a loop-free path π � m ÞÑ� n with “end α” R πu.

Intuitively speaking, the context of a node represents the set of processes
in which a particular node is being executed. If we focus on a node n with
lpnq P CallspSq we can use the context to identify loops because we have a loop
whenever “start lpnq” P Conpnq.

The main difference between the SCFG and the CSCFG is that the SCFG
represents a process with a single collection of nodes (each specification position
in the process is represented with a single node, see Figure 6(a)); in contrast, the
CSCFG represents a process with multiple collections of nodes, each collection
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representing a different call to this process (i.e., a different context in which it is
executed. For instance, see Figure 6(b) where process BUS is represented twice).
Therefore, the notion of control flow used in the SCFG is insufficient for the
CSCFG, and we need to extend it to also consider the context of process calls.

Definition 7. (Context-sensitive control flow) Given a CSP specification S and
a labeled graph G � pN,Ecq such that @n P N, lpnq P PospSq Y StartpSq, the
context-sensitive control flow is a binary relation between the nodes in N . Given
two nodes n, n1 P N , we say that the context-sensitive control of n can pass to
n1, i.e., n ÞÑ n1 P Ec, iff:

• the control of n can pass to n1, or

• litplpn1qq � ; ^ lpn1q � pM,wq ^ lpnq P lastpn2q with n2 P N ^ lpn2q �
pM,w.1q

• lpn1q � “end pM,wq” ^ litppM,wqq P tz, vwu ^ lpnq P lastpn2q with n2 P
N ^ lpn2q � pM,w.1q

where lastpnq with lpnq � pM,wq is the set of possible termination points of
n:

lastpnq �

$''''''''''''&
''''''''''''%

tpM,wqu if litppM,wqq � SKIP
H if litppM,wqq � STOP _ plitppM,wqq P t|||, ||u^

plastpn1q � H_ lastpn2q � Hqq_
plitppM,wqq P CallspSq ^ “start pM,wq” P Conpnqq

lastpn1q if litppM,wqq P t[,l,¢£u _ plitppM,wqq P t|||, ||u^
Y lastpn2q lastpn1q � H^ lastpn2q � Hq
lastpn2q if litppM,wqq P tÑ, ; u
t“end pM,wq”u if litppM,wqq P tz, vwu_

plitppM,wqq P CallspSq ^ “start pM,wq” R Conpnqq

where lpn1q � pM,w.1q and lpn2q � pM,w.2q.

Definition 8. (Context-sensitive Synchronized Control Flow Graph) Given a
CSP specification S, we define its Context-sensitive Synchronized Control Flow
Graph as a graph G � pN,Ec, El, Esq where nodes N are labeled so that @n P
N, lpnq P PospSqYStartpSq; and StartpSq � t“start pMAIN, 0q”, “end pMAIN, 0q”u
Yt“start α”, “end α”| α P CallspSqu Y t“end α”| litpαq P tz, vwuu. Edges are
divided into three groups, control-flow arcs (Ec), loop arcs (El) and synchro-
nization edges (Es).

• Es is a set of edges (denoted bye) representing the possible synchroniza-
tion of two (event) nodes.6

• Ec is a set of arcs (denoted by ÞÑ) such that, given two nodes n, n1 P N ,
n ÞÑ n1 P Ec iff the context-sensitive control of n can pass to n1 or lpnq P
CallspSq ^ lpn1q � “start lpnq”. And given three nodes n1, n2, n5 P N :

– pn1 ÞÑ n2q P Ec iff lpn1q � “start α” ^ litpαq � M ^ lpn2q �
firstppM,Λqq,

– if lpn1q P CallspSq, lpn2q � “start lpn1q” and n2 P Conpn1q then
@n4 P N, pn4 ÞÑ n5q with lpn4q P lastpn3q with n2 ÞÑ n3^ lpn5q �
“end α”, and

18



– pn1 ÞÑ n2q P Ec iff lpn1q P lastppMAIN,Λqq ^ lpn2q � “end pMAIN, 0q”.

• El is a set of edges (denoted byù) used to represent loops, i.e., pn1ù

n2q P El iff lpn1q P CallspSq, lpn2q � “start lpn1q” and n2 P Conpn1q.

The CSCFG satisfies the following properties: (i) Two nodes can have the same
label. (ii) Every node whose label belongs to t“start α”| α P CallspSqu has one
and only one incoming arc in Ec. (iii) Every process call node has one and only
one outgoing arc that belongs to either Ec or El.

The key difference between the SCFG and the CSCFG is that the latter
unfolds every process call node except those that belong to a loop. This is very
convenient for slicing because every process call that is executed in a different
context is unfolded and represented with a different subgraph, thus, slicing does
not mix computations. Moreover, it allows us to deal with recursion and, at
the same time, it prevents infinite unfolding of process calls thanks to the use
of loop arcs. Note that loop arcs are only used when the context is repeated
(this is ensured by item 3 of the definition). Note also that loops are unfolded
only once because the second time they are going to be unfolded the context
of the process call node is repeated, and thus a loop arc is used to prevent the
unfolding. Properties 2 and 3 ensure finiteness because process calls only have
one outgoing arc, and thus, they cannot have a control arc if there is already a
loop arc.

The following lemma ensures that the CSCFG is complete: all possible
derivations of a CSP specification S are represented in the CSCFG associated
to S.

Lemma 1. Let S be a CSP specification, D � s0 ÝÑ . . . ÝÑ sn�1, n ¥
0, a derivation of S performed with the instrumented semantics, where s0 �
prhspMAINqα,Hq and sn�1 � pPϕ, ωq, and G � pN,Ec, El, Esq the CSCFG as-
sociated with S. Then, @γ P ω : D π � n1 ÞÑ� nk P Ec, n1, nk P N , k ¥ 1, with
lpn1q � α and lpnkq � γ.

This lemma ensures that all derivations are represented in the CSCFG with
a path; but, of course, because it is a static representation of any possible ex-
ecution, the CSCFG also introduces a source of imprecision. This imprecision
happens when loop arcs are introduced in a CSCFG, because a loop arc sum-
marizes the rest of a computation with a single collection of nodes, and this
collection could mix synchronizations of different iterations. However, note that
all process calls of the specification are unfolded and represented with an ex-
clusive collection of nodes, and loop arcs are only introduced if the same call is
repeated again. This produces a high level of precision for slicing algorithms.

Because Definition 8 is a declarative definition, it is not very useful for
implementors; and hence, we also provide a constructive method that is the basis
of our implementation. In particular, the CSCFG can be constructed starting
from MAIN, and connecting each process call to a subgraph that contains the
right-hand side of the called process. Each right-hand side is a new subgraph
except if a loop is detected. This process is described in Algorithm 1.

Function buildGraphpP,Ctxq � pN,Ec, El, nfirst, Lastq where:

• ((Parameterized) Process call). If P � Xα and α P CallspSq then
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Algorithm 1 Computing the CSCFG

Input: A specification S with initial process MAIN

Output: The CSCFG G of S
Begin
Pending={MAIN}
while Pending � H do

(1) pN 1, E1
c, El, nfirst, Lastq � buildGraphprhspP q,Hq where P P Pending

(2) N � N 1 Y tnstart, nendu where nstart, nend are fresh,
lpnstartq � “start pP, 0q” and lpnendq � “end pP, 0q”

(3) Ec � E1
c Y tnstart ÞÑ nfirstu Y tnlast ÞÑ nend | nlast P Lastu

(4) Pending � tP 1 P ProcpSq | En P N : litplpnqq � P 1u
Es is obtained following the technique from [22]
return G � pN,Ec, El, Esq
End

– if Dnctx P Ctx such that lpnctxq � “start α” then

N � tnαu,
Ec � H,
El � tpnαù nctxqu,
nfirst � nα and Last � H

– else
N � N1 Y tnα, nstart, nendu,
Ec � Ec1 Y Ec2,
El � El1,
nfirst � nα and Last � tnendu

where

nα, nstart, nend are fresh ^ lpnαq � α ^ lpnstartq � “start α”
^ lpnendq � “end α” ^ X � Q P S ^
pN1, Ec1, El1, nfirst1, Last1q � buildGraphpQ,CtxY tnstartuq ^
Ec2 � tpnα ÞÑ nstartq, pnstart ÞÑ nfirst1quY

tpnlast ÞÑ nendq | nlast P Last1u.

• (Prefixing). If P � Xα Ñβ Q and X P ta, a?v, a!vu then

N � N1 Y tnα, nβu,
Ec � Ec1 Y tpnα ÞÑ nβq, pnβ ÞÑ nfirst1qu,
El � El1,
nfirst � nα and Last � Last1

where

nα, nβ are fresh ^ lpnαq � α ^ lpnβq � β ^
pN1, Ec1, El1, nfirst1, Last1q � buildGraphpQ,Ctxq.

• (Choice and parallelism). If P � Q Xα R and X P t[,l,¢£, |||, ||u
then

N � N1 YN2 Y tnαu,
Ec � Ec1 Y Ec2 Y tpnα ÞÑ nfirst1q, pnα ÞÑ nfirst2qu,
El � El1 Y El2,
nfirst � nα and
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Last �

$''&
''%

Last1 Y Last2 if X P t[,l,¢£u_
pLast1 � H^ Last2 � Hq

H if X P t|||, ||u^
pLast1 � H_ Last2 � Hq

where

nα is fresh ^ lpnαq � α ^
pN1, Ec1, El1, nfirst1, Last1q � buildGraphpQ,Ctxq ^
pN2, Ec2, El2, nfirst2, Last2q � buildGraphpR,Ctxq.

• (Sequential composition). If P � Q ;α R then

N � N1 YN2 Y tnαu,
Ec � Ec1 Y Ec2 Y Ec3 Y tpnα ÞÑ nfirst2qu,
El � El1 Y El2,
nfirst � nfirst1 and Last � Last2

where

nα is fresh ^ lpnαq � α ^
pN1, Ec1, El1, nfirst1, Last1q � buildGraphpQ,Ctxq ^
pN2, Ec2, El2, nfirst2, Last2q � buildGraphpR,Ctxq ^
Ec3 � tpnlast ÞÑ nαq | nlast P Last1u.

• (Hiding and renaming). If P � Q Xα and X P tz, vwu then

N � N1 Y tnα, nendu,
Ec � Ec1 Y Ec2 Y tpnα ÞÑ nfirst1qu,
El � El1,
nfirst � nα and Last � tnendu

where

nα, nend are fresh ^ lpnαq � α ^ lpnendq � “end α” ^
pN1, Ec1, El1, nfirst1, Last1q � buildGraphpQ,Ctxq ^
Ec2 � tpnlast ÞÑ nendq | nlast P Last1u.

• (SKIP and STOP). If P � Xα and X P tSKIP, STOP u then

N � tnαu,
Ec � H,
El � H,
nfirst � nα and

Last �

"
tnαu if X � SKIP
H if X � STOP

where
nα is fresh ^ lpnαq � α.

The following Lemma ensures that the graph produced by Algorithm 1 is a
CSCFG.
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Lemma 2. Let S be a CSP specification. Then, the execution of Algorithm 1
with S produces a graph G that is the CSCFG associated with S according to
Definition 8.

For slicing purposes, the CSCFG is interesting because we can use the edges
to determine if a node must be executed or not before another node, thanks to
the following properties:

• if n ÞÑ n1 P Ec then n must be executed before n1 in all executions.

• if nù n1 P El then n1 must be executed before n in all executions.

• if ne n1 P Es then n and n1 are executed at the same time in all execu-
tions.

While the third property is obvious and it follows from the semantics of
synchronized parallelism (concretely, from rule (Synchronized Parallelism 3)), the
other two properties require proof. The second property follows trivially from
the first property and Definition 8, because loop edges only connect a process
call node to a node already repeated in the computation. The first property
corresponds to Lemma 3.

Lemma 3. Let S be a CSP specification and let G � pN,Ec, El, Esq be the
CSCFG associated with S according to Definition 8. If n ÞÑ n1 P Ec then n
must be executed before n1 in all executions.

Thanks to the fact that loops are unfolded only once, the CSCFG ensures
that all the specification positions inside the loops are in the graph and can be
collected by slicing algorithms. For slicing purposes, this representation also
ensures that every possibly executed part of the specification belongs to the
CSCFG because only loops (i.e., repeated nodes) are missing.

Example 6. Consider the specification of Example 3 and its associated CSCFG
shown in Figure 6(b). If we select the node labeled (P1,alight) and traverse the
CSCFG backwards in order to identify the nodes on which this node depends,
we only get the nodes of the graph colored in gray. This particular slice is
optimal and much smaller than the slice obtained when we select the same node
(P1,alight) in the SCFG (see Figure 6(a)).

The CSCFG provides a different representation for each context in which a
process call is made. This can be seen in Figure 6(b) where process BUS appears
twice to account for the two contexts in which it is called. In particular, in the
CSCFG we have a fresh node to represent each different process call, and two
nodes point to the same process if and only if they are the same call (they are
labeled with the same specification position) and they belong to the same loop.
This property ensures that the CSCFG is finite.

Lemma 4. (Finiteness) Given a specification S, its associated CSCFG is finite.

Example 7. The specification in Figure 7 makes clear the difference between
the SCFG and the CSCFG. While the SCFG only uses one representation for
the process P (there is only one start P), the CSCFG uses four different rep-
resentations because P could be executed in four different contexts. Note that
due to the infinite loops, some parts of the graph are not reachable from start

MAIN; i.e., there is no possible control flow to end MAIN.
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Figure 7: SCFG and CSCFG representing an infinite computation

4. Static Slicing of CSP Specifications

We want to perform two kinds of analysis. Given a point in the specification,
we want, on the one hand, to determine what parts of the specification MUST be
executed before (MEB) it (in every possible execution); and, on the other hand,
we want to determine what parts of the specification COULD be executed before
(CEB) it (in any possible execution). Both analyses are closely related but they
must be computed differently. While MEB is mainly based on backward slicing,
CEB is mainly based on forward slicing to explore what could be executed in
parallel processes.

We can now formally define our notion of slicing criterion.

Definition 9. (Slicing Criterion) Given a specification S, a slicing criterion is
a specification position C P PospSq.

Clearly, the slicing criterion points to a set of nodes in the CSCFG, because
the same specification position can happen in different contexts and, thus, it is
represented in the CSCFG with different nodes. As an example, consider the
slicing criterion (BUS,alight) for the specification in Example 3, and observe
in its CSCFG in Figure 6(b) that two different nodes are identified by the slicing
criterion.

This means that a slicing criterion C is used to produce a slice with respect
to all possible executions of C. We use the function nodespCq to refer to all
the nodes in the CSCFG identified by the slicing criterion C. Formally, given a
CSCFG G � pN,Ec, El, Esq,

nodespCq � tn P N | lpnq � C ^MAIN ÞÑ� n ^ E n1 P N | lpn1q � C and n1 ÞÑ� nu
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Note that the slicing criterion could point to nodes that are not reachable from
MAIN such as dead code (see, e.g., Figure 7). Therefore, we force nodespCq to
exclude these nodes so that only feasible computations (starting from MAIN) are
considered. Moreover, the slicing criterion could also point to different nodes
that represent the same specification position that is executed many times in
a (sub)computation (see, e.g., specification position pP, Λq in the CSCFG of
Figure 7). Thus, we only select the first occurrence of this specification position
in the computation.

Given a slicing criterion pM,wq, we use the CSCFG to approximate MEB
and CEB. Computing correct slices is known as an undecidable problem even in
the sequential setting (see, e.g., [26]). Therefore, our MEB and CEB analyses
are an over-approximation. In this section we introduce lemmas to ensure the
completeness of the analyses.

Regarding the MEB analysis, one could think that a simple backwards
traversal of the graph from nodespCq would produce a correct slice. Neverthe-
less, this would produce a rather imprecise slice because this would include both
branches of the choices in the path from MAIN to C even if they do not need to be
executed before C (consider for instance the process ((aÑSKIP)l(bÑSKIP));P

and the slicing criterion P). The union of paths from MAIN to nodespCq is not
a solution, either, because it would be too imprecise by including in the slice
parts of code that are executed before the slicing criterion only in some execu-
tions. For instance, in the process (bÑaÑSKIP)l(cÑaÑSKIP), c belongs to
one of the paths to a, but it must be executed before a or not depending on the
choice. The intersection of paths is not a solution, either, as it can be seen in
the process aÑ((bÑSKIP)||(cÑSKIP));P where b must be executed before
P, but it does not belong to all the paths from MAIN to P.

Before we introduce an algorithm to compute MEB, we need to formally
define the notion of MEB slice.

Definition 10. (MEB Slice) Given a specification S with an associated CSCFG
G � pN,Ec, El, Esq, and a slicing criterion C for S; the MEB slice of S with
respect to C is a subset P 1 of PospSq such that P 1 � �

tω | pMAIN,Hq Ñ�

pP, ωq Ñ pP 1, ω1q ^ C R ω ^ C P ω1u.

Algorithm 2 can be used to compute the MEB analysis. It basically computes
for each node in nodespCq a set containing the part of the specification that must
be executed before it. Then, it returns MEB as the intersection of all these sets.
Each set is computed with function buildMeb, which is an iterative process that
takes a node and performs the following actions:

1. It starts with an initial set of nodes computed in (1) by collecting those
nodes that were executed just before the initial node (i.e., they are con-
nected to it or to a node synchronized with it with a control arc).

2. The initial set Meb is the backwards traversal of the CSCFG from the
initial set following control arcs (2).

3. Those nodes that could not be executed before the initial node are added
to a blacklist (3) and (4). The nodes in the blacklist are discarded because
they are either a successor of the nodes in the slicing criterion (and thus
they are executed always after it), or they are executed in a branch of a
choice that cannot lead to the slicing criterion. Note that the blacklist in
sentence (4) is computed by iteratively collecting all the nodes that are
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Algorithm 2 Computing the MEB set

Input: A CSCFG pN,Ec, El, Esq of a specification S and a slicing criterion C
Output: A slice of S

Function buildMebpnq :=
(1) init :� tn1 | pn1 ÞÑ oq P Ecu where o P tnu Y to1 | po1 e nq P Esu
(2) Meb :� to P (MAIN ÞÑ� mq | m P initu
(3) blacklist :� tnu Y tp P NzMeb | po ÞÑ pq P Ec with litplpoqq P t[,l, |||u, o P Meb

and E q P Meb such that q is reachable from p
following control or loop arcs}

repeat
(4) blacklist :� blacklistY tp P N | o ÞÑ� p with o P blacklistu

Y tp P N | poe pq P Es with o P blacklist
and Eppe p1q P Es with p1 R blacklistu

until a fix point is reached
(5) pending :� tq P NzpblacklistYMebq | pq e rq P Es with r P Meb

or ppqù rq P El and @ s P pr ÞÑ� qq . pDpse tq P Es with t P Meb
or Epse tq P Esqqu

(6) while D m P pending do
(7) Meb :� Meb Y tmu Y to P NzMeb | pp ÞÑ� o ÞÑ� mq with p P Mebu
(8) sync :� tq P NzpblacklistYMeb Y pendingq | pq e rq P Es with r P Meb

or ppqù rq P El and @ s P pr ÞÑ� qq . pDpse tq P Es with t P Meb
or Epse tq P Esqqu

(9) pending :� ppendingzMebq Y sync
(10) return Meb

Return: MEBpS, Cq � �

nPnodespCq
tlpn1q | n1 P buildMebpnqu

a (control) successor of the nodes in the previous blacklist (initially the
slicing criterion); and it also adds to the blacklist those nodes that are
only synchronized with nodes in the blacklist.

4. A set of pending nodes that should be considered is computed in (5). This
set contains nodes that are synchronized with the nodes in Meb (thus they
are executed at the same time). Therefore, synchronizations are followed
in order to reach new nodes that must be executed before the slicing
criterion (7) and (8). These steps are repeated until no new nodes are
reached. This is controlled with the set pending (6) and (9).

The algorithm always terminates as stated in the following lemma.

Theorem 8 (Termination of MEB). The MEB analysis performed by Algo-
rithm 2 terminates.

Theorem 9 (Completeness of MEB). Let S be a specification, C a slicing cri-
terion for S, and let MEB be the MEB slice of S with respect to C. Then,
MEB � MEBpS, Cq.

The CEB analysis computes the set of nodes in the CSCFG that could be
executed before a given node n. This means that all those nodes that must be
executed before n are included, but also those nodes that are executed before
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n in some executions, and they are not in other executions (e.g., due to non-
synchronized parallelism). Formally,

Definition 11. (CEB Slice) Given a specification S with an associated CSCFG
G � pN,Ec, El, Esq, and a slicing criterion C for S; the CEB slice of S with
respect to C is a subset P 1 of PospSq such that P 1 � �

tω | pMAIN,Hq Ñ�

pP, ωq Ñ pP 1, ω1q ^ C R ω ^ C P ω1u.

Therefore, MEBpS, Cq � CEBpS, Cq.
The graph CEBpS, Cq can be computed with Algorithm 3 that, roughly,

traverses the CSCFG forwards following all the paths that could be executed
in parallel to nodes in MEBpS, Cq. In particular, the algorithm computes for
each node in nodespCq a set containing the part of the specification that could
be executed before it. Then, it returns CEB as the union of all these sets. Each
set is computed with function buildCeb, which proceeds as follows:

1. In sentence (1), it initializes the set Ceb with function buildMeb (trivially,
all those specification positions that must be executed before a node n,
could be executed before it).

2. In sentence (2), it initializes the set loopnodes. This set represents the
nodes that belong to a loop in the computation executed before the slicing
criterion was reached. For instance, in the process A=(aÑA)l(bÑSKIP)

the left branch of the choice is a loop that could be executed several times
before the slicing criterion, say b, was executed. Initially, this set contains
the first node in a branch of a choice operator that does not belong to Ceb
but can reach Ceb through a loop arc.

3. The set loopnodes is computed in the first loop of the algorithm, sentences
(4) to (10) and they are finally added to the slice (i.e., Ceb). In particular,
sentence (11) checks that the whole loop could be executed before the
slicing criterion. If some sentence of the loop could not be executed before
(e.g., because it is synchronized with an event that must occur after the
slicing criterion), then the loop is discarded and not included in the slice.

4. The second loop of the algorithm, sentences (12) to (18), is used to
collect all those nodes that could be executed in parallel to the nodes
in the slice (in Ceb). In particular, it traverses branches executed in
parallel to nodes in Ceb until a node that could not be executed be-
fore the slicing criterion is found. For instance, consider the process
A=(aÑbÑSKIP)||tbu(cÑbÑSKIP); and let us assume that the slicing cri-
terion is c. Similarly to the first loop of the algorithm, the second loop
traverses the left branch of the parallelism operator forwards until an
event that could not be executed before the slicing criterion is found (in
this example, b). Therefore, aÑ would be included in the slice.

The algorithms presented can extract a slice from any specification formed
with the syntax of Figure 1. However, note that only two operators have a
special treatment in the algorithms: choices (because they introduce alternative
computations) and synchronized parallelism constructs (because they introduce
synchronization). Other operators such as prefixing, interleaving or sequential
composition are only taken into account in the CSCFG construction phase; and
they can be treated similarly in the algorithm (i.e., they are traversed forwards
or backwards by the algorithm when exploring computations).
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Algorithm 3 Computing the CEB set

Input: A CSCFG pN,Ec, El, Esq of a specification S and a slicing criterion C
Output: A slice of S

Function buildCebpnq :=
(1) Ceb :� buildMebpnq
(2) loopnodes :� tp | n1 ÞÑ p ÞÑ� n2ù n3

with n1 P choicespCebq, p, n2 R Ceb and n3 P Cebu
(3) candidates :� H

repeat
(4) if Dpm ÞÑ m1q P Ec with m P loopnodes and m1 R loopnodes
(5) then if Dpm1 e m2q P Es with m2 P Ceb or Epm1 e m2q P Es)
(6) then loopnodes :� loopnodesY tm1u
(7) else candidates :� candidatesY tm1u
(8) if Dpme m1q P Es and m,m1 P candidates
(9) then loopnodes :� loopnodesY tm,m1u
(10) candidates :� candidatesztm,m1u

until a fix point is reached
(11) Ceb :� Ceb Y tp P loopnodes | @ o P loopnodes, p ÞÑ� où q with q P Cebu
(12) pending :� tm P NzpCeb Y tnuq | pm1 ÞÑ mq P Ec and m1 P CebzchoicespCebqu

repeat
(13) if D m P pending | pme m1q R Es or ppme m1q P Es and m1 P Cebq
(14) then Ceb :� Ceb Y tmu
(15) pending :� ppendingztmuq Y tm2 | pm ÞÑ m2q P Ec and m2 R Cebu
(16) else if D m P pending and pme m1q P Es with m1 P pending
(17) then Ceb :� Ceb Y tm,m1u
(18) pending :� ppendingztm,m1uq Y tp | po ÞÑ pq P Ec and p R Ceb,

with o P tm,m1uu
until a fix point is reached

(19) return Ceb

Return: CEBpS, Cq � �

nPnodespCq
tlpn1q | n1 P buildCebpnqu

Theorem 10 (Termination of CEB). The CEB analysis performed by Algo-
rithm 3 terminates.

Theorem 11 (Completeness of CEB). Let S be a specification, C a slicing
criterion for S, and let CEB be the CEB slice of S with respect to C. Then,
CEB � CEBpS, Cq.

5. Implementation

We have implemented the MEB and CEB analyses and the algorithms to
build the CSCFG for ProB. ProB [15] is an animator for the B-Method which
also supports other languages such as CSP [3, 16]. ProB has been implemented
in Prolog and it is publicly available at http://www.stups.uni-duesseldorf.
de/ProB.

Our tool is called SOC (which stands for Slicing Of CSP) and it is currently
integrated, distributed and maintained for Mac, Linux and Windows since the
1.3 release of ProB. In SOC, the slicing process is completely automatic. Once
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Figure 8: Slice of a CSP specification produced by SOC

the user has loaded a CSP specification, she can select (with the mouse) the
event, operator or process call she is interested in. Obviously, this simple action
is enough to define a slicing criterion because the tool can automatically deter-
mine the process and the source position of interest. Then, the tool internally
generates an internal data structure (the CSCFG) that represents all possible
computations, and uses the MEB and CEB algorithms to construct the slices.
The result is shown to the user by highlighting the part of the specification
that must (respectively could) be executed before the specified event. Figure 8
shows a screenshot of the tool showing a slice of the specification in Example 1.
SOC also includes a transformation to convert slices into executable programs.
This allows us to use SOC for program specialization. The specialized versions
produced can be directly executed in ProB.

5.1. Architecture of SOC

SOC has been implemented in Prolog and it has been integrated in ProB.
Therefore, SOC can take advantage of ProB’s graphical features to show slices
to the user. In order to be able to color parts of the code, it has been necessary
to implement the source code positions detection in such a way that ProB can
color every subexpression that is sliced by SOC.

Figure 9 summarizes the internal architecture of SOC. Note that both the
graph compaction module and the slicing module take a CSCFG as input, and
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Figure 9: Slicer’s Architecture

hence, they are independent of CSP. Apart from the interface module for the
communication with ProB, SOC has three main modules that we describe in
the following:

Graph Generation

The first task of the slicer is to build a CSCFG. The module that generates
the CSCFG from the source program is the only module that is CSP dependent.
This means that SOC could be used in other languages by only changing the
graph generation module.

Nodes and control and loop arcs are built following Definition 8. For syn-
chronization edges we use an algorithm based on the approach by Naumovich
et al. [22]. For efficiency reasons, the implementation of the CSCFG makes
some simplifications that reduce the size of the graph. For instance, “start”
and “end” nodes are not present in the graph. Another simplification to reduce
the size of the graph is graph compaction (described below).

We have implemented two versions of this module. The first version has
the objective of producing a precise analysis. For this purpose, the notion
of context described in Definition 6 is used together with the first property of
Definition 8. Recall that this property uses the context to introduce loop arcs in
the graph whenever a specification position is repeated in a loop. However, this
notion of context can produce big CSCFGs with some examples. This implies
more memory usage and more time to compute the graphs and the slices. In
such cases, the user could be interested in producing the CSCFG as fast as
possible; for instance, when the analysis is used as a preprocessing stage of
another analysis. Therefore, we have produced a lightweight version to produce
a fast analysis when necessary. This second version uses a relaxed notion of
context that allows the CSCFG to cut more branches of the graph with loop
arcs. The fast analysis replaces property one in Definition 8 by
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• There is a special set of loop arcs (El) denoted withù. pn1ù n2q P El
iff lpn1q P CallspSq^ lpn2q � “start s”^ litplpn1qq � litpsq^n2 P Conpn1q.

which skips the restriction that the specification position of n1 must be re-
peated. Therefore, while the precise context only introduces a loop arc in the
CSCFG when the same specification position is repeated in a branch, the fast
context introduces a loop arc when the same process call is repeated, even if the
specification position of the call is different.

Example 12. Consider again the CSCFG in Figure 7. This CSCFG corre-
sponds to the precise context, and thus loop arcs are only used when the same
specification position is repeated. In contrast, the CSCFG constructed using the
fast context uses loop arcs whenever the same process call is repeated (i.e., the
literal). It is depicted in Figure 10.
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10

2

3

6

4

7

8

9

control flow

synchronization

loop

Node         Sequence of nodes

1 start (MAIN,0), P (MAIN,1), start (MAIN,1)

2 Q (P,!), start (P,!)

3 P (Q,!), start (Q,!)

4 Q (P,!)

5 end (Q,!), end (P,!), end (MAIN,1), ; (MAIN,!)

6 P (MAIN,2), start (MAIN,2)

7 Q (P,!), start (P,!)

8 P (Q,!), start (Q,!)

9 Q (P,!)

10 end (Q,!), end (P,!), end (MAIN,2), end (MAIN,0)

Figure 10: CSCFG of the specification in Figure 7 using the fast context.

Both analyses have been compared with several benchmarks. The results
are presented in Section 5.2.

Graph Compaction

For the sake of clarity, the definition of CSCFG proposed does not take into
account efficiency. In particular, it includes several nodes that are unnecessary
from an implementation point of view. Therefore, we have implemented a mod-
ule that reduces the size of the CSCFG by removing superfluous nodes and by
joining together those nodes that form paths that the slicing algorithms must
traverse in all cases. This compaction not only reduces the size of the stored
CSCFG, but it also speeds up the slicing process due to the reduced number of
nodes to be processed.

For instance, the graph of Figure 11 is the compacted version of the CSCFG
in Figure 6(b). Here, e.g., node 2 accounts for the sequence of nodes BUS and
start BUS. The compacted version is a very convenient representation because
the reduced data structure speeds up the graph traversal process. In practice,
the graph compaction phase reduces the size of the graph up to 40% on average.

Slicing Module

This is the main module of the tool. It is further composed of two sub-
modules that implement the algorithms to perform the MEB and CEB analyses
on the compacted CSCFGs. This module extracts two subgraphs from the
compacted CSCFG using both MEB and CEB. Then, it extracts from the sub-
graphs the part of the source code which forms the slice. This information can
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           Node         Sequence of nodes

1 start MAIN, ||

2 BUS, start BUS

3 P1, start P1, wait, !

4 !, SKIP, end BUS

5 !, SKIP, end P1

6 ; , ||

7 BUS, start BUS

8 P2, start P2, wait, !

9 !, pay, !

10 !, SKIP, end BUS

11 !, SKIP, end P2

Figure 11: Compacted version of the CSCFG in Figure 6(b)

be extracted directly from the graph because its nodes are labeled with the
specification positions to be highlighted. If the user has selected to produce
an executable slice, then the slice is further transformed to become executable
(it mainly fills gaps in the produced slice in order to respect the syntax of the
language). The final result is then returned to ProB in such a way that ProB
can either highlight the final slice or save a new CSP executable specification in
a file.

5.2. Benchmarking the slicer

In order to measure the performance and the slicing capabilities of our tool,
we conducted some experiments over the following benchmarks:

• ATM.csp. This specification represents an Automated Teller Machine. The
slicing criterion is (Menu,getmoney), i.e., we are interested in determining
what parts of the specification must be executed before the menu option
getmoney is chosen in the ATM.

• RobotControl.csp. This example describes a game in which four robots
move in a maze. The slicing criterion is (Referee,winner2), i.e., we want
to know what parts of the system could be executed before the second
robot wins.

• Buses.csp. This example describes a bus service with two buses running
in parallel. The slicing criterion is (BUS37, pay90), i.e., we are interested
in determining what could and could not happen before the user payed at
bus 37.

• Prize.csp. This is the specification of Example 1. Here, the slicing
criterion is (YEAR2, fail), i.e., we are interested in determining what
parts of the specification must be executed before the student fails in the
second year.

• Phils.csp. This is a simple version of the dining philosophers problem.
In this example, the slicing criterion is (PHIL221, DropFork2), i.e., we
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Table 1: Benchmark time results for the FAST and PRECISE CONTEXT

(a) Benchmark time results for the FAST CONTEXT

Benchmark CSCFG MEB CEB Total

ATM.csp 805 ms. 36 ms. 67 ms. 908 ms.
RobotControl.csp 277 ms. 39 ms. 21 ms. 337 ms.
Buses.csp 29 ms. 2 ms. 1 ms. 32 ms.
Prize.csp 55 ms. 35 ms. 10 ms. 100 ms.
Phils.csp 72 ms. 12 ms. 4 ms. 88 ms.
TrafficLights.csp 103 ms. 20 ms. 12 ms. 135 ms.
Processors.csp 10 ms. 4 ms. 2 ms. 16 ms.
ComplexSync.csp 212 ms. 264 ms. 38 ms. 514 ms.
Computers.csp 23 ms. 6 ms. 1 ms. 30 ms.
Highways.csp 11452 ms. 100 ms. 30 ms. 11582 ms.

(b) Benchmark time results for the PRECISE CONTEXT

Benchmark CSCFG MEB CEB Total

ATM.csp 10632 ms. 190 ms. 272 ms. 11094 ms.
RobotControl.csp 2603 ms. 413 ms. 169 ms. 3185 ms.
Buses.csp 25 ms. 1 ms. 0 ms. 26 ms.
Prize.csp 352 ms. 317 ms. 79 ms. 748 ms.
Phils.csp 96 ms. 12 ms. 8 ms. 116 ms.
TrafficLights.csp 2109 ms. 1678 ms. 416 ms. 4203 ms.
Processors.csp 15 ms. 2 ms. 5 ms. 22 ms.
ComplexSync.csp 23912 ms. 552 ms. 174 ms. 24638 ms.
Computers.csp 51 ms. 4 ms. 6 ms. 61 ms.
Highways.csp 58254 ms. 1846 ms. 2086 ms. 62186 ms.

want to know what happened before the second philosopher dropped the
second fork.

• TrafficLights.csp. This specification defines two cars driving in parallel
on different streets with traffic lights for cars controlling. The slicing crite-
rion is (STREET3,park), i.e., we are interested in producing an executable
version of the specification in which we could simulate the executions
where the second car parks on the third street.

• Processors.csp. This example describes a system that, once connected,
receives data from two machines. The slicing criterion is (MACH1,datreq)
to know what parts of the example must be executed before the first
machine requests data.

• ComplexSync.csp. This specification defines five routers working in par-
allel. Router i can only send messages to router i � 1. Each router
can send a broadcast message to all routers. The slicing criterion is
(Process3,keep), i.e., we want to know what parts of the system could
be executed before router 3 keeps a message.

• Computers.csp. This benchmark describes a system in which a user can
surf internet and download files. The computer can check wether files
are infected by virus. The slicing criterion is (USER,consult file), i.e.,
we are interested in determining what parts of the specification must be
executed before the user consults a file.
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Table 2: Benchmark size results for the FAST and PRECISE CONTEXT

(a) Benchmark size results for the FAST CONTEXT

Benchmark Ori CSCFG Com CSCFG (%) MEB Slice CEB Slice

ATM.csp 156 nodes 99 nodes 63.46 % 32 nodes 45 nodes
RobotControl.csp 337 nodes 121 nodes 35.91 % 22 nodes 109 nodes
Buses.csp 20 nodes 20 nodes 90.91 % 11 nodes 11 nodes
Prize.csp 70 nodes 52 nodes 74.29 % 25 nodes 42 nodes
Phils.csp 181 nodes 57 nodes 31.49 % 9 nodes 39 nodes
TrafficLights.csp 113 nodes 79 nodes 69.91 % 7 nodes 60 nodes
Processors.csp 30 nodes 15 nodes 50.00 % 8 nodes 9 nodes
ComplexSync.csp 103 nodes 69 nodes 66.99 % 37 nodes 69 nodes
Computers.csp 53 nodes 34 nodes 64.15 % 18 nodes 29 nodes
Highways.csp 103 nodes 62 nodes 60.19 % 41 nodes 48 nodes

(b) Benchmark size results for the PRECISE CONTEXT

Benchmark Ori CSCFG Com CSCFG (%) MEB Slice CEB Slice

ATM.csp 267 nodes 165 nodes 61.8 % 52 nodes 59 nodes
RobotControl.csp 1139 nodes 393 nodes 34.5 % 58 nodes 369 nodes
Buses.csp 22 nodes 20 nodes 90.91 % 11 nodes 11 nodes
Prize.csp 248 nodes 178 nodes 71.77 % 15 nodes 47 nodes
Phils.csp 251 nodes 56 nodes 22.31 % 9 nodes 39 nodes
TrafficLights.csp 434 nodes 267 nodes 61.52 % 7 nodes 217 nodes
Processors.csp 37 nodes 19 nodes 51.35 % 8 nodes 14 nodes
ComplexSync.csp 196 nodes 131 nodes 66.84 % 18 nodes 96 nodes
Computers.csp 109 nodes 72 nodes 66.06 % 16 nodes 67 nodes
Highways.csp 503 nodes 275 nodes 54.67 % 47 nodes 273 nodes

• Highways.csp. This specification describes a net of spanish highways.
The slicing criterion is (HW6,Toledo), i.e., we want to determine what
cities must be traversed in order to reach Toledo from the starting point.

All the source code and other information about the benchmarks can be
found at

http://www.dsic.upv.es/~jsilva/soc/examples

For each benchmark, Table 1(a) and Table 1(b) summarize the time spent to
generate the compacted CSCFG (this includes the generation plus the com-
paction phases), to produce the MEB and CEB slices (since CEB analysis uses
MEB analysis, CEB’s time corresponds only to the time spent after performing
the MEB analysis), and the total time. Table 1(a) shows the results when using
the fast context and Table 1(b) shows the results associated to the precise con-
text. Clearly, the fast context achieves a significative time reduction. In these
tables we can observe that Highways.csp needs more time even though the size
of its associated CSCFG is similar to the other examples. Almost all the time
needed to construct the CSCFG is used in computing the synchronizations. The
high number of synchronizations performed in Highways.csp is the cause of its
expensive cost.

Table 2(a) and Table 2(b) summarize the size of all objects participating
in the slicing process for both the fast and the precise contexts respectively:
Column Ori CSCFG shows the size of the CSCFG of the original program. Ob-
serve that the precise context can increase the size of the CSCFG up to four

33



times with respect to the fast context. Column Com CSCFG shows the size of
the compacted CSCFG. Column (%) shows the percentage of the compacted
CSCFG’ size with respect to the original CSCFG. Note that in some examples
the reduction is almost 70% of the original size. Finally, columns MEB Slice

and CEB Slice show respectively the size of the MEB and CEB CSCFG’ slices.
Clearly, CEB slices are always equal or greater than their MEB counterparts.

The CSCFG compaction technique seems to be useful. Experiments show
that the size of the original specification is substantially reduced using this
technique. The size of both MEB and CEB slices obviously depends on the
slicing criterion selected. Table 2(a) and Table 2(b) compare both slices with
respect to the same criterion but different contexts and, therefore, they give an
idea of the difference between them.

SOC is open and publicly available. All the information related to the exper-
iments, the source code of the benchmarks, the slicing criteria used, the source
code of the tool and other material related to the project can be found at

http://www.dsic.upv.es/~jsilva/soc

6. Related Work

Program slicing has been already applied to concurrent programs of dif-
ferent programming paradigms, see e.g. [28, 27]. As a result, different graph
representations have arisen to represent synchronization. The first proposal of
a program slicing method for concurrent programs by Cheng [5] was later im-
proved by Krinke [12, 13] and Nanda [20]. All these approaches are based on
the so called threaded control flow graph and the threaded program dependence
graph. Unfortunately, their approaches are not appropriate for slicing CSP, be-
cause their work is based on a different kind of synchronization. They use the
following concept of interference to represent program synchronization.

Definition 12. (Interference) A node S1 is interference dependent on a node
S2 if S2 defines a variable v, S1 uses the variable v and S1 and S2 execute in
parallel.

In CSP, in contrast, a synchronization happens between two processes if the
synchronized event is executed at the same time by both processes. In addition,
both processes cannot proceed in their executions until they have synchronized.
This is the key point that underpin our MEB and CEB analyses. This idea
has been already exploited in the concurrent control flow graph [7] which allows
us to model the phenomenon known as fully-blocking semantics where a pro-
cess sending a message to other process is blocked until the other receives the
message and vice versa. This is equivalent to our synchronization model. In
these graphs, as in previous approaches (and in conventional program slicing in
general), the slicing criterion is a variable in a point of interest, and the slice
is formed by the sentences that influence this variable due to control and data
dependences. For instance, consider the following program fragment:

(1) readpxq;
(2) printpxq;
(3) if x ¡ 0
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(4) then y � x� 1;
(5) else y � 42;
(6) printpyq;
(7) z � y;

A slice with respect to p7, zq would contain sentences (1), (3), (4) and (5);
because z data depends on y, y data depends on x and (4) and (5) control
depend on (3). Sentences (2) and (6) would be discarded because they are print
statements and thus, they do not have an influence on z.

In contrast, in our technique, if we select (7) as the slicing criterion, we get
sentences (1), (2), (3) and (6) as the MEB slice because these sentences must
be executed before the slicing criterion in all executions. The CEB slice would
contain the whole program.

Therefore, the purpose of our slicing technique is essentially different from
previous work: while other approaches try to answer the question “what parts of
the program can influence the value of this variable at this point?”, our technique
tries to answer the question “what parts of the program must be executed before
this point? and what parts of the program can be executed before this point?”.
Therefore, our slicing criterion is different, but also the data structure we use
for slicing is different. In contrast to previous work, we do not use a PDG
like graph, and use instead a CFG like graph, because we focus on control flow
rather than control and data dependence.

Despite the problem being undecidable (see Section 1), determining the MEB
and CEB slices can be very useful and has many different applications such as
debugging, program comprehension, program specialization and program sim-
plification. Surprisingly, to the best of our knowledge, our approach is the first
to address the problem in a concurrent and explicitly synchronized context. In
fact, the data structure most similar to the CSCFG is the SCFG by Callahan
and Sublok [4] (see Section 3 for a detailed description and formalization of this
data structure, and a comparison with our CSCFG). Unfortunately, the SCFG
does not take the calling context into account and thus it is not appropriate for
the MEB and CEB analyses.

Our technique is not the first approach that applies program slicing to CSP
specifications. Program slicing has also been applied to CSP by Bruckner and
Wehrheim who introduced a method to slice CSP-OZ specifications [2]. Nev-
ertheless, their approach ignores CSP synchronization and focus instead on the
OZ’s variables. As in previous approaches, their slicing criterion is a LTL formu-
lae constructed with OZ’s variables; and they use the standard PDG to compute
the slice with a backwards reachability analysis.

7. Conclusions

This work defines two new static analyses that can be applied to languages
with explicit synchronization such as CSP. Both techniques are based on pro-
gram slicing. In particular, we introduce a method to slice CSP specifications,
in such a way that, given a CSP specification and a slicing criterion, we produce
a slice such that (i) it is a subset of the specification (i.e., it is produced by
deleting some parts of the original specification); (ii) it contains all the parts
of the specification that must be executed (in any execution) before the slicing
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criterion (MEB analysis); and (iii) we can also produce an augmented slice that
also contains those parts of the specification that could be executed before the
slicing criterion (CEB analysis).

We have presented two algorithms to compute the MEB and CEB analyses
based on a new data structure, the CSCFG, that has shown to be more precise
than the previously used SCFG. The advantage of the CSCFG is that it cares
about contexts, and thus it is able to distinguish between different contexts in
which a process is called. This new data structure has been formalized in the
paper and compared with the predecessor SCFG.

We have built a tool that implements all the data structures and algorithms
defined in the paper; and we have integrated it into the system ProB. This
tool is called SOC, and it is now distributed as a part of ProB. Finally, a
number of experiments conducted with SOC have been presented and discussed.
These experiments demonstrated the usefulness of the technique for different
applications such as debugging, program comprehension, program specialization
and program simplification.
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A. Proofs of Technical Results

In order to prove Lemmas 1-4 and Theorems 8-11, we first introduce and
prove some auxiliary lemmas (Lemmas 5-8) that are needed in their proofs.

Lemma 5. Let S be a CSP specification and s
ΘÝÑ s1, a rewriting step performed

with the instrumented semantics, with s � pCtrlα, ωq and s1 � pCtrl1ϕ, ω
1q.

Then, firstpαq P ω1.

Proof. We proceed by analyzing all possible rules applied in the rewriting step.
Considering the semantics in Figure 4 the following cases are possible:

– In the cases of (Process Call), (Parameterized Process Call), (Prefixing), (SKIP),
(STOP), (Internal Choice 1 and 2), (Conditional Choice 1 and 2), (External Choice
1, 2, 3 and 4), (Synchronized Parallelism 1, 2 and 3), (Hiding 1, 2 and 3) and
(Renaming 1, 2 and 3) the lemma is true straightforwardly from the instrumented
semantics definition, Definition 2 (rewriting step) and Definition 3 (control flow).

– In the case of (Synchronized Parallelism 4), this implies that in some previous
rewriting steps rules (Synchronized Parallelism 1) and (Synchronized Parallelism
2) were applied. Then, the lemma trivially holds.

– (Sequential Composition 1). If we assume that Ctrl � P ;Q only contains one
single ; operator, then we have a rewriting step of the form:

pP, ωq a or τÝÑ pP 1, ω1q

pP ;Q,ωq a or τÝÑ pP 1;Q,ω1q

Thus, the lemma holds by applying any of the previous rules to pP, ωq a or τÝÑ
pP 1, ω1q. Contrarily, if Ctrl contains more than one ; operator we know that the
number of ; operators is finite because S is finite. Therefore, we can apply rule
(Sequential Composition 1) a finite number of times and then any of the previous
rules must be applied thus the lemma will eventually hold.

– (Sequential Composition 2). This rule can only be applied after (Sequential
Composition 1). Therefore, firstpαq P ω1 because it was included in a previous
rewriting step. Hence, the lemma holds.

Lemma 6. Let S be a CSP specification, G � pN,Ec, El, Esq the CSCFG
associated with S, and si ÝÑ si�1, 0 ¤ i   n, a simple rewriting step of
D � s0 ÝÑ . . . ÝÑ sn�1, n ¥ 0, a derivation of S performed with the in-
strumented semantics, where si � pCtrlα, ωq and si�1 � pCtrl1ϕ, ω

1q. Then,
D π � nj ÞÑ� nk P Ec, nj , nk P N , with lpnjq � firstpαq and lpnkq � firstpϕq.

Proof. In one simple rewriting step, only one of the following rules can be applied
(note that (SKIP), (STOP) and (Synchronized Parallelism 4) cannot be applied
because they would always correspond to the last rewriting step sn ÝÑ sn�1):

– (Process Call) If Ctrlα � Mα, this rule adds to ω the specification position
α of M , and the control changes to rhspMqϕ. By Definition 8, the context
sensitive control of nj can pass to nj�1 with lpnjq � firstpαq � α P CallspSq and
lpnj�1q � “start lpnjq”, i.e., α ÞÑ “start α”; and the context sensitive control
of nj�1 can pass to nj�2 � nk with lpnj�2q � firstpϕq, with ϕ � plitpαq,Λq,
i.e., firstpαq ÞÑ “start α” ÞÑ firstpϕq P Ec.
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– (Parameterized Process Call) It is completely analogous to (Process Call).

– (Prefixing) If Ctrlα � aβ Ñα Pϕ, this rule adds to ω the specification positions
of the prefix and the prefixing operator, α � pM,wq and β � firstpαq � pM,w.1q
respectively, and the control changes to Pϕ, ϕ � pM,w.2q. By Definition 7
(using item 2 of Definition 3) and Definition 8, the context sensitive control of
nj can pass to nj�1 with lpnjq � β and lpnj�1q � α, i.e., β ÞÑ α P Ec. And by
Definition 7 (using item 4 of Definition 3) and Definition 8, the context sensitive
control of nj�1 can pass to nj�2 � nk with lpnj�1q � α and lpnj�2q � firstpϕq,
i.e., firstpαq ÞÑ α ÞÑ firstpϕq P Ec.

– (Internal Choice 1 and 2) If Ctrlα � P[αQ, with this rule the specification
position of the choice operator α � pM,wq is added to ω, and one of the
two processes Pϕ1

or Qϕ2
is added to the control, with ϕ1 � pM,w.1q and

ϕ2 � pM,w.2q. By Definition 7 (using item 1 of Definition 3) and Defini-
tion 8, the context sensitive control of nj can pass to nj�1 and to nj�2 with
lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q and lpnj�2q � firstpϕ2q, i.e.,
firstpαq ÞÑ firstpϕ1q P Ec and firstpαq ÞÑ firstpϕ2q P Ec.

– (Conditional Choice 1 and 2) These rules are completely analogous to (Internal
Choice 1 and 2).

For the following lemma we need to provide a notion of height of a rewriting

step. The height of a rewriting step s
ΘÝÑ t is defined as:

hps ΘÝÑ tq �

#
0 if Θ � H

1�maxpthps1 Θ1

ÝÑ t1q | s1 Θ1

ÝÑ t1 P Θuq otherwise

Lemma 7. Let S be a CSP specification, G � pN,Ec, El, Esq the CSCFG associ-

ated with S, and si
ΘiÝÑ si�1, i ¥ 0, a rewriting step of D � s0 ÝÑ . . . ÝÑ sn�1,

n ¥ 0, a derivation of S performed with the instrumented semantics, where Θi

is non empty, si � pCtrlα, ωq and si�1 � pCtrl1ϕ, ω
1q. Then, @γ P ω1zω : D π �

nj ÞÑ� nk P Ec, nj , nk P N , k ¥ 1, with lpnjq � firstpαq and lpnkq � γ.

Proof. Firstly, we know that if Θi is not empty, rules (Process Call), (Para-
meterized Process Call), (Prefixing), (SKIP), (STOP), (Internal Choice 1 and 2),
(Conditional Choice 1 and 2) and (Synchronized Parallelism 4) could not be ap-
plied. Then, one of the other rules of the instrumented semantics must be
applied.

We prove this lemma by induction on the height of the rewriting step. The
base case happens when the height is one, i.e., the rewriting step is of the form

sj
a or τ or XÝÑ sj�1

si
a or τ or XÝÑ si�1

.

In one rewriting step of height one, one of the following rules must be applied:

– (External Choice 1, 2, 3 and 4) If Ctrlα � PlαQ, one of these rules can
be applied. If event τ happens, rules (Process Call), (STOP), (Internal
Choice 1 or 2) or (Conditional Choice 1 or 2) can be applied. If event a
happens, rule (Prefixing) is applied. If event X happens, rules (SKIP) or
(Synchronized Parallelism 4) are applied.

• If (Process Call) is applied, then the rewriting step is:
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pPϕ1 , ωq
τÝÑ prhspP qβ , ω Y tϕ1uq

pPϕ1
lαQϕ2

, ωq τÝÑ prhspP qlαQ,ω Y tα,ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ “start ϕ1” ÞÑ firstpβq P Ec. By Lemma 5
and by Definition 7 (using item 1 of Definition 3) and Definition 8,
the context sensitive control of nj can pass to nj�1 and to nj�2 with
lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q � ϕ1 and lpnj�2q �
firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and firstpαq ÞÑ� firstpϕ2q P
Ec.

• If (STOP) is applied, then the rewriting step is:

pSTOPϕ1
, ωq τÝÑ pK, ω Y tϕ1uq

pSTOPϕ1lαQϕ2 , ωq
τÝÑ pKlαQ,ω Y tα,ϕ1uq

By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and
Definition 8, the context sensitive control of nj can pass to nj�1 and
to nj�2 with lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q � ϕ1 and
lpnj�2q � firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and firstpαq ÞÑ�

firstpϕ2q P Ec.

• If (Internal Choice 1 or 2) is applied, then the rewriting step is:

pRβ1[ϕ1Sβ2 , ωq
τÝÑ pRβ1 , ω Y tϕ1uq

ppR[ϕ1SqlαQϕ2 , ωq
τÝÑ pRlαQϕ2 , ω Y tα,ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ firstpβ1q P Ec and firstpϕ1q ÞÑ firstpβ2q P
Ec. By Lemma 5 and by Definition 7 (using item 1 of Definition 3)
and Definition 8, the context sensitive control of nj can pass to nj�1

and to nj�2 with lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q �
ϕ1 and lpnj�2q � firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and
firstpαq ÞÑ� firstpϕ2q P Ec.

• If (Conditional Choice 1 or 2) is applied, then these rules are com-
pletely analogous to (Internal Choice 1 and 2).

• If (Prefixing) is applied, then the rewriting step is:

paα1
Ñϕ1

Rβ1
, ωq aÝÑ pRβ1

, ω Y tα1, ϕ1uq

ppaα1
Ñϕ1

Rβ1
qlαQϕ2

, ωq aÝÑ pRβ1
, ω Y tα, α1, ϕ1uq

.

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q � α1.
By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and
Definition 8, the context sensitive control of nj can pass to nj�1

and to nj�2 with lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q and
lpnj�2q � firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and firstpαq ÞÑ�

firstpϕ2q P Ec.

• If (SKIP) is applied, then the rewriting step is:

pSKIPϕ1
, ωq XÝÑ pJ, ω Y tϕ1uq

pSKIPϕ1lαQϕ2 , ωq
XÝÑ pJ, ω Y tα,ϕ1uq

By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and
Definition 8, the context sensitive control of nj can pass to nj�1 and
to nj�2 with lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q � ϕ1 and
lpnj�2q � firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and firstpαq ÞÑ�

firstpϕ2q P Ec.
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• If (Synchronized Parallelism 4) is applied, then the rewriting step is:

pJ||J, ωq XÝÑ pJ, ωq

ppJ||JqlαQ,ωq
XÝÑ pJ, ω Y tαuq

If the left(right) process of the choice is pJ||Jq, it means that in
some previous rewriting steps rules (Synchronized Parallelism 1) and
(Synchronized Parallelism 2) were applied. Then, the lemma trivially
holds.

– (Synchronized Parallelism 1 and 2) If Ctrlα � P }
Xα

Q, this rule can be applied.

If event a R X happens, rule (Prefixing) is applied. If event τ happens,
rules (Process Call), (SKIP), (STOP), (Internal Choice 1 or 2), (Conditional
Choice 1 or 2) or (Synchronized Parallelism 4) can be applied.

• If (Prefixing) is applied, then the rewriting step is:

paα1
Ñϕ1

P 1
β1
, ωq aÝÑ pP 1, ω Y tα1, ϕ1uq

paα1
Ñϕ1

P 1
β1
}
Xα

Qϕ2
, ωq aÝÑ pP 1 }

X

Q,ω Y tα, α1, ϕ1uq
a R X

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q � α1.
By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and
Definition 8, the context sensitive control of nj can pass to nj�1

and to nj�2 with lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q and
lpnj�2q � firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and firstpαq ÞÑ�

firstpϕ2q P Ec.

• If (Process Call) is applied, then the rewriting step is:

pPϕ1
, ωq τÝÑ prhspP qβ , ω Y tϕ1uq

pPϕ1
}
Xα

Qϕ2
, ωq τÝÑ prhspP q }

X

Q,ω Y tα,ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ “start ϕ1” ÞÑ firstpβq P Ec. By Lemma 5
and by Definition 7 (using item 1 of Definition 3) and Definition 8,
the context sensitive control of nj can pass to nj�1 and to nj�2 with
lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q � ϕ1 and lpnj�2q �
firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and firstpαq ÞÑ� firstpϕ2q P
Ec.

• If (SKIP) is applied, then the rewriting step is:

pSKIPϕ1 , ωq
XÝÑ pJ, ω Y tϕ1uq

pSKIPϕ1 }
Xα

Qϕ2
, ωq τÝÑ pJ}

X

Q,ω Y tα,ϕ1uq

By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and
Definition 8, the context sensitive control of nj can pass to nj�1 and
to nj�2 with lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q � ϕ1 and
lpnj�2q � firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and firstpαq ÞÑ�

firstpϕ2q P Ec.

• If (STOP) is applied, then the rewriting step is:
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pSTOPϕ1 , ωq
τÝÑ pK, ω Y tϕ1uq

pSTOPϕ1
}
Xα

Qϕ2
, ωq τÝÑ pK}

X

Q,ω Y tα,ϕ1uq

By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and
Definition 8, the context sensitive control of nj can pass to nj�1 and
to nj�2 with lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q � ϕ1 and
lpnj�2q � firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and firstpαq ÞÑ�

firstpϕ2q P Ec.

• If (Internal Choice 1 or 2) is applied, then the rewriting step is:

pRβ1
[ϕ1

Sβ2
, ωq τÝÑ pRβ1

, ω Y tϕ1uq

ppR[ϕ1
Sq }

Xα

Qϕ2
, ωq τÝÑ pR }

Xα

Qϕ2
, ω Y tα,ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ firstpβ1q P Ec and firstpϕ1q ÞÑ firstpβ2q P
Ec. By Lemma 5 and by Definition 7 (using item 1 of Definition 3)
and Definition 8, the context sensitive control of nj can pass to nj�1

and to nj�2 with lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q �
ϕ1 and lpnj�2q � firstpϕ2q, i.e., firstpαq ÞÑ� firstpϕ1q P Ec and
firstpαq ÞÑ� firstpϕ2q P Ec.

• If (Conditional Choice 1 or 2) is applied, then these rules are com-
pletely analogous to (Internal Choice 1 and 2).

• If (Synchronized Parallelism 4) is applied, then the rewriting step is:

pJ||J, ωq XÝÑ pJ, ωq

ppJ||Jq }
Xα

Q,ωq τÝÑ pJ}
X

Q,ω Y tαuq

If the left(right) process of the parallelism is pJ||Jq, it means that
in some previous rewriting steps rules (SP1) and (SP2) were applied.
Then, the lemma trivially holds.

– (Synchronized Parallelism 3) If Ctrlα � P }
Xα

Q, this rule can be applied. When

event a P X happens, only rule (Prefixing) can be applied. Then the
rewriting step is:

paα1
Ñϕ1

P 1
β1
, ωq

a
ÝÑ pP 1

β1
, ω Y tα1, ϕ1uq paα2

Ñϕ2
Q1
β2
, ωq

a
ÝÑ pQ1

β2
, ω Y tα2, ϕ2uq

ppaα1
Ñϕ1

P 1
β1
q }
Xα

paα2
Ñϕ2

Q1
β2
q, ωq

a
ÝÑ pP 1 }

X

Q1, ω Y tα, α1, ϕ1, α2, ϕ2uq

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q � α1

and firstpϕ2q ÞÑ ϕ2 ÞÑ firstpβ2q P Ec where firstpϕ2q � α2. By Lemma
5 and by Definition 7 (using item 1 of Definition 3) and Definition 8,
the context sensitive control of nj can pass to nj�1 and to nj�2 with
lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q and lpnj�2q � firstpϕ2q, i.e.,
firstpαq ÞÑ� firstpϕ1q P Ec and firstpαq ÞÑ� firstpϕ2q P Ec.

– (Sequential Composition 1) If Ctrlα � P ;αQ, this rule can be applied. When
event a happens, only rule (Prefixing) can be applied. If event τ happens,
rules (Process Call), (STOP), (Internal Choice 1 or 2) or (Conditional Choice
1 or 2) can be applied.

43



• If (Prefixing) is applied, then the rewriting step is:

paα1
Ñϕ1

P 1
β1
, ωq aÝÑ pP 1

β1
, ω Y tα1, ϕ1uq

ppaα1 Ñϕ1 P
1
β1
q;αQϕ2 , ωq

aÝÑ pP 1;Q,ω Y tα1, ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q �
α1. By Definition 7 (using item 3 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj�1 with lpnjq �
lastpϕ1q � lastpβ1q and lpnj�1q � α, i.e., lastpβ1q ÞÑ α P Ec.

• If (Process Call) is applied, then the rewriting step is:

pPϕ1 , ωq
τÝÑ prhspP qβ1 , ω Y tϕ1uq

pPϕ1 ;αQϕ2 , ωq
τÝÑ prhspP q;Q,ω Y tϕ1uq

By Lemma 6, firstpϕ1q ÞÑ “start ϕ1” ÞÑ firstpβ1q P Ec. By Definition
7 (using item 3 of Definition 3) and Definition 8, the context sensitive
control of nj can pass to nj�1 with lpnjq � lastpϕ1q � lastpβ1q and
lpnj�1q � α, i.e., lastpβ1q ÞÑ α P Ec.

• If (STOP) is applied, then the rewriting step is:

pSTOPϕ1 , ωq
τÝÑ pK, ω Y tϕ1uq

pSTOPϕ1 ;αQϕ2 , ωq
τÝÑ pK;Q,ω Y tϕ1uq

By Definition 7, Definition 8 and Lemma 5, the context sensitive
control of nj can pass to nj�1 with lpnjq � firstpαq and lpnj�1q �
ϕ1, i.e., firstpαq ÞÑ ϕ1 P Ec.

• If (Internal Choice 1 or 2) is applied, then the rewriting step is:

pRβ1
[ϕ1

Sβ2
, ωq τÝÑ pRβ1

, ω Y tϕ1uq

ppRβ1
[ϕ1

Sβ2
q;αQϕ2

, ωq τÝÑ pR;Q,ω Y tϕ1uq

By Lemma 6, firstpϕ1q ÞÑ firstpβ1q P Ec and firstpϕ1q ÞÑ firstpβ2q P
Ec. By Definition 7 (using item 3 of Definition 3) and Definition 8,
the context sensitive control of nj can pass to nj�1 and to nj�2 with
lpnjq � lastpϕ1q � lastpβ1q, lpnj�1q � α and lpnj�2q � lastpϕ2q �
lastpβ2q, i.e., lastpβ1q ÞÑ α P Ec and lastpβ1q ÞÑ α P Ec.

• If (Conditional Choice 1 or 2) is applied, then these rules are com-
pletely analogous to (Internal Choice 1 and 2).

– (Sequential Composition 2) If Ctrlα � P ;αQ and this rule can be applied, P
will be SKIP or J||J, i.e., rules (SKIP) or (Synchronized Parallelism 4)
can be applied.

• If (SKIP) is applied, then the rewriting step is:

pSKIPϕ1 , ωq
XÝÑ pJ, ω Y tϕ1uq

pSKIPϕ1
;αQϕ2

, ωq τÝÑ pQ,ω Y tα,ϕ1uq

By Definition 7 (using item 4 of Definition 3) and Definition 8, the
context sensitive control of nj can pass to nj�1 with lpnjq � α and
lpnj�1q � firstpϕ2q, i.e., α ÞÑ firstpϕ2q P Ec.

• If (Synchronized Parallelism 4) is applied, then the rewriting step is:
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pJ||J, ωq XÝÑ pJ, ωq

ppJ||Jq;αQϕ2 , ωq
τÝÑ pQ,ω Y tαuq

By Definition 7 (using item 4 of Definition 3) and Definition 8, the
context sensitive control of of nj can pass to nj�1 with lpnjq � α and
lpnj�1q � firstpϕ2q, i.e., α ÞÑ firstpϕ2q P Ec.

– (Hiding 1) If Ctrlα � P zαB, this rule can be applied. When event a P B
happens, only rule (Prefixing) can be applied. The rewriting step is:

paα1
Ñϕ1

P 1
β1
, ωq aÝÑ pP 1

β1
, ω Y tα1, ϕ1uq

ppaα1 Ñϕ1 P
1
β1
qzαB,ωq

τÝÑ pP 1zαB,ω Y tα, α1, ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q � α1. By
Definition 7 (using item 5 of Definition 3) and Definition 8, the context
sensitive control of nj can pass to nj�1 with lpnjq � firstpαq � α and
lpnj�1q � firstpϕ1q, i.e., α ÞÑ� firstpϕ1q P Ec.

– (Hiding 2) If Ctrlα � P zαB, this rule can be applied. When event a R B
happens, only rule (Prefixing) can be applied. If event τ happens, rules
(Process Call), (STOP), (Internal Choice 1 or 2) or (Conditional Choice 1 or
2) can be applied.

• If (Prefixing) is applied, then the rewriting step is:

paα1 Ñϕ1 P
1
β1
, ωq aÝÑ pP 1

β1
, ω Y tα1, ϕ1uq

ppaα1
Ñϕ1

P 1
β1
qzαB,ωq

aÝÑ pP 1zαB,ω Y tα, α1, ϕ1uq
a R B

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q �
α1. By Definition 7 (using item 5 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj�1 with lpnjq �
firstpαq � α and lpnj�1q � firstpϕ1q, i.e., α ÞÑ� firstpϕ1q P Ec.

• If (STOP) is applied, then the rewriting step is:

pSTOPϕ1
, ωq τÝÑ pK, ω Y tϕ1uq

pSTOPϕ1
zαB,ωq

τÝÑ pKzαB,ω Y tα,ϕ1uq

By Definition 7 (using item 5 of Definition 3) and Definition 8, the
context sensitive control of nj can pass to nj�1 with lpnjq � α and
lpnj�1q � firstpϕ1q � ϕ1, i.e., α ÞÑ� firstpϕ1q P Ec.

• If (Internal Choice 1 or 2) is applied, then the rewriting step is:

pRβ1
[ϕ1

Sβ2
, ωq τÝÑ pRβ1

, ω Y tϕ1uq

ppRβ1[ϕ1Sβ2qzαB,ωq
τÝÑ pRβ1zαB,ω Y tα,ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ firstpβ1q P Ec and firstpϕ1q ÞÑ firstpβ2q P
Ec. By Definition 7 (using item 5 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj�1 with lpnjq �
firstpαq � α and lpnj�1q � firstpϕ1q � ϕ1, i.e., α ÞÑ� firstpϕ1q P
Ec.

• If (Conditional Choice 1 or 2) is applied, then these rules are com-
pletely analogous to (Internal Choice 1 and 2).
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– (Hiding 3) If Ctrlα � P zαB and this rule can be applied, P will be SKIP or
J||J, i.e., rules (SKIP) or (Synchronized Parallelism 4) can be applied.

• If (SKIP) is applied, then the rewriting step is:

pSKIPϕ1
, ωq XÝÑ pJ, ω Y tϕ1uq

pSKIPϕ1zαB,ωq
XÝÑ pJ, ω Y tα,ϕ1uq

By Definition 7 (using item 5 of Definition 3) and Definition 8,
the context sensitive control of nj can pass to nj�1 with lpnjq �
firstpαq � α and lpnj�1q � firstpϕ1q � ϕ1, i.e., α ÞÑ� firstpϕ1q P
Ec.

• If (Synchronized Parallelism 4) is applied, then the rewriting step is:

pJ}ϕ1J, ωq
XÝÑ pJ, ωq

ppJ}ϕ1
JqzαB,ωq

XÝÑ pJ, ω Y tαuq

If the process pJ||Jq is in the control, it means that in some pre-
vious rewriting step rules (Synchronized Parallelism 1), (Synchronized
Parallelism 2) and/or (Synchronized Parallelism 3) were applied and
ϕ1 P ω. By Definition 7 (using item 5 of Definition 3) and Defi-
nition 8, the context sensitive control of nj can pass to nj�1 with
lpnjq � firstpαq � α and lpnj�1q � firstpϕ1q � ϕ1, i.e., α ÞÑ�

firstpϕ1q P Ec.

– (Renaming 1, 2 and 3) These rules are completely analogous to (Hiding 1, 2
and 3).

We assume as the induction hypothesis that the lemma holds in rewriting
steps of height n, and we prove that it also holds in a rewriting step of height
n� 1, i.e., the rewriting step is of the form:

Θ

sj
a or τ or XÝÑ sj�1

si
a or τ or XÝÑ si�1

where Θ is of height n� 1 (n ¥ 2), si � pCtrlα, ωq, sj � pCtrlβ , ωq, sj�1 �
pCtrl1δ, ω

1q and si�1 � pCtrl2ϕ, ω
2q.

In order to prove this lemma, we take advantage of the induction hypothesis
that ensures that @γ P ω1zω : D π � nj ÞÑ� nk P Ec, nj , nk P N , k ¥ 1, with
lpnjq � firstpβq and lpnkq � γ. Therefore, we need to prove that:

1. D π1 � ni ÞÑ� nj P Ec, ni P N , with lpniq � firstpαq, and

2. @γ P ω2zω1 : D π2 � ni ÞÑ� nk P Ec.

In order to prove, item 1, one of the following rules can be applied:

– (External Choice 1, 2, 3 and 4) Trivially, using item 1 of Definition 3,
firstpαq ÞÑ� firstpβq P Ec.

– (Synchronized Parallelism 1, 2 and 3) These rules are completely analogous
to (External Choice 1, 2, 3 and 4).
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– (Hiding 1 and 2) Trivially, using item 5 of Definition 3, firstpαq ÞÑ�

firstpβq P Ec.

– (Renaming 1 and 2) These rules are completely analogous to (Hiding 1 and
2).

– (Sequential Composition 1 and 2) In these cases firstpαq � firstpβq and
the lemma trivially holds.

In order to prove, item 2, we consider the following two cases:

– One of these rules is applied: (External Choice 1, 2, 3 and 4), (Synchronized
Parallelism 1, 2 and 3), (Hiding 1 and 2) and (Renaming 1 and 2). In these
cases, ω2zω1 � tαu and α � firstpαq. Therefore, the lemma holds.

– (Sequential Composition 1) This case is trivial because ω2zω1 � H.

Lemma 8. Let S be a CSP specification, G � pN,Ec, El, Esq the CSCFG associ-

ated with S, and si
ΘiÝÑ si�1, i ¡ 0, a rewriting step of D � s0 ÝÑ . . . ÝÑ sn�1,

n ¥ 0, a derivation of S performed with the instrumented semantics, where
si � pCtrlα, ωiq and si�1 � pCtrl1ϕ, ωi�1q. Then, D π � nj ÞÑ� nk P Ec,
nj , nk P N , with lpnjq P ωi and lpnkq � firstpαq.

Proof. Let us consider the rewriting step si�1 � pCtrlζ , ωi�1q
Θi�1ÝÑ si � pCtrlα, ωiq.

If Θi�1 � H, rules (Process Call), (Parameterized Process Call), (Prefixing),
(SKIP), (STOP), (Internal Choice 1 and 2), (Conditional Choice 1 and 2) and
(Synchronized Parallelism 4) can be applied. In these cases, by Lemma 5 and
Lemma 6, the lemma trivially holds.

If Θi�1 � H and one of the rules (External Choice 1, 2, 3 and 4), (Synchronized
Parallelism 1, 2, 3 and 4), (Sequential Composition 1), (Hiding 1, 2 and 3) or
(Renaming 1, 2 and 3) is applied, we know by Lemma 5 and by Lemma 7 that
firstpζq P ωi and that D π � nj ÞÑ� nk P Ec, nj , nk P N , k ¥ 1, with lpnjq P ωi
and lpnkq � firstpαq.

If rule (Sequential Composition 2) is applied, we know by Lemma 5 that
firstpζq P ωi and by Definition 7 (using item 4 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nk with lpnjq � ζ P ωi,
litplpnjqq � ; and lpnkq � firstpαq, i.e., ζ ÞÑ firstpαq P Ec.

The following lemma ensures that the CSCFG is complete: all possible
derivations of a CSP specification S are represented in the CSCFG associated
to S.

Lemma 1. Let S be a CSP specification, D � s0 ÝÑ . . . ÝÑ sn�1, n ¥
0, a derivation of S performed with the instrumented semantics, where s0 �
prhspMAINqα,Hq and sn�1 � pPϕ, ωq, and G � pN,Ec, El, Esq the CSCFG as-
sociated with S. Then, @γ P ω : D π � n1 ÞÑ� nk P Ec, n1, nk P N , k ¥ 1, with
lpn1q � firstpαq and lpnkq � γ.
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Proof. We prove this lemma by induction on the length of the derivation D.
The base case happens when the length of D is one. The initial state is s0 �
prhspMAINqα,Hq. The final state is s1 � pPϕ, ωq. In one rewriting step, one of
the following rules must be applied:

– (Process Call) If rhspMAINq � Qα, this rule adds to ω the specification position
α of P , and the control changes to rhspQqϕ, i.e., s1 � prhspQqϕ, tαuq. By
Definition 8, the context sensitive control of n0 can pass to n1 with lpn0q �
“start pMAIN, 0q” and lpn1q � firstppMAIN,Λqq � α, i.e., “start pMAIN, 0q” ÞÑ
α P Ec. By Definition 3, firstppMAIN,Λqq � α � firstpαq; by Definition 8,
the context sensitive control of n1 can pass to n2 with lpn2q � “start pQ, 0q”
and by Lemma 6, D π � n1 ÞÑ n2 ÞÑ n3 P Ec with lpn1q � firstpαq and
lpnkq � firstpϕq, i.e., α ÞÑ “start pQ, 0q” ÞÑ firstpϕq P Ec.

– (Parameterized Process Call) It is completely analogous to (Process Call).

– (Prefixing) If rhspMAINq � aβ Ñα Pϕ, this rule adds to ω the specification
positions of the prefix and the prefixing operator, α and β respectively,
and the control changes to Pϕ, i.e., s1 � pPϕ, tα, βuq. By Definition 8
and Definition 3, the context sensitive control of n0 can pass to n1 with
lpn0q � “start pMAIN, 0q” and lpn1q � firstppMAIN,Λqq � pMAIN, 1q � β,
i.e., “start pMAIN, 0q” ÞÑ β P Ec. By Definition 7 (using item 2 of Definition
3) and Definition 8, the context sensitive control of n1 can pass to n2 with
lpn1q � β and lpn2q � α, i.e., β ÞÑ α P Ec. By Lemma 6, D π � n1 ÞÑ
n2 ÞÑ n3 P Ec with lpn1q � firstpαq � β and lpn3q � firstppMAIN, 2qq �
firstpϕq, i.e., β ÞÑ α ÞÑ firstpϕq P Ec.

– (SKIP) If rhspMAINq � SKIPα, applying this rule the specification position
α of SKIP is added to ω, the control changes to J, i.e., s1 � pJ, tαuq,
and the derivation finishes. By Definition 8, the context sensitive con-
trol of n0 can pass to n1 with lpn0q � “start pMAIN, 0q” and lpn1q �
firstppMAIN,Λqq � α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. And by Definition
7 and Definition 8, the context sensitive control of n1 can pass to n2 with
lpn2q � “end pMAIN, 0q”, i.e., α ÞÑ “end pMAIN, 0q” P Ec.

– (STOP) If rhspMAINq � STOPα, applying this rule the specification position α
of STOP is added to ω, the control changes to K, i.e., s1 � pK, tαuq, and the
derivation finishes. By Definition 8, the context sensitive control of n0 can
pass to n1 with lpn0q � “start pMAIN, 0q” and lpn1q � firstppMAIN,Λqq �
α, i.e., “start pMAIN, 0q” ÞÑ α P Ec.

– (Internal Choice 1 and 2) If rhspMAINq � Pϕ1
[αQϕ2, with this rule the spec-

ification position of the choice operator α is added to ω, and one of the
two processes P or Q is added to the control, i.e., s1 � pPϕ1

, tαuq or s1 �
pQϕ2 , tαuq. By Definition 8, the context sensitive control of n0 can pass
to n1 with lpn0q � “start pMAIN, 0q” and lpn1q � firstppMAIN,Λqq � α,
i.e., “start pMAIN, 0q” ÞÑ α P Ec. By Lemma 6, D π � n1 ÞÑ n2 P Ec
with lpn2q � ϕ � firstppMAIN, 1qq � firstpϕ1q and D π � n1 ÞÑ n3 P Ec
with lpn3q � firstppMAIN, 2qq � firstpϕ2q, i.e., α ÞÑ firstpϕ1q P Ec and
α ÞÑ firstpϕ2q P Ec.

– (Conditional Choice 1 and 2) These rules are completely analogous to (Internal
Choice 1 and 2).
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– (External Choice 1, 2, 3 and 4) If rhspMAINq � P lαQ, with one of these rules
the specification position of the choice operator α and the set of executed
specification positions of process P or Q is added to ω. By Definition 8, the
context sensitive control of n0 can pass to n1 with lpn0q � “start pMAIN, 0q”
and lpn1q � firstppMAIN,Λqq � α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. By
Lemma 7, @γ P ω : D π � n1 ÞÑ� nk P Ec with lpnkq � γ.

– (Synchronized Parallelism 1 and 2) If rhspMAINq � P }
Xα

Q, with one of these

rules the specification position of the parallelism operator together with
the specification positions executed of the corresponding process are added
to ω. By Definition 8, the context sensitive control of n0 can pass to n1

with lpn0q � “start pMAIN, 0q” and lpn1q � firstppMAIN,Λqq � α, i.e.,
“start pMAIN, 0q” ÞÑ α P Ec. By Lemma 7, @γ P ω : D π � n1 ÞÑ� nk P Ec
with lpnkq � γ.

– (Synchronized Parallelism 3) If rhspMAINq � P }
Xα

Q, with this rule the specifica-

tion position of the parallelism operator together with the specification po-
sitions executed of the two processes are added to ω. By Definition 8, the
context sensitive control of n0 can pass to n1 with lpn0q � “start pMAIN, 0q”
and lpn1q � firstppMAIN,Λqq � α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. By
Lemma 7, @γ P ω : D π � n1 ÞÑ� nk P Ec with lpnkq � γ.

– (Synchronized Parallelism 4) This rule does not add specification positions to
ω.

– (Sequential Composition 1) If rhspMAINq � P ;αQ, this rule can be ap-
plied. The control changes to P 1 ;αQ and the executed specification
positions of P will be added to ω. By Definition 8, the context sen-
sitive control of n0 can pass to n1 with lpn0q � “start pMAIN, 0q” and
lpn1q � firstppMAIN,Λqq � firstppMAIN, 1qq, i.e., “start pMAIN, 0q” ÞÑ
firstppMAIN, 1qq P Ec. By Lemma 7, @γ P ω : D π � n1 ÞÑ� nk P Ec
with lpnkq � γ.

– (Sequential Composition 2) For this rule to be applied, rhspMAINq � SKIPβ ;α
Qϕ. The control changes to Q and ω � tα, βu, i.e., s1 � pQϕ, tα, βuq. By
Definition 8, the context sensitive control of n0 can pass to n1 with lpn0q �
“start pMAIN, 0q” and lpn1q � firstppMAIN,Λqq � firstppMAIN, 1qq � β,
i.e., “start pMAIN, 0q” ÞÑ β P Ec. By Lemma 7, n1 ÞÑ n2 P Ec with lpn2q �
α. And by Definition 7 (using item 4 of Definition 3) and Definition 8,
the context sensitive control of n2 can pass to n3 with lpn2q � α and
lpn3q � ϕ � firstppMAIN, 2qq, i.e., α ÞÑ ϕ P Ec.

– (Hiding 1 and 2) If rhspMAINq � P zαB and one of these rules is applied, ω is
increased with the specification position α of the hiding operator and with
the specification positions of the developed process P . By Definition 8, the
context sensitive control of n0 can pass to n1 with lpn0q � “start pMAIN, 0q”
and lpn1q � firstppMAIN,Λqq � α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. By
Lemma 7, @γ P ω : D π � n1 ÞÑ� nk P Ec with lpnkq � γ.

– (Hiding 3) For this rule to be applied, rhspMAINq � SKIPβzαB. The con-
trol changes to J, ω � tα, βu, i.e., s1 � pJ, tα, βuq, and the derivation
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finishes. By Definition 8, the context sensitive control of n0 can pass
to n1 with lpn0q � “start pMAIN, 0q” and lpn1q � firstppMAIN,Λqq � α,
i.e., “start pMAIN, 0q” ÞÑ α P Ec. By Lemma 7, n1 ÞÑ n2 P Ec with
lpn2q � firstpβq � β. And by Definition 7 (using item 6 of Definition
3) and Definition 8, the context sensitive control of n2 can pass to n3

with lpn3q � “end pMAIN,Λq”, and the context sensitive control of n3 can
pass to n4 with lpn4q � “end pMAIN, 0q”, i.e., β ÞÑ “end pMAIN, 0q” ÞÑ
“end pMAIN, 0q” P Ec,

– (Renaming 1 and 2) These rules are completely analogous to (Hiding 1 and 2).

– (Renaming 3) It is completely analogous to the rule (Hiding 3).

We assume as the induction hypothesis that the lemma holds in the i first
rewriting steps of D, and we prove that it also holds in the step i � 1. Let us

consider si � pCtrlβ , ωq
ΘiÝÑ si�1 � pCtrl1δ, ω

1q. By the induction hypothesis we
know that there exists a path from firstppMAIN,Λqq to all positions in ω. By
Lemma 8, we know that there exists a path from a specification position in ω
to firstpβq. And by Lemma 7, we know that there exists a path from firstpβq
to all positions in ωzω1. Therefore, the lemma holds.

Lemma 3. Let S be a CSP specification and let G � pN,Ec, El, Esq be the
CSCFG associated with S according to Definition 8. If n ÞÑ n1 P Ec then n
must be executed before n1 in all executions.

Proof. We prove this lemma by induction on the length of a path πStart �
n1 ÞÑ� nm in the CSCFG G. Firstly, because all nodes in StartpSq are not
executable, we remove them from the path. Hence, we assume that for all
1 ¤ j   m we have lpnjq R StartpSq. We refer to this reduced path as π.

The base case happens when the length of π is one. The first node of the
graph is always “start pMAIN, 0q”, hence, π � n ÞÑ n1. Therefore, by Definition 8,
lpnq � firstpMAIN,Λq.

In this situation, litplpnqq can be:

• If litplpnqq � a, with a P Σ, then by Definition 3 (item 2), we have that
litplpn1qq �Ñ. In the semantics, the only rule applicable is Prefixing.
Therefore, n must be executed before n1.

• If litplpnqq � STOP , by Definition 3 and Definition 8 there is no control
from STOP . Therefore, n1 R N and thus this case is not possible.

• If litplpnqq P t[,l,¢£, |||, ||u then it is possible to apply Choice or Paral-
lelism.

– If we have a choice, by Definition 3 (item 1), lpn1q P tfirstppMAIN, 1qq,
firstppMAIN, 2qqu. In the semantics, the only rule applicable is a
choice. Therefore, n must be executed before n1.

– Analogously, if we have a parallelism, by Definition 3 (item 1), we
have that lpn1q P tfirstppMAIN, 1qq, firstppMAIN, 2qqu. In the seman-
tics, the only rule applicable is a synchronized parallelism. Therefore,
n must be executed before n1.
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• If litplpnqq P tz, vwu, then by Definition 3 (item 5), we have that litplpn1qq �
firstppMAIN, 1qq. In the semantics, the only rule applicable is Hiding or
Renaming. Therefore, n must be executed before n1.

• If litplpnqq � SKIP then two cases are possible:

– by Definition 3 (item 3), litplpn1qq � ; because lastplpnqq � lpnq. In
the semantics, the only rule applicable is Sequential Composition 2
and this necessarily implies that SKIP is executed before. Thus, n
must be executed before n1.

– by Definition 8, we have in πStart that litplpn1qq � “end pMAIN, 0q”
and in π, n1 does not exist. In fact, in the semantics, the only rule
applicable is SKIP that finishes the execution.

• If litplpnqq � P with P P P then, lpnq � firstpMAIN,Λq � pMAIN,Λq,
and by Definition 8, we have πStart � “start pMAIN, 0q” ÞÑ pMAIN,Λq ÞÑ
“start pMAIN,Λq” ÞÑ firstppP,Λqq. Therefore, π � pMAIN,Λq ÞÑ firstppP,Λqq.
In the semantics, the only rule applicable is Process Call that changes the
root position in the control to pP,Λq. Then, by Lemma 5 we know that
the next rewriting step will have firstppP,Λqq P ω.

We assume as the induction hypothesis that the lemma holds for a path π with
length k. We prove that it also holds for a path with length k� 1. Therefore, it
is enough to prove that nk must be executed before nk�1 in all executions with
nk ÞÑ nk�1 P Ec.

We analyze each possible case with respect to litplpnkqq. All cases are anal-
ogous to the base case except three:

• If litplpnkqq �Ñ, with lpnkq � pM,wq, then by Definition 3 (item 4),
we have that lpnk�1q � firstppM,w.2qq. In the semantics, the last rule
applied was Prefixing, because it is the only rule that introduces Ñ. This
rule puts in the control pM,w.2q. Therefore, by Lemma 5 we know that
the next rewriting step will have firstppM,w.2qq P ω. Therefore, nk must
be executed before nk�1.

• If litplpnkqq � ; then it is completely analogous to the previous case but
now the last rule applied is Sequential Composition 2.

• If litplpnkqq � SKIP then two cases are possible:

– by Definition 3 (item 3), litplpnk�1qq � ; because lastplpnkqq � lpnkq.
In the semantics, the only rule applicable is Sequential Composition 2
and this necessarily implies that SKIP is executed before. Thus, nk
must be executed before nk�1.

– by Definition 8, we have in πStart that litplpm�1qq � “end pMAIN, 0q”
and in π, m � 1 does not exist. In fact, in the semantics, the only
rule applicable is SKIP that finishes the execution.

Therefore, the lemma is true.

Lemma 2. Let S be a CSP specification. Then, the execution of Algorithm 1
with S produces a graph G that is the CSCFG associated with S according to
Definition 8.
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Proof. Let G � pN,Ec, El, Esq the CSCFG associated with S according to Def-
inition 8. And let G1 � pN 1, E1

c, E
1
l, E

1
sq the output of Algorithm 1 with input

S. We now prove that G � G1.
In order to prove that both graphs are equivalent, we proceed by case analysis

of function buildGraph. This is enough to prove the equivalence because this
function is used to build the graph associated to the right hand side of all
functions. Therefore, we have to prove not only that the graphs are equivalent
for each case, but also that the returned values nfirst and Last are the expected
ones so that recursion of this function also works and thus the produced graphs
are correctly joined to form the final CSCFG. In all cases Es will be equivalent
to E1

s if the rest of the components of the graph are equivalent, because both
are built using the same technique. We assume by induction hypothesis that,
in all cases, the values returned by recursive calls are the expected ones. Let us
study each case separately:

• Prefixing: In this case P � Xα Ñβ Q and X P ta, a?v, a!vu. We let
β � pM,wq thus α � pM,w.1q and the label of Q is pM,w.2q. Function
first returns for this expression pM,w.1q. In the function it is represented
by the fact that nfirst � nα (note that lpnαq � α � pM,w.1q). Function
last will return the set lastpn2q where lpn2q � pM,w.2q. In the algorithm,
the variable Last is bound to Last1, that is a set whose labels correspond
to lastpn2q. The nodes introduced by the algorithm are nα and nβ . Their
labels belong to PospSq, thus they are in N . The nodes in the set N1 are
also nodes from N . Hence, we can state that N � N 1. This case intro-
duces two control arcs plus the arcs introduced by the graph of Q. These
two control arcs correspond to the second and fourth item of definition
3. The first is represented by nα ÞÑ nβ , and the second by nβ ÞÑ nfirst1.
Then, we have that Ec � E1

c. Finally, E1
l is equal to El1. Note that prefix-

ing does not introduce loop arcs, so in this case we also have that El � E1
l.

• Choice and Parallelism: In this case P � Q Xα R and X P t[,l,¢£
, |||, ||u. Let α � pM,wq. Hence the labels of Q and R are pM,w.1q and
pM,w.2q respectively. Function first returns pM,wq for this expression.
In the function it is represented by the fact that nfirst � nα. Function
last will return the set lastpn1q Y lastpn2q, where lpn1q � pM,w.1q and
lpn2q � pM,w.2q, if none of these sets is empty or the operator is not a
parallel operator neither an interleaving. Otherwise last will return H. In
the algorithm, the variable Last is bounded to Last1 Y Last2 (note that
their labels will be all in last(n1) and last(n2)) or H depending on the
same condition. The nodes introduced by the algorithm are nα and the
nodes of sets N1 and N2. All these labels belong to PospSq, so we can
state that N � N 1. This case introduces two control arcs plus the arcs
introduced by the graph of Q and R. These two control arcs correspond
to the first item of definition 3. They are represented by nα ÞÑ first1
and nα ÞÑ first2. Then, we have that Ec � E1

c. Finally, E1
l is equal to

El1 Y El2, hence El � E1
l.

• Sequential Composition: In this case P � Q ;α R. Let α � pM,wq. Then
the labels of Q and R are pM,w.1q and pM,w.2q respectively. Function
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first returns for this expression firstppM,w.1qq. In the function it is rep-
resented by the fact that nfirst � nfirst1. Function last will return the
set lastpn2q, where lpn2q � pM,w.2q. In the algorithm, it is represented
by the fact that the variable Last is bounded to Last2 which their node
labels are all in lastpn2q. The nodes introduced by the algorithm are nα
and the sets of nodes N1 and N2. All these labels belong to PospSq, so,
we can state that N � N 1. This case introduces many control arcs plus
the arcs introduced by the graph of Q and R. Concretely, it introduces
the arc nα ÞÑ nfirst2 and the set Ec3 where all the nodes belonging to
Last1 are joined to node nα. The former corresponds to the fourth item
of definition 3. The latter corresponds to the third item. Then, we have
that Ec � E1

c. Finally, E1
l is equal to El1 Y El2, so El � E1

l.

• Hiding and Renaming: In this case P � Q Xα and X P tz, vwu. Let α �
pM,wq then the label of Q is pM,w.1q. Function first returns for this
expression pM,wq. In the function, it is represented by the fact that
nfirst � nα (note that lpnαq � α � pM,wq). Function last will return
the set lastpn1q, where lpn1q � pM,w.1q. In the algorithm, the variable
Last is bounded to Last1 and all their node labels are in lastpn1q. The
nodes introduced by the algorithm are nα, nend and the nodes of sets N1.
All these labels belong to PospSq, except nend that belongs to StartpSq.
Thus, we can state that N � N 1. This case introduces the control arc
nα ÞÑ nf irst1, the arcs of Ec2 plus the arcs introduced by the graph of Q.
The single arc corresponds to the fifth item of definition 3, and the edges
in Ec2 correspond to the sixth item of the same definition. Then, we have
that Ec � E1

c. Finally, E1
l is equal to El1 Y El2, so El � E1

l.

• SKIP and STOP: In this case P � Q Xα and X P tSKIP, STOP u. Let
α � pM,wq. Function first returns for this expression pM,wq. In the
function it is represented by the fact that nfirst � nα (note that lpnαq �
α � pM,wq). Function last will return the set tpM,wqu if litplpnqq �
SKIP or H if litplpnqq � STOP . In the algorithm, the variable Last is
bounded to tnαu orH with the same conditions. The only node introduced
by the algorithm is nα that belongs to PospSq. Thus, we can state that
N � N 1. This case does not introduce any control arc. Then, we have that
Ec � E1

c, because with only one node it is not possible to have control
flow. Finally, E1

l is equal to H, so, as it happens in the previous case,
El � E1

l.

• (Parameterized) Process Call: In this case P � Xα. Let α � pM,wq.
Function first returns pM,wq for this expression. In the function it is
represented by the fact that nfirst � nα (note that lpnαq � α � pM,wq).
Function last will return H or t“endpM,wq”u depending on whether a
node with label “startpM,wq” is in Conpnq or not respectively. This is
the same condition that we find in the conditional clause of the algorithm,
thus we have a total correspondence. The graph components also depend
in this condition, so we are going to distinguish between two cases. First,
when the start node is in the context, and second when it is not.

– The only node introduced by the algorithm is nα that belongs to
PospSq. Thus, we can state that N � N 1. This case does not
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introduce any control arc. Then, we have that Ec � E1
c. Finally, E1

l

is equal to a set with a unique loop arc from nα to nctx (which is the
node that makes the condition hold). This arc is the same as the one
introduced in the same conditions of definition 8, so El � E1

l.

– The nodes introduced by the algorithm are nα, that belongs to PospSq,
and nstart and nend that belongs to StartpSq. These nodes plus set
N1 form N 1, so we can state that N � N 1. The set E1

c if formed by
the union of set Ec1 from the graph of the right-hand side of process
X, and set Ec2. The latter represents the special control flow stated
in the second item of definition 8. Then, we have that Ec � E1

c.
Finally, E1

l is equal to El1, so El � E1
l.

Lemma 4. (Finiteness) Given a specification S, its associated CSCFG is finite.

Proof. We show first that there does not exist infinite unfolding in a CSCFG.
Firstly, the same start process node only appears twice in the same control loop-
free path if it belongs to a process which is called from different process calls (i.e.,
with different specification positions) as it is ensured by Definition 8. Therefore,
the number of repeated nodes in the same control loop-free path is limited by
the number of different process calls appearing in the program. Moreover, the
number of terms in the specification is finite and thus there is a finite number
of different process calls. In addition, every process call has only one outgoing
arc as it is ensured by the third property of Definition 8. Therefore, the number
of paths is finite and the size of every path of the CSCFG is limited.

Theorem 8. (Termination of MEB) The MEB analysis performed by Algo-
rithm 2 terminates.

Proof. First, we know that N is finite, and thus blseeds is also finite because
blseeds � N . Therefore, the first loop (4) always terminates because it is
repeated while new nodes are added to blacklist; and the number of possible
insertions is finite because N is finite. We can ensure that the second loop also
terminates due to the invariant pending XMeb � ∅ which is always true at
the end of the loop (9). Then, because Meb increases in every iteration (7) and
the size of N is finite, pending will eventually become empty and the loop will
terminate.

Theorem 10. (Termination of CEB) The CEB analysis performed by Algo-
rithm 3 terminates.

Proof. Firstly, the algorithm starts with a call to the function buildMeb. By
Lemma 8, this call always terminates. Then, the only loops that could cause
non-termination are the loop containing sentences (4) to (10) and the loop
containing sentences (13) to (18). The first loop is repeated until no new nodes
are added to the sets loopnodes or candidates. We know that loopnodes never
decreases in the loop; moreover, sentence (4) ensures that m1 R loopnodes,
therefore, the number of nodes added to loopnodes is finite because the number
of nodes in N is finite. Similarly, candidates only have a finite number of
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insertions, and once a node is added to candidates it can be removed, but never
inserted again because loopnodes never decreases. The second loop is analogous
to the first one. Therefore, we can ensure that it always terminates by showing
that Ceb is increased in every iteration with nodes of pending that leave pending
when they are inserted into Ceb, see (14) and (17). And, moreover, pending
can only be increased a limited number of times because it is always increased
with nodes which are the successor of a node in pending following control arcs.
Therefore, because the CSCFG is a tree if we only consider control arcs and N
is finite, the size of every branch is finite, and thus, the loop always terminates.

Theorem 9. (Completeness of MEB) Let S be a specification, C a slicing
criterion for S, and let MEB be the MEB slice of S with respect to C. Then,
MEB �MEBpS, Cq.

Proof. (sketch) First, we prove that MEBpS, Cq considers all possible execu-
tions of the slicing criterion as MEB does. This depends on function nodes,
that considers only the first occurrences (starting from MAIN and proceeding
forwards) of the slicing criterion. Then, it is equivalent to consider the first
time that the slicing criterion belongs to ω, which is the stopping condition in
the MEB construction process. Second, as the slicing criterion could happen
in different executions, we have to construct a relation between them in order
to build the final result. In the case of MEB the intersection of ω for each
execution is considered. However, MEBpS, Cq considers the intersection of the
specification positions of each node belonging to buildMebpnq where n is a slicing
criterion’s node. So we have to prove that the result of buildMebpnq will return
all (and maybe more) the nodes (and consequently specification positions) that
have been executed before it. Function buildMeb in step (2) selects all the nodes
from MAIN to the given node n and to those nodes which are synchronized with
it. The rest of the nodes that will be appended in the rest of steps depends
mainly on sets pending and sync. These sets will be formed by those nodes
that are synchronized with nodes in set Meb or loops which contain at least one
node synchronized with a node in Meb. Then all possible executed nodes are
belonging to Meb at the end. The only problem that could arise happens when
some nodes are not considered and they are included in the blacklist, the set
of discarded nodes. However, all the nodes in this set are correctly discarded,
because it adds first the given node n and the branches of choices or interleaving
which do not reach a node in Meb; then, it discards iteratively the nodes under
these ones and all that are synchronized with them only if all the other nodes
synchronized are also discarded. Therefore, we can conclude that the result will
be a superset of MEB.

Theorem 11. (Completeness of CEB) Let S be a specification, C a slicing
criterion for S, and let CEB be the CEB slice of S with respect to C. Then,
CEB � CEBpS, Cq.

Proof. (sketch) The first part of the proof is completely analogous to the pre-
vious one. The rest of the proof concerns function buildCeb. In its first step, a
call to function buildMeb is made. Consequently all those parts that must be
executed before node n will form the initial set for Ceb. Then, we have to prove
that the rest of steps collects those nodes that could also be executed before the
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given node n. This group only depends on loops that finish in a node that is
in Ceb. Then, in step (2) the set loopnodes is initialized with the children of
the choices in Ceb that are not in Ceb. After this, an iterative process proceeds
forward adding nodes if they could be executed, i.e. if it has not synchronization
arcs; or in case it has, their synchronized nodes are in Ceb or in candidates (a
set of nodes waiting for acceptance). In this way, it is assured that only those
nodes that could be executed before n are added to Ceb in step (11). Finally,
the same checking idea is applied to the nodes that are under nodes in Ceb (but
n), adding iteratively more nodes if the conditions are fulfilled. With this last
step, the rest of specification positions that could be executed (those belonging
to other threads of execution) is safely added to the set Ceb. Then, we can
conclude that CEBpS, Cq is a superset of CEB.
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Abstract

The CSP language allows the specification and verification of complex concur-
rent systems. Many analyses for CSP exist that have been successfully applied
in different industrial projects. However, the cost of the analyses performed is
usually very high, and sometimes prohibitive, due to the complexity imposed
by the non-deterministic execution order of processes and to the restrictions
imposed on this order by synchronizations. In this work, we define a data struc-
ture that allows us to statically simplify a specification before the analyses.
This simplification can drastically reduce the time needed by many CSP anal-
yses. We also introduce an algorithm able to automatically generate this data
structure from a CSP specification. The algorithm has been proved correct and
its implementation for the CSP’s animator ProB is publicly available.

1. Introduction

The Communicating Sequential Processes (CSP) [3, 13] language allows us
to specify complex systems with multiple interacting processes. The study and
transformation of such systems often implies different analyses (e.g., deadlock
analysis [5], reliability analysis [4], refinement checking [12], etc.) which are
often based on a data structure able to represent all computations of a specifi-
cation.

Recently, a new data structure called Context-sensitive Synchronized Control-
Flow Graph (CSCFG) has been proposed [7]. This data structure is a graph
that allows us to finitely represent possibly infinite computations, and it is par-
ticularly interesting because it takes into account the context of process calls,
and thus it allows us to produce analyses that are very precise. In particular,
some analyses (see, e.g., [8, 9]) use the CSCFG to simplify a specification with
respect to some term by discarding those parts of the specification that cannot
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be executed before the term and thus they cannot influence it. This simplifi-
cation is automatic and thus it is very useful as a preprocessing stage of other
analyses.

However, computing the CSCFG is a complex task due to the non-determinis-
tic execution of processes, due to deadlocks, due to non-terminating processes
and mainly due to synchronizations. This is the reason why there does not
exist any correctness result which formally relates the CSCFG of a specification
to its execution. This result is needed to prove important properties (such as
correctness and completeness) of the techniques based on the CSCFG.

In this work, we formally define the CSCFG and a technique to produce
the CSCFG of a given CSP specification. Roughly, we instrument the CSP
standard semantics (Chapter 7 in [13]) in such a way that the execution of
the instrumented semantics produces as a side-effect the portion of the CSCFG
associated with the performed computation. Then, we define an algorithm which
uses the instrumented semantics to build the complete CSCFG associated with
a CSP specification. This algorithm executes the semantics several times to
explore all possible computations of the specification, producing incrementally
the final CSCFG.

2. The Syntax and Semantics of CSP

In order to make the paper self-contained, this section recalls CSP’s syn-
tax and semantics [3, 13]. For concretion, and to facilitate the understanding
of the following definitions and algorithm, we have selected a subset of CSP
that is sufficiently expressive to illustrate the method, and it contains the most
important operators that produce the challenging problems such as deadlocks,
non-determinism and parallel execution.

We use the following domains: process names (M,N . . . ∈ Names), pro-
cesses (P,Q . . . ∈ Procs) and events (a, b . . . ∈ Σ). A CSP specification is a finite
set of process definitions N = P with P = M | a→ P | P u Q | P 2 Q | P ||

X⊆Σ

Q

| STOP . Therefore, processes can be a call to another process or a combination
of the following operators:
Prefixing (a→ P ) Event a must happen before process P .
Internal choice (P u Q) The system chooses non-deterministically to execute
one of the two processes P or Q.
External choice (P 2 Q) It is identical to internal choice but the choice comes
from outside the system (e.g., the user).
Synchronized parallelism (P ||

X⊆Σ

Q) Both processes are executed in parallel

with a set X of synchronized events. In absence of synchronizations both pro-
cesses can execute in any order. Whenever a synchronized event a ∈ X happens
in one of the processes, it must also happen in the other at the same time.
Whenever the set of synchronized events is not specified, it is assumed that
processes are synchronized in all common events. A particular case of parallel
execution is interleaving (represented by |||) where no synchronizations exist
(i.e., X = ∅).
Stop (STOP ) Synonym of deadlock: It finishes the current process.

We now recall the standard operational semantics of CSP as defined by
Roscoe [13]. It is presented in Fig. 1 as a logical inference system. A state of
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the semantics is a process to be evaluated called the control. In the following,
we assume that the system starts with an initial state MAIN, and the rules of
the semantics are used to infer how this state evolves. When no rules can be
applied to the current state, the computation finishes. The rules of the semantics
change the states of the computation due to the occurrence of events. The set
of possible events is Στ = Σ ∪ {τ}. Events in Σ are visible from the external
environment, and can only happen with its co-operation (e.g., actions of the
user). Event τ is an internal event that cannot be observed from outside the
system and it happens automatically as defined by the semantics. In order to
perform computations, we construct an initial state and (non-deterministically)
apply the rules of Fig. 1.

(Process Call) (Prefixing) (Internal Choice 1) (Internal Choice 2)

N
τ−→ rhs(N) (a→ P )

a−→ P (P uQ)
τ−→ P (P uQ)

τ−→ Q

(External Choice 1) (External Choice 2) (External Choice 3) (External Choice 4)

P
τ−→ P ′

(P � Q)
τ−→ (P ′ � Q)

Q
τ−→ Q′

(P � Q)
τ−→ (P � Q′)

P
e−→ P ′

(P � Q)
e−→ P ′

e ∈ Σ
Q

e−→ Q′

(P � Q)
e−→ Q′

e ∈ Σ

(Synchronized Parallelism 1) (Synchronized Parallelism 2) (Synchronized Parallelism 3)

P
e−→ P ′

(P ||
X

Q)
e−→ (P ′ ||

X

Q)
e ∈ Στ\X Q

e−→ Q′

(P ||
X

Q)
e−→ (P ||

X

Q′)
e ∈ Στ\X P

e−→ P ′ Q
e−→ Q′

(P ||
X

Q)
e−→ (P ′ ||

X

Q′)
e ∈ X

Figure 1: CSP’s operational semantics

3. Context-sensitive Synchronized Control-Flow Graphs

The CSCFG was proposed in [7, 9] as a data structure able to finitely rep-
resent all possible (often infinite) computations of a CSP specification. This
data structure is particularly useful to simplify a CSP specification before its
static analysis. The simplification of industrial CSP specifications allows us to
drastically reduce the time needed to perform expensive analyses such as model
checking. Algorithms to construct CSCFGs have been implemented [8] and in-
tegrated into the most advanced CSP environment ProB [6]. In this section
we introduce a new formalization of the CSCFG that directly relates the graph
construction to the control-flow of the computations it represents.

A CSCFG is formed by the sequence of expressions that are evaluated during
an execution. These expressions are conveniently connected to form a graph.
In addition, the source position (in the specification) of each literal (i.e., events,
operators and process names) is also included in the CSCFG. This is very useful
because it provides the CSCFG with the ability to determine what parts of the
source code have been executed and in what order. The inclusion of source
positions in the CSCFG implies an additional level of complexity in the seman-
tics, but the benefits of providing the CSCFG with this additional information
are clear and, for some applications, essential. Therefore, we use labels (that
we call specification positions) to identify each literal in a specification which
roughly corresponds to nodes in the CSP specification’s abstract syntax tree.
We define a function Pos to obtain the specification position of an element of a
CSP specification and it is defined over nodes of an abstract syntax tree for a
CSP specification. Formally,
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Definition 1. (Specification position) A specification position is a pair (N,w)
where N ∈ N and w is a sequence of natural numbers (we use Λ to denote
the empty sequence). We let Pos(o) denote the specification position of an ex-
pression o. Each process definition N = P of a CSP specification is labelled
with specification positions. The specification position of its left-hand side is
Pos(N) = (N, 0). The right-hand side (abbrev. rhs) is labelled with the call
AddSpPos(P, (N,Λ)); where function AddSpPos is defined as follows:

AddSpPos(P, (N,w))=

8>>>>>><>>>>>>:

P(N,w) if P ∈ N
STOP(N,w) if P = STOP

a(N,w.1) →(N,w) AddSpPos(Q, (N,w.2)) if P = a→ Q

AddSpPos(Q, (N,w.1)) op(N,w) AddSpPos(R, (N,w.2))
if P = Q op R ∀ op ∈ {u,2, ||}

We often use Pos(S) to denote a set with all positions in a specification S.

Example 1. Consider the CSP specification in Fig. 2(a) where literals are
labelled with their associated specification positions (they are underlined) so that
labels are unique.

MAIN(MAIN,0) = (a(MAIN,1.1) → (MAIN,1)STOP(MAIN,1.2)) ‖
{a}

(MAIN,Λ)

(P(MAIN,2.1)2(MAIN,2)(a(MAIN,2.2.1) → (MAIN,2.2)STOP(MAIN,2.2.2)))

P(P,0) = b(P,1) → (P,Λ)SKIP(P,2)

(a) CSP specification

(b) CSCFG

Figure 2: CSP specification and its associated CSCFG

In the following, specification positions will be represented with greek letters
(α, β, . . .) and we will often use indistinguishably an expression and its associ-
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ated specification position when it is clear from the context (e.g., in Example 1
we will refer to (P, 1) as b).

In order to introduce the definition of CSCFG, we need first to define the
concepts of control-flow, path and context.

Definition 2. (Control-flow) Given a CSP specification S, the control-flow is
a transitive relation between the specification positions of S. Given two speci-
fication positions α, β in S, we say that the control of α can pass to β iff

i) α = N ∧ β= first((N,Λ)) with N= rhs(N)∈ S
ii) α ∈ {u,2, ||} ∧ β ∈ {first(α.1),first(α.2)}
iii) α = β.1 ∧ β = →
iv) α = → ∧ β = first(α.2)

where first(α) is defined as follows: first(α) =

{
α.1 if α = →
α otherwise

We say that a specification position α is executable in S iff the control can pass
from the initial state (i.e., MAIN) to α.

For instance, in Example 1, the control can pass from (MAIN, 2.1) to (P, 1)
due to rule i), from (MAIN, 2) to (MAIN, 2.1) and (MAIN, 2.2.1) due to rule ii), from
(MAIN, 2.2.1) to (MAIN, 2.2) due to rule iii), and from (MAIN, 2.2) to (MAIN, 2.2.2)
due to rule iv).

As we will work with graphs whose nodes are labelled with positions, we use
l(n) to refer to the label of node n.

Definition 3. (Path) Given a labelled graph G = (N,E), a path between two
nodes n1, m ∈ N , Path(n1,m), is a sequence n1, . . . , nk such that nk 7→ m ∈ E
and for all 1≤ i<k we have ni 7→ ni+1 ∈ E. The path is loop-free if for all i 6= j
we have ni 6= nj .

Definition 4. (Context) Given a labelled graph G = (N,E) and a node n ∈ N ,
the context of n, Con(n) = {m | l(m)=M with (M=P )∈ S and there exists a
loop-free path m 7→∗ n}.

Intuitively speaking, the context of a node represents the set of processes
in which a particular node is being executed. This is represented by the set of
process calls in the computation that were done before the specified node. For
instance, the CSCFG associated with the specification in Example 1 is shown
in Fig. 2(b). In this graph we have that Con(4)={0, 3}, i.e., b is being executed
after having called processes MAIN and P. Note that focussing on a process call
node we can use the context to identify loops; i.e., we have a loop whenever
n ∈ Con(m) with l(n) = l(m) ∈ Names. Note also that the CSCFG is unique
for a given CSP specification [9].

Definition 5. (Context-sensitive Synchronized Control-Flow Graph) Given a
CSP specification S, its Context-sensitive Synchronized Control-Flow Graph
(CSCFG) is a labelled directed graph G = (N,Ec, El, Es) where N is a set
of nodes such that ∀ n ∈ N. l(n) ∈ Pos(S) and l(n) is executable in S; and
edges are divided into three groups: control-flow edges (Ec), loop edges (El) and
synchronization edges (Es).
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• Ec is a set of one-way edges (denoted with 7→) representing the possible
control-flow between two nodes. Control edges do not form loops. The
root of the tree formed by Ec is the position of the initial call to MAIN.

• El is a set of one-way edges (denoted with  ) such that (n1  n2) ∈ El
iff l(n1) and l(n2) are (possibly different) process calls that refer to the
same process M ∈ N and n2 ∈ Con(n1).

• Es is a set of two-way edges (denoted with e) representing the possible
synchronization of two event nodes (l(n) ∈ Σ).

• Given a CSCFG, every node labelled (M,Λ) has one and only one incoming
edge in Ec; and every process call node has one and only one outgoing
edge which belongs to either Ec or El.

Example 2. Consider again the specification of Example 1, shown in Fig. 2(a),
and its associated CSCFG, shown in Fig. 2(b). For the time being, the reader
can ignore the numbering and color of the nodes; they will be explained in Section
4. Each process call is connected to a subgraph which contains the right-hand
side of the called process. For convenience, in this example there are no loop
edges;1 there are control-flow edges and one synchronization edge between nodes
(MAIN, 2.2.1) and (MAIN, 1.1) representing the synchronization of event a.

Note that the CSCFG shows the exact processes that have been evaluated with
an explicit causality relation; and, in addition, it shows the specification posi-
tions that have been evaluated and in what order. Therefore, it is not only useful
as a program comprehension tool, but it can be used for program simplification.
For instance, with a simple backwards traversal from a, the CSCFG reveals that
the only part of the code that can be executed before a is the underlined part:

MAIN = (a → STOP) ‖
{a}

(P 2 (a → STOP))

P = b→ STOP

Hence, the specification can be significantly simplified for those analyses fo-
cussing on the occurrence of event a.

4. An Algorithm to Generate the CSCFG

This section introduces an algorithm able to generate the CSCFG associated
with a CSP specification. The algorithm uses an instrumented operational se-
mantics of CSP which (i) generates as a side-effect the CSCFG associated with
the computation performed with the semantics; (ii) it controls that no infinite
loops are executed; and (iii) it ensures that the execution is deterministic.

Algorithm 1 controls that the semantics is executed repeatedly in order
to deterministically execute all possible computations—of the original (non-
deterministic) specification—and the CSCFG for the whole specification is con-
structed incrementally with each execution of the semantics. The key point of
the algorithm is the use of a stack that records the actions that can be per-
formed by the semantics. In particular, the stack contains tuples of the form

1We refer the reader to [10] where an example with loop edges is discussed.
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(rule, rules) where rule indicates the rule that must be selected by the seman-
tics in the next execution step, and rules is a set with the other possible rules
that can be selected. The algorithm uses the stack to prepare each execution of
the semantics indicating the rules that must be applied at each step. For this,
function UpdStack is used; it basically avoids to repeat the same computation
with the semantics. When the semantics finishes, the algorithm prepares a new
execution of the semantics with an updated stack. This is repeated until all
possible computations are explored (i.e., until the stack is empty).

The standard operational semantics of CSP [13] can be non-terminating
due to infinite computations. Therefore, the instrumentation of the semantics
incorporates a loop-checking mechanism to ensure termination.

Algorithm 1 General Algorithm

Build the initial state of the semantics: state = (MAIN(MAIN,0), ∅, •, (∅, ∅), ∅, ∅)
repeat

repeat
Run the rules of the instrumented semantics with the state state

until no more rules can be applied
Get the new state: state = ( , G, , (∅, S0), , ζ)
state=(MAIN(MAIN,0), G, •, (UpdStack(S0), ∅), ∅, ∅)

until UpdStack(S0) = ∅
return G
where function UpdStack is defined as follows:
UpdStack(S) =




(rule, rules\{rule}) : S′ if S = ( , rules) : S′ and rule ∈ rules
UpdStack(S′) if S = ( , ∅) : S′

∅ if S = ∅

The instrumented semantics used by Algorithm 1 is shown in Fig. 3. It is
an operational semantics where we assume that every literal in the specification
has been labelled with its specification position (denoted by a subscript, e.g.,
Pα). In this semantics, a state is a tuple (P,G,m, (S, S0),∆, ζ), where P is the
process to be evaluated (the control), G is a directed graph (i.e., the CSCFG
constructed so far), m is a numeric reference to the current node in G, (S, S0) is a
tuple with two stacks (where the empty stack is denoted by ∅) that contains the
rules to apply and the rules applied so far, ∆ is a set of references to nodes used
to draw synchronizations in G and ζ is a graph like G, but it only contains the
part of the graph generated for the current computation, and it is used to detect
loops. The basic idea of the graph construction is to record the current control
with a fresh reference2 n by connecting it to its parent m. We use the notation
G[n

m7→α] either to introduce a node in G or as a condition on G (i.e., G contains
node n). This node has reference n, is labelled with specification position α and
its parent is m. The edge introduced can be a control, a synchronization or a
loop edge. This notation is very convenient because it allows us to add nodes
to G, but also to extract information from G. For instance, with G[3

m7→α] we
can know the parent of node 3 (the value of m), and the specification position

2We assume that fresh references are numeric and generated incrementally.

7



of node 3 (the value of α).
Note that the initial state for the semantics used by Algorithm 1 has

MAIN(MAIN,0) in the control. This initial call to MAIN does not appear in the spec-
ification, thus we label it with a special specification position (MAIN, 0) which
is the root of the CSCFG (see Fig. 2(b)). Note that we use • as a reference in
the initial state. The first node added to the CSCFG (i.e., the root) will have
parent reference •. Therefore, here • denotes the empty reference because the
root of the CSCFG has no parent.

An explanation for each rule of the semantics follows.

(Process Call)

(Nα, G,m, (S, S0),∆, ζ)
τ−→ (P ′, G′, n, (S, S0), ∅, ζ′)

(P ′, G′, ζ′) = LoopCheck(N,n,G[n
m7→ α], ζ ∪ {n m7→ α})

(Prefixing)

(aα →β P,G,m, (S, S0),∆, ζ)
a−→ (P,G[n

m7→ α, o
n7→ β], o, (S, S0), {n}, ζ ∪ {n m7→ α, o

n7→ β})

(Choice)

(P uα Q,G,m, (S, S0),∆, ζ)
τ−→ (P ′, G[n

m7→ α], n, (S′, S′0), ∅, ζ ∪ {n m7→ α})
(P ′, (S′, S′0)) = SelectBranch(P uα Q, (S, S0))

(STOP)

(STOPα, G,m, (S, S0),∆, ζ)
τ−→ (⊥, G[n

m7→ α], n, (S, S0), ∅, ζ ∪ {n m7→ α})

Figure 3: An instrumented operational semantics that generates the CSCFG

(Process Call) The called process N is unfolded, node n (a fresh reference) is
added to the graphs G and ζ with specification position α and parent m. In the
new state, n represents the current reference. The new expression in the con-
trol is P ′, computed with function LoopCheck which is used to prevent infinite
unfolding and is defined below. No event can synchronize in this rule, thus ∆
is empty.

LoopCheck(N,n,G, ζ)=





(	s(rhs(N)), G[n s], ζ ∪ {n s}) if ∃s.s t7→N ∈ G
∧s ∈ Path(0, n)

(rhs(N), G, ζ) otherwise

Function LoopCheck checks whether the process call in the control has not been
already executed (if so, we are in a loop). When a loop is detected, a loop edge
between nodes n and s is added to the graph G and to ζ; and the right-hand
side of the called process is labelled with a special symbol 	s. This label is later
used by rule (Synchronized Parallelism 4) to decide whether the process must be
stopped. The loop symbol 	 is labelled with the position s of the process call
of the loop. This is used to know what is the reference of the process’ node if it
is unfolded again.
(Prefixing) This rule adds nodes n (the prefix) and o (the prefixing operator) to
the graphs G and ζ. In the new state, o becomes the current reference. The
new control is P . The set ∆ is {n} to indicate that event a has occurred and it
must be synchronized when required by (Synchronized Parallelism 3).
(Choice) The only sources of non-determinism are choice operators (different
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Figure 3: An instrumented operational semantics that generates the CSCFG (cont.)

branches can be selected for execution) and parallel operators (different order
of branches can be selected for execution). Therefore, every time the semantics
executes a choice or a parallelism, they are made deterministic thanks to the
information in the stack S. Both internal and external can be treated with
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a single rule because the CSCFG associated to a specification with external
choices is identical to the CSCFG associated to the specification with the ex-
ternal choices replaced by internal choices. This rule adds node n to the graphs
which is labelled with the specification position α and has parent m. In the new
state, n becomes the current reference. No event can synchronize in this rule,
thus ∆ is empty.

Function SelectBranch is used to produce the new control P ′ and the new
tuple of stacks (S′, S′0), by selecting a branch with the information of the stack.
Note that, for simplicity, the lists constructor “:” has been overloaded, and it
is also used to build lists of the form (A : a) where A is a list and a is the last
element:

SelectBranch(P uα Q, (S, S0)) =

8<:
(P, (S′, (C1, {C2}) : S0)) if S = S′ : (C1,{C2})
(Q, (S′, (C2, ∅) : S0)) if S = S′ : (C2, ∅)
(P, (∅, (C1, {C2}) : S0)) otherwise

If the last element of the stack S indicates that the first branch of the choice
(C1) must be selected, then P is the new control. If the second branch must be
selected (C2), the new control is Q. In any other case the stack is empty, and
thus this is the first time that this choice is evaluated. Then, we select the first
branch (P is the new control) and we add (C1, {C2}) to the stack S0 indicating
that C1 has been fired, and the remaining option is C2.

For instance, when the CSCFG of Fig. 2(b) is being constructed and we
reach the choice operator (i.e., (MAIN, 2)), then the left branch of the choice is
evaluated and (C1, {C2}) is added to the stack to indicate that the left branch
has been evaluated. The second time it is evaluated, the stack is updated to
(C2, ∅) and the right branch is evaluated. Therefore, the selection of branches
is predetermined by the stack, thus, Algorithm 1 can decide what branches are
evaluated by conveniently handling the information of the stack.

(Synchronized Parallelism 1 and 2) The stack determines what rule to use when
a parallelism operator is in the control. If the last element in the stack is SP1,
then (Synchronized Parallelism 1) is used. If it is SP2, (Synchronized Parallelism 2) is
used.

In a synchronized parallelism composition, both parallel processes can be
intertwiningly executed until a synchronized event is found. Therefore, nodes
for both processes can be added interwoven to the graph. Hence, the semantics
needs to know in every state the references to be used in both branches. This is
done by labelling each parallelism operator with a tuple of the form (α, n1, n2,Υ)
where α is the specification position of the parallelism operator; n1 and n2 are
respectively the references of the last node introduced in the left and right
branches of the parallelism, and they are initialised to •; and Υ is a node
reference used to decide when to unfold a process call (in order to avoid infinite
loops), also initialised to •. The sets ∆′ and ζ ′′ are passed down unchanged so
that another rule can use them if necessary. In the case that ζ is equal to ζ ′′,
meaning that nothing has change in this derivation, this rule detects that the
parallelism is in a loop; and thus, in the new control the parallelism operator is
labelled with 	 and all the other loop labels are removed from it (this is done
by a trivial function Unloop).

These rules develop the branches of the parallelism until they are finished or
until they must synchronize. They use function InitBranch to introduce the
parallelism into the graph and into ζ the first time it is executed and only if
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it has not been introduced in a previous computation. For instance, consider a
state where a parallelism operator is labelled with ((MAIN,Λ), •, •, •). Therefore,
it is evaluated for the first time, and thus, when, e.g., rule (Synchronized Parallelism

1) is applied, a node 1
07→ (MAIN,Λ), which refers to the parallelism operator,

is added to G and the parallelism operator is relabelled to ((MAIN,Λ), x, •, •)
where x is the new reference associated with the left branch. After executing
function InitBranch, we get a new graph and a new reference. Its definition is
the following:

InitBranch(G, ζ, n,m, α) =

{
(G[o

m7→α], ζ ∪ {om7→α}, o) if n = •
(G, ζ, n) otherwise

(Synchronized Parallelism 3) It is applied when the last element in the stack is
SP3. It is used to synchronize the parallel processes. In this rule, Υ is replaced
by •, meaning that a synchronization edge has been drawn and the loops could
be unfolded again if it is needed. The set sync of all the events that have been
executed in this step must be synchronized. Therefore, all the events occurred
in the subderivations of P1 (∆1) and P2 (∆2) are mutually synchronized and
added to both G′′ and ζ ′.
(Synchronized Parallelism 4) This rule is applied when the last element in the
stack is SP4. It is used when none of the parallel processes can proceed (because
they already finished, deadlocked or were labelled with	). When a process is
labelled as a loop with 	, it can be unlabelled to unfold it once3 in order to
allow the other processes to continue. This happens when the looped process is
in parallel with other process and the later is waiting to synchronize with the
former. In order to perform the synchronization, both processes must continue,
thus the loop is unlabelled. Hence, the system must stop only when both parallel
processes are marked as a loop. This task is done by function LoopControl.
It decides if the branches of the parallelism should be further unfolded or they
should be stopped (e.g., due to a deadlock or an infinite loop):

LoopControl(P ‖
X

(α,p,q,Υ)Q,m) =

8>>>>><>>>>>:

	m(P ′	 ‖
X

(α,p	,q	,•)Q
′
	) if P ′ = 	p	(P ′	) ∧Q′ =	q	(Q′	)

	m(P ′	 ‖
X

(α,p	,q′,•)⊥) if P ′ = 	p	(P ′	) ∧ (Q′ = ⊥ ∨ (Υ = p	 ∧Q′ 6= 	 ( )))

P ′	 ‖
X

(α,p	,q′,p	)Q
′ if P ′ = 	p	(P ′	) ∧Q′ 6= ⊥ ∧ Υ 6= p	 ∧Q′ 6= 	 ( )

⊥ otherwise

where (P ′, p′, Q′, q′) ∈ {(P, p,Q, q), (Q, q, P, p)}.
When one of the branches has been labelled as a loop, there are three options:

(i) The other branch is also a loop. In this case, the whole parallelism is marked
as a loop labelled with its parent, and Υ is put to •. (ii) Either it is a loop that
has been unfolded without drawing any synchronization (this is known because
Υ is equal to the parent of the loop), or the other branch already terminated
(i.e., it is ⊥). In this case, the parallelism is also marked as a loop, and the other
branch is put to ⊥ (this means that this process has been deadlocked). Also

3Only once because it will be labelled again by rule (Process Call) when the loop is repeated.
In [10], we present an example with loops where this situation happens.

11



here, Υ is put to •. (iii) If we are not in a loop, then we allow the parallelism
to proceed by unlabelling the looped branch. When none of the branches has
been labelled as a loop, ⊥ is returned representing that this is a deadlock, and
thus, stopping further computations.
(Synchronized Parallelism 5) This rule is used when the stack is empty. It ba-
sically analyses the control and decides what are the applicable rules of the
semantics. This is done with function AppRules which returns the set of rules
R that can be applied to a synchronized parallelism P ‖

X

Q:

AppRules(P ‖
X

Q) =

8>><>>:
{SP1} if τ ∈ FstEvs(P )
{SP2} if τ 6∈ FstEvs(P ) ∧ τ ∈ FstEvs(Q)
R if τ 6∈ FstEvs(P ) ∧ τ 6∈ FstEvs(Q) ∧ R 6= ∅
{SP4} otherwise

where 8<:
SP1 ∈ R if ∃e ∈ FstEvs(P ) ∧ e 6∈ X
SP2 ∈ R if ∃e ∈ FstEvs(Q) ∧ e 6∈ X
SP3 ∈ R if ∃e ∈ FstEvs(P ) ∧ ∃e ∈ FstEvs(Q) ∧ e ∈ X

Essentially, AppRules decides what rules are applicable depending on the
events that could happen in the next step. These events can be inferred by
using function FstEvs. In particular, given a process P , function FstEvs re-
turns the set of events that can fire a rule in the semantics using P as the
control. Therefore, rule (Synchronized Parallelism 5) prepares the stack allowing
the semantics to proceed with the correct rule.

FstEvs(P ) =8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

{a} if P = a→ Q

∅ if P = 	Q ∨ P = ⊥
{τ} if P = M ∨ P = STOP ∨ P = Q uR ∨ P = (⊥‖

X

⊥)

∨ P =(	 Q‖
X

	R) ∨ P =(	 Q‖
X

⊥) ∨ P =(⊥‖
X

	R)

∨ (P =(	 Q‖
X

R) ∧ FstEvs(R)⊆X) ∨ (P =(Q‖
X

	R) ∧ FstEvs(Q)⊆X)

∨ (P =Q‖
X

R ∧ FstEvs(Q)⊆X ∧ FstEvs(R)⊆X∧ T
M∈{Q,R}

FstEvs(M)=∅)

E otherwise, where P = Q‖
X

R ∧ E = (FstEvs(Q) ∪ FstEvs(R))\
(X ∩ (FstEvs(Q)\FstEvs(R) ∪ FstEvs(R)\FstEvs(Q)))

(STOP) Whenever this rule is applied, the subcomputation finishes because ⊥
is put in the control, and this special constructor has no associated rule. A node
with the STOP position is added to the graph.

We illustrate this semantics with a simple example.

Example 3. Consider again the specification in Example 1. Due to the choice
operator, in this specification two different events can occur, namely b and a.
Therefore, Algorithm 1 performs two iterations (one for each computation) to
generate the final CSCFG. Figure 2(b) shows the CSCFG generated where white
nodes were produced in the first iteration; and grey nodes were produced in the
second iteration. For the interested reader, in [10] all computation steps exe-
cuted by Algorithm 1 to obtain the CSCFG associated with the specification in
Example 1 are explained in detail.
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5. Correctness

In this section we state the correctness of the proposed algorithm by show-
ing that (i) the graph produced by the algorithm for a CSP specification S is
the CSCFG of S; and (ii) the algorithm terminates, even if non-terminating
computations exist for the specification S.

Theorem 4 (Correctness). Let S be a CSP specification and G the graph
produced for S by Algorithm 1. Then, G is the CSCFG associated with S.

This theorem can be proved by showing first that each step performed with
the standard semantics has an associated step in the instrumented semantics;
and that the specification position of the expression in the control is added to
the CSCFG as a new node which is properly inserted into the CSCFG. This can
be proved by induction on the length of a derivation in the standard semantics.
Then, it must be proved that the algorithm performs all possible computations.
This can be done by showing that every non-deterministic step of the semantics
is recorded in the stack with all possible rules that can be applied; and the
algorithm traverses the stack until all possibilities have been evaluated. The
interesting case of the proof happens when the computation is infinite. In this
case, the context of a process call must be repeated because the number of
process calls is finite by definition. Therefore, in this case the proof must show
that functions LoopCheck and LoopControl correctly finish the computation.
The proof of this theorem can be found in [10].

Theorem 5 (Termination). Let S be a CSP specification. Then, the execu-
tion of Algorithm 1 with S terminates.

The proof of this theorem must ensure that all derivations of the instru-
mented semantics are finite, and that the number of derivations fired by the
algorithm is also finite. This can be proved by showing that the stacks never
grow infinitely, and they will eventually become empty after all computations
have been explored. The proof of this theorem can be found in [10].

6. Conclusions

This work introduces an algorithm to build the CSCFG associated with
a CSP specification. The algorithm uses an instrumentation of the standard
CSP’s operational semantics to explore all possible computations of a specifi-
cation. The semantics is deterministic because the rule applied in every step is
predetermined by the initial state and the information in the stack. Therefore,
the algorithm can execute the semantics several times to iteratively explore all
computations and hence, generate the whole CSCFG. The CSCFG is gener-
ated even for non-terminating specifications due to the use of a loop detection
mechanism controlled by the semantics. This semantics is an interesting result
because it can serve as a reference mark to prove properties such as complete-
ness of static analyses based on the CSCFG. The way in which the semantics
has been instrumented can be used for other similar purposes with slight mod-
ifications. For instance, the same design could be used to generate other graph
representations of a computation such as Petri nets [11].
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On the practical side, we have implemented a tool called SOC [8] which is
able to automatically generate the CSCFG of a CSP specification. The CSCFG
is later used for debugging and program simplification. SOC has been inte-
grated into the most extended CSP animator and model-checker ProB [2, 6],
that shows the maturity and usefulness of this tool and of CSCFGs. The last re-
lease of SOC implements the algorithm described in this paper. However, in the
implementation the algorithm is much more complex because it contains some
improvements that significantly speed up the CSCFG construction. The most
important improvement is to avoid repeated computations. This is done by:
(i) state memorization: once a state already explored is reached the algorithm
stops this computation and starts with another one; and (ii) skipping already
performed computations: computations do not start from MAIN, they start from
the next non-deterministic state in the execution (this is provided by the infor-
mation of the stack). The implementation, source code and several examples
are publicly available at: http://users.dsic.upv.es/~jsilva/soc/
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Abstract

CSP is a powerful language for specifying complex concurrent systems. Due
to the non-deterministic execution order of processes and to the restrictions
imposed on this order by synchronizations, many analyses such as deadlock
analysis, reliability analysis, and program slicing try to predict properties of the
specification which can guarantee the quality of the final system. These analyses
often rely on the use of CSP’s traces. In this work, we introduce the theoretical
basis for tracking concurrent and explicitly synchronized computations in pro-
cess algebras such as CSP. Tracking computations is a difficult task due to the
subtleties of the underlying operational semantics which combines concurrency,
non-determinism and non-termination. We define an instrumented operational
semantics that generates as a side-effect an appropriate data structure (a track)
which can be used to track computations at an adequate level of abstraction.
Given an execution, its track is more informative than its trace since the former
not only contains a lot of information about original program structures but
also explicitly relates the sequence of events with the parts of the specification
that caused these events. Formal definition of a tracking semantics improves
the understanding of the tracking process, but also, it allows to formally prove
the correctness of the computed tracks.

1. Introduction

One of the most important techniques for program understanding and debug-
ging is tracing [3]. A trace gives the user access to otherwise invisible information
about a computation. In the context of concurrent languages, computations are
particularly complex due to the non-deterministic execution order of processes
and to the restrictions imposed on this order by synchronizations; and thus, a
tracer is a powerful tool to explore, understand and debug concurrent compu-
tations.
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One of the most widespread concurrent specification languages is the Com-
municating Sequential Processes (CSP) [7, 16] whose operational semantics al-
lows us the combination of parallel, non-deterministic and non-terminating pro-
cesses. The study and transformation of CSP specifications often uses different
analyses such as deadlock analysis [10], reliability analysis [8] and program slic-
ing [18] which are based on a data structure able to represent computations.

In CSP a trace is a sequence of events. Concretely, the operational semantics
of CSP is an event-based semantics in which the occurrence of events fires the
rules of the semantics. Hence, the final trace of the computation is the sequence
of events occurred (see Chapter 8 of [16] for a detailed study of this kind of
traces). In this work we introduce an essentially different notion of trace [3]
called track. In our setting, a track is a data structure which represents the
sequence of expressions that have been evaluated during the computation, and
moreover, this data structure is labelled with the location of these expressions
in the specification. Therefore, a CSP track is much more informative than a
CSP trace since the former not only contains a lot of information about original
program structures but also explicitly relates the sequence of events with the
parts of the specification that caused these events.

Example 1. Consider the following CSP specification1:

MAIN = CASINO || GAMBLING

CASINO = (PLAYER ||| ROULETTE) ‖
{betred,red,black,prize}

CROUPIER

PLAYER = betred→ (prize→ STOP 2 noprize→ STOP)

ROULETTE = red→ STOP 2 black→ STOP

CROUPIER = (betred→ red→ prize→ STOP)
2 (betred→ black→ prize→ STOP)

2 (betblack→ black→ prize→ STOP)
2 (betblack→ red→ getmoney→ STOP)

GAMBLING = Complex Composite Processes

This specification models several gambling activities running in parallel and
modeled by process GAMBLING. One of the games is the casino. A CASINO is mod-
eled as the interaction of three parallel processes, namely a PLAYER, a ROULETTE,
and a CROUPIER. The player bets for red, and she can win a prize or not. The
roulette simply takes a color (either red or black); and the croupier checks the
bet and the color of the roulette in order to give a prize to the player or just get
the bet money.

This specification contains an error, because it allows the trace of events
t = 〈betred, black, prize〉 where the player bets for red and she wins a prize
even though the roulette takes black.

1We refer those readers non familiarized with CSP syntax to Section 2 where we provide a
brief introduction to CSP.
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ROULETTE
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MAIN

prize
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CROUPIER

betred

black
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!

!

!

!

!
!

!

STOP

STOP

STOP

Figure 1: Track of the program in Example 1

Now assume that we execute the specification and discover the error after
executing trace t. A track can be very useful to understand why the error was
caused, and what part of the specification was involved in the wrong execution.
For instance, if we look at the track of Fig. 1, we can easily see that the three
processes run in parallel, and that the prize is given because there is a syn-
chronization (dashed edges represent synchronizations) between CROUPIER and
PLAYER that should never happen. Observe that the track is intuitive enough as
to be a powerful program comprehension tool that provides much more informa-
tion than the trace.

Moreover, observe that the track contains explicit information about the spec-
ification expressions that were involved in the execution. Therefore, it can be
used for program slicing (see [17] for an explanation of the technique and [14]
for an adaptation of program slicing to CSP). In particular, in this example,
we can use the track to extract the part of the program that was involved in the
execution—note that this is the only part that could cause the error—. This
part has been underscored in the example. With a quick look, one can see that
the underscored part of process CROUPIER produced the wrong behavior. Event
prize should be replaced by getmoney.

Another interesting application of tracks is related to component extraction
and reuse. If we are interested in a particular trace, and we want to extract the
part of the specification that models this trace to be used in another model, we
can simply produce a slice, and slightly augment the code to make it syntactically
correct (see [14] for an example and an explanation of this transformation). In
our example, even though the system is very big due to the process GAMBLING,
the track is able to extract the only information related to the trace.
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We have implemented a tool [13] able to produce tracks and to automatically
color parts of the code related to some point in the specification. This tool is
integrated in the last version of ProB [11, 12] which is the most extended IDE
for CSP.

In languages such as Haskell, the tracks (see, e.g., [3, 4, 5, 1]) are the basis of
many analysis methods and tools. However, computing CSP tracks is a complex
task due to the non-deterministic execution of processes, due to deadlocks, due
to non-terminating processes and mainly due to synchronizations. This is prob-
ably the reason why no correctness result exists which formally relates the track
of a specification to its execution. This semantics is needed because it would
allow us to prove important properties (such as correctness and completeness)
of the techniques and tools based on tracking.

To the best of our knowledge, there is only one attempt to define and build
tracks for CSP [2]. Their notion of track is based on the standard program
dependence graph [6]; therefore it is useful for program slicing but it is insufficient
for other analyses that need a context-sensitive graph [9] (i.e., each different
process call has a different representation). Moreover, their notion of track does
not include synchronizations. Our tracks are able to represent synchronizations,
and they are context-sensitive.

The main contributions of this work are the formal definition of tracks,
the definition of the first tracking semantics for CSP and the proof that the
trace of a computation can be extracted from the track of this computation.
Concretely, we instrument the standard operational semantics of CSP in such
a way that the execution of the semantics produces as a side-effect the track of
the computation. It should be clear that the track of an infinite computation is
also infinite. However, we design the semantics in such a way that the track is
produced incrementally step by step. Therefore, if the execution is stopped (e.g.,
by the user because it is non-terminating or because a limit in the size of the
track was specified), then the semantics produces the track of the computation
performed so far. This semantics can serve as a theoretical foundation for
tracking CSP computations because it formally relates the computations of the
standard semantics with the tracks of these computations.

The rest of the paper has been organized as follows. Firstly, in Section 2 we
recall the syntax and semantics of CSP. In Section 3 we define the concept of
track for CSP. Then, in Section 4, we instrument the CSP semantics in such a
way that its execution produces as a side-effect the track associated with the
performed computation. In Section 5, we present the main results of the paper
proving that the instrumented semantics presented is a conservative extension of
the standard semantics, its computed tracks are correct and the corresponding
trace can be extracted from the track. Finally, Section 6 concludes.

2. The syntax and semantics of CSP

In order to make the paper self-contained, we recall in this section the syntax
and semantics of CSP.

Figure 2 summarizes the syntax constructions used in CSP specifications. A
specification is viewed as a finite set of process definitions. The left-hand side of
each definition is the name of a process, which is defined in the right-hand side
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(abbrev. rhs) by means of an expression that can be a call to another process
or a combination of the following operators:

Prefixing It specifies that event a must happen before process P .

Internal choice The system chooses non-deterministically to execute one of the
two processes P or Q.

External choice It is identical to internal choice but the choice comes from out-
side the system (e.g., the user).

Sequential composition It specifies a sequence of two processes. When the first
(successfully) finishes, the second starts.

Synchronized parallelism Both processes are executed in parallel with a set X of
synchronized events. In absence of synchronizations both processes can
execute in any order. Whenever a synchronized event a ∈ X happens in
one of the processes it must also happen in the other at the same time.
Whenever the set of synchronized events is not specified, it is assumed
that processes are synchronized in all common events. A particular case
of parallel execution is interleaving where no synchronizations exist (i.e.,
X = ∅).

Skip It successfully finishes the current process. It allows us to continue the
next sequential process.

Stop Synonymous of deadlock: It finishes the current process and it does not
allow the next sequential process to continue.

S ::= {D1, . . . , Dm} (Entire specification) Domains
M,N . . . ∈ N (Process names)
P,Q . . . ∈ P (Processes)
a, b . . . ∈ Σ (Events)

D ::= N = P (Process definition)
P ::= M (Process call)

| a→ P (Prefixing)
| P u Q (Internal choice)
| P 2 Q (External choice)
| P ; Q (Sequential composition)
| P ||

X
Q (Synchronized parallelism) where X ⊆ Σ

| SKIP (Skip)
| STOP (Stop)

Figure 2: Syntax of CSP specifications

We now recall the standard operational semantics of CSP as defined by
Roscoe [16]. It is presented in Fig. 3 as a logical inference system. A state of the
semantics is a process to be evaluated called the control. The system starts with
an initial state, and the rules of the semantics are used to infer how this state
evolves. When no rules can be applied to the current state, the computation
finishes. The rules of the semantics change the states of the computation due
to the occurrence of events. The set of possible events is Σ ∪ {τ,X}. Events in
Σ = {a, b, c . . .} are visible from the external environment, and can only happen
with its co-operation (e.g., actions of the user). The special event τ cannot
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be observed from outside the system and it is an internal event that happens
automatically as defined by the semantics. X is a special event representing the
successful termination of a process. We use the special symbol Ω to denote any
process that successfully terminated.

In order to perform computations, we construct an initial state (e.g., MAIN)
and (non-deterministically) apply the rules of Fig. 3. The intuitive meaning of
each rule is the following:

(Process Call) The call is unfolded and the right-hand side of process named N
is added to the control.

(Prefixing) When event a occurs, process P is added to the control.

(SKIP) After SKIP, the only possible event is X, which denotes the successful
termination of the (sub)computation with the special symbol Ω. There is
no rule for Ω (neither for STOP), hence, this (sub)computation has finished.

(Internal Choice 1 and 2) The system, with the occurrence of the internal event
τ , (non-deterministically) selects one of the two processes P or Q which
is added to the control.

(External Choice 1, 2, 3 and 4) The occurrence of τ develops one of the branches.
The occurrence of an event a 6= τ is used to select one of the two processes
P or Q and the control changes according to the event.

(Sequential Composition 1) In P ;Q, P can evolve to P ′ with any event except
X. Hence, the control becomes P ′;Q.

(Sequential Composition 2) When P successfully finishes (with eventX), Q starts.
Note that X is hidden from outside the whole process becoming τ .

(Synchronized Parallelism 1 and 2) When event a 6∈ X or events τ or X happen,
one of the two processes P or Q evolves accordingly, but only a is visible
from outside the parallelism operator.

(Synchronized Parallelism 3) When event a ∈ X happens, it is required that both
processes synchronize, P and Q are executed at the same time and the
control becomes P ′ ||

X

Q′.

(Synchronized Parallelism 4) When both processes have successfully terminated
the control becomes Ω, performing the event X.
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(Process Call) (Prefixing) (SKIP)

N
τ−→ rhs(N) (a→ P )

a−→ P SKIP
X−→ Ω

(Internal Choice 1) (Internal Choice 2)

(P uQ)
τ−→ P (P uQ)

τ−→ Q

(External Choice 1) (External Choice 2)

P
τ−→ P ′

(P � Q)
τ−→ (P ′ � Q)

Q
τ−→ Q′

(P � Q)
τ−→ (P � Q′)

(External Choice 3) (External Choice 4)

P
e−→ P ′

(P � Q)
e−→ P ′

Q
e−→ Q′

(P � Q)
e−→ Q′

e ∈ Σ ∪ {X}

(Sequential Composition 1) (Sequential Composition 2)

P
e−→ P ′

(P ;Q)
e−→ (P ′;Q)

e ∈ Σ ∪ {τ} P
X−→ Ω

(P ;Q)
τ−→ Q

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

P
e′−→ P ′

(P ||
X

Q)
e−→ (P ′ ||

X

Q)

Q
e′−→ Q′

(P ||
X

Q)
e−→ (P ||

X

Q′)

(e = e′ = a ∧ a 6∈ X)
∨ (e = τ ∧ e′ ∈ {τ,X})

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

P
a−→ P ′ Q

a−→ Q′

(P ||
X

Q)
a−→ (P ′ ||

X

Q′)
a ∈ X

(Ω||
X

Ω)
X−→ Ω

Figure 3: CSP’s operational semantics

We illustrate the semantics with the following example.

Example 2. Consider the next CSP specification:

MAIN = (a→ STOP) ‖
{a}

(P 2 (a→ STOP))

P = b→ SKIP

If we use MAIN as the initial state to execute the semantics, we get the computa-
tion shown in Fig. 4 where the final state is ((a→ STOP) ‖

{a}
Ω). This computation

corresponds to the execution of the left branch of the choice (i.e., P) and thus
only event b occurs. Each rewriting step is labelled with the applied rule, and
the example should be read top-down.
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(Process Call)
MAIN

τ−→ ((a→ STOP) ‖
{a}

(P2(a→ STOP)))

(Synchronized
Parallelism 2)

(External Choice 1)

(Process Call)
P

τ−→ (b→ SKIP)

(P2(a→ STOP))
τ−→ ((b→ SKIP)2(a→ STOP))

((a→ STOP) ‖
{a}

(P2(a→ STOP)))
τ−→ State1

where State1 =((a→ STOP) ‖
{a}

((b→ SKIP)2(a→ STOP)))

(Synchronized

Parallelism 2)

(External Choice 3)

(Prefixing)
(b→ SKIP)

b−→ SKIP

((b→ SKIP)2(a→ STOP))
b−→ SKIP

State1
b−→ ((a→ STOP) ‖

{a}
SKIP)

(Synchronized
Parallelism 2)

(SKIP)
SKIP

X−→ Ω

((a→ STOP) ‖
{a}

SKIP)
τ−→ ((a→ STOP) ‖

{a}
Ω)

Figure 4: A computation with the operational semantics in Fig. 3

3. Tracking computations

In this section we define the notion of track. Firstly, we introduce some
notation that will be used throughout the paper.

A track is formed by the sequence of expressions that are evaluated during
an execution. These expressions are conveniently connected to form a graph.
However, several program analysis techniques such as program slicing handle the
locations of program expressions, and thus, this notion of track is insufficient
for them. Therefore, we want our tracks to also store the location of each literal
(i.e., events, operators and process names) in the specification so that the track
can be used to know what portions of the source code have been executed and in
what order. The inclusion of source positions in the track implies an additional
level of complexity in the semantics, but the benefits of providing our tracks
with this additional information are clear and, for some applications, essential.
Therefore, we use labels (that we call specification positions) to uniquely identify
each literal in a specification which roughly corresponds to nodes in the CSP
specification’s abstract syntax tree. We define a function Pos to obtain the
specification position of an element of a CSP specification and it is defined over
nodes of an abstract syntax tree for a CSP specification. Formally,

Definition 1. (Specification position) A specification position is a pair (N,w)
where N ∈ N and w is a sequence of natural numbers (we use Λ to de-
note the empty sequence). We let Pos(o) denote the specification position
of an expression o. Each process definition N = P of a CSP specification
is labelled with specification positions. The specification position of its left-
hand side is Pos(N) = (N, 0). The right-hand side is labelled with the call
AddSpPos(P, (N,Λ)); where function AddSpPos is defined as follows:

AddSpPos(P, (N,w)) =
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



P(N,w) if P ∈ N
STOP(N,w) if P = STOP

SKIP(N,w) if P = SKIP

a(N,w.1) →(N,w) AddSpPos(Q, (N,w.2)) if P = a→ Q

AddSpPos(Q, (N,w.1)) op(N,w) AddSpPos(R, (N,w.2))
if P = Q op R ∀ op ∈ {u,2, ||, ; }

Example 3. Consider again the CSP specification in Example 2 where literals
are labelled with its associated specification positions (they are underlined) so
that labels are unique:

MAIN(MAIN,0) = (a(MAIN,1.1)→(MAIN,1)STOP(MAIN,1.2)) ‖
{a}

(MAIN,Λ)

(P(MAIN,2.1)2(MAIN,2)(a(MAIN,2.2.1)→(MAIN,2.2)STOP(MAIN,2.2.2)))

P(P,0) = b(P,1)→(P,Λ)SKIP(P,2)

In the following, specification positions will be represented with greek letters
(α, β, . . .) and we will often use indistinguishably an expression and its associ-
ated specification position when it is clear from the context (e.g., in Example 3
we will refer to (P, 1) as b).

In order to introduce the formal definition of track, we need first to define the
concept of control-flow, which refers to the order in which the individual literals
of a CSP specification are executed. Intuitively, the control can pass from a
specification position α to a specification position β iff an execution exists where
α is executed before β. This notion of control-flow is similar of the control-flow
used in the control-flow graphs (CFG) [17] of imperative programming. We have
adapted the same idea to CSP where choices and parallel composition appears;
and in a similar way to the CFG, we use this definition to draw control arcs in
our tracks. Formally,

Definition 2. (Static control-flow) Given a CSP specification S and two spec-
ification positions α, β in S, we say that the control can pass from α to β,
denoted by α⇒ β, iff one of the following conditions holds:

i) α = N ∧ β = first((N,Λ)) with N = rhs(N) ∈ S
ii) α ∈ {u,2, ||} ∧ β ∈ {first(α.1),first(α.2)}
iii) α ∈ {→, ; } ∧ β = first(α.2)
iv) α = β.1 ∧ β =→
v) α ∈ last(β.1) ∧ β = ;

where first(α) is the specification position of the subprocess denoted by α which
must be executed first:

first(α) =





α.1 if α = →
first(α.1) if α = ;
α otherwise

and last(α) is the set of all possible termination points of the subprocess denoted
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by α:

last(α) =





{α} if α = SKIP

∅ if α = STOP ∨
(α ∈ {||} ∧ (last(α.1) = ∅ ∨ last(α.2) = ∅))

last(α.1) ∪ last(α.2) if α ∈ {u,2} ∨
(α ∈ {||} ∧ last(α.1) 6= ∅ ∧ last(α.2) 6= ∅)

last(α.2) if α ∈ {→, ; }
last((N,Λ)) if α = N

For instance, in Example 3, we can see how the control can pass from a
specification position to another one, e.g., we have (MAIN, 2) ⇒ (MAIN, 2.1) and
(MAIN, 2) ⇒ (MAIN, 2.2.1) due to rule ii). And (MAIN, 2.2.1) ⇒ (MAIN, 2.2) due
to rule iv); (MAIN, 2.2) ⇒ (MAIN, 2.2.2) due to rule iii) and (MAIN, 2.1) ⇒ (P, 1)
due to rule i).

We also need to define the notions of rewriting step and derivation.

Definition 3. (Rewriting Step, Derivation) Given a CSP process P , a rewriting

step for P , denoted by P
Θ P ′, is the transformation of P into P ′ by using a

rule of the CSP semantics. Therefore, P
Θ P ′ iff a rule of the form

Θ

P
e−→ P ′

is

applicable, where e ∈ Σ ∪ {τ,X} and Θ is a (possibly empty) set of rewriting

steps. Given a CSP process P0, we say that the sequence P0
Θ0 . . .

Θn Pn+1,

n ≥ 0, is a derivation of P0 iff ∀ i, 0 ≤ i ≤ n, Pi
Θi Pi+1 is a rewriting step.

We say that the derivation is complete iff there is no possible rewriting step for
Pn+1. We say that the derivation has successfully finished iff Pn+1 is Ω.

For instance, in Fig. 5(a), one (possible) complete derivation of Example 3
is shown (for the time being, the reader can ignore the underlined part). The
rules applied in each rewriting step (ignoring subderivations) are (Process Call)

and (Synchronized Parallelism 3) (abbrev. (PC) and (SP3), respectively).
Function last of Definition 2 can be used to determine the last specification

position in a derivation. However, this function computes all possible final
specification positions, and a derivation only reaches (non-deterministically) a
set of them. Therefore, we will use in the following a modified version of last
called last ′ whose behaviour is exactly the same as last except in the case of
choices where only one of the branches is selected:

For each derivation (P u P ′ Θ P ) or (P 2 P ′
Θ0 . . .

Θn P ′′, n ≥ 0 such that

P
Θ′0 . . .

Θ′m P ′′,m ≥ 0), last ′(P u P ′) = last ′(P 2 P ′) = last′(P ).

Note that, while last is static, last ′ is dynamic; it is defined in the context of
a particular derivation which implies one particular way of resolving any non-
determinism. The same happens with the definition of control-flow. Control-
flow is defined statically and says if the control can pass from α to β in some
derivation. However, the track is a dynamic structure produced for a particular
derivation. Therefore, we produce a dynamic version of the definition of control-
flow which is defined for a particular derivation.

Definition 4. (Dynamic control-flow) Let S be a CSP specification and D a
derivation in S. Given two specification positions α, β in S, we say that the
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control can dynamically pass from α to β, denoted by α V β, iff the control

can pass from α to β (α ⇒ β) in derivation D. For each P
Θ P ′ ∈ D and for

all rewriting steps in Θ, we have that:

1. if P is a prefixing (a → Q) or a sequential composition (Q;R), then
Pos(a)V Pos(→) or ∀p ∈ last ′(Q), Pos(p)V Pos(; ) respectively,

2. if P ⇒ first(P ′′) where P ′′
Θ′ P ′′′ ∈ Θ, then Pos(P )V Pos(first(P ′′)),

3. if P ⇒ first(P ′), then Pos(P )V Pos(first(P ′)).

Clauses 1, 2 and 3 define the cases in which the control passes between two
specification positions in a given derivation. In clause 1, if we have a prefixing
in the control then Θ is empty and the rewriting step applied is of the form

(a→ P )
a−→ P

. In this case, clause 1 guarantees that the control can dynami-

cally pass from a to→; and clause 3 guarantees that the control can dynamically
pass from → to P . However, in general, Θ is not empty, and the rewriting step

is of the form
P ′′ −→ P ′′′

P −→ P ′
. Here, clause 2 ensures that the control can dynami-

cally pass from P to P ′′; and clause 3 ensures that the control can dynamically
pass from P to P ′ and from P ′′ to P ′′′. For instance, it is possible that we have
a rewriting step to evaluate the process P 2 P ′. Clearly, the control can pass
from 2 to both P and P ′ (2 ⇒ P and 2 ⇒ P ′), but in the rewriting step the
control will only pass to one of them (2V P or 2V P ′). In this case, clauses
2 and 3 are used.

We are now in a position to formally define the concept of track of a deriva-
tion.

Definition 5. (Track) Given a CSP specification S, and a derivation D in S,
the track of D is a graph G = (N,Ec, Es) where N is a set of nodes uniquely
identified with a natural number and that are labelled with specification posi-
tions (l(n) refers to the label of node n), and edges are divided into two groups:

• control-flow edges (Ec) are a set of one-way edges (denoted with 7→) rep-
resenting the control-flow between two nodes, and

• synchronization edges (Es) are a set of two-way edges (denoted with e)
representing the synchronization of two (event) nodes;

and

1. Ec contains a control-flow edge a 7→ a′ iff aV a′ with respect to D, and

2. Es contains a synchronization edge a e a′ for each synchronization oc-
curring in D where a and a′ are the nodes of the synchronized events.

The only nodes in N are the nodes induced by Ec and Es.

Example 4. Consider again the specification of Example 3. We show in Fig. 5(a)
one possible derivation (ignoring subderivations) of this specification (for the
time being, the underlined part should be ignored). Its associated track is shown
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MAIN  
(PC)

(a→ STOP) ‖
{a}

(P2(a→ STOP))

 
(SP3)

STOP ‖
{a}

STOP

 
(SP1)

⊥ ‖
{a}

STOP

 
(SP2)

⊥ ‖
{a}
⊥

(a) Derivation

||
MAIN,!

!

MAIN,2
a

MAIN,1.1

"
MAIN,1

STOP
MAIN,1.2

a
MAIN,2.2.1

"
MAIN,2.2

STOP
MAIN,2.2.2

1

5

6

7

8

2

3

4

MAIN
MAIN,0

0

(b) Track

Figure 5: Derivation and track associated with the specification of Example 3

in Fig. 5(b). In the example, we see that the track is a connected and di-
rected graph. Apart from the control-flow edges, there is one synchronization
edge between nodes (MAIN, 1.1) and (MAIN, 2.2.1) representing the synchroniza-
tion of event a. To illustrate the inclusion of edges in Definition 5, we see
that the edge between nodes 2 and 3 is introduced according to clause 1 of Def-
inition 4; the edge between nodes 5 and 6 is introduced according to clause
2 of Definition 4 because, in the subderivations of (SP3), there is a rewrit-

ing step (External
Choice 4)

(Prefixing)
(a→ STOP)

a−→ (STOP)

(P2(a→ STOP))
a−→ (STOP)

and first(a → STOP) = a;

the edge between nodes 7 and 8 is introduced according to clause 3 of Defini-
tion 4 because there is also a rewriting step (Prefixing)

(a→ STOP)
a−→ (STOP)

and

first(STOP) = STOP; and the synchronization edge between nodes 2 and 6 is in-
troduced according to clause 2 of Definition 5.

The trace associated with the derivation in Fig. 5(a) is 〈a〉. Therefore, note
that the track is much more informative: it shows the exact processes that have
been evaluated with an explicit causality relation; and, in addition, it shows the
specification positions that have been evaluated and in what order.

4. Instrumenting the semantics for tracking

The generation of tracks in CSP introduces new challenges such as non-
determi-nistic execution of processes, deadlocks, non-terminating processes and
synchronizations. In this work, we designed a solution that overcomes these
difficulties. Firstly, we generate tracks with an augmented semantics which is
conservative with respect to the standard operational semantics. Therefore,
the execution order is the standard order, thus non-determinism and synchro-
nizations are solved by the own semantics. Moreover, the semantics generates
the track incrementally, step by step. Therefore, infinite computations can be
tracked until they are stopped. Hence, it is not needed to actually finish a com-
putation to get the track of the subcomputations performed. In order to solve
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the problem of deadlocks (that stop the computation), and have a representa-
tion for them in the tracks; when a deadlock happens, the semantics performs
some additional steps to be able to generate a part of the track that represents
the deadlock. These additional steps do not influence the other rules of the
semantics, thus it remains conservative.

This section introduces an instrumented operational semantics of CSP which
generates as a side-effect the tracks associated with the computations performed
with the semantics. The tracking semantics is shown in Fig. 6, where we as-
sume that every literal in the program has been labelled with its specification
position (denoted by a subscript, e.g., Pα). In this semantics, a state is a tuple
(P,G,m,∆), where P is the process to be evaluated (the control), G is a directed
graph (i.e., the track built so far), m is a numeric reference to the current node in
G, and ∆ is a set of references to nodes that may be synchronized. Concretely,
m references the node in G where the specification position of the control P
must be stored. Reference m is a fresh2 reference generated to add new nodes
to G. The basic idea of the graph construction is to record the current control
with the current reference in every step by connecting it to its parent. We use
the notation G[m 7→

n
α] to introduce a node in G. For instance, if we are adding

a node to G this new node has reference m, it is labelled with specification po-
sition α, and its successor is n (a fresh reference). Successor arrows are denoted
by m 7→

n
which means that node n is the successor of node m. Every time an

event in Σ happens during the computation, this event is stored in the set ∆ of
the current state. Therefore, when a synchronized parallelism is evaluated, all
the events that must be synchronized are in ∆. We use the special symbol ⊥ to
denote any process that is deadlocked. In order to perform computations, we
construct an initial state (e.g., (MAIN, ∅, 0, ∅)) and (non-deterministically) apply
the rules of Fig. 6. When the execution has finished or has been interrupted,
the semantics has produced the track of the computation performed so far.

An explanation for each rule of the semantics follows:

(Process Call) The called process N is unfolded, node m is added to the graph
with specification position α and successor n (a fresh reference). The new
process in the control is rhs(N). The set ∆ of events to be synchronized
is put to ∅.

(Prefixing) This rule adds nodes m (the prefix) and n (the prefixing operator)
to the graph. In the new state, n becomes the parent reference and the
fresh reference p represents the current reference. The new control is P .
The set ∆ is {m} to indicate that event a has occurred and it must be
synchronized when required by (Synchronized Parallelism 3).

(SKIP and STOP) Whenever one of these rules is applied, the subcomputation
finishes because Ω (for rule SKIP) and ⊥ (for rule STOP) are put in the
control, and these special symbols have no associated rule. A node with
the SKIP (respectively STOP) specification position is added to the graph.

(Internal Choice 1 and 2) The choice operator is added to the graph, and the
(non-deterministically) selected branch is put into the control with the

2We assume that fresh references are numeric and generated incrementally.
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(Process Call)
(Nα,G,m,∆)

τ−→ (rhs(N), G[m 7→
n
α], n, ∅)

(Prefixing)
(aα →β P,G,m,∆)

a−→ (P,G[m 7→
n
α, n 7→

p
β], p, {m})

(SKIP)

(SKIPα,G,m,∆)
X−→ (Ω, G[m 7→

n
α], n, ∅)

(STOP)
(STOPα,G,m,∆)

τ−→ (⊥, G[m 7→
n
α], n, ∅)

(Internal

Choice 1)
(P uα Q,G,m,∆)

τ−→ (P,G[m 7→
n
α], n, ∅)

(Internal

Choice 2)
(P uα Q,G,m,∆)

τ−→ (Q,G[m 7→
n
α], n, ∅)

(External
Choice 1)

(P1, G
′, n′,∆)

τ−→ (P ′, G′′, n′′, ∅)

(P1 �(α,n1,n2)P2, G,m,∆)
τ−→ (P ′ �

(α,n′′,n2)
P2, G

′′,m, ∅)
where (G′, n′) = FirstEval(G,n1,m, α)

(External
Choice 2)

(P2, G
′, n′,∆)

τ−→ (P ′, G′′, n′′, ∅)

(P1 �(α,n1,n2)P2, G,m,∆)
τ−→ (P1 �(α,n1,n

′′)P
′, G′′,m, ∅)

where (G′, n′) = FirstEval(G,n2,m, α)

(External
Choice 3)

(P1, G
′, n′,∆)

e−→ (P ′, G′′, n′′,∆′)

(P1 �(α,n1,n2)P2, G,m,∆)
e−→ (P ′, G′′, n′′,∆′)

e ∈ Σ ∪ {X}

where (G′, n′) = FirstEval(G,n1,m, α)

(External
Choice 4)

(P2, G
′, n′,∆)

e−→ (P ′, G′′, n′′,∆′)

(P1 �(α,n1,n2)P2, G,m,∆)
e−→ (P ′, G′′, n′′,∆′)

e ∈ Σ ∪ {X}

where (G′, n′) = FirstEval(G,n2,m, α)

(Sequential
Composition 1)

(P,G,m,∆)
e−→ (P ′, G′,m′,∆′)

(P ;Q,G,m,∆)
e−→ (P ′;Q,G′,m′,∆′)

e ∈ Σ ∪ {τ}

(Sequential
Composition 2)

(P,G,m,∆)
X−→ (Ω, G′, n, ∅)

(P ;α Q,G,m,∆)
τ−→ (Q,G′[n 7→

p
α], p, ∅)

(Synchronized

Parallelism 1)
(P1, G

′, n′,∆)
e′−−→ (P ′, G′′, n′′,∆′)

(P1 ‖
X

(α,n1,n2)P2, G,m,∆)
e−→ (P ′ ‖

X
(α,n′′,n2)

P2, G
′′,m,∆′)

(e = e′ = a ∧ a 6∈ X)

∨ (e = τ ∧ e′ ∈ {τ,X})

where (G′, n′) = FirstEval(G,n1,m, α)

(Synchronized

Parallelism 2)
(P2, G

′, n′,∆)
e′−−→ (P ′, G′′, n′′,∆′)

(P1 ‖
X

(α,n1,n2)P2, G,m,∆)
e−→ (P1 ‖

X
(α,n1,n

′′)P
′, G′′,m,∆′)

(e = e′ = a ∧ a 6∈ X)

∨ (e = τ ∧ e′ ∈ {τ,X})

where (G′, n′) = FirstEval(G,n2,m, α)

(Synchronized
Parallelism 3)

RewritingStep1 RewritingStep2

(P1 ‖
X

(α,n1,n2)P2, G,m,∆)
a−→ (P ′1 ‖

X
(α,n′′1 ,n

′′
2 )
P ′2, G′′,m,∆1 ∪∆2)

a ∈ X

where G′′ = G′′1 ∪ G
′′
2 ∪ {s1

ae s2 | s1 ∈ ∆1 ∧ s2 ∈ ∆2}

∧ RewritingStep1 = (P1, G
′
1, n
′
1,∆)

a−→ (P ′1, G
′′
1 , n
′′
1 ,∆1)

∧ (G′1, n
′
1) = FirstEval(G,n1,m, α)

∧ RewritingStep2 = (P2, G
′
2, n
′
2,∆)

a−→ (P ′2, G
′′
2 , n
′′
2 ,∆2)

∧ (G′2, n
′
2) = FirstEval(G,n2,m, α)

(Synchronized

Parallelism 4)

(Ω ‖
X

(α,n1,n2)Ω, G,m,∆)
X−→ (Ω, G′, r, ∅)

where G′ = G[{p 7→
r
| p 7→

q
∈ G where q ∈ {n1, n2}}]

Figure 6: An instrumented operational semantics to generate CSP tracks

fresh reference n as the successor of the choice operator.

(External Choice 1, 2, 3 and 4) External choices can develop both branches while
τ events happen (rules 1 and 2), until an event in Σ∪{X} occurs (rules 3
and 4). This means that the semantics can add nodes to both branches of
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the track alternatively, and thus, it needs to store the next reference to use
in every branch of the choice. This is done by labelling choice operators
with a tuple of the form (α, n1, n2) where α is the specification position
of the choice operator; and n1 and n2 are respectively the references to be
used in the left and right branches of the choice, and they are initialized
to •, a symbol used to express that the branch has not been evaluated
yet. Therefore, the first time a branch is evaluated, we generate a new
reference for this branch. For this purpose, function FirstEval is used:

FirstEval(G,n,m, α) =

{
(G[m 7→

p
α], p) if n = •

(G,n) otherwise

This function checks whether this is the first time that the branch is eval-
uated (this only happens when the reference of this branch is empty, i.e.,
n = •). In this case, the choice operator is added to G. For instance,
consider the rewriting step (EC4) of Fig. 7. The choice operator in the
rewriting step R is labelled with ((MAIN,Λ), •, •). Therefore, it is evalu-
ated for the first time, and thus, in the left-hand side state of the upper
rewriting step, node 5 7→

6
(MAIN, 2), which refers to the choice operator, is

added to G.

(Sequential Composition 1 and 2) Sequential Composition 1 is used to evolve
process P until it is finished. P is evolved to P ′ which is put into the
control. When P successfully finishes (it becomes Ω), X happens. Then,
Sequential Composition 2 is used and Q is put into the control. The
sequential composition operator ; is added to the graph with successor p
that is the reference to be used in the first node added in the subderivation
associated with Q.

(Synchronized Parallelism 1 and 2) In a synchronized parallel composition, both
parallel processes can be intertwiningly executed until a synchronized
event is found. Therefore, nodes from both processes can be added in-
terwoven to the graph. Hence, each parallelism operator is labelled with
a tuple of the form (α, n1, n2) as it happens with external choices.

These rules develop the branches of the parallelism until they are finished
or until they must synchronize. In order to introduce the parallelism op-
erator into the graph, function FirstEval is used, as it happens in the
external choice rules. For instance, consider the rewriting step (Synchro-

nized Parallelism 3) of Fig. 7. The parallelism operator in the rewriting step
State 1 is labelled with ((MAIN,Λ), •, •). Therefore, it is evaluated for the
first time, and thus, in the left-hand side state of the rewriting step L,
node 1 7→

2
(MAIN,Λ), which refers to the parallelism operator, is added to

G.

(Synchronized Parallelism 3) This rule is used to synchronize the parallel pro-
cesses. In this case, both branches must perform a rewriting step with
the same visible (and synchronized) event. Each branch derivation has a
non-empty set of events (∆1, ∆2) to be synchronized (note that this is a
set because many parallelisms could be nested). Then, all references in
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the sets ∆1 and ∆2 are mutually linked with synchronization edges. Both
sets are joined to form the new set of synchronized events.

(Synchronized Parallelism 4) It is used when none of the parallel processes can
proceed because they already successfully finished. In this case, the con-
trol becomes Ω indicating the successful termination of the synchronized
parallelism. In the new state, the new (fresh) reference is r. This rule also
adds to the graph the arcs from all the parents of the last references of
each branch (n1 and n2) to r. Here, we use the notation p 7→

r
to add an

edge from p to r. Note that the fact of generating the next reference in
each rule allows (Synchronized Parallelism 4) to connect the final node of both
branches to the next node. This simplifies other rules such as (Sequential

Composition) that already has the reference of the node ready.

We illustrate this semantics with a simple example3.

Example 5. Consider again the specification in Example 3. Figure 5(a) shows
one possible derivation (excluding subderivations) for this example. Note that
the underlined part corresponds to the additional rewriting steps performed by
the tracking semantics. This derivation corresponds to the execution of the
instrumented semantics with the initial state (MAIN, ∅, 0, ∅) shown in Fig. 7.
Here, for clarity, each computation step is labelled with the applied rule; in
each state, G denotes the current graph. This computation corresponds to the
execution of the right branch of the choice (i.e., a → STOP). The final state
is (⊥ ‖

{a}
((MAIN,Λ),9,10)⊥, G′, 1, ∅). The final track G′ computed for this execution

is depicted in Fig. 5(b) where we can see that nodes are numbered with the
references generated by the instrumented semantics. Note that nodes 9 and
10 were prepared by the semantics (edges to them were produced) but never
used because the subcomputations were stopped in STOP. Note also that the track
contains all the parts of the specification executed by the semantics. This means
that if the left branch of the choice had been developed (i.e., unfolding the call
to P, thus using rule (External Choice 3)), this branch would also belong to the
track.

5. Correctness

In this section we prove the correctness of the tracking semantics (in Fig. 6)
by showing that (i) the computations performed by the tracking semantics are
equivalent to the computations performed by the standard semantics; and (ii)
the graph produced by the tracking semantics is the track of the derivation. We
also prove that the trace of a derivation can be automatically extracted from
the track of this derivation.

The first theorem shows that the computations performed with the tracking
semantics are all and only the computations performed with the standard se-
mantics. The only difference between them from an operational point of view

3We refer the reader to Appendix A where another example is discussed.
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Figure 7: An example of computation with the tracking semantics in Fig. 6

is that the tracking semantics needs to perform one step when a STOP is evalu-
ated (to add its specification position to the track) and then finishes, while the
standard semantics finishes without performing any additional step.

Theorem 6 (Conservativeness). Let S be a CSP specification, P a process
in S, and D and D′ the derivations of P performed with the standard semantics
of CSP and with the tracking semantics, respectively. Then, the sequence of rules
applied in D and D′ is exactly the same except that D′ performs one rewriting
step more than D for each (sub)computation that finishes with STOP.

Proof. Firstly, rule (STOP) of the tracking semantics is the only rule that is not
present in the standard semantics. When a (STOP) is reached in a derivation, the
standard semantics stops the (sub)computation because no rule is applicable.
In the tracking semantics, when a STOP is reached in a derivation, the only rule
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applicable is (STOP) which performs τ and puts ⊥ in the control:

(STOPα, G,m,∆)
τ−→ (⊥, G[m 7→

n
α], n, ∅)

Then, the (sub)computation is stopped because no rule is applicable for ⊥.
Therefore, when the control in the derivation is STOP, the tracking semantics
performs one additional rewriting step with rule (STOP).

The claim follows from the fact that both semantics have exactly the same
number of rules except for rule (STOP), and these rules have the same control in
all the states of the rules (thus the tracking semantics is a conservative extension
of the standard semantics). Therefore, all derivations in both semantics have
exactly the same number of steps and they are composed of the same sequences
of rewriting steps except for (sub)derivations finishing with STOP that perform
one rewriting step more (applying rule (STOP)).

The second theorem states the correctness of the tracking semantics by en-
suring that the graph produced is the track of the computation. To prove this
theorem, the following lemmas (proven in Appendix B) are used.

Lemma 1. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for
each prefixing (a → P ) in the control of the left state of a rewriting step in D,
we have that Pos(a) and Pos(→) are nodes of G and Pos(→) is the successor
of Pos(a).

Lemma 2. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for
each sequential composition (P ;Q) in the control of the left state of a rewriting
step in D, we have that last′(P ) and Pos(; ) are nodes of G and Pos(; ) is the
successor of all the elements of the set last′(P ) whenever P has successfully
finished.

Lemma 3. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for

each rewriting step in D of the form Ri
Θi Ri+1 we have that:

1. Ec contains an edge Pos(Ri) 7→ Pos(first(R′)) where R′
Θ′ R′′ ∈ Θi and

Ri ⇒ first(R′), and

2. if Ri ⇒ first(Ri+1) then Ec contains an edge Pos(Ri) 7→ Pos(first(Ri+1)).

Lemma 4. Let S be a CSP specification, D a derivation of S performed with
the tracking semantics, and G the graph produced by D. Then, there exists a
synchronization edge (ae a′) in G for each synchronization in D where a and
a′ are the nodes of the synchronized events.

Theorem 7 (Semantics correctness). Let S be a CSP specification, D a
derivation of S performed with the tracking semantics, and G the graph pro-
duced by D. Then, G is the track associated with D.

Proof. In order to prove that G = (N,Ec, Es) is a track, we need to prove

that it satisfies the properties of Definition 5. For each R
Θ R′ ∈ D and for all

rewriting steps in Θ we have
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1. Ec contains a control-flow edge a 7→ a′ iff aV a′ with respect to D. This
is ensured by the three clauses of Definition 4:

• by Lemma 1, if R is a prefixing (a → P ), then Ec contains an edge
Pos(a) 7→ Pos(→);

• by Lemma 2, if R is a sequential composition (Q;P ), then Ec contains
an edge ∀p ∈ last ′(Q),Pos(p) 7→ Pos(; );

• by Lemma 3, if R ⇒ first(R′′) where R′′
Θ′ R′′′ ∈ Θ, then Ec

contains an edge Pos(R) 7→ Pos(first(R′′)); and if R ⇒ first(R′)
then Ec contains an edge Pos(R) 7→ Pos(first(R′)); and

2. by Lemma 4, Es contains a synchronization edge ae a′ for each synchro-
nization occurring in the rewriting step where a and a′ are the synchro-
nized events.

Moreover, we know that the only nodes in N are the nodes induced by Ec
and Es because all the nodes inserted in G are inserted by connecting the new
node to the last inserted node (i.e., if the current reference is m and the new
fresh reference is n, then the new node is always inserted as G[m 7→

n
α]). Hence,

all nodes are related by control or synchronization edges and thus the claim
holds.

Our last result states that the trace of a derivation can be extracted from
its associated track. To prove it, we define first an order on the event nodes
of a track that corresponds to the order in which they were generated by the
tracking semantics.

Definition 6. (Event node order) Given a track G = (N,Ec, Es) and nodes
m,n ∈ N such that l(m), l(n) ∈ Σ, m is smaller than n, represented by m� n
iff m′ < n′ where (m,m′), (n, n′) ∈ Ec.

Intuitively, an event node m is smaller than an event node n if and only if
the successor of m has a reference smaller than the reference of the successor
of n. The following lemma is also necessary to prove that the order in which
events occur in a derivation is directly related with the order of Definition 6. In
the following we consider an augmented version of derivation D which includes
the event fired by the application of the rule. So, we can represent derivation

D as P1
Θ1 
e1
. . .

Θj 
ej
Pj+1.

Lemma 5. Given a derivation D = P1
Θ1 
e1
. . .

Θj 
ej
Pj+1 of the tracking semantics,

and the track G = (N,Ec, Es) produced by D, then ∀ei ∈ Σ, 1 ≤ i ≤ j,
• ∃n ∈ N such that l(n) = ei, and

• ∃(n, n′) ∈ Ec such that n′ = n+ 1.

Therefore, Lemma 5 ensures that the order of Definition 6 corresponds to the
order in which the semantics generates the nodes, because each event is added
to the graph together with a new fresh reference for the prefixing operator.
Since references are generated incrementally, the occurrence of an event e will
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generate a reference which is less than the reference generated with a posterior
event e′. With this order, we can easily define a transformation to extract a
trace from a track based on the following proposition:

Proposition 1. Given a track G = (N,Ec, Es), the trace induced by G is the
sequence of events T = e1, . . . , em that labels the associated sequence of nodes
T ′ = n1, . . . , nm (i.e., ∀ei ∈ T, ni ∈ T ′, 1 ≤ i ≤ m, l(ni) = ei and ei ∈ Σ) where:

1. ∀ni ∈ T ′, 0 < i < m, ni � ni+1

2. ∀n ∈ N such that l(n) ∈ Σ, if (6 ∃n′ ∈ N | (n, n′) ∈ Es), then n ∈ T ′

3. ∀n ∈ N such that l(n) ∈ Σ, if (∀n′ ∈ N |(n, n′) ∈ Es ∧ n′ � n), then
n ∈ T ′

The proof of this proposition can be found in Appendix B.

Theorem 8 (Track correctness). Let S be a CSP specification, D a deriva-
tion of S produced by the sequence of events (i.e., the trace) T = e1, . . . , em,
and G the track associated with D. Then, there exists a function f that extracts
the trace T from the track G, i.e., f(G) = T .

Proof. Proposition 1 allows to trivially define a function f such that f(G) = T
being G the track of a derivation D, and being T the trace of the same deriva-
tion. For a track G = (N,Ec, Es) we have that

f((n : ns), Ec, Es) =

{
{f((ns), Ec, Es)} if (∃n′ ∈ N |(n, n′) ∈ Es ∧ n� n′)
(l(n) : f((ns), Ec, Es)) otherwise

where list (n : ns) corresponds to the set {n ∈ N | l(n) ∈ Σ} ordered with
respect to order � of Definition 6.

6. Conclusions

This work introduces the first semantics of CSP instrumented for tracking.
Therefore, it is an interesting result because it can serve as a reference mark to
define and prove properties such as completeness of static analyses which are
based on tracks [13, 14, 15]. The execution of the tracking semantics produces
a graph as a side effect which is the track of the computation. This track
is produced step by step by the semantics, and thus, it can be also used to
produce a track of an infinite computation until it is stopped. The generated
track can be useful not only for tracking computations but for debugging and
program comprehension. This is due to the fact that our generated track also
includes the specification positions associated with the expressions appearing
in the track. Therefore, tracks could be used to analyse what parts of the
program are executed (and in what order) in a particular computation. Also,
this information allows a track viewer tool to highlight the parts of the code
that are executed in each step. Notable analyses that use tracks are [3, 4, 5,
1, 13, 14, 15]. The introduction of this semantics allows us to adapt these
analyses to CSP. On the practical side, we have implemented a tool called
SOC [13] which is able to automatically generate tracks of a CSP specification.
These tracks are later used for debugging. SOC has been integrated into the
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most extended CSP animator and model-checker ProB [11, 12], that shows the
maturity and usefulness of this tool and of tracks. The implementation, source
code and several examples are publicly available at: http://users.dsic.upv.
es/~jsilva/soc/
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Figure 8: Track of the program in Example 9

Note for the reviewers: The following appendices have been only included to
ease the reviewing process, and they will not be part of the final paper. In case
of acceptance, these appendices will be published as a technical report so that
the interested reader will have public access to them.

A. Tracking a specification with non-terminating processes

In this appendix we show another example whose execution finishes with a
deadlock and where a non-terminating process appears.

Example 9. Consider the following CSP specification where each (sub)process
has been labelled with its associated specification position (underlining).

MAIN(MAIN,0) = a(MAIN,1.1)→(MAIN,1)a(MAIN,1.2.1)→(MAIN,1.2)STOP(MAIN,1.2.2)

‖
{a}

(MAIN,Λ)P(MAIN,2)

P(P,0) = a(P,1)→(P,Λ)P(P,2)

We use the initial state (MAIN, ∅, 0, ∅) to execute the semantics and get the com-
putation of Fig. 9. The final state is (⊥ ‖

{a}
((MAIN,Λ),14,15)(a → P), G′, 1, ∅). The

final track G′ computed is the graph of Fig. 8.

B. Proofs of technical results

In this appendix we present the proofs of the technical results of the paper.

Theorem 1 (Conservativeness). Let S be a CSP specification, P a process in
S, and D and D′ the derivations of P performed with the standard semantics of
CSP and with the tracking semantics, respectively. Then, the sequence of rules
applied in D and D′ is exactly the same except that D′ performs one rewriting
step more than D for each (sub)computation that finishes with STOP.
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(Process Call)
(MAIN, ∅, 0, ∅) τ−→ State 1

where

State 1 = ((a → a → STOP ‖
{a}((MAIN,Λ),•,•)P), G[0 7→

1
(MAIN, 0)], 1, ∅)

(Syncronized
Parallelism 2)

(Process Call)
(P, G[1 7→

2
(MAIN,Λ)], 2, ∅) τ−→ (a → P, G[2 7→

3
(MAIN, 2)], 3, ∅)

State 1
τ−→ State 2

where State 2 = ((a → a → STOP ‖
{a}((MAIN,Λ),•,3)a → P), G′, 1, ∅)

(Synchronized Parallelism 3)
L R

State 2
a−→ State 3

where

L =(Pref)
(a → a → STOP, G[1 7→

4
(MAIN,Λ)], 4, ∅) a−→ (a → STOP, G[4 7→

5
(MAIN, 1.1), 5 7→

6
(MAIN, 1)], 6, {4})

R = (Pref)
(a → P, G, 3, ∅) a−→ (P, G[3 7→

7
(P, 1), 7 7→

8
(P,Λ)], 8, {3})

and State 3 = (a → STOP ‖
{a}((MAIN,Λ),6,8)P, G

′ ∪ {4 ae 3}, 1, {4, 3})

(Syncronized
Parallelism 2)

(Process Call)
(P, G, 8, {4, 3}) τ−→ ((a → P), G[8 7→

9
(P, 2)], 9, ∅)

State 3
τ−→ State 4

where State 4 = ((a → STOP) ‖
{a}((MAIN,Λ),6,9)(a → P), G′, 1, ∅)

(Synchronized Parallelism 3)
L R

State 4
a−→ State 5

where

L = (Pref)
(a → STOP, G, 6, ∅) a−→ (STOP, G[6 7→

10
(MAIN, 1.2.1), 10 7→

11
(MAIN, 1.2)], 11, {6})

R = (Pref)
(a → P, G, 9, ∅) a−→ P, G[9 7→

12
(P, 1), 12 7→

13
(P,Λ)], 13, {9})

and State 5 = (STOP ‖
{a}((MAIN,Λ),11,13)P, G

′ ∪ {9 ae 6}, 1, {6, 9})

(Syncronized
Parallelism 1)

(STOP)
(STOP, G, 11, {6, 9}) τ−→ (⊥, G[11 7→

14
(MAIN, 1.2.2)], 14, ∅)

State 5
τ−→ State 6

where State 6 = (⊥ ‖
{a}((MAIN,Λ),14,13)P), G

′, 1, ∅)

(Syncronized
Parallelism 2)

(Process Call)
(P, G, 13, ∅) τ−→ ((a → P), G[13 7→

15
(P, 2)], 15, ∅)

State 6
τ−→ State 7

where State 7 = (⊥ ‖
{a}((MAIN,Λ),14,15)(a → P), G′, 1, ∅)

Figure 9: Computation of Example 9 with the tracking semantics in Fig. 6
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Proof. Firstly, rule (STOP) of the tracking semantics is the only rule that is not
present in the standard semantics. When a (STOP) is reached in a derivation, the
standard semantics stops the (sub)computation because no rule is applicable.
In the tracking semantics, when a STOP is reached in a derivation, the only rule
applicable is (STOP) which performs τ and puts ⊥ in the control:

(STOPα, G,m,∆)
τ−→ (⊥, G[m 7→

n
α], n, ∅)

Then, the (sub)computation is stopped because no rule is applicable for ⊥.
Therefore, when the control in the derivation is STOP, the tracking semantics
performs one additional rewriting step with rule (STOP).

The claim follows from the fact that both semantics have exactly the same
number of rules except for rule (STOP), and these rules have the same control in
all the states of the rules (thus the tracking semantics is a conservative extension
of the standard semantics). Therefore, all derivations in both semantics have
exactly the same number of steps and they are composed of the same sequences
of rewriting steps except for (sub)derivations finishing with STOP that perform
one rewriting step more (applying rule (STOP)).

Now we prove Theorem 7.

Theorem 2 (Semantics correctness). Let S be a CSP specification, D a
derivation of S performed with the tracking semantics, and G the graph produced
by D. Then, G is the track associated with D.

In order to prove the correctness of the semantics, the following lemmas are
used.
Lemma 1. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for
each prefixing (a → P ) in the control of the left state of a rewriting step in D,
we have that Pos(a) and Pos(→) are nodes of G and Pos(→) is the successor
of Pos(a).

Proof. If a prefixing a → P is in the control of the left state of a rewriting
step, following the tracking semantics, only the rule (Prefixing) can be applied.
By definition of this rule, m is the reference of the current node in G. The rule
(Prefixing) adds two new nodes to the graph: n and p. The node m is labelled
with the specification position of event a and has successor n. The node n is
labelled with the specification position of operator → and has parent m and
successor p (a fresh reference). Therefore, we have that Pos(a) and Pos(→) are
nodes of G and Pos(→) is the successor of Pos(a).

Lemma 6. Given a derivation D, for each rewriting step R
Θ R′ in D with

R′ 6= Ω and R′ 6= ⊥, last ′(R) = last ′(R′).

Proof. We prove this lemma by induction on the length of Θ. In the base case,
Θ is empty, and thus only the rules (Process Call), (Prefixing), (Internal Choice 1 and

2) and (Synchronized Parallelism 4) can be applied. In all cases, the lemma holds
trivially by the definition of last ′. We assume as the induction hypothesis that
the lemma holds for a non-empty Θi with i > 0 rewriting steps; and prove that
the lemma also holds for a Θi+1 with i+ 1 rewriting steps. We can assume that

Θi+1 = R
Θ′ R′, thus, we have to prove that the lemma holds for any possible

R and R′. The possible cases are the following:

25



(External Choice 1 and 2) This case is trivial because the specification positions
of R and R′ are the same. Hence, last ′(R) = last ′(R′).

(External Choice 3 and 4) Both cases are similar. Thus, we only discuss (External

Choice 3). In the case of (External Choice 3), last ′(P1 � P2) = last ′(P1). This
rule puts P ′ in the control, and we know by the induction hypothesis that
last ′(P1) = last ′(P ′) and, thus, the lemma holds.

(Sequential Composition 1) This case is analogous to (External Choice 1 and 2).

(Sequential Composition 2) last ′(P ;Q) = last ′(Q). Therefore the lemma holds
trivially by the definition of last ′.

(Synchronized Parallelism 1, 2 and 3) It is the same case as (External Choice 1 and

2).

Lemma 2. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for
each sequential composition (P ;Q) in the control of the left state of a rewriting
step in D, we have that last′(P ) and Pos(; ) are nodes of G and Pos(; ) is the
successor of all the elements of the set last′(P ) whenever P has successfully
finished.

Proof. If a sequential composition (P ;Q) is in the left state of the control of a
rewriting step, following the tracking semantics, only the rules (Sequential Com-

position 1) and (Sequential Composition 2) can be applied. (Sequential Composition

1) is only used to evolve process P until it is finished. The application of this
rule is only possible with any event except X, remaining the sequential compo-
sition operator in the control. (Sequential Composition 2) can only be used when
X happens and thus Ω is left in the control.

Therefore, when P has successfully finished evolving to Ω and with m′ as the
new reference, (Sequential Composition 2) is applied. This rule adds to the graph
a new node n labelled with the specification position of ; that has successor p
(a fresh reference). Therefore, we have that Pos(; ) is a node of G and Pos(; ) is
the successor of the node m′. Then, we have to prove that last′(P ) is a set of
nodes of the graph added before P successfully finished with reference m′ and
its successor is n.

We prove this claim by induction on the length of the derivation P
Θ0 . . .

Θn Ω,
n ≥ 0. The base case happens when the last rewriting step of the derivation is
done leaving Ω in the control. Only these rules can be used:

(SKIP) In this case, m 7→
n
SKIP is added to G and n is the new reference. Because

last ′(SKIP) = {SKIP}, therefore, the claim follows.

(External Choice 3) Here, last ′(P1 � P2) = last ′(P1). This rule puts P ′ in the
control which is Ω by the conditions of the lemma. Therefore, there must
be a SKIP, which is last ′(P ), at the top of Θ because we know that the
derivation successfully finishes and thus Θ is finite.

(External Choice 4) It is analogous to the previous case, but here last ′(P1 � P2) =
last ′(P2).
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(Synchronized Parallelism 4) last ′(P1 || P2) = last ′(P1) ∪ last ′(P2). The parents
of the last nodes of P1 and P2 are connected to the new reference r.
Therefore the claim follows.

The induction hypothesis states that for all rewriting step R
Θ R′, R′ 6= Ω

in the derivation Q
Θ0 . . .

Θn Ω, n ≥ 0 where P
Θ′ Q ∈ D, last ′(P ) is put in the

control of a further rewriting step of the derivation together with its reference.

Then, we prove that this also holds for the previous rewriting step R0
Θ′′ R.

Only rules that do not perform X could be applied (because X puts Ω in the
control of the right state and now, we are not considering the final rewriting
step).

(STOP) This rule could not be applied because it puts ⊥ in the control. There
is no rule for ⊥ thus, if applied, P could not successfully finished.

(Process Call), (Prefixing) and (Internal Choice 1 and 2) In these rules R is put
in the control of the final state together with its reference. We know by
Lemma 6 that last ′(R0) = last ′(R) thus, the claim follows by the induction
hypothesis.

(External Choice 1 and 2) Both rules keep the process in the control and the
same references, thus the claim follows by the induction hypothesis.

(External Choice 3 and 4) In this case, last ′(P1 � P2) = last ′(P1). This rule puts
P ′ in the control, and we know by Lemma 6 that last ′(P1) = last ′(P ′),
thus the lemma holds by the induction hypothesis.

(Sequential Composition 1 and 2) We know that P successfully finished, thus
(Sequential Composition 1) is applied a number of times before (Sequential

Composition 2), that puts Q in the control. We know that last ′(P ;Q) =
last ′(Q) thus, the claim holds by the induction hypothesis.

(Synchronized Parallelism 4) last ′(P1||P2) = last ′(P1)∪ last ′(P2). The parents of
the last nodes of P1 and P2 are connected to the new reference r. Therefore
the claim follows.

In the following lemma, we need to extend the notion of rewriting step by
including the graph reference to each expression. Therefore, we will use extended

rewriting step denoted with (R,m)
Θ (R′,m′).

Lemma 7. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for

each extended rewriting step in D of the form (R,m)
Θ (R′,m′) which is not

associated with (Synchronized Parallelism 4) we have that a node for first(R) is
added to G with reference m.

Proof. We prove the lemma for each rule:

(SKIP), (STOP), (Prefixing), (Process Call), and (Internal Choice 1 and 2) A node
for first(R) (in these rules α) is added to G with reference m.
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(External Choice 1, 2, 3 and 4) and (Synchronized Parallelism 1, 2 and 3) In these
rules, the node associated with first(R) (it is α here) could be included
or not, depending on whether it has been included by a previous rewriting
step. If it is already included, it is due to the specification position of
the previous expression in the control is the same as R, and its associ-
ated rewriting step or a previous one has added it. If other case, function
FirstEval is called and it includes the node for R with reference m, since
the corresponding n1 and n2 are equal to •.

(Sequential Composition 1 and 2) In both rules, the node for first(R) (in this
case first(P )) is included by a rewriting step in Θ. All possible rewriting
steps must apply one of these previous rules, and thus, the claim recur-
sively follows.

Lemma 3. Let S be a CSP specification, D a complete derivation of S per-
formed with the tracking semantics, and G the graph produced by D. Then, for

each rewriting step in D of the form Ri
Θi Ri+1 we have that:

1. Ec contains an edge Pos(Ri) 7→ Pos(first(R′)) where R′
Θ′ R′′ ∈ Θi and

Ri ⇒ first(R′), and

2. ifRi ⇒ first(Ri+1) then Ec contains an edge Pos(Ri) 7→ Pos(first(Ri+1)).

Proof. We prove each claim separately:

1. Firstly, we know that Θ cannot be empty. Therefore, rules (SKIP), (STOP),
(Process Call), (Prefixing), (Internal Choice 1 and 2) and (Synchronized Parallelism

4) could not be applied. Moreover, (Sequential Composition) could never be
applied because if Ri is of the form P ;Q, then the unique possible case is
that Pos(P ;Q) ⇒ Pos(Q) (by Definition 2). And Q can only be in the
control of the right state; hence, Q cannot appear in Θ. Then the only
applicable rules are (External Choice) or (Synchronized Parallelism).

Let us consider extended rewriting steps (R′,m′)
Θ′ (R′′,m′′) ∈ Θi. First,

we have to prove that a node with the specification position of Ri is
included in the graph and the reference of its successor node is put in
each m′ of Θi. In rules (External Choice) and (Synchronized Parallelism) it
is done using function FirstEval. The references associated with the
selected branches of the operator must be •, i.e., the branches have not
been developed until now in the derivation. Otherwise, by Definition 2,
there is no possible control flow between Ri and R′. In this case, if the
corresponding reference is •, then FirstEval adds to G the specification
position of Ri and the reference of the successor node is put in all possible
m′.

2. In this case, Ri cannot be neither a SKIP nor a STOP, because Pos(Ri) 6⇒
Pos(Ri+1) (Ω or ⊥, respectively) by Definition 2. Process Ri cannot be a
parallelism because Pos(Ri) 6⇒ Pos(Ri+1) (itself or Ω).

If Ri is an external choice we have two possibilities. If we apply (External

Choice 1 or 2) then Ri and Ri+1 have the same specification position and
thus, by Definition 2, no control flow is possible. If we apply (External
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Choice 3 or 4) the control cannot pass from Ri to Ri+1, because Ri+1 is
different to first(Ri.1) or first(Ri.2). This is due to the fact that the
nodes associated with these positions have necessarily been added to G
by the rewriting step Θi or by a previous rewriting step on derivation
D. Therefore, process Ri must be a process call, a prefixing, an internal
choice, or a sequential composition. If it is a sequential composition,
rule (Sequential Composition 1) cannot be applied because in this case Ri
and Ri+1 have the same specification position. Therefore, only (Sequential

Composition 2) can be applied.

We now prove that the application of any of remaining rules (Process Call),
(Prefixing), (Internal Choice 1 and 2), and (Sequential Composition 2) satisfies
the property.

Let (Ri, ni)
Θi (Ri+1, ni+1) be an extended rewriting step. In all the

rules, a node labelled α is added to G (except in (Prefixing) where is β) and
the position of its successor is placed as ni+1. Furthermore, we know by
Lemma 7 that a node for Pos(first(Ri+1)) is included in the next rewrit-

ing step in the derivation (Ri+1, ni+1)
Θi+1 (Ri+2, ni+2) having associated

position ni+1.

Note here again that Lemma 7 excludes rule (Synchronized Parallelism 4) but
in this case both branches must be already in G by a previous application
of (Synchronized Parallelism 1, 2 or 3).

Lemma 4. Let S be a CSP specification, D a derivation of S performed with
the tracking semantics, and G the graph produced by D. Then, there exists a
synchronization edge (ae a′) in G for each synchronization in D where a and
a′ are the nodes of the synchronized events.

Proof. We prove this lemma by induction on the length of the derivation

D = R0
Θ0 R1

Θ1 . . .
Θn Rn+1. We can assume that the derivation starts

with the initial configuration (MAIN, ∅, 0, ∅), thus in the base case, the only rule
applicable is (Process Call) and hence no synchronization is possible. We assume
as the induction hypothesis that there exists a synchronization edge (a e a′)

∈ G for each synchronization in R0
Θ0 . . .

Θi−1 Ri with 0 < i ≤ n and prove that

the lemma also holds for the next rewriting step Ri
Θi Ri+1.

Firstly, only (Synchronized Parallelism 3) allows the synchronization of events.
Therefore, only if Ri is a synchronizing parallelism, or if a (Synchronized Paral-

lelism 3) is applied in Θi, (ae a′) ∈ G. Then, let us consider the case where
Θi 

is the application of rule (Synchronized Parallelism 3). This proof is also valid in
the case where (Synchronized Parallelism 3) is applied in Θi. We have the following
rewriting step:
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RewritingStep1 RewritingStep2

(P1 ‖
X

(α,n1,n2)P2, G,m,∆)
a−→ (P ′1 ‖

X
(α,n′′1 ,n

′′
2 )P

′
2, G

′′,m,∆1 ∪∆2)
a ∈ X

where G′′ = G′′1 ∪G′′2 ∪ {s1
ae s2 | s1 ∈ ∆1 ∧ s2 ∈ ∆2}

∧ RewritingStep1 = (P1, G
′
1, n
′
1,∆)

a−→ (P ′1, G
′′
1 , n
′′
1 ,∆1)

∧ (G′1, n
′
1) = FirstEval(G,n1,m, α)

∧ RewritingStep2 = (P2, G
′
2, n
′
2,∆)

a−→ (P ′2, G
′′
2 , n
′′
2 ,∆2)

∧ (G′2, n
′
2) = FirstEval(G,n2,m, α)

Because (Prefixing) is the only rule that performs an event a without further
conditions, we know that P1 must be a prefixing operator or a process containing
a prefixing operator whose prefix is a, i.e., we know that the rule applied in
RewritingStep1 is fired with an event a; and we know that all the rules of
the semantics except (Prefixing) need to fire another rule with an event a as
a condition. Therefore, at the top of the condition rules, there must be a
(Prefixing). The same happens with P2. Hence, two prefixing rules (one for P1

and one for P2) have been fired as a condition of this rule.

In addition, the new graph G′′ contains the synchronization set {s1
ae

s2 | s1 ∈ ∆1 ∧ s2 ∈ ∆2} where ∆1 and ∆2 are the sets of references to the
events that must synchronize in RewritingStep1 and RewritingStep2, respec-
tively.

Hence, we have to prove that all and only the events (a) that must synchro-
nize in RewritingStep1 are in ∆1. We prove this by showing that all references
to the synchronized events are propagated down by all rules from the (Prefixing)

in the top to the (Synchronized Parallelism 3). And the proof is analogous for
RewritingStep2.

The possible rules applied in (P1, G
′, n′,∆)

a−→ (P ′1, G
′′
1 , n
′′
1 ,∆1) are: (Prefix-

ing) In this case, the prefix a is added to ∆1. (External Choice 3), (External Choice

4), (Sequential Composition 1), (Synchronized Parallelism 1), (Synchronized Parallelism

2) In these cases, the set ∆ is propagated down. (Synchronized Parallelism 3) In
this case, the sets ∆1 and ∆2 are joined and propagated down.

Therefore, all the synchronized events are in the set ∆1 and the claim follows.

Theorem 2 (Semantics correctness). Let S be a CSP specification, D a
derivation of S performed with the tracking semantics, and G the graph produced
by D. Then, G is the track associated with D.

Proof. In order to prove that G = (N,Ec, Es) is a track, we need to prove

that it satisfies the properties of Definition 5. For each R
Θ R′ ∈ D and for all

rewriting steps in Θ we have

1. Ec contains a control-flow edge a 7→ a′ iff aV a′ with respect to D. This
is ensured by the three clauses of Definition 4:

• by Lemma 1, if R is a prefixing (a → P ), then Ec contains an edge
Pos(a) 7→ Pos(→);

• by Lemma 2, if R is a sequential composition (Q;P ), then Ec contains
an edge ∀p ∈ last ′(Q),Pos(p) 7→ Pos(; );
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• by Lemma 3, if R ⇒ first(R′′) where R′′
Θ′ R′′′ ∈ Θ, then Ec

contains an edge Pos(R) 7→ Pos(first(R′′)); and if R ⇒ first(R′)
then Ec contains an edge Pos(R) 7→ Pos(first(R′)); and

2. by Lemma 4, Es contains a synchronization edge ae a′ for each synchro-
nization occurring in the rewriting step where a and a′ are the synchro-
nized events.

Moreover, we know that the only nodes in N are the nodes induced by Ec
and Es because all the nodes inserted in G are inserted by connecting the new
node to the last inserted node (i.e., if the current reference is m and the new
fresh reference is n, then the new node is always inserted as G[m 7→

n
α]). Hence,

all nodes are related by control or synchronization edges and thus the claim
holds.

Finally, we proof Theorem 8.

Theorem 3 (Track correctness). Let S be a CSP specification, D a deriva-
tion of S produced by the sequence of events (i.e., the trace) T = e1, . . . , em,
and G the track associated with D. Then, there exists a function f that extracts
the trace T from the track G, i.e., f(G) = T .

To prove this theorem, we define first an order on the event nodes of a track
that corresponds to the order in which they were generated by the tracking
semantics.
Definition 6. (Event node order) Given a track G = (N,Ec, Es) and nodes
m,n ∈ N such that l(m), l(n) ∈ Σ, m is smaller than n, represented by m� n
iff m′ < n′ where (m,m′), (n, n′) ∈ Ec.

Intuitively, an event node m is smaller than an event-node n if and only if
the successor of m has a reference smaller than the reference of the successor
of n. The following lemma is also necessary to prove that the order in which
events occur in a derivation is directly related with the order of Definition 6. In
the following we consider an augmented version of derivation D which includes
the event fired by the application of the rule. So, we can represent derivation

D as P1
Θ1 
e1
. . .

Θj 
ej
Pj+1.

Lemma 5. Given a derivation D = P1
Θ1 
e1
. . .

Θj 
ej
Pj+1 of the tracking semantics,

and the track G = (N,Ec, Es) produced by D, then ∀ei ∈ Σ, 1 ≤ i ≤ j,

• ∃n ∈ N such that l(n) = ei, and

• ∃(n, n′) ∈ Ec such that n′ = n+ 1.

Proof. In order to prove this lemma, we prove first that any rewriting step

Pi
Θi 
ei
Pi+1 in D, 1 ≤ i ≤ j, with ei ∈ Σ is a prefixing or it performs a prefixing

in Θi. This can be easily proved by showing that the rewriting step is either
a prefixing (thus Θi = ∅), or Θi has a prefixing as the top rewriting step. We
prove this by case analysis. The only possible rules applied are:
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(Prefixing) If this rule is applied, Θi = ∅ and the claim follows trivially.

(External Choice 3 and 4), (Synchronized Parallelism 1 and 2) In these rules Θi

contains a single rewriting step whose event is also ei; hence, the claim
follows by the induction hypothesis.

(Sequential Composition 1) This case is completely analogous to the previous
one.

(Synchronized Parallelism 3) In this case, Θi is formed by two different rewriting
steps, and both of them are similar to the previous case.

Now, both conditions hold trivially from the fact that the prefixing rule adds
n to N with label l(n) = ei = α, and it also adds the prefixing operator (→) to
N as the successor of n.

Therefore, Lemma 5 ensures that the order of Definition 6 corresponds to the
order in which the semantics generates the nodes, because each event is added
to the graph together with a new fresh reference for the prefixing operator.
Since references are generated incrementally, the occurrence of an event e will
generate a reference which is less than the reference generated with a posterior
event e′. With this order, we can easily define a transformation to extract a
trace from a track based on the following proposition:

Proposition 1. Given a track G = (N,Ec, Es), the trace induced by G is the
sequence of events T = e1, . . . , em that labels the associated sequence of nodes
T ′ = n1, . . . , nm (i.e., ∀ei ∈ T, ni ∈ T ′, 1 ≤ i ≤ m, l(ni) = ei and ei ∈ Σ) where:

1. ∀ni ∈ T ′, 0 < i < m, ni � ni+1

2. ∀n ∈ N such that l(n) ∈ Σ, if ( 6 ∃n′ ∈ N | (n, n′) ∈ Es), then n ∈ T ′

3. ∀n ∈ N such that l(n) ∈ Σ, if (∀n′ ∈ N |(n, n′) ∈ Es ∧ n′ � n), then
n ∈ T ′

Proof. We consider a derivation D = P1
Θ1 
e′1
. . .

Θj 
e′k
Pj+1. Note that e′1, . . . , e

′
k 6=

e1, . . . , em because the former contains events in {τ,X}. Then, we have that
the trace is the subsequence of e′1, . . . , e

′
k that only includes events of Σ. We

will represent this subsequence with E = e′j , . . . , e
′
j′ with 0 ≤ j ≤ j′ ≤ k. Then,

we have to show that T = E . The proposition follows trivially from the fact
that the sequence T follows the order of nodes imposed by Definition 6, and
this order is the same order of the events that form the sequence E as stated by
Lemma 5.

Theorem 3 (Track correctness). Let S be a CSP specification, D a deriva-
tion of S produced by the sequence of events (i.e., the trace) T = e1, . . . , em,
and G the track associated with D. Then, there exists a function f that extracts
the trace T from the track G, i.e., f(G) = T .

Proof. Proposition 1 allows to trivially define a function f such that f(G) = T
being G the track of a derivation D, and being T the trace of the same deriva-
tion. For a track G = (N,Ec, Es) we have that
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f((n : ns), Ec, Es) =

{
{f((ns), Ec, Es)} if (∃n′ ∈ N |(n, n′) ∈ Es ∧ n� n′)
(l(n) : f((ns), Ec, Es)) otherwise

where list (n : ns) corresponds to the set {n ∈ N | l(n) ∈ Σ} ordered with
respect to order � of Definition 6.
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Abstract

The specification and simulation of complex concurrent systems is a difficult
task due to the intricate combinations of message passing and synchronizations
that can occur between the components of the system. Two of the most ex-
tended formalisms used to specify, verify and simulate such kind of systems are
CSP and the Petri nets. This work introduces a new technique that allows
us to automatically transform a CSP specification into an equivalent Petri net.
The transformation is formally defined by instrumenting the operational seman-
tics of CSP. Because the technique uses a semantics-directed transformation, it
produces Petri nets that are closer to the CSP specification and thus easier
to understand. This result is interesting because it allows CSP developers not
only to graphically animate their specifications through the use of the equivalent
Petri net, but it also allows them to use all the tools and analysis techniques
developed for Petri nets.

Key words: Concurrent programming, CSP, Petri nets, semantics, traces.

1. Introduction

Nowadays, few computers are based on a single processor architecture. Con-
trarily, modern architectures are based on multiprocessor systems such as the
dual-core or the quad-core; and a challenge of manufacturer companies is to in-
crease the number of processors integrated in the same motherboard. In order
to take advantage of these new hardware systems, software must be prepared to
work with parallel and heterogeneous components that work concurrently. This
is also a necessity of the widely generalized distributed systems, and it is the
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reason why the industry invests millions of dollars in the research and devel-
opment of concurrent languages that can produce efficient programs for these
systems, and that can be automatically verified thanks to the development of
modern techniques for the analysis and verification of such languages.

In this work we focus on two of the most important concurrent formalisms:
the Communicating Sequential Processes (CSP) [10, 24] and the Petri nets [18,
20]. CSP is an expressive process algebra with a big collection of software
tools for the specification and verification of complex systems. In fact, CSP is
currently one of the most extended concurrent specification languages and it is
being successfully used in several industrial projects [3, 8]. Complementarily,
Petri nets are particularly useful for the simulation and animation of concurrent
specifications. They can be used to graphically animate a specification and
observe the synchronization of components step by step. For these reasons,
attempts to combine both models exist (see, e.g., [1]). In this work we define a
fully automatic transformation that allows us to transform a CSP specification
into an equivalent Petri net (i.e., the sequences of observable events produced
are exactly the same). This result is very interesting because it allows CSP
developers not only to graphically animate their specifications through the use
of the equivalent Petri nets, but it also allows them to use all the tools and
analysis techniques developed for Petri nets. Our transformation is based on
an instrumentation of the CSP’s operational semantics. Roughly speaking, we
define an algorithm that explores all computations of a CSP specification by
using the instrumented semantics. The execution of the semantics produces as
a side-effect the Petri net associated with each computation, and thus the final
Petri net is produced incrementally.

In summary, the steps performed by the transformation are the following:
firstly, the algorithm takes a CSP specification and executes the extended se-
mantics with an empty store. The execution of the semantics produces a Petri
net that represents the performed computation. When the computation is fin-
ished, the extended semantics returns to the algorithm a new store with the
information about the choices that have been executed. Then, the algorithm
determines with this information whether new computations not explored yet
exist. If this is the case, the semantics is executed again with an updated
store. This is repeated until all possible computations have been explored. This
sequence of steps gradually augments the Petri net produced. When the algo-
rithm detects that no more computations are possible (i.e., the store is empty),
it outputs the current Petri net as the final result.

This work extends a previous work by the same authors presented at the
7th International Conference on Engineering Computational Technology [14].
In this new version we provide additional explanations and examples, and new
important original material. The new material includes:

1. An instrumentation of the standard CSP operational semantics that pro-
duces as a side-effect a Petri net associated to the computations performed
with the semantics.

2. New simplification algorithms that significantly reduce the size of the Petri
nets generated while keeping the equivalence properties.

3. An improved implementation that has been made public (both the source
code and an online version).

4. The correctness results. They prove the termination of the transformation
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algorithm; and the equivalence between the produced Petri net and the
original CSP specification.

The rest of the paper has been organized as follows. Section 2 overviews
related work and previous approaches to the transformation of CSP into Petri
nets. In Section 3 we briefly recall the syntax and semantics of CSP and Petri
nets. Section 4 presents an algorithm able to generate a Petri net equivalent
to a given CSP specification. To obtain the Petri net, the algorithm uses an
instrumentation of the standard operational semantics of CSP which is also
introduced in this section. Then, in Section 5 we introduce some algorithms
to further transform the generated Petri nets. The transformation simplifies
the final Petri net producing a reduced version that is still equivalent to the
original CSP specification. The correctness of the technique presented is proved
in Section 6. In Section 7, we describe the CSP2PN tool, our implementation
of the proposed technique. Finally, Section 8 concludes.

2. Related work

Transforming CSP to Petri nets is known to be useful since almost their
origins, because it not only has a clear practical utility, but it also has a wide
theoretical interest because both concurrent models are very different, and es-
tablishing relations between them allows us to extend results from one model
to the other. In fact, the problem of transforming a CSP specification into
an equivalent Petri net is complex due to the big differences that exist between
both formalisms. For this reason, some previous approaches aiming to transform
CSP to Petri nets have been criticized because, even though they are proved
equivalent, it is hardly possible to see a relation between the generated Petri
net and the initial CSP specification (i.e., when a transition of the Petri net
is fired, it is not even clear to what CSP process corresponds this transition).
In this respect, the transformation presented here is particularly interesting be-
cause the Petri net is generated directly from the operational semantics in such
a way that each syntactic element of the CSP specification has a representation
in the Petri net. And, moreover, the sequences of steps performed by the CSP
semantics are directly represented in the Petri net. Hence, it is not difficult to
map the animation of the Petri net to the CSP specification.

We can group all previous approaches aimed at transforming CSP to Petri
nets into two major research lines. The first line is based on traces describing
the behavior of the system. In [16], starting from a trace-based representation
of the behavior of the system, according to a subset of the Hoare’s theory where
no sequential composition with recursion is allowed, a stochastic Petri net model
is built in a modular and systematic way. The overall model is built by mod-
eling the system’s components individually, and then putting them together by
means of superposition. The second line of research includes all methodologies
that translate CSP specifications into Petri nets directly from the CSP syntax.
One of the first works translating CSP to Petri nets was [4], where distributed
termination is assumed but nesting of parallel commands is not allowed. In [6],
a CSP-like language is considered and translated into a subclass of Pr/T nets
with individual tokens, where neither nesting of parallel commands is allowed
nor distributed termination is taken into account. Other papers in this area
are [19] that considers a subset of CCSP (the union of Milner’s CCS[17] and
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Hoare’s CSP[10]), and [5] which provides full CSP with a truly concurrent and
distributed operational semantics based on Condition/Event Systems. There
are also some works that translate process algebras into stochastic or timed
Petri nets in order to perform real-time analyses and performance evaluation.
Notable examples are [25, 15] that translate CSP specifications and [23] that
define a compositional stochastic Petri net semantics for the stochastic process
algebra PEPA [9]. Even though this work is essentially different from ours
because it is based on different formalisms, its implementation [2] is somehow
similar to ours because the translation from PEPA to stochastic Petri nets is
completely automatic. As in our work, all these papers do not allow recursion
of nested parallel processes because the set of places of the generated Petri net
would be infinite. In some way, our new semantics-based approach opens a third
line of research where the transformation is directed by the semantics.

3. CSP and Petri nets

3.1. The syntax and semantics of CSP
This section recalls CSP’s syntax and operational semantics. For concretion,
and to facilitate the understanding of the following definitions and algorithms,
we have selected a subset of CSP that is sufficiently expressive to illustrate
the method, and it contains the most important operators that produce the
challenging problems such as deadlocks, non-determinism and parallel execution.

Domains
M,N . . . ∈ Names (Process names)
P,Q . . . ∈ Procs (Processes)
a, b . . . ∈ Σ (Events)

S ::= D1 . . . Dm (Entire specification)
D ::= N = P (Process definition)
P ::= M (Process call)

| a→ P (Prefixing)
| P u Q (Internal choice)
| P 2 Q (External choice)
| P ||

X

Q (Synchronized parallelism) X ⊆ Σ

| STOP (Stop)

Figure 1: Syntax of CSP specifications

Figure 1 summarizes the syntax constructions used in CSP [10] specifications.
A specification is a finite collection of process definitions. The left-hand side of
each definition is the name of a process, which is defined in the right-hand side
(abbrev. rhs) by means of an expression that can be a call to another process
or a combination of the following operators:
Prefixing (a→ P ) Event a must happen before process P .
Internal choice (P u Q) The system non-deterministically chooses to execute
one of the two processes P or Q.
External choice (P 2 Q) It is identical to internal choice but the choice comes
from outside the system (e.g., the user).
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Synchronized parallelism (P ||
X⊆Σ

Q) Both processes are executed in parallel

with a set X of synchronized events. A particular case of parallel execution is
interleaving (represented by |||) where no synchronizations exist (i.e., X = ∅)
and thus both processes can execute in any order. Whenever a synchronized
event a ∈ X happens in one of the processes, it must also happen in the other
at the same time. Whenever the set of synchronized events is not specified, it
is assumed that processes are synchronized in all common events.
Stop (STOP ) Synonym of deadlock, i.e., it finishes the current process.

Example 1. Consider the Moore machine [11] in Figure 2 to compute the re-
mainder of a binary number divided by three. The different values for the possible
remainders are 0, 1 and 2. Note that if a decimal value n written in binary is
followed by a 0 then its decimal value becomes 2n and if n is followed by a 1
then its value becomes 2n+ 1. If the remainder of n/3 is r, then the remainder
of 2n/3 is 2r mod 3. If r = 0, 1, or 2, then 2r mod 3 is 0, 2, or 1, respectively.
Similarly, the remainder of (2n + 1)/3 is 1, 0, or 2, respectively. So, this ma-
chine has 3 states: q0 is the start state and represents a remainder 0, state q1

represents a remainder 1 and state q2 represents a remainder 2.

q
0
/0 q

1
/1 q

2
/2

0

01

1

Start

0 1

Figure 2: Moore machine to determine the remainder of a binary number divided by three

The following CSP specification corresponds to the previous Moore machine
with a slight modification: the fact that a binary number is divisible by 3 is ex-
plicitly represented. Processes REM0, REM1 and REM2 are considered as remainder
0, 1 and 2 states, respectively. We know that a number n is divisible by 3 if the
remainder of n/3 is 0. So, process REM0 also represents that the number is
divisible by 3 (represented with the event divisible3).

MAIN = REM0

REM0 = (0→ REM0) 2 (1→ REM1) 2 (divisible3→ STOP)
REM1 = (0→ REM2) 2 (1→ REM0)
REM2 = (0→ REM1) 2 (1→ REM2)

Let us consider now another example that contains two processes running
in parallel and illustrates the use of synchronizations.

Example 2. The following CSP specification is an extension of the previous
CSP specification to check whether a given binary number is divisible by 3. Pro-
cess BINARY represents a binary number; in this case, the binary number 110
(which corresponds to the decimal value 6). Processes REM0 and BINARY are
executed in parallel with {0, 1, divisible3} as the set of synchronized events,
i.e., whenever one of these synchronized events happens in process REM0, it must
also happen in process BINARY at the same time, and vice versa. So, if event
divisible3 occurs, it means that the binary number is divisible by 3. When
the binary number is not divisible by 3, the remainder of its division between 3
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will be 1 or 2 (processes REM1 or REM2), and then event divisible3 will never
happen.

MAIN = REM0 ‖
{0,1,divisible3}

BINARY

REM0 = (0→ REM0) 2 (1→ REM1) 2 (divisible3→ STOP)
REM1 = (0→ REM2) 2 (1→ REM0)
REM2 = (0→ REM1) 2 (1→ REM2)
BINARY = 1→ 1→ 0→ divisible3→ STOP

We now recall the standard operational semantics of CSP as defined by
A.W. Roscoe [24]. It is presented in Figure 3 as a logical inference system. A
state of the semantics is a process to be evaluated called the control. In the
following, we assume that the system starts with an initial state MAIN, and the
rules of the semantics are used to infer how this state evolves. When no rules
can be applied to the current state, the computation finishes. The rules of the
semantics change the states of the computation due to the occurrence of events.
The set of possible events is Στ = Σ ∪ {τ}. Events in Σ are visible from the
external environment, and can only happen with its co-operation (e.g., actions
of the user). Event τ is an internal event that cannot be observed from outside
the system and it happens automatically as defined by the semantics.

(Process Call) (Prefixing) (Internal Choice 1) (Internal Choice 2)

N
τ−→ rhs(N) (a→ P )

a−→ P (P uQ)
τ−→ P (P uQ)

τ−→ Q

(External Choice 1) (External Choice 2) (External Choice 3) (External Choice 4)

P
τ−→ P ′

(P � Q)
τ−→ (P ′ � Q)

Q
τ−→ Q′

(P � Q)
τ−→ (P � Q′)

P
e−→ P ′

(P � Q)
e−→ P ′

e ∈ Σ
Q

e−→ Q′

(P � Q)
e−→ Q′

e ∈ Σ

(Synchronized Parallelism 1) (Synchronized Parallelism 2) (Synchronized Parallelism 3)

P
e−→ P ′

(P ||
X

Q)
e−→ (P ′ ||

X

Q)
e ∈ Στ\X Q

e−→ Q′

(P ||
X

Q)
e−→ (P ||

X

Q′)
e ∈ Στ\X P

e−→ P ′ Q
e−→ Q′

(P ||
X

Q)
e−→ (P ′ ||

X

Q′)
e ∈ X

Figure 3: CSP’s operational semantics

In order to perform computations, we begin with the initial state and non-
deterministically apply the rules of Figure 3. Their intuitive meaning is the
following:

(Process Call) The call to process N is unfolded and rhs(N) becomes the new
control.

(Prefixing) When event a occurs, process P becomes the new control.

(Internal Choice 1 and 2) The system, with the occurrence of τ , non-determinis-
tically selects one of the two processes P or Q which becomes the new control.

(External Choice 1, 2, 3 and 4) The occurrence of τ develops one of the processes.
The occurrence of an event e ∈ Σ is used to select one of the two processes P
or Q and the control changes according to the event.

(Synchronized Parallelism 1 and 2) When a non-synchronized event happens, one
of the two processes P or Q evolves accordingly.
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(Synchronized Parallelism 3) When a synchronized event (e ∈ X) happens, it is
required that both processes synchronize; P and Q are executed at the same
time and the control becomes P ′ ||

X

Q′.

We illustrate the semantics with the following example.

Example 3. Consider the CSP specification of Example 2. If we execute the
semantics, we get the computation shown in Figure 4 where the final state is
STOP ‖
{0,1,divisible3}

STOP. This computation corresponds to the case in which the binary

number 110, divisible by 3, produces the sequence of events 〈1, 1, 0, divisible3〉.
In the figure, each rewriting step is labeled with the applied rule, and the example
should be read top-down.

Definition 1. (Traces) Given a process P in a CSP specification, traces(P ) is
defined as the set of finite sequences of observable events (members of Σ∗). The
set of all non-empty, prefix-closed subsets of Σ∗ is called the traces model (the
set of all possible representations of processes using traces).

For instance, the set of all traces of process MAIN in the CSP specification of
Example 1 is:

traces(MAIN) = {〈(0|1)∗〉, 〈(0∗|1(01∗0)∗1)∗divisible3〉} (1)

The set of all traces of process MAIN in the CSP specification of Example 2 is:

traces(MAIN) = {〈〉, 〈1〉, 〈1, 1〉, 〈1, 1, 0〉, 〈1, 1, 0, divisible3〉} (2)

3.2. Labeled Petri nets
In this section, we recall the model of Petri nets by defining some basic concepts
needed throughout the paper.

Definition 2. (Petri Net) A Petri net [18, 20] is a tuple N = (P, T, F ), where
P is a finite set of places, T is a finite set of transitions, such that P ∩ T = ∅
and P ∪ T 6= ∅ and F is a finite set of weighted arcs representing the flow
relation F : P × T ∪ T × P → N. A marking of a Petri net is a function
M : P → N. A marked Petri net is a pair (N,M0) where M0 is a marking of
the Petri net called an initial marking.

Definition 3. (Labeled Petri Net) A labeled Petri net [7, 18, 20] is a 6-tuple
N = (〈P, T, F 〉,M0,P, T ,LP ,LT ), where 〈P, T, F 〉 is a Petri net, M0 is the
initial marking, P is a place alphabet, T is a transition alphabet, LP is a
labelling function LP : P → P and LT is a labelling function LT : T → T .

In the following, we will use labeled ordinary Petri nets where all of its arc
weights are 1, LP is a partial function and LT is a total function. Therefore,
because the weight of arcs is always 1, we will consider F as a subset of P ×
T ∪ T × P . For the sake of concreteness, we often use the notation pα (tβ) to
denote the place p (transition t) whose label is α ∈ P (β ∈ T ), i.e., LP (p) = α
(LT (t) = β); or also to assign label α (β) to place p (transition t).

An example of Petri net is drawn in Figure 5. This Petri net is associated
with the Moore machine of Example 1 with some extra transitions τ , C1 and C2

whose meaning can be ignored for the time being (they will be explained later).
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(Process Call)
MAIN τ−→ (REM0 ‖

{0,1,divisible3}
BINARY)

(Syncronized
Parallelism 1)

(Process Call)
REM0 τ−→ (((0→ REM0) 2 (1→ REM1)) 2 (divisible3→ STOP))

(REM0 ‖
{0,1,divisible3}

BINARY)
τ−→ State1

where

State1 = (((0→ REM0) 2 (1→ REM1)) 2 (divisible3→ STOP)) ‖
{0,1,divisible3}

BINARY

(Syncronized
Parallelism 2)

(Process Call)
BINARY τ−→ (1→ 1→ 0→ divisible3→ STOP)

State1
τ−→ State2

where

State2 = (((0→ REM0)2(1→ REM1))2(divisible3→ STOP))‖
{0,1,divisible3}

(1→ 1→ 0→ divisible3→ STOP)

(Syncronized
Parallelism 3)

Left Right

State2
1−→ State3

where

Left = (External Choice 3)

(External Choice 4)

(Prefixing)
(1→ REM1) 1−→ REM1

((0→ REM0)2(1→ REM1))
1−→ REM1

(((0→ REM0)2(1→ REM1))2(divisible3→ STOP))
1−→ REM1

Right = (Prefixing)
(1→ 1→ 0→ divisible3→ STOP) 1−→ (1→ 0→ divisible3→ STOP)

and State3 = REM1 ‖
{0,1,divisible3}

(1→ 0→ divisible3→ STOP)

(Syncronized
Parallelism 1)

(Process Call)
REM1 τ−→ ((0→ REM2) 2 (1→ REM0))

State3
τ−→ State4

where

State4 = ((0→ REM2) 2 (1→ REM0)) ‖
{0,1,divisible3}

(1→ 0→ divisible3→ STOP)

(Syncronized
Parallelism 3)

Left Right

State4
1−→ State5

where

Left = (External Choice 4)

(Prefixing)
(1→ REM0) 1−→ REM0

((0→ REM2) 2 (1→ REM0))
1−→ REM0

Right = (Prefixing)
(1→ 0→ divisible3→ STOP) 1−→ (0→ divisible3→ STOP)

and State5 = REM0 ‖
{0,1,divisible3}

(0→ divisible3→ STOP)

(Syncronized
Parallelism 1)

(Process Call)
REM0 τ−→ (((0→ REM0) 2 (1→ REM1)) 2 (divisible3→ STOP))

State5
τ−→ State6

where

State6 = (((0→ REM0) 2 (1→ REM1)) 2 (divisible3→ STOP)) ‖
{0,1,divisible3}

(0→ divisible3→ STOP)

Figure 4: A computation with the operational semantics in Figure 3

Definition 4. (Input and Output Place/Transition) Given a labeled Petri net
N = (〈P, T, F 〉,M0,P, T ,LP ,LT ), we say that a place p ∈ P is an input (resp.
output) place of a transition t ∈ T if and only if there is an input (resp. output)
arc from p to t (resp. from t to p). Given a transition t ∈ T , we denote by •t and
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(Syncronized
Parallelism 3)

Left Right

State6
1−→ State7

where

Left = (External Choice 3)

(External Choice 3)

(Prefixing)
(0→ REM0) 0−→ REM0

((0→ REM0)2(1→ REM1))
0−→ REM0

(((0→ REM0)2(1→ REM1))2(divisible3→ STOP))
0−→ REM0

Right = (Prefixing)
(0→ divisible3→ STOP) 0−→ (divisible3→ STOP)

and State7 = REM0 ‖
{0,1,divisible3}

(divisible3→ STOP)

(Syncronized
Parallelism 1)

(Process Call)
REM0 τ−→ (((0→ REM0) 2 (1→ REM1)) 2 (divisible3→ STOP))

State7
τ−→ State8

where

State8 = (((0→ REM0) 2 (1→ REM1)) 2 (divisible3→ STOP)) ‖
{0,1,divisible3}

(divisible3→ STOP)

(Syncronized
Parallelism 3)

Left Right

State8
divisible3−−−−−−→ STOP ‖

{0,1,divisible3}
STOP

where

Left = (External Choice 4)

(Prefixing)
(divisible3→ STOP) divisible3−−−−−−→ STOP

(((0→ REM0)2(1→ REM1))2(divisible3→ STOP))
divisible3−−−−−−→ STOP

Right = (Prefixing)
(divisible3→ STOP) divisible3−−−−−−→ STOP

Figure 4: A computation with the operational semantics in Figure 3 (cont.)
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Figure 5: Petri net associated with the specification of Example 1

t• the set of all input and output places of t, respectively. Analogously, given a
place p ∈ P , we denote •p and p• the set of all input and output transitions of
p, respectively. Formally,

•t = {p ∈ P | (p, t) ∈ F} and t• = {p ∈ P | (t, p) ∈ F}
•p = {t ∈ T | (t, p) ∈ F} and p• = {t ∈ T | (p, t) ∈ F}

The notion of firing sequence is used in the paper according to the generally
accepted definition [7, 18, 20].

Definition 5. (Enabling and Firing a Transition) Given a labeled Petri net
N = (〈P, T, F 〉,M0,P, T ,LP ,LT ), we say that a transition t ∈ T is enabled in
marking M , in symbols M t−→, if and only if for each input place p ∈ •t, we
have M(p) ≥ 1. A transition may only be fired if it is enabled.
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The firing of an enabled transition t in a marking M eliminates one token
from each input place p ∈ •t and adds one token to each output place p′ ∈ t•,
producing a new marking M ′, in symbols M t−→M ′. Formally,

M ′(p) =





M(p)− 1 if p ∈ •t ∧ p 6∈ t•
M(p) + 1 if p 6∈ •t ∧ p ∈ t•
M(p) otherwise

We say that a marking Mn is reachable from an initial marking M0 if there
is a firing sequence σ = t1t2 . . . tn such thatM0

t1−→M1
t2−→ . . .

tn−→Mn. In this
case, we say that Mn is reachable from M0 through σ, in symbols M0

σ−→ Mn.
This notion includes the empty sequence ε; we have M ε−→M for any marking
M . The set of all reachable markings from M0 is denoted by R(M0).

Definition 6. (Petri Net Language) Given a labeled Petri net N = (〈P, T, F 〉,
M0,P, T , LP ,LT ), we denote by FS(N ) the set of all possible firing sequences
over T :

FS(N ) =
⋃

M∈R(M0)

{σ | M0
σ−→M}

The language LA(N ) (over the alphabet A) is given by:

LA(N ) = {〈〉} ∪ {〈LT (s1), . . . ,LT (sm)〉 | ∃σ = t1 . . . tn ∈ FS(N ) ∧
∀i, 1 ≤ i ≤ m with m ≤ n : si = tk with 1 ≤ k ≤ n ∧
LT (tk) ∈ A ∧ @j, 1 ≤ j < i : sj = tl with l ≥ k }

Whenever A is not specified it is assumed that A = T .

For instance, the (infinite) language produced by the labeled Petri net in
Figure 5 is:

L(N ) = {〈〉, 〈τ〉, 〈τ, τ〉, 〈τ, τ, C2〉, 〈τ, τ, C2, divisible3〉, 〈τ, τ, C1〉,
〈τ, τ, C1, C1〉, 〈τ, τ, C1, C1, 0〉, 〈τ, τ, C1, C2〉, 〈τ, τ, C1, C2, 1〉,
〈τ, τ, C1, C2, 1, τ〉, 〈τ, τ, C1, C2, 1, τ, C2〉,
〈τ, τ, C1, C2, 1, τ, C2, 1〉, . . .}

4. Transformation of a CSP specification into an equivalent Petri net

This section introduces an algorithm to transform a CSP specification into an
equivalent Petri net. We first provide a notion of equivalence which is based
on the traces generated by the initial CSP and the language produced by the
final Petri net, and that allows us to formally prove the correctness of the
transformation.

In particular, given a CSP specification, the Petri net generated by our
algorithm is equivalent to the CSP in the sense that the sequences of observable
events produced are exactly the same in both models (i.e., they are equivalent
modulo a given alphabet). In CSP terminology, these sequences are the so-called
traces (see, e.g., chapter 8.2 of [24]). In Petri nets they correspond to transition
firing sequences (see, e.g., [18]). Formally,
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Definition 7. (Equivalence between CSP and Petri nets) Given a CSP speci-
fication S and a Petri net N , we say that S is equivalent to N if and only if
traces(MAIN) = LΣ(N ), where process MAIN belongs to S.

Observe that the Petri net produces a language module the alphabet Σ which
contains all the external events of S. Note also that traces(MAIN) contains only
events that are external (i.e., observable from outside the system). Therefore,
this notion of equivalence implies that, if we ignore internal events such as τ ,
then the sequences of (observable) actions of both systems are exactly the same.

Algorithm 1 General Algorithm
Input: A CSP specification S with initial process MAIN
Output: A labeled Petri net N equivalent to S

Build the initial state of the semantics: state = (MAIN, p0,N0, ([], []), ∅)
where N0 = (〈{p0}, ∅, ∅〉,M0,P, T ,LP ,LT ), M0(p0) = 1,
P = Names ∪ {2,u}, T = Στ ∪ {‖, C1, C2}.
repeat
repeat
Run the rules of the instrumented semantics with the state state

until no more rules can be applied
Get the new state state = (_,_,N , ([], S),_)
state=(MAIN, p0,N , (UpdStore(S), []), ∅)

until UpdStore(S) = []
return N
where function UpdStore is defined as follows:

UpdStore(S) =





(rule, rules\{rule}) :S′ if S=(_, rules) :S′ ∧ rule∈rules
UpdStore(S′) if S=(_, ∅) :S′

[] if S=[]

Even though the transformation is controlled by an algorithm, the generation
of the final Petri net is carried out by an instrumented operational semantics
of CSP. In particular, the algorithm fires the execution of the semantics that
generates incrementally and as a side effect the Petri net.

The instrumentation of the semantics performs three main tasks:

1. It produces a computation and generates as a side-effect a Petri net asso-
ciated with the computation.

2. It controls that no infinite loops are executed.
3. It ensures that the execution is deterministic.

The transformation is directed by Algorithm 1. This algorithm controls the
execution of the semantics and repeatedly uses it to deterministically execute all
possible computations—of the original (non-deterministic) specification—and
the Petri net is constructed incrementally with each execution of the seman-
tics. Concretely, each time the semantics is executed, it produces as a result a
portion of the Petri net. This result is the input of the next execution of the
semantics that adds a new part of the Petri net. This process is repeated until
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all possible executions have been explored and thus the complete Petri net has
been produced.

The key point of the algorithm is the use of a store that records the actions
that can be performed by the semantics. In particular, the store is an ordered
list of elements that allows us to add and extract elements from the beginning
and the end of the list; and it contains tuples of the form (rule, rules) where:

• rule indicates the rule that must be selected by the semantics in the next
execution step, when different possibilities exist. They are indicated with
one of the following intuitive abreviatures SP1, SP2, SP3, SP4, C1 and C2.
Thanks to rule the semantics is deterministic because it knows at every
step what rule must be applied.

• rules is a set containing the other possible rules that can be selected with
the current control. Therefore, rules records at every step all the possible
rules not applied so that the algorithm will execute the semantics again
with these rules.

The algorithm uses the store to prepare each execution of the semantics indi-
cating the rules that must be applied at each step. For this, function UpdStore

is used; it basically avoids to repeat the same computation with the semantics.
When the semantics finishes, the algorithm prepares a new execution of the se-
mantics with an updated store. This is repeated until all possible computations
are explored (i.e., until the store is empty).

Taking into account that the semantics in Figure 3 can be non-terminating
(it can produce infinite computations), the instrumented semantics could be
also non-terminating if a loop-checking mechanism is not incorporated to ensure
termination. In order to ensure termination of all computations, the instrumen-
tation of the semantics incorporates a mechanism to stop the computation when
the same process is repeated in the same context (i.e., the same control appears
twice in a (sub)derivation of the semantics).

The instrumented semantics used by Algorithm 1 is shown in Figure 6. It is
an operational semantics where a state is a tuple (P, p,N , (S, S0),∆), where:

• P is the process to be evaluated (the control),

• p is the last place added to the Petri net N ,

• (S, S0) is a tuple with two stores (where the empty store is denoted by [])
that contains the rules to apply and the rules applied so far, and

• ∆ is a set of references used to insert synchronizations in N .

The basic idea of the Petri net construction is to generate the Petri net
associated with the current control and connect this net to the last place added
to N .

Given a labeled Petri net N = (〈P, T, F 〉,M,P, T ,LP ,LT ) and the current
reference p ∈ P , we use the notation N [p 7→ ta 7→ p′] either as a condition
on N (i.e., N contains transition ta), or also to introduce a transition t and a
place p′ into N producing the net N ′ = (〈P ′, T ′, F ′〉,M ′,P, T ,LP ,LT ) where
P ′ = P ∪{p′}, T ′ = T ∪{ta}, F ′ = F ∪{(p, ta), (ta, p

′)}, ∀p ∈ P : M ′(p) = M(p),
M ′(p′) = 0 and LT (ta) = a where a ∈ T .
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(Process Call - Sequential)

(M,p,N , (S, S0),_)
τ−→ (P, p′,N ′, (S, S0), ∅)

(P, p′,N ′) = LoopCheck(M,p,N )

LoopCheck(M,p,N ) =

(
(	(M), p,N [t 7→ qM ]) if N [qM 7→ _, t 7→ p]

(rhs(M), p′′,N [pM 7→ tτ 7→ p′′]) otherwise

(Process Call - Parallel)

(M♦, p,N , (S, S0),_)
τ−→ (rhs(M), p′,N [pM 7→ tτ 7→ p′], (S, S0), ∅)

(Prefixing)

(a→ P, p,N , (S, S0),_)
a−→ (P, p′,N [p 7→ ta 7→ p′], (S, S0), {(p, ta, p′)})

(Choice)

(P �Q, p,N , (S, S0),_)
τ−→ (P ′, p′,N ′, (S′, S′0), ∅)

� ∈ {2,t}

(P ′, p′,N ′, (S′, S′0)) = SelectBranch(P �Q, p,N , (S, S0))

SelectBranch(P �Q, p,N , (S, S0))=

8>>>>><>>>>>:

(P, p′,N [p� 7→ tC1 7→ p′], (S′, (C1, {C2}) :S0))
if S = S′ : (C1, {C2})

(Q, p′,N [p� 7→ tC2 7→ p′], (S′, (C2, ∅) :S0))
if S = S′ : (C2, ∅)

(P, p′,N [p� 7→ tC1 7→ p′], ([], (C1, {C2}) :S0)) otherwise

Figure 6: An instrumented operational semantics that generates a Petri net

An explanation for each rule of the semantics follows:

(Process Call - Sequential) In the instrumented semantics, there are two versions
of the standard rule for process call. The first version is used when a process call
is made in a sequential process. The second version is used for process calls made
inside parallelism operators. The sequential version basically decides whether
process P must be unfolded or not. This is done to avoid infinite unfolding of
the same process. Once a (sequential) process has been unfolded once, it is not
unfolded again. This is controlled with function LoopCheck. If the process has
been previously unfolded (thus, a place q with the label M already belongs to
the Petri net N , i.e., N [qM 7→ _]), then we are in a loop, and P is marked
as a loop with the special symbol 	. This label avoids to unfold the process
again because no rule is applicable. In this case, to represent the loop in the
Petri net, we add a new arc from the last added transition to the place qM
(N [t 7→ qM ]). If P has not been previously unfolded, then rhs(P ) becomes
the new control. Observe that the new Petri net N ′ contains a place pM that
represents the process call and a transition tτ that represents the occurrence of
event τ . No event in Σ is fired in this rule, thus no synchronization is possible
and ∆ is empty.

(Process Call - Parallel)When a process call is made inside a parallelism operator,
it is always unfolded. We do not worry about infinite unfolding because the
rules for synchronized parallelism already control non-termination. In order
to distinguish between process calls made sequentially or in parallel, we use a
special symbol ♦. Therefore, for simplicity, we assume that all process calls
inside parallelisms are labeled with ♦, and thus, the semantics can decide what
rule should be used.
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(Prefixing) This rule adds to N a transition ta that represents the occurrence of
event a. ta is connected to the current place p and to a new place p′. The new
control is P . The new set ∆ contains the tuple (p, ta, p

′) to indicate that event
a must be synchronized when required by (Synchronized Parallelism 3).

(Choice) The only sources of non-determinism are choice operators (different
branches can be selected for execution) and parallel operators (different order
of branches can be selected for execution). Therefore, every time the semantics
executes a choice or a parallelism, they are made deterministic thanks to the
information in the store S. In the case of choices, both internal and external
can be treated with a single rule. We use symbol � to refer to both {2,t}. In
this rule, function SelectBranch is used to produce the new control P ′ and the
new tuple of stores (S′, S′0), by selecting a branch with the information of the
store. Note that, for simplicity, the lists constructor “ :” has been overloaded,
and it is also used to build lists of the form (A : a) where A is a list and a is
the last element.

If the last element of the store S indicates that the first branch of the choice
(C1) must be selected, then P is the new control. If the second branch must be
selected (C2), the new control is Q. In any other case the store is empty, and
thus this is the first time that this choice is evaluated. Then, we select the first
branch (P is the new control) and we add (C1, {C2}) to the store S0 indicating
that C1 has been chosen, and the remaining option is C2. This function creates
a new transition for each branch (tC1 and tC2) that represents the τ event.

(Synchronized Parallelism 1 and 2) The store determines what rule to use when
a parallelism operator is in the control. If we are not in a loop (this is known
because the same control has not appeared before, i.e., (P1‖P2,_,_) 6∈ Υ)
and the last element in the store is SP1, then (Synchronized Parallelism 1) is used.
If it is SP2, (Synchronized Parallelism 2) is used. In a synchronized parallelism
composition, both parallel processes can be intertwiningly executed until a syn-
chronized event is found. Therefore, places and transitions for both processes
can be added interwoven to the Petri net. Hence, the semantics needs to know
in every state the references to be used in both branches. This is done by la-
beling each parallelism operator with a tuple of the form (p1, p2,Υ) where p1

and p2 are respectively the last places added to the left and right branches of
the parallelism; and Υ records the controls of the semantics in order to avoid
repetition (i.e., it is used to avoid infinite loops). In particular, Υ is a set of
triples of the form: (P1‖P2, p1, p2) where P1‖P2 is the control of a previous
state of the semantics, and p1, p2 are the nodes in the Petri net associated with
P1 and P2. This tuple is initialized to (⊥,⊥, ∅) for every parallelism that is
introduced in the computation. Here, we use symbol ⊥ to denote an undefined
place. The new label of the parallelism contains a new Υ that has been updated
with the current control only if it does not contain any 	. This is done with
a simple syntactic checking performed with function HasLoops. The set ∆ is
passed down unchanged so that rule (Synchronized Parallelism 3) can use it if
necessary.

These rules develop the branches of the parallelism until they are finished
or until they must synchronize. They use function InitBranches to introduce
the parallelism into the Petri net the first time it is executed. Observe that the
parallelism operator is represented in the Petri net with a transition t‖. This
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(Synchronized Parallelism 1)

(P1, p′1,N ′, (S′, (SP1, rules) : S0),_)
e−→ (P1′, p′′1 ,N ′′, (S′′, S′0),∆)

(P1‖
X
labP2, p,N , (S′ : (SP1, rules), S0),_)

e−→ (P1′ ‖
X
lab′P2, p,N ′′, (S′′, S′0),∆)

e ∈ Στ\X

lab = (p1, p2,Υ) ∧ (P1‖P2,_,_) 6∈ Υ ∧

(N ′, p′1, p′2) = InitBranches(N , p1, p2, p) ∧ lab′ = (p′′1 , p
′
2, NewUpsilon(Υ, (P1‖P2, p′1, p

′
2)))

(Synchronized Parallelism 2)

(P2, p′2,N ′, (S′, (SP2, rules) : S0),_)
e−→ (P2′, p′′2 ,N ′′, (S′′, S′0),∆)

(P1‖
X
labP2, p,N , (S′ : (SP2, rules), S0),_)

e−→ (P1‖
X
lab′P2′, p,N ′′, (S′′, S′0),∆)

e ∈ Στ\X

lab = (p1, p2,Υ) ∧ (P1‖P2,_,_) 6∈ Υ ∧

(N ′, p′1, p′2) = InitBranches(N , p1, p2, p) ∧ lab′ = (p′1, p
′′
2 , NewUpsilon(Υ, (P1‖P2, p′1, p

′
2)))

(Synchronized Parallelism 3)

Left Right

(P1‖
X
labP2, p,N , (S′ : (SP3, rules), S0),_)

e−→ (P1′ ‖
X
lab′P2′, p,Ns, (S′′′, S′′0 ),∆)

e ∈ X

lab = (p1, p2,Υ) ∧ (P1‖P2,_,_) 6∈ Υ ∧ (N ′, p′1, p′2) = InitBranches(N , p1, p2, p) ∧

Left = (P1, p′1,N ′, (S′, (SP3, rules) : S0),_)
e−→ (P1′, p′′1 ,N ′′, (S′′, S′0),∆1) ∧

Right = (P2, p′2,N ′′, (S′′, S′0),_)
e−→ (P2′, p′′2 ,N ′′′, (S′′′, S′′0 ),∆2) ∧

lab′ = (p′′1 , p
′′
2 , NewUpsilon(Υ, (P1‖P2, p′1, p

′
2))) ∧

Ns = (N ′′′ ∪ {(p 7→ te 7→ p′) | (p,_, p′) ∈ (∆1 ∪∆2)})\{(p 7→ t 7→ p′) | (p, t, p′) ∈ (∆1 ∪∆2)}

∧ ∆ = {(p, te, p′) | (p,_, p′) ∈ (∆1 ∪∆2)}

InitBranches(N , p1, p2, p) =

(
(N [p 7→ t‖ 7→ p′1, p 7→ t‖ 7→ p′2], p′1, p

′
2) if p1 = ⊥

(N , p1, p2) otherwise

NewUpsilon(Υ, (P1‖P2, p1, p2)) =

(
Υ if HasLoops(P1‖P2)

Υ ∪ {(P1‖P2, p1, p2)} otherwise

Figure 6: An instrumented operational semantics that generates a Petri net (cont.)

transition is connected to two new places (p′1 and p′2), one for each branch. After
executing function InitBranches, we get a new net and new references for each
branch.

(Synchronized Parallelism 3) It is applied when the last element in the store is SP3
and no loop is detected. It is used to synchronize the parallel processes. In this
rule, all the events that have been executed in this step must be synchronized.
Therefore, all the events occurred in the subderivations of P1 (∆1) and P2 (∆2)
are mutually synchronized. Note that this is done in the Petri net by removing
the transitions that were added in each subderivation ({(p 7→ t 7→ p′) | (p, t, p′) ∈
(∆1 ∪∆2)}) and connecting all of them with a single transition te, e ∈ X. The
new ∆ contains all the synchronizations occurred in both branches connected
by the new transition te (∆ = {(p, te, p′) | (p,_, p′) ∈ (∆1 ∪∆2)}).

(Synchronized Parallelism 4) This rule is applied when the last element in the
store is SP4. It is used when none of the parallel processes can proceed (because
they already finished, deadlocked or were labeled with	). When a parallelism
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is labeled as a loop with 	, it can be unlabeled to unfold it once1 in order to
allow the other processes to continue. This happens when the looped process is
in parallel with other process and the later is waiting to synchronize with the
former. In order to perform the synchronization, both processes must continue,
thus the loop is unlabeled. This task is done by function LoopControl. It de-
cides whether the branches of the parallelism should be further unfolded or they
should be stopped (e.g., due to a deadlock or an infinite loop). LoopControl

can detect three different situations:
(i) The parallelism is in a loop. In this case, the whole parallelism is marked

as a loop. This situation happens when one of the branches is marked as looped
(with 	), and the other branch is also looped, or it already terminated (i.e., it
is STOP), or the control of both branches of the parallelism have been repeated
(i.e., they are in Υ).

(ii) The parallelism is not in a loop, and it should proceed. This situation
happens when one of the branches is marked as looped, and the other branch
is trying to synchronize with the first one. In this case, the branch marked as a
loop should continue to allow the synchronization. Therefore, the loop symbol
	 is removed and the loop arcs added to the Petri net N are also recursively
removed with function DelEdges.

(iii) The parallelism must be stopped. This happens for instance because
both branches terminated, therefore, the whole parallelism is replaced by STOP,
thus, stopping further computations.

(Synchronized Parallelism 4)

(P1‖
X

(p1,p2,Υ)P2, p,N , (S′ : (SP4, rules), S0),_)
τ−→ (P ′, p,N ′, (S′, (SP4, rules) : S0), ∅)

(P ′,N ′) = LoopControl(P1‖
X

(p1,p2,Υ)P2,N )

LoopControl(P1‖
X

(p1,p2,Υ)P2,N ) =8>>>>>>>><>>>>>>>>:

(	(P1′′ ‖
X

(p′1,p
′
2,Υ)P2′′),N ) if P1′=	(P1′′) ∧ (P2′=	(P2′′)∨

((P2′= STOP∨(P1′′‖P2′,_,_) ∈ Υ) ∧ P2′′ = P2′))

(P1′′′ ‖
X

(p′1,p
′
2,Υ)P2′,N ′) if P1′=	(P1′′) ∧ P2′ 6= 	(_) ∧ P2′ 6= STOP∧

(P1′′‖P2′,_,_) 6∈ Υ ∧ (P1′′′,N ′) = DelEdges(P1′′,N )

(STOP,N ) otherwise
where (P1′, p′1, P2′, p′2) ∈ {(P1, p1, P2, p2), (P2, p2, P1, p1)}

DelEdges(P1‖
X

(p1,p2,Υ)P2,N ) =8>>>>>>>>><>>>>>>>>>:

(P1′ ‖
X

(p1,p2,Υ
′)P2′,N ′′) if (P1‖P2, pp1, pp2) ∈ Υ ∧Υ′ = Υ\{(P1‖P2, pp1, pp2)} ∧

((P1 6= (_‖_) ∧ N ′ = N [t1 7→ p1]\{t1 7→ pp1} ∧ P1′ = P1)

∨ (P1 = (_‖_) ∧ (P1′,N ′) = DelEdges(P1,N ))) ∧
((P2 6= (_‖_) ∧ N ′′ = N ′[t2 7→ p2]\{t2 7→ pp2} ∧ P2′ = P2)

∨ (P1 = (_‖_) ∧ (P2′,N ′′) = DelEdges(P2,N ′)))
(P1‖

X
(p1,p2,Υ)P2,N ) otherwise

Figure 6: An instrumented operational semantics that generates a Petri net (cont.)

(Synchronized Parallelism 5) This rule is used to detect loops (when the control
has been repeated and thus it appears in Υ, and SP1, SP2 or SP3 is the last

1Only once because it will be labeled again when the loop is repeated.
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element in the store), and also to determine what rule must be applied (when
the store is empty).

In order to control non-termination, this rule uses function CheckLoops to
check whether the current control or other parallelisms inside it has been already
repeated in the computation (this is done with the information in Υ). If this is
the case, then we are in a loop, and the parallelisms are labeled with the symbol

(Synchronized Parallelism 5)

(P, p,NP , (S′P , S0),_)
e−→ (P ′, p,N ′, (S′, S′0),∆)

(P1‖
X

(p1,p2,Υ)P2, p,N , (S, S0),_)
e−→ (P ′′, p,N ′′, (S′′, S′′0 ),∆′)

e ∈ Στ

S = [] ∨ ((S = (_ : (SP1,_)) ∨ S = (_ : (SP2,_)) ∨ S = (_ : (SP3,_)))

∧ (P1‖
X

P2,_,_) ∈ Υ)

∧(P,NP , SP ) = CheckLoops(P1‖
X

(p1,p2,Υ)P2,N )

∧((S = [] ∧ SP = [] ∧ e = τ ∧ (P ′′,N ′′, (S′′, S′′0 ),∆′) = (P,NP , ([], S0), ∅))
∨ ((S = [] ∧ SP 6= [] ∧ S′P = SP ) ∨ (S 6= [] ∧ S′P = S)
∧ (P ′′,N ′′, (S′′, S′′0 ),∆′) = (P ′,N ′, (S′, S′0),∆)))

CheckLoops(P1‖
X

(p1,p2,Υ)P2,N ) =8>>>>>>>>><>>>>>>>>>:

(	(P1 ‖
X

(p1,p2,Υ)P2),N ′′′, []) if (P1‖P2, pp1, pp2) ∈ Υ

∧ ((N ′′ = N [t1 7→ p1, t1 7→ pp1] ∧ P1 6= (_‖_))

∨ (N ′′ = N ∧ P1 = (_‖_)))

∧ ((N ′′′ = N ′′[t2 7→ p2, t2 7→ pp2] ∧ P2 6= (_‖_))

∨ (N ′′′ = N ′′ ∧ P2 = (_‖_)))
((P1 ‖

X
(p1,p2,Υ)P2),N1 ∪ N2, S

′) otherwise

where (P1′,N1, S1) =


CheckLoops(P1,N ) if P1 = _‖_
(P1,N , []) otherwise

(P2′,N2, S2) =


CheckLoops(P2,N ) if P2 = _‖_
(P2,N , []) otherwise

Rules = AppRules(P1′ ‖
X

P2′)

S′ =

8>>>>>>><>>>>>>>:

S2 : ({SP2}, ∅) if P1 = _‖_ ∧ P2 6= _‖_ ∧ S1 = [] ∧ Rules = {SP2}
S1 : ({SP1}, ∅) if P1 6= _‖_ ∧ P2 = _‖_ ∧ S2 = [] ∧ Rules = {SP1}
S′ : (r, Rules\{r}) if P1 6= _‖_ ∧ P2 6= _‖_ ∧ SP4 6∈ Rules

∧ r ∈ Rules ∧ ( (S′ = S1 ∧ r = SP1)
∨ (S′ = S2 ∧ r = SP2)
∨ (S′ = S2·S1 ∧ r = SP3) )

[({SP4}, ∅)] otherwise

AppRules(P1‖
X

P2) =

8><>:
{SP1} if τ ∈ FstEvs(P1)
{SP2} if τ 6∈ FstEvs(P1) ∧ τ ∈ FstEvs(P2)
R if τ 6∈ FstEvs(P1) ∧ τ 6∈ FstEvs(P2) ∧ R 6= ∅
{SP4} otherwise

where

8<: SP1 ∈ R if ∃e ∈ FstEvs(P1) ∧ e 6∈ X
SP2 ∈ R if ∃e ∈ FstEvs(P2) ∧ e 6∈ X
SP3 ∈ R if ∃e ∈ FstEvs(P1) ∧ ∃e ∈ FstEvs(P2) ∧ e ∈ X

FstEvs(P ) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

{a} if P = a→ Q
∅ if P = 	Q ∨ P = STOP
{τ} if P = M ∨ P =Q2R ∨ P =(STOP‖

X

STOP)

∨ P =(	 Q‖
X

	R) ∨ P =(	 Q‖
X

STOP) ∨ P =(STOP‖
X

	R)

∨ (P =(	 Q‖
X

R) ∧ FstEvs(R)⊆X) ∨ (P =(Q‖
X

	R) ∧ FstEvs(Q)⊆X)

∨ (P =Q‖
X

R ∧ FstEvs(Q)⊆X ∧ FstEvs(R)⊆X∧ T
M∈{Q,R}

FstEvs(M)=∅)

E otherwise, with P = Q‖
X

R ∧ E = (FstEvs(Q) ∪ FstEvs(R))\
(X ∩ (FstEvs(Q)\FstEvs(R) ∪ FstEvs(R)\FstEvs(Q)))

Figure 6: An instrumented operational semantics that generates a Petri net (cont.)
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	; thus it cannot continue unless this symbol is removed by other parallel pro-
cess that requires the unfolding of this process (to synchronize). In case of loop,
this function also adds the corresponding loop arcs to the Petri net. If a loop
is not detected in the control of the parallelism, then the parallelism continues
normally as in the standard semantics. If a loop is detected, then a new control
labeled with 	 is returned directly without performing any subderivation. An-
other important task performed by this function is the preparation of the store.
This function builds the new store indicating what rules must be applied in the
following derivations, also for its internal parallelisms.

In order to build the new store, function AppRules is used. It returns the
set of rules R that can be applied to a synchronized parallelism P ‖

X

Q.

Essentially, AppRules decides what rules are applicable depending on the
events that could happen in the next step. These events can be inferred by
using function FstEvs. In particular, given a process P , function FstEvs re-
turns the set of events that can trigger a rule in the semantics using P as the
control. Observe that AppRules implicitly imposes an order in the execution,
and this order avoids the repetition of redundant derivations. For instance, if
both branches of a parallelism can fire event τ in any order, then it will be fired
first in the first branch (using rule SP1) and then in the second branch (using
rule SP2). This avoids multiple unnecessary executions such as SP1, SP2 and
SP2, SP1 where only τ happens in both branches but in different order. There-
fore, rule (Synchronized Parallelism 5) prepares the store allowing the semantics to
proceed with the correct rule.

Example 4. Consider again the specification of Example 2. Due to the set of
synchronized events {0, 1, divisible3} in process MAIN and to the choice oper-
ators in processes REM0 and REM1, this specification can produce the set of finite
sequences of observable events defined as traces(MAIN) in (2). In particular, it
can produce the sequence of events 〈1, 1, 0, divisible3〉 before it is deadlocked.
The execution of Algorithm 1 with Example 2 produces the Petri net shown in
Figure 10(a). This Petri net is generated after eight iterations of the algorithm
(and thus eight executions of the instrumented semantics). The first two itera-
tions are shown step by step in Figures 7 and 8.

In these figures, for each state, we show a sequence of rules applied from left
to right to obtain the next state. We first execute the semantics with the initial
state (MAIN, p0,N0, ([], []), ∅) and get the computation First iteration. This
computation corresponds to the execution of the left branch of the two choices
of process REM0. The final state is State6 = (STOP, p1,N5, ([], S6), ∅). Note
that the store S6 contains two pairs (C1, {C2}) to denote that the left branch of
the choices has been executed and the right branch is still pending. Then, the
algorithm calls function UpdStore and executes the semantics again with the
new initial state State7 = (MAIN, p0,N5, (S7, []), ∅) and it gets the computation
Second iteration. After this execution the Petri net (N9) shown in Figure 9
has been computed. The first iteration generates the white nodes of Figure 9
and grey nodes are generated in the second iteration. Figure 10(a) shows the
final Petri net generated where white nodes were generated in the first and second
iterations, grey nodes were generated in the third iteration; and black nodes were
generated in the rest of iterations (from fourth to eighth).

The language produced by the labeled Petri net in Figure 10(a) is:

18



L(N ) = {〈〉, 〈τ〉, 〈τ, ||〉, 〈τ, ||, τ〉, 〈τ, ||, τ, τ〉, 〈τ, ||, τ, τ, C2〉, 〈τ, ||, τ, τ, C1〉,
〈τ, ||, τ, τ, C1, C2〉, 〈τ, ||, τ, τ, C1, C1〉, 〈τ, ||, τ, τ, C1, C2, 1〉,
〈τ, ||, τ, τ, C1, C2, 1, τ〉, 〈τ, ||, τ, τ, C1, C2, 1, τ, C1〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2〉, 〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C2〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C2〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C1〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C1, C1〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C1, C2〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C2〉,
〈τ, ||, τ, τ, C1, C2, 1, τ, C2, 1, τ, C1, C1, 0, τ, C2, divisible3〉}

First iteration

State0 = (MAIN, p0,N0, ([], []), ∅) (PC-Seq)

where N0 = (〈{p0}, ∅, ∅〉,M0,P, T ,LP ,LT ),M0(p0) = 1,

P = Names ∪ {2,u, STOP}, T = Στ ∪ {‖, C1, C2}

State1 = (REM0♦ ‖
{0,1,divisible3}

(⊥,⊥,∅)BINARY♦, p1,N1, ([], []), ∅) (SP5)(SP1)

(PC-Par)
where N1 = N0[pMAIN 7→ tτ 7→ p1] and LP (p0) = MAIN

State2 = (rhs(REM0) ‖
{0,1,divisible3}

lab2
BINARY♦, p1,N2, ([], S2), ∅) (SP5)(SP2)

(PC-Par)
where rhs(REM0) = (((0→ REM0)2(1→ REM1))2(divisible3→ STOP)),

N2 = N1[p1 7→ t‖ 7→ p2, p1 7→ t‖ 7→ p3, pREM0 7→ tτ 7→ p4],LP (p2) = REM0,

lab2 = (p4, p3,Υ2),Υ2 = {(REM0‖BINARY, p2, p3)} and S2 = [(SP1, ∅)]

State3 = (rhs(REM0) ‖
{0,1,divisible3}

lab3
rhs(BINARY), p1,N3, ([], S3), ∅) (SP5)(SP1)

(Choice)
where rhs(BINARY) = (1→ 1→ 0→ divisible3→ STOP),

N3 = N2[pBINARY 7→ tτ 7→ p5],LP (p3) = BINARY, lab3 = (p4, p5,Υ3),

Υ3 = Υ2 ∪ {(rhs(REM0)‖BINARY, p4, p3)} and S3 = (SP2, ∅) : S2

State4 = (((0→ REM0)2(1→ REM1)) ‖
{0,1,divisible3}

lab4
rhs(BINARY), p1,N4, ([], S4), ∅) (SP5)(SP1)

(Choice)
where N4 = N3[p2 7→ tC1 7→ p6],LP (p4) = 2, lab4 = (p6, p5,Υ4),

Υ4 = Υ3 ∪ {(rhs(REM0)‖rhs(BINARY), p4, p5)} and

S4 = [(C1, {C2}), (SP1, ∅)] : S3

State5 = ((0→ REM0) ‖
{0,1,divisible3}

lab5
rhs(BINARY), p1,N5, ([], S5), ∅) (SP5)(SP4)

where N5 = N4[p2 7→ tC1 7→ p7],LP (p6) = 2, lab5 = (p7, p5,Υ5)

Υ5 = Υ4 ∪ {(((0→ REM0)2(1→ REM1))‖rhs(BINARY), p6, p5)} and

S5 = [(C1, {C2}), (SP1, ∅)] : S4

State6 = (STOP, p1,N5, ([], S6), ∅) where S6 = (SP4, ∅) : S5

Figure 7: First iteration of Algorithm 1 for Example 2
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Second iteration

State7 = (MAIN, p0,N5, (UpdStore(S6), []), ∅) = (MAIN, p0,N5, (S7, []), ∅) (PC-Seq)

where S7 = [(C2, ∅), (SP1, ∅), (C1, {C2}), (SP1, ∅), (SP2, ∅), (SP1, ∅)]

State8 = (REM0♦ ‖
{0,1,divisible3}

(⊥,⊥,∅)BINARY♦, p1,N5, (S7, []), ∅) where LP (p0) = MAIN (SP1)(PC-Par)

State9 = (rhs(REM0) ‖
{0,1,divisible3}

lab9
BINARY♦, p1,N5, (S8, [(SP1, ∅)]), ∅) (SP2)(PC-Par)

where rhs(REM0) = (((0→ REM0)2(1→ REM1))2(divisible3→ STOP)),

LP (p2) = REM0, lab9 = (p4, p3,Υ9),Υ9 = {(REM0‖BINARY, p2, p3)} and

S8 = [(C2, ∅), (SP1, ∅), (C1, {C2}), (SP1, ∅), (SP2, ∅)]

State10 = (rhs(REM0) ‖
{0,1,divisible3}

lab10
rhs(BINARY), p1,N5, (S9, S10), ∅) (SP1)(Choice)

where rhs(BINARY) = (1→ 1→ 0→ divisible3→ STOP),LP (p3) = BINARY,

lab10 = (p4, p5,Υ10),Υ10 = Υ9 ∪ {(rhs(REM0)‖BINARY, p4, p3)},
S9 = [(C2, ∅), (SP1, ∅), (C1, {C2}), (SP1, ∅)] and S10 = [(SP2, ∅) : (SP1, ∅)]

State11 = (((0→ REM0)2(1→ REM1)) ‖
{0,1,divisible3}

lab11
rhs(BINARY), p1,N5, (S11, S12), ∅) (SP1)(Choice)

where LP (p4) = 2, lab11 = (p6, p5,Υ11),

Υ11 = Υ10 ∪ {(rhs(REM0)‖rhs(BINARY), p4, p5)},
S11 = [(C2, ∅), (SP1, ∅)] and S12 = [(C1, {C2}), (SP1, ∅)] : S10

State12 = ((1→ REM1) ‖
{0,1,divisible3}

lab12
rhs(BINARY), p1,N6, ([], S13), ∅) (SP5)(SP3)

(Pref)(Pref)
where N6 = N5[p2 7→ tC2 7→ p8],LP (p6) = 2, lab12 = (p8, p5,Υ12),

Υ12 = Υ11 ∪ {(((0→ REM0)2(1→ REM1))‖rhs(BINARY), p6, p5)} and

S13 = [(C2, ∅), (SP1, ∅)] : S12

State13 = (REM1♦ ‖
{0,1,divisible3}

lab13
(1→ 0→ divisible3→ STOP), p1,N7, ([], S14), ∅) (SP5)(SP1)

(PC-Par)
where N7 = N6[p8 7→ t1 7→ p9, p5 7→ t1 7→ p10], lab13 = (p9, p10,Υ13),

Υ13 = Υ12 ∪ {((1→ REM1)‖rhs(BINARY), p8, p5)}
S14 = (SP3, ∅) : S13 and ∆1 = {(p8, t1, p9), (p5, t1, p10)}

State14 = (rhs(REM1) ‖
{0,1,divisible3}

lab14
(1→ 0→ divisible3→ STOP), p1,N8, ([], S15), ∅) (SP5)(SP1)

(Choice)
where rhs(REM1) = ((0→ REM2)2(1→ REM0)),N8 = N7[pREM1 7→ tτ 7→ p11],

LP (p9) = REM1, lab14 = (p11, p10,Υ14)

Υ14 = Υ13 ∪ {(REM1‖rhs(BINARY), p9, p10)} and S15 = (SP1, ∅) : S14

State15 = ((0→ REM2) ‖
{0,1,divisible3}

lab15
(1→ 0→ divisible3→ STOP), p1,N9, ([], S16), ∅) (SP5)(SP4)

where N9 = N8[p2 7→ tC1 7→ p12],LP (p11) = 2, lab15 = (p12, p10,Υ15)

Υ15 = Υ14 ∪ {(rhs(REM1)‖(1→ 0→ divisible3→ STOP), p11, p10)} and

S16 = [(C1, {C2}), (SP1, ∅)] : S15

State16 = (STOP, p1,N9, ([], S17), ∅) where S17 = (SP4, ∅) : S16

Figure 8: Second iteration of Algorithm 1 for Example 2

If we restrict the language to visible events, we get the language over the
alphabet Σ:

LΣ(N ) = {〈〉, 〈1〉, 〈1, 1〉, 〈1, 1, 0〉, 〈1, 1, 0, divisible3〉}

We can see that this language is exactly the same as the one produced by
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Figure 9: Petri net generated in the First and Second iterations of Algorithm 1 for Exam-
ple 2

traces(MAIN) in (2). Then, according to Definition 7, the Petri net generated
by Algorithm 1 and the CSP specification of Example 2 are equivalent.

5. Tuning the generated Petri net

This section introduces a transformation for Petri nets that can be applied to
the Petri nets generated by our technique. The transformation takes advantage
of the particular shape of the generated Petri nets to remove unnecessary parts
that do not contribute to the language produced by them.

Probably, the reader has noticed that the Petri nets generated by Algorithm
1 are very close to the CSP’s semantics behavior. These Petri nets follow step by
step the sequence of events (both internal and external) that happened during
the evaluation of the semantics. For instance,

• Each occurrence of a τ is explicitly represented in the Petri net with a
transition (labeled with the internal event τ) between two places:

!

• Each choice is represented with a place labeled with the choice operator
(2 or t) and two transitions labeled with the first option (C1) and the
second option (C2):

!

!"

!#

• Each parallelism operator is represented with a transition labeled with the
parallelism operator || and two places:

||
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Figure 10: PN associated with the specification of Example 2

These properties makes the generated Petri net to be compositional, and
it is easy to see that the Petri net is a graphical representation of the CSP’s
semantics derivations. In fact, this is a powerful tool for program comprehension
because the Petri net is very similar to the so-called Control Flow Graph (CFG)
(see, e.g., [26]) of imperative languages. Note that the paths followed by tokens
are the possible execution paths in the semantics.

However, for some applications, we may be interested in producing a Petri
net as small as possible discarding internal events and only concentrating on
external ones. This simplified Petri net could keep the equivalence with the
CSP specification and significantly reducing its size. However, (part of) the
connection with the CSP semantics behavior would be lost.

Because both versions of the Petri net (the complete and the simplified) are
useful, we decided not to generate the simplified version directly from the instru-
mented semantics, and do it with a post-process transformation. This has the
additional advantage of not introducing more complexity in the instrumentation
of the semantics. As an example consider the complete Petri net in Figure 10(a)
and its simplified version in Figure 10(b).

The simplification process of Petri nets is performed by Algorithm 2. This
algorithm takes a Petri net and iteratively deletes all parts of the net that are
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duplicated or useless, until a fix-point is reached (i.e., no more simplifications
can be done).

The task of deleting duplicate nodes is performed by function DelDuplicates
whose implementation can be found in Algorithm 3. The task of deleting use-
less parts of the Petri net such as sequences of linear non-observable transitions
is independent of the previous algorithm. This task is performed by function
DelUseless and it is implemented in Algorithm 5.

Function DelDuplicates traverses the Petri net from the initial place (la-
beled with MAIN) following all paths. During the traversal, it tries to identify
repeated parts of the Petri net to remove the repetitions and reuse one of them,
whenever it is possible. For this, three auxiliary functions implemented in Algo-
rithm 4 are introduced: Equal, DelNode and DelNodes. Function Equal is used
to compare two nodes of the Petri net; and functions DelNode and DelNodes
are used to remove the duplicated parts of the Petri net.

Function DelUseless removes useless nodes by checking those transitions
that do not contribute to the final trace. These transitions are called Candidates
and they are initially those transitions labeled with τ, C1 and C2. The function
checks whether a sequence of transitions of this kind exists, and if so, they
are removed. For instance, some clear opportunities for optimization are the
following:

• Removing useless transitions:
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• Removing sink places:
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• Removing final non-observable transitions:
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Example 5. In Figure 11 we show the optimized Petri net associated with the
specification of Example 1. This Petri net is the output produced by Algorithm 2
with the Petri net in Figure 5 as input.
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Algorithm 2 Optimization Algorithm
Input: A labeled Petri net N = (〈P, T, F 〉,M0,P, T ,LP ,LT )
Output: An optimized labeled Petri net

N ′ = (〈P ′, T ′, F ′〉,M ′0,P, T ,L′P ,L′T )

repeat
Pold = P, Told = T, Fold = F
(P, T, F,LT ) = DelDuplicates((〈P, T, F 〉,M0,P, T ,LP ,LT ))
(P, T, F,LT ) = DelUseless((〈P, T, F 〉,M0,P, T ,LP ,LT ))

until P = Pold ∧ T = Told ∧ F = Fold

P ′ = P, T ′ = T, F ′ = F
M ′0(p) = M0(p) ∀p ∈ P ′, L′P (p) = LP (p) ∀p ∈ P ′, L′T (t) = LT (t) ∀t ∈ T ′

return N ′ = (〈P ′, T ′, F ′〉,M ′0,P, T ,L′P ,L′T )

Algorithm 3 Function DelDuplicates
Function DelDuplicates((〈P, T, F 〉,M0,P, T ,LP ,LT ))
Visited = ∅, Pending = {p0 ∈ P | LP (p0) = MAIN}
foreach n ∈ Pending
if n ∈ ((P ∪ T )\Visited)
then Eqs = {neq ∈ P ∪ T | neq 6= n ∧ Equal(neq, n, P, T, F,LP ,LT )}

if Eqs = ∅
then Pending = Pending ∪ (n•\Visited)
else if n ∈ P

then foreach neq ∈ Eqs
F = (F ∪ {(np, n) | np ∈ •neq})\{(np, neq) ∈ F}
(P, T, F ) = DelNode(neq, P, T, F )

else if ∀neq ∈ Eqs : (∃np ∈ •n | neq ∈ n•p)
then (P, T, F ) = DelNodes(np ∈ •n,Eqs, P, T, F )
else if 6 ∃ns ∈ n• | ∀neq ∈ Eqs : neq ∈ •ns

then P = P ∪ {pnew} where pnew 6∈ P
T = T ∪ {tnew} where tnew 6∈ T ,
F = F ∪ {(pnew, tnew)}
LT (tnew) = LT (n)
foreach teq ∈ Eqs ∪ {n}
LT (teq) = τ
(P, T, F ) = DelNodes(teq, t

•
eq, P, T, F )

F = F ∪ {(teq, pnew)}
Visited = Visited ∪ Eqs

Pending = Pending\{n}
Visited = Visited ∪ {n}
return (P, T, F,LT )

Example 6. Turning back to the specification in Example 2, its associated Petri
net in Figure 10(a) is optimized by Algorithm 2 producing the Petri net in
Figure 10(b). Observe that in this simplified Petri net it has been made clearly
explicit the parallel execution of process BINARY with the sequential execution
of processes REM0 and REM1. It is also clear that event divisible3 can only
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Algorithm 4 Functions DelNode, DelNodes and Equal
Function DelNodes(np,Nodes, P, T, F )
foreach n ∈ Nodes

(P, T, F ) = DelNode(n, P, T, F )
F = F\{(np, n)}

return (P, T, F )

Function DelNode(n, P, T, F )
if n• = ∅ ∨ n• = {np}
then (P, T, F ) = DelNodes(n, n•, P\{n}, T\{n}, F )
return (P, T, F )

Function Equal(n, n′, P, T, F,LP ,LT )
return




true if (n ∈ P ∧ n = n′) ∨
((n• ∪ n′•) = ∅ ∧ SameLbl(n, n′) ∧
Comparable(n) ∧ Comparable(n′))

Eq(ns, n
′
s) if SameLbl(n, n′) ∧

Comparable(n) ∧ Comparable(n′) ∧
n• = {ns} ∧ n′• = {n′s}

(Eq(ns1, n
′
s1) ∧ Eq(ns2, n

′
s2)) ∨ if SameLbl(n, n′) ∧

(Eq(ns1, n
′
s2) ∧ Eq(ns2, n

′
s1)) Comparable(n) ∧ Comparable(n′) ∧

n• = {ns1, ns2} ∧ n′• = {n′s1, n′s2}

false otherwise

where Eq(n, n′) = Equal(n, n′, P, T, F,LP ,LT )
SameLbl(n, n′)=(@LP (n) ∧ @LP (n′)) ∨ LT (n)=LT (n′) ∨ LP (n)=LP (n′)
Comparable(n) = (n ∈ P ∧ n• = ∅) ∨ •n = ∅ ∨ •n = {np}

happen if processes REM0, REM1, REM0 and REM0 are executed sequentially and
they synchronize on events 1, 1, 0 and divisible3 with the parallel execution
of process BINARY.

6. Correctness

In this section we state the correctness of the transformation from CSP to
Petri nets. In particular, we prove that given a CSP specification, Algorithm 1
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Figure 11: PN optimized associated with the specification of Example 1

25



Algorithm 5 Function DelUseless
Function DelUseless((〈P, T, F 〉,M0,P, T ,LP ,LT ))
Candidates = {t ∈ T | LT (t) ∈ {τ, C1, C2}}
foreach t ∈ Candidates
Candidates = Candidates\{t}
NextTrans =

⋃
pnext∈t•

p•next

if (∃pnext ∈ t• : @LP (pnext) ∨ LP (pnext) ∈ {�,u})∧
(@p′next ∈ t• : ∃t′ ∈ •p′next ∧ t 6= t′)

then foreach tnext ∈ NextTrans
F = F ∪ {(pprev, tnext) | pprev ∈ •t)}
F = F\{(pnext, tnext) ∈ F | pnext ∈ t•}

P = P\t•, T = T\{t}, F = F\{(pprev, t), (t, pnext) ∈ F}
else if (∃pnext ∈ t• : @LP (pnext) ∨ LP (pnext) ∈ {�,u})∧

(NextTrans = {tnext} ∧ LT (tnext) 6∈ {τ, C1, C2} ∧ |•tnext| = 1)
then PrevTrans =

⋃
pprev∈•tnext

•pprev

foreach tprev ∈ PrevTrans
LT (tprev) = LT (tnext)
F = F\{(tprev, pprev) ∈ F | (pprev, tnext) ∈ F}

if t•next 6= ∅
then F = F ∪ {(tprev, pnext) | tprev ∈ PrevTrans

∧ pnext ∈ t•next}\t•next
P = P\•tnext, T = T\{tnext}, F = F\{(p, tnext) ∈ F}

P = P\{p ∈ P | (LP (p) ∈ {�,u} ∨ @LP (p)) ∧ p• = ∅}
T = T\{t ∈ T | LT (t) ∈ {τ, C1, C2, ‖} ∧ t• = ∅}
LT (t) = τ, ∀t ∈ T : LT (t) = ‖ ∧ (@ps1, ps2 ∈ t• | ps1 6= ps2)

return (P, T, F,LT )

produces in finite time an equivalent Petri net.
We start by proving that Algorithm 1 terminates. For this proof we need

some preliminary definitions and lemmas.

Definition 8. (Rewriting Step, Derivation) Given a state of the semantics s, a
rewriting step for s, denoted by s Θ s′, is the transformation of s into s′ by using
a rule of the CSP semantics. Therefore, s Θ s′ if and only if a rule of the form

Θ

s
e−→ s′

is applicable, where e ∈ Στ and Θ is a (possibly empty) set of rewriting

steps. Given a CSP process s0, we say that the sequence s0
Θ0 . . .

Θn sn+1,
n ≥ 0, is a derivation of s0 if and only if ∀ i, 0 ≤ i ≤ n, si Θi si+1 is a rewriting
step. We say that the derivation is complete if and only if there is no possible
rewriting step for sn+1.

We will use this definition to prove that no infinite derivation exists. In the
following we will refer to the control of state s as control(s).

Lemma 1. Given a derivation of a state s0 with the instrumented semantics
s0

Θ0 . . .
Θn sn+1, then the number of different parallelism operators appearing

in
⋃

0≤i≤n+1 control(si) is finite.
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Proof. This lemma trivially follows from the fact that we do not allow CSP
specifications with recursive parallelism. Therefore, each parallel operator of
the specification can only appear once in a derivation. Hence, the lemma fol-
lows because the specification is finite (and so the number of different parallel
operators).

Lemma 2. Given a CSP specification and a derivation of a state s0 with the in-
strumented semantics s0

Θ0 . . .
Θn sn+1, where 6 ∃si, 0 ≤ i ≤ n+1 : control(si) =

P‖Q then the number of process calls in control(si), 0 ≤ i ≤ n+ 1, is finite.

Proof. We prove this lemma by induction on the length of the derivation show-
ing that the same process call cannot appear more than twice in a derivation
and, hence, the number of process calls is finite because CSP specifications are
always finite (thus, also the number of different process calls is finite).

(Base case) The number of process calls in control(s0) and control(s1) is
finite because control(s0) = MAIN and control(s1) = rhs(MAIN) (rule (Process
Call - Sequential) is applied), moreover, trivially, the same process call cannot
appear more than twice in control(s1). The only possibility that process MAIN
appears twice is when it is defined as MAIN = MAIN. In such a case, the deriva-
tion is:

(MAIN, p0,N0, ∅, (S0, []), ∅) τ−→ (MAIN, p′,N [pM 7→ tτ 7→ p′], (S0, []), ∅)

(MAIN, p′,N [pM 7→ tτ 7→ p′], (S0, []), ∅) τ−→ (	(MAIN), p′,N [pM 7→ tτ 7→ p′], (S0, []), ∅)

This derivation is complete and thus the claim follows.
(Induction hypothesis) We assume that the number of process calls in the

controls of sj , 1 ≤ j < n+ 1 is finite and that no process call has been repeated
more than twice.

(Inductive case) We prove now that the same process call does not ap-
pear more than twice in the controls of s0 . . . sj+1. We consider the rewriting

step sj
Θj sj+1. Because there are no parallelism operators in the deriva-

tion (i.e., 6 ∃si, 0 ≤ i ≤ n + 1 : control(si) = P‖Q), we know that rule
(Process Call - Parallel) cannot be applied. If the rule applied in this step is
not a (Process Call - Sequential), then the claim follows trivially because no new
process call operators can appear in control(sj+1). If the rule applied is a
(Process Call - Sequential), say control(sj) = P , then we have two possibilities:

• P was not called in the derivation s0
Θ0 . . .

Θj−1 sj . Then, sj+1 contains
a new process call that appears for the first time. Thus, the claim follows.

• P was already called in the derivation s0
Θ0 . . .

Θj−1 sj . Then, N con-
tains a node labeled with P introduced in the second item of function
LoopCheck. In this case we have a rewriting step: sk

Θk sk+1 with k < j
and control(sk) = P . The first item of function LoopCheck is executed
and thus control(sk+1) =	 P . Hence, the computation finishes because
no more rules are applicable and the claim follows.
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In the next lemma we need a notion of size to measure the processes in a
CSP specification.

Definition 9. (Size of CSP expressions) Given a CSP process P , we define the
size of P as:

size(P ) =





1 if P = N ∈ Names or P = STOP

1 + size(P1) if P = a→ P1

1 + size(P1) + size(P2) if P = P1 u P2 or
P = P12P2 or P = P1 ||

X

P2

We will use this notion of size to prove that some rewriting steps always
decrease the size of the CSP processes they have in their control.

Lemma 3. Given a derivation of a state s0 with the instrumented semantics
D = s0

Θ0 . . .
Θn sn+1 where s0 =(MAIN, p0,N0, (S0, []), ∅), then D is finite.

Proof. Firstly, by Lemma 1, we know that the number of parallelism operators
in D is finite. This means that the number of processes executing in parallel is
finite. This is an important property, because then, we only have to prove that
every parallel process is finite.

Let us consider D = s0
Θ0 . . .

Θn sn+1 as an arbitrary derivation. We need
to prove two different properties:

1. n is a finite number.
2. For each rewriting step s

Θ s′ in D, Θ has a finite number of rewriting
steps.

We start with the first item. There are two possibilities:

(a) 6 ∃si, 0 ≤ i ≤ n+ 1 : control(si) = P‖Q

(b) ∃si, 0 ≤ i ≤ n+ 1 : control(si) = P‖Q

For concreteness, in the following, we represent rewriting steps by only showing
the control of each state. This will simplify the explanations while keeping the
relevant component needed to prove the finiteness of derivations. Moreover, we
also remove subderivations as they are not going to influence the final conclusion
(they are considered in item 2 of the proof). Then, according to Lemma 2, in
case (a) where no parallelism appears as a control in the derivation, only two
scenarios are possible:

• P0 ∗M ∗M 	 (M), where the last rewriting step corresponds to an
application of rule (Process Call - Sequential).

• P0 ∗STOP

Both of them have a finite number of rewriting steps, so the claim holds.
In the case that a parallelism appears in some control of the derivation, there
are different possibilities:
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• P0 ∗P ||Q ∗P ′||Q′ STOP, where the last rewriting step rule would cor-
respond to the application of rule (Synchronized Parallelism 4). This case
occurs, for instance, when P ′ = STOP and Q′ = STOP, and also when both
branches are waiting to synchronize, but each one with a different event
(thus they will never synchronize, i.e., they are in a deadlock, and thus
the process is stopped).

• P0 ∗P ||Q ∗P ||Q 	 (P ||Q), where the last rewriting step rule would
correspond to the application of rule (Synchronized Parallelism 5). In this
case, the control is repeated, thus we are in a loop. Hence, the parallelism
is labeled with 	 and it cannot continue.

• P0 ∗P ||Q ∗ 	 (P ′)||Q′ ∗ 	 (P ′)||STOP 	 (P ′||STOP), where the last
rewriting step rule would correspond to the application of rule (Synchro-
nized Parallelism 4). Here, one branch is marked as a loop and the other
already terminated. Therefore, the whole parallelism is also marked as a
loop with 	 and it cannot continue.

• P0 ∗P ||Q ∗ 	 (P ′)||Q′ ∗ 	 (P ′)|| 	 (Q′′) 	 (P ′||Q′′), where the last
rewriting step rule would correspond to the application of rule (Synchro-
nized Parallelism 4). This case is analogous to the previous one. Here both
branches are in a loop and thus the parallelism is marked as a loop and
stopped.

• P0 ∗P ||Q ∗ 	(P ′)||Q′ ∗ 	(P ′)||Q′′ P ′||Q′′ ∗(STOP or	(P ′′||Q′′′)),
where the rewriting step 	 (P ′)||Q′′ P ′||Q′′ corresponds to the applica-
tion of rule (Synchronized Parallelism 4). In this case Q′′ cannot continue
because it is waiting to synchronize with P ′. Therefore, the loop label
is removed from 	 (P ′), allowing P ′ and Q′′ to continue. As the speci-
fication is finite, the number of possible controls is also finite, thus it is
impossible to unfold infinite different combinations of controls P ′ and Q′′.
This means that (if the computation does not end with STOP) eventually
some of them will be repeated (i.e. the control will belong to Υ) and it
will be labeled with 	 thus stopping the computation.

• P0 ∗P ||Q ∗ 	 (P ′)||Q′ 	 (P ′||Q′), where the last rewriting step rule
would correspond to the application of rule (Synchronized Parallelism 4)
and P ′||Q′ ∈ Υ. Therefore, even though Q′ is waiting to synchronize with
P ′, the loop is not unfolded because it was already unfolded, and the same
situation has been repeated. Therefore, the whole parallelism is marked
as a loop and the computation finishes.

In all possible cases the derivation is complete, thus it has a finite number of
rewriting steps. Therefore the claim of the first item holds.

In order to prove the second item, we show that if the rule applied is a (Prefix-
ing), (Process Call - Sequential and Parallel), (Choice) or (Synchronized Parallelism
4), then Θ is empty and the claim follows trivially. If it is a (Synchronized Par-
allelism 1), (Synchronized Parallelism 2) or (Synchronized Parallelism 5), then Θ
only contains one rewriting step, and if it is a (Synchronized Parallelism 3), then
Θ only contains two rewriting steps. In the later two cases we have to prove that
these rewriting steps do not contain infinite rewriting steps bottom-up. We can
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prove this by showing that, eventually, Θ will perform a (Prefixing), (Process
Call - Sequential and Parallel), (Choice) or (Synchronized Parallelism 4); and thus,
the number of rewriting steps is finite. This can be proved using the size of
control(s) and demonstrating that each rewriting step reduces size(control(s)).
Because the initial size is finite (since the CSP specification is finite), it will
eventually reduce to zero.

Let us consider all possible cases. The only possible rules applied are:

(Prefixing), (Process Call - Sequential and Parallel), (Choice), (Synchronized Paral-
lelism 4) If these rules are applied, Θ = ∅ and the claim follows trivially.

(Synchronized Parallelism 1 and 2) Let Θ = t
Θ′ t′. Then, size(control(s)) <

size(control(t)); hence, the claim follows.

(Synchronized Parallelism 3) This case is analogous to the previous one but two
rewriting steps are reduced in size, one for each branch of the parallelism.

(Synchronized Parallelism 5) In this case the rule applied is of the form:

(P, p,NP , (S′P , S0),_)
e−→ (P ′, p,N ′, (S′, S′0),∆)

(P1‖
X

(p1,p2,Υ)P2, p,N , (S, S0),_)
e−→ (P ′′, p,N ′′, (S′′, S′′0 ),∆′)

e ∈ Στ

Therefore, size(control(s)) = size(control(t)), thus the size is not reduced
with this rule. If this rule is applied when the store is not empty, there
will not exist subderivations and the control will be labeled with 	 to
denote the loop, thus the rule cannot be applied again. If this rule is
applied when the store is empty, then, after its application, the store is
never empty. Hence, this rule cannot be applied infinitely, it can only
be applied once, and then another rule must be applied before it can
be applied again. Therefore, the claim follows because this rule will be
applied a finite number of times.

Theorem 1. (Termination) Given a CSP specification S, the execution of Al-
gorithm 1 with S as input terminates.

Proof. The semantics is fired by Algorithm 1 a number of times limited by the
number of elements in the store. Therefore, if we prove that the store is finite,
then the semantics is fired a finite number of times. And, since we know that
the semantics always terminates (according to Lemma 3), then, the algorithm
also terminates. Hence, in order to prove that Algorithm 1 terminates we have
to show that the store never grows infinitely. For this purpose, we have to show
first that all executions of the semantics terminate. This is sufficient because
function UpdStore, which is the only one that also manipulates the store (in
addition to the semantics), always either reduces its size or leaves it unchanged.
So, as the only rules that change the store are (Synchronized Parallelism) and
(Choice), we have to show that there is no derivation which fires these rules
infinitely. This follows from Lemma 3, that ensures that no infinite derivation
exists. Therefore, no rule is fired infinitely. And, because rules only increase
the store with a finite number of elements, then the store never grows infinitely.
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Moreover, by Lemma 1 we know that there is a finite number of parallelism
operators in each execution of the semantics. Therefore, the number of processes
in parallel is finite, thus a finite number of elements is added to the store.

Theorem 2. (Petri net generated) Algorithm 1 generates a labeled Petri net.

Proof. Algorithm 1 produces the Petri net by using the semantics in Figure 6.
Therefore, because the final Petri net is only produced by the semantics, we can
prove this theorem by ensuring that:

1. The graph produced by the semantics is a Petri net according to Defini-
tion 3.

2. The Petri net generated by the semantics is finite.

We begin with the first item.

1. The first item can be proved by induction on the length of an arbitrary
derivation D = s0

Θ0 . . .
Θn sn+1 performed with the semantics proving

that the final graph produced is always a Petri net.
The input of Algorithm 1 is a CSP specification S with initial process
MAIN and initial state s0 = (MAIN, p0,N0, ([], []), ∅). The Petri net
associated with the initial state (s0) of the instrumented semantics is
N = (〈{p0}, ∅, ∅〉, M0,P, T ,LP ,LT ), M0(p0) = 1, P = Names ∪ {2,u},
T = Στ ∪ {‖, C1, C2}.
(Base case) The base case is the first step performed by the semantics.
The only applicable rule in s0 is (Process Call - Sequential). This rule uses
function LoopCheck and in this step only the second case of LoopCheck is
possible. Then, this rule labels p0 with MAIN (i.e., LP (p0) = MAIN), adds
an internal transition tτ and a new place p as follows: N0[pMAIN 7→ tτ 7→ p].
p is a new place ready to be connected in next steps. Therefore, the
resulting graph is a Petri net according to Definition 3.
(Induction hypothesis) We assume as the induction hypothesis that the
graph generated by the semantics after n steps is a Petri net. Let sn =
(P, p,N , (S, S0),∆).
(Inductive case) Now we prove that the application of a rule in sn also
produces a Petri net. We analyze all possible cases that correspond to all
possible rules of the semantics to be applied in sn. The applicable rules
are:

• If a (Process Call - Sequential) is applied, then process P is a process
call, say M . This rule activates function LoopCheck. This function
has two possibilities:
(a) N [qM 7→ _]. In this case, function LoopCheck only adds an arc

between a transition and a place that already exists in the Petri
net. Therefore, the resulting graph is a Petri net according to
Definition 3.

(b) Otherwise. In this case, the rule adds an internal transition tτ
and a new place p as follows: N [ppprev 7→ tτ 7→ p], i.e. this
transition is connected to place pprev that represents the last
place created in the applied previous rule. p is a new place ready
to be connected in next steps. Therefore, the resulting graph is
a Petri net according to Definition 3.
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• If a (Process Call - Parallel) is applied then the rule adds an internal
transition tτ and a new place p as follows: N [ppprev 7→ tτ 7→ p], i.e.
this transition is connected to place pprev that represents the last
place created in the applied previous rule. p is a new place ready to
be connected in next steps. Therefore, the resulting graph is a Petri
net according to Definition 3.

• If a (Prefixing) is applied (i.e., P = a → Q) then the instrumented
semantics adds a new transition ta and a new place p connected to
the previous one pprev: N [pprev 7→ ta 7→ p]. p is a new place ready
to be connected in next steps. Therefore, the resulting Petri net is a
Petri net according to Definition 3.

• If a (Choice) is applied (i.e., P = Q � R), function SelectBranch
is used to produce the new control P ′ and the new tuple of stores
(S′, S′0) by selecting a branch with the information of the store. This
function creates a new transition t ∈ {tC1, tC2} depending of the
chosen branch (tC1 or tC2) that represents the τ event: N [p� 7→
tC1 7→ p] or N [p� 7→ tC2 7→ p], where p2 is the new label of the last
place created in the applied previous rule. p is a new place ready to
be connected in next steps. Therefore, the resulting Petri net is a
Petri net according to Definition 3.

• If a (Synchronized Parallelism 1 or 2) is applied (i.e., P = P1 ‖
X

P2),

both parallel processes can be intertwiningly executed until a syn-
chronized event is found. Therefore, places and transitions for both
processes can be added interwoven to the Petri net. The parallelism
operator is represented in the Petri net with a transition t‖. This
transition is connected to two new places (p1 and p2) one for each
branch: N [pprev 7→ t‖ 7→ p1] and N [pprev 7→ t‖ 7→ p2], where pprev
is the last place created in the applied previous rule. Therefore, the
resulting Petri net is a Petri net according to Definition 3.

• If a (Synchronized Parallelism 3) is applied (i.e., again P = P1 ‖
X

P2),

all the events that have been executed in this step must be synchro-
nized, i.e. all the events occurred in the subderivations of P1 (∆1)
and P2 (∆2). This is done in the Petri net by removing the transitions
that were added in each subderivation ({(p 7→ t 7→ p′) | (p, t, p′) ∈
(∆1 ∪ ∆2)}) and connecting all of them with a single transition te.
Therefore, the resulting Petri net is a Petri net according to Defini-
tion 3.

• If a (Synchronized Parallelism 4) is applied (i.e., P1 ‖
X

P2), none of the

parallel processes can proceed because they already finished, dead-
locked or were labeled with a loop 	. When one of the branches has
been labeled as a loop, the corresponding Petri net only changes if
the other branch is not in a loop. In this situation, function DelEdges
removes the arcs introduced by rule (Synchronized Parallelism 5) that
connect those process calls that were looped, but the set of transi-
tions and the set of places of N are not changed. Therefore, the
resulting Petri net is a Petri net according to Definition 3.

32



• If a (Synchronized Parallelism 5) is applied (i.e., P1 ‖
X

P2), then the

store is empty. Similarly to (Process Call - Sequential), this rule only
modifies the Petri net to draw the loops when they are detected. The
arcs introduced are exactly the same as in (Process Call - Sequential).
These arcs join a transition with a place that already exists in the
Petri net. Therefore, the resulting Petri net is a Petri net according
to Definition 3.

We conclude that the resulting final graph is a Petri net.
2. The second item is trivially proved with Theorem 1. This theorem en-

sures that the execution of the semantics is finite. Therefore, it will only
produce a finite number of places and transitions with each execution of
the semantics because each rule of the semantics only adds to the graph a
finite number of transitions and places. Moreover, because the semantics
is only executed a finite number of times, we can conclude that the final
Petri net will be always finite.

Now we present the main result that states the correctness of the transfor-
mation.

Theorem 3. (Correctness) Let S be a CSP specification and N the Petri net
generated by Algorithm 1. Then, S is equivalent to N .

Proof. We prove the theorem by distinguishing two possible situations: a
derivation with a single sequential process, and a derivation with parallel pro-
cesses.

In the case of sequential processes, the prove is quite easy because each rule
generates the part of the Petri net associated with the CSP rewriting step. The
only interesting case is when a loop is found.

We prove this case by induction on the length of an arbitrary derivation
D = s0

Θ0 . . .
Θn sn+1 of the semantics. And we show that every rewriting step

produces the corresponding part of the Petri net, and a place ready to connect
the other parts of the Petri net.

(Base case) The input of Algorithm 1 is a CSP specification S with initial
process MAIN. The initial state of the instrumented semantics is a Petri net
N = (〈{p0}, ∅, ∅〉, M0,P, T ,LP ,LT ), M0(p0) = 1, P = Names ∪ {2,u}, T =
Στ ∪ {‖, C1, C2}.

Therefore, the first rule applied is always (Process Call - Sequential). This
rule uses function LoopCheck and in this step only the third case of LoopCheck is
possible. In this case, the rule adds an internal transition tτ and a new place p1

as follows: N [pMAIN 7→ tτ 7→ p1]. τ does not belong to the set traces(MAIN) either
LΣ(N ). Therefore, after this step traces(MAIN) = LΣ(N ) = ∅. Moreover, p1 is
the sink of the token produced by tτ ready to be connected to new transitions.

(Induction hypothesis) We assume as the induction hypothesis that

traces(MAIN) = LΣ(N ) after n steps of the semantics (s0
Θ0 . . .

Θn−1 sn). And
also that the N contains a place where a token will arrive after the sequence of
events associated with the n steps of the semantics occurs in N .

(Inductive case) We now prove that after the application of a rule of the
semantics in sn

Θn sn+1, traces(MAIN) = LΣ(N ) also holds. Let us consider the
rewriting step (P, p,N , (S, S0),∆)

τ−→ (P ′, p′,N ′, (S′, S′0),∆′).
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We analyze all possible cases that correspond to all possible rules of the
semantics. There are some different rules available:

• If a (Process Call - Sequential) occurs in S, P is a process call M and this
rule activates function LoopCheck. There are two possibilities:

1. If a loop is detected (a place labeled with M already exists in N ,
i.e., N [qM 7→ _]), then transition t (connected to the current place
p) is connected to qM to form the loop (N [t 7→ qM ])). Observe that
in this case, no further rewriting steps are possible. Therefore, there
is no need for a new place ready for future rewriting steps.

2. Otherwise, the process call is unfolded normally. In this case, the
rule adds an internal transition tτ and a new place p1 as follows:
N [pMAIN 7→ tτ 7→ p1]. τ does not belong to the set traces(MAIN)
either LΣ(N ). Therefore, after this step traces(MAIN) = LΣ(N ), i.e.,
they have not changed. Here again, we have p1 ready for next steps.

• If a (Prefixing) occurs in S (i.e., P = a → Q) then the instrumented
semantics adds a new transition ta and a new place p′ connected to the
previous one p: N [p 7→ ta 7→ p′]. Therefore, event a is observable in
traces(MAIN) and a belongs to LΣ(N ). Therefore, after this step it still
holds that traces(MAIN) = LΣ(N ).

• If a (Choice) occurs in S (i.e., P = Q� R), function SelectBranch is used
to produce the new control P ′ and the new tuple of stores (S′, S′0) by
selecting a branch with the information of the store. This function creates
a new transition for the selected branch, either (tC1 or tC2) that represents
the τ event: N [p� 7→ tC1 7→ p′] or N [p� 7→ tC2 7→ p′]. C1 and C2 do
not belong to the set traces(MAIN). Therefore, after this step it still holds
that traces(MAIN) = LΣ(N ). And, again, we have a new place p′ ready
for next rewriting steps.

Therefore, in the case of sequential execution, traces(MAIN) = LΣ(N ) after
each step. In the case of parallel execution, there are some special cases such
as synchronizations that must be considered. We ignore in the following the
application of rules (Process Call - Sequential), (Prefixing) and (Choice) because
their behavior is completely analogous to the case of sequential execution.

• If a (Process Call - Parallel) occurs in S then the rule adds an internal
transition tτ and a new place p1 as follows: N [pMAIN 7→ tτ 7→ p1]. τ does
not belong to the set traces(MAIN) either LΣ(N ). Therefore, after this
step traces(MAIN) = LΣ(N ), i.e., they have not changed.

• If a (Synchronized Parallelism 1 or 2) occurs in S (i.e., P1 ‖
X

P2), both paral-

lel processes can be intertwiningly executed until a synchronized event
is found. Therefore, places and transitions for both processes can be
added interwoven to the Petri net. The parallelism operator is repre-
sented in the Petri net with a transition t‖. This transition is connected
to two new places (p′1 and p′2) one for each branch: N [p 7→ t‖ 7→ p′1] and
N [p 7→ t‖ 7→ p′2]. ‖ does not belong to the set traces(MAIN) either LΣ(N ).
Therefore, after this step it still holds that traces(MAIN) = LΣ(N ).
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• If a (Synchronized Parallelism 3) occurs in S (i.e., P1 ‖
X

P2), all the events

that have been executed in this step must be synchronized, i.e. all the
events occurred in the subderivations of P1 (∆1) and P2 (∆2). This is
done in the Petri net by removing the transitions that were added in each
subderivation ({(p 7→ t 7→ p′) | (p, t, p′) ∈ (∆1 ∪∆2)}) and connecting all
of them with a single transition te. Therefore, after this step it still holds
that traces(MAIN) = LΣ(N ).

• If a (Synchronized Parallelism 4) occurs in S (i.e., P1 ‖
X

P2), none of the

parallel processes can proceed because they already finished, deadlocked
or were labeled with a loop 	. When one of the branches has been labeled
as a loop, the corresponding Petri net only changes if the other branch
is not in a loop. In this situation, function DelEdges removes the edges
introduced by rule (Process Call) that connect those process calls that were
looped. Therefore, after this step it still holds that traces(MAIN) = LΣ(N ).

• If a (Synchronized Parallelism 5) occurs in S (i.e., P1 ‖
X

P2), then the store

is empty or the control is in its Υ. This rule can add some loop arcs from
a transition to a place which is already in the Petri Net. Therefore, after
this step it still holds that traces(MAIN) = LΣ(N ).

Corollary 1. Given two CSP specifications S1,S2, and their associated Petri
nets N1,N2 generated by Algorithm 1, we have that traces(MAIN1)= traces(MAIN2)
if and only if LΣ(N1) = LΣ(N2), where process MAIN1 belongs to S1 and process
MAIN2 belongs to S2.

Proof. We base the proof of this corollary on the fact that both traces(MAIN1)
and traces(MAIN2) are defined as sets. And also both LΣ(N1) and LΣ(N2) are
sets. Therefore, the notion of equivalence in Definition 7 is based on equivalence
between sets of sequences.

By Theorem 3 we know that S1 is equivalent to N1 thus traces(MAIN1) =
LΣ(N1). Similarly, we know that that S2 is equivalent toN2 thus traces(MAIN2)=
LΣ(N2).

The equality function between sets has the transitive property. Therefore,
the claim follows by transitivity because traces(MAIN1) = traces(MAIN2) implies
that LΣ(N1) = LΣ(N2) and vice versa.

7. Implementation

All the algorithms proposed and the instrumented operational semantics
have been implemented and integrated into a tool called CSP2PN. This tool
allows us to automatically generate a Petri net equivalent to a given CSP spec-
ification. The tool has been implemented in Prolog and C. It has about 1800
LOC and generates Petri nets in the standard PNML format [21] (it can also
generate Petri nets in dot and jpg formats). Although CSP2PN implements
the technique described in this paper, the implemented algorithm is much more
complex due to efficiency reasons.
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In particular, the implementation of the algorithm contains some improve-
ments that significantly speed up the Petri net construction. The most impor-
tant improvement is to avoid repeated computations. This is done by: (i) state
memoization: once a state already explored is reached the algorithm stops this
computation and starts with another one; and (ii) skipping already performed
computations: computations do not start from MAIN, they start from the next
non-deterministic state in the execution (this is provided by the information of
the store).

The implementation is composed of eight different modules that interact to
produce the final Petri net:

Main This is the main module that coordinates all the other modules.

Control Algorithm Implements Algorithm 1 and the data structures needed
to communicate with the semantics (e.g., the store).

Semantics Implements the CSP’s extended operational Semantics.

Optimization Implements all the optimization technique (Algorithms 2, 3, 4
and 5).

Pretty Printing All the derivations performed by the semantics and the logs
of execution are printed with this module.

Graph Generation It produces the final Petri nets with different formats such
as DOT and JPG.

PNML Construction This is the only module written in C (the others are
written in Prolog). It basically reads the generated Petri net in DOT
format and transforms it into a standard PNML Petri net.

Tools It contains common and auxiliary functions and tools used by the other
modules.

The implementation, source code and several examples are publicly available
at:

http://users.dsic.upv.es/~jsilva/CSP2PN/

There is an online version of CSP2PN that can be used to test the tool.
This online version is publicly available at:

http://kaz.dsic.upv.es/csp2petri.html

Figure 12 shows a screenshot of the online version of CSP2PN. You can either
write down the initial CSP specification or choose one from the list of available
examples. Once the Petri net is generated (Generate Petri net) it is possible
to visualize it (View Petri net) and to save it as pnml, jpg or dot formats.
The same options are available for the optimized Petri net. For instance, the
Petri net in Figure 5 has been automatically generated by CSP2PN from the
CSP specification of Example 1. After the Petri net is generated, we also show
the execution log of the instrumented semantics used by the transformation
technique. This log allows us to check the different iterations of the algorithm
and to follow the execution of the instrumented semantics step by step.
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Figure 12: Screenshot of the online version of CSP2PN

The possibility of saving the generated Petri net as a pnml file allows us
to animate and analyze it with any standard Petri net tool. The results of
these analyses can be transferred easily to the CSP specification. For instance,
PIPE2 (Platform Independent Petri net Editor 2) [22] is a tool for creating
and analysing Petri nets that loads and saves nets in pnml. Therefore, the
optimized Petri nets generated by CSP2PN can be directly verified with the
analyses performed by PIPE2.

8. Conclusions

This work introduces an algorithm to automatically build a Petri net which
produces the same sequences of observable events as a given CSP specification.
The algorithm uses an instrumentation of the standard CSP’s operational se-
mantics to explore all possible computations of a specification. The semantics
is deterministic because the rule applied in every step is predetermined by the
initial configuration. Therefore, the algorithm can execute the semantics sev-
eral times to iteratively explore all computations and hence, generate the whole
Petri net. The Petri net is generated even for non-terminating specifications
due to the use of a loop detection mechanism controlled by the semantics. This
semantics is an interesting result because it explicitly relates the CSP model
with the Petri net and the Petri net generated is very similar (structurally) to
the CSP specification. The way in which the semantics has been instrumented
can be used for other similar purposes with slight modifications. For instance,
the same design could be used to generate other graph representations of a
computation [12, 13].

The Petri net generated is closely related to the CSP specification because all
possible executions force tokens to follow the transitions in such a way that they
reproduce the steps of the CSP semantics. This is very interesting compared to
previous approaches where the relation between both models is hardly notice-
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able. The main cause of this important property is that part of the complexity
needed to fill the gap between both models has been translated to the seman-
tics (instead of translating it to the generated Petri net). Hence, an important
application of these Petri nets is program comprehension.

However, if we are interested in a reduced version of the Petri net we can
further transform it with a transformation defined to remove repeated or un-
necessary parts. The resultant Petri nets obtained with this transformation are
very compact and can be used to perform different Petri net analyses that can
be translated to the CSP specification. Both transformations have been proved
correct and terminating.

For future work we plan to extend the set of CSP operators to include
sequential composition, parameterized process calls, hiding and renaming. And
also, we will study the failures and divergences models in addition to the traces
model.

On the practical side, we have implemented a tool called CSP2PN which
is able to automatically generate a Petri net equivalent to a CSP specification.
The interested reader is referred to: http://users.dsic.upv.es/~jsilva/
CSP2PN where the implementation, source code and several examples are publicly
available.
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Abstract

Petri nets provide a means for modelling and verifying the behavior of concurrent
systems. Program slicing is a well-known technique in imperative programming
for extracting those statements of a program that may affect a given program
point. In the context of Petri nets, computing a net slice can be seen as a graph
reachability problem. In this paper, we propose two slicing techniques for Petri
nets that can be useful to reduce the size of the considered net, thereby simplify-
ing subsequent analysis and debugging tasks by standard Petri net techniques.

Key words: Petri nets, program slicing, reachability analysis

1. Introduction

Program slicing is a method for decomposing programs in order to extract
parts of them—called program slices—which are of interest. This technique
was first defined by Mark Weiser [20] in the context of program debugging. In
particular, Weiser’s proposal was aimed at using program slicing for isolating
the program staments that may contain a bug, so that finding this bug becomes
simpler for the programmer. In general, slicing extracts the statements that
may affect some point of interest, referred to as slicing criterion.

Let us illustrate this technique with an example taken from [19]. Figure 1(a)
shows a simple program which requests a positive integer number n and com-
putes the sum and the product of the first n positive integer numbers. Fig-
ure 1(b) shows a slice of this program w.r.t. the slicing criterion (10,product),
i.e., variable product in line 10. As can be seen in the figure, all the compu-
tations that do not contribute to the final value of the variable product have
been removed from the slice.

The work by Weiser has inspired a lot of different approaches to compute
slices which include generalizations and concretizations of the initial approach.
In general, all of them are classified into two classes: static and dynamic. A slice
is said to be static if the input of the program is unknown (this is the case of
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(1)  read(n) ;
(2)  i := 1 ;
(3)  sum := 0 ;
(4)  product := 1 ;
(5)  while i <= n do

begin
(6)        sum := sum + i ;
(7)        product := product * i ;
(8)        i := i + 1 ;

end ;
(9)  write (sum) ;
(10) write (product) ;

(a) Example program.

read(n) ;
i := 1 ;

product := 1 ;
while i <= n do

begin

product := product * i ;
i := i + 1 ;

end ;

write (product) ;

(b) Program slice w.r.t. (10,product).

Figure 1: Sub-figures 1(a) and 1(b) show an example of program slicing.

Weiser’s approach). On the other hand, it is said to be dynamic if a particular
input for the program is provided, i.e., a particular computation is considered.

In this work, we propose the use of slicing techniques to produce subnets of a
Petri net. A Petri net [13, 14] is a graphic, mathematical tool used to model and
verify the behavior of systems that are concurrent, asynchronous, distributed,
parallel, non-deterministic and/or stochastic. As a graphic tool, they provide a
visual understanding of the system and the mathematical tool facilitates its for-
mal analysis. State space methods are the most popular approach to automatic
verification of concurrent systems. In their basic form, these methods explore
the transition system associated with the concurrent system. The transition
system is a graph, known as the reachability graph, that represents the system’s
reachable states as nodes: there is an arc from one state s to another s′, when-
ever the system can evolve from s to s′. In the worst case, state space methods
have to explore all the nodes and transitions in the transition system. This
makes the method useless in practice, even though it is simple in concept, due
to the state-explosion problem that occurs when a Petri net is applied to non-
trivial real problems. The technique is costly even in bounded nets with a finite
number of states since, in the worst case, the reachable states are multiplied
beyond any primitive recursive function. For this reason, various approaches
have been proposed to minimize the number of system states to be studied in a
reachability graph [17].

Program slicing has a great potential here since it allows us to syntactically
reduce a model in such a way that the reduced model is composed only of those
parts that may influence the slicing criterion. Since it was originally defined
by Weiser, program slicing has been applied to different formalisms which are
not strictly programming languages, like attribute grammars [18], hierarchical
state machines [9], Z and CSP-OZ specifications [5, 2, 3], etc. Unfortunately,
very little work has been carried out on slicing for Petri nets (some notable
exceptions are [4, 11, 15, 16]). For instance, Chang and Wang [4] present a
static slicing algorithm for Petri nets that slices out all sets of paths, known
as concurrence sets, so that all paths within the same set should be executed
concurrently. In [11], a static slicing technique for Petri nets is proposed in
order to divide enormous P/T nets into manageable modules so that the divided
model can be analyzed by a compositional reachability analysis technique. A
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Petri net model is partitioned into concurrent units (Petri net slices) using
minimal invariants. In order to preserve all the information in the original
model, uncovered places should be added into minimally-connectable concurrent
units since minimal invariants may not cover all the places. Finally, in [15, 16],
Rakow presents another static slicing technique to reduce the Petri net size and,
thus, lessen the problem of state explosion that occurs in the model checking [6]
of Petri nets [1]. From the best of our knowledge, there is no previous proposal
for dynamic slicing of Petri nets. This is surprising because considering an
initial marking and/or a particular sequence of transition firings would allow
us to further reduce the size of the slices and focus on a particular use of the
considered Petri net.

In this work, we explore two different alternatives for dynamic slicing of Petri
nets. Firstly, we present a slicing technique that extends the slicing criterion in
[15, 16] in order to also consider an initial marking. We show that this infor-
mation can be very useful when analyzing Petri nets and, moreover, it allows
us to significantly reduce the size of the computed slice. Furthermore, we show
that our algorithm is, in the worst case, as precise as Rakow’s algorithm. This
can still be seen as a lightweight approach to slicing since its cost is bounded
by the number of transitions in the Petri net. Then, we present a second ap-
proach that further reduces the size of the computed slice by only considering a
particular execution—here, a sequence of transition firings. Clearly, in this case
the computed slice is only useful to analyze the considered firing sequence. We
illustrate both techniques with examples.

2. Petri Nets

A Petri net [13, 14] is a directed bipartite graph, whose two essential elements
are called places (represented by circles) and transitions (represented by bars
or rectangles). The edges of the graph form the arcs, which are labelled with a
positive integer known as weight. Arcs run from places to transitions and vice
versa. The state of the system modeled by the net is represented by assigning
non-negative integers to places. This is known as a marking, and is shown
graphically by adding small black circles to the places, known as tokens. The
dynamic behavior of the system is simulated by changes in the markings of a
Petri net, a process which is carried out by the firing of the transitions. The
basic concepts of Petri nets are summarized as follows:

Definition 1. A Petri net [13, 14] is a tuple N = (P, T, F ), where:

• P is a set of places.

• T is a set of transitions, such that P ∩ T = ∅ and P ∪ T 6= ∅.
• F is the flow relation that assigns weights to arcs: F : P×T ∪ T×P → N.

The marking M of a Petri net is defined over the set of places P . For each place
p ∈ P we let M(p) denote the number of tokens contained in p.

A marked Petri net Σ is a pair (N ,M) where N is a Petri net and M is a
marking. We denote by M0 the initial marking of the net.

In the following, given a marking M and a set of places P , we denote by
M |P the restriction of M over P , i.e., M |P (p) = M(p) for all p ∈ P and M |P
is undefined otherwise.
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Definition 2. [14] Given a Petri net N = (P, T, F ), we say that a marking M ′

covers a marking M if M ′ ≥M , i.e., M ′(p) ≥M(p) for each p ∈ P .

Given a Petri net N = (P, T, F ), we say that a place p ∈ P is an input (resp.
output) place of a transition t ∈ T iff there is an input (resp. output) arc from
p to t (resp. from t to p). Given a transition t ∈ T , we denote by •t and t• the
set of all input and output places of t, respectively. Analogously, given a place
p ∈ P , we denote •p and p• the set of all input and output transitions of p,
respectively.

Definition 3. Let Σ = (N ,M) be a marked Petri net, with N = (P, T, F ).

We say that a transition t ∈ T is enabled in M , in symbols M
t−→, iff for each

input place p ∈ P of t, we have M(p) ≥ F (p, t). A transition may only be fired
if it is enabled.

The firing of an enabled transition t in a marking M eliminates F (p, t)
tokens from each input place p ∈ •t and adds F (t, p′) tokens to each output

place p′ ∈ t•, producing a new marking M ′, in symbols M
t−→M ′.

We say that a marking Mn is reachable from an initial marking M0 if there

exists a firing sequence σ = t1t2 . . . tn such that M0
t1−→M1

t2−→ . . .
tn−→Mn. In

this case, we say that Mn is reachable from M0 through σ, in symbols M0
σ−→

Mn. This notion includes the empty sequence ε; we have M
ε−→ M for any

marking M . We say that a firing sequence is initial if it starts from an initial
marking.

The set of all possible markings which are reachable from an initial marking
M0 in a marked Petri net Σ = (N ,M0) is denoted by R(N ,M0) (or simply by
R(M0) when N is clear from the context).

The following notion of subnet will be particularly relevant in the context of
slicing (roughly speaking, we will identify a slice with a subnet). Let P ′× T ′ ∪
T ′×P ′ ⊆ P ×T ∪ T ×P , we say that a flow relation F ′ : P ′×T ′ ∪ T ′×P ′ → N
is a restriction of another flow relation F : P × T ∪ T × P → N over P ′

and T ′, in symbols F |(P ′,T ′), if F ′ is defined as follows: F ′(x, y) = F (x, y) if
(x, y) ∈ P ′ × T ′ ∪ T ′ × P ′ and F ′ is not defined otherwise.

Definition 4. [8] A subnet N ′ = (P ′, T ′, F ′) of a Petri net N = (P, T, F ) is a
Petri net such that P ′ ⊆ P , T ′ ⊆ T and F ′ is a restriction of F over P ′ and T ′,
i.e., F ′ = F |(P ′,T ′).

3. Dynamic Slicing of Petri Nets

In this section, we introduce our first approach to dynamic slicing of Petri
nets. We say that our slicing technique is dynamic since an initial marking is
taken into account (in contrast to previous approaches, e.g., [4, 11, 15, 16]).

Using an initial marking can be useful, e.g., in debugging. Consider for
instance that the user is analyzing a particular trace for a marked Petri net
(using a simulation tool [7], which we assume correct), so that an erroneous
state is reached. Here, by erroneous state, we mean a marking in which some
places have an incorrect number of tokens. In this case, we are interested in
extracting the set of places and transitions (more formally, a subnet) that may
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erroneously contribute tokens to the places of interest, so that the user can more
easily locate the bug.

Therefore, our first notion of slicing criterion is formalized as follows:

Definition 5. Let N = (P, T, F ) be a Petri net. A slicing criterion for N is a
pair 〈M0, Q〉 where M0 is an initial marking for N and Q ⊆ P is a set of places.

Roughly speaking, given a slicing criterion 〈M0, Q〉 for a Petri net N , we are
interested in extracting a subnet with those places and transitions of N which
can contribute to change the marking of Q in any execution starting in M0.

Our notion of dynamic slice is defined as follows. In the following, we say
that σ′ is a subsequence of a firing sequence σ w.r.t. a set of transitions T if σ′

contains all transitions of σ that belong to T and in the same order.

Definition 6. Let N = (P, T, F ) be a Petri net and let 〈M0, Q〉 be a slicing
criterion for N . Given a Petri net N ′ = (P ′, T ′, F ′), we say that N ′ is a slice
of N w.r.t. 〈M0, Q〉 if the following conditions hold:

• the Petri net N ′ is a subnet of N and

• for each firing sequence σ = t1 . . . tn, for N , with M0
t1−→ . . .

tn−1−→
Mn−1

tn−→ Mn such that Mn−1(p) < Mn(p) for some p ∈ Q, there ex-
ists a firing sequence σ′ for (N ′,M ′0), with M ′0 = M0|P ′ , such that

– σ′ is a subsequence of σ w.r.t. T ′,

– M ′0
σ′−→M ′m, m ≤ n, and

– M ′m covers Mn|P ′ (i.e., M ′m ≥Mn|P ′).

Intuitively speaking, a Petri net N ′ is a slice of another Petri net N if
N ′ is a subnet of N (i.e., no additional places nor transitions are added) and
the behaviour of N is preserved in N ′ for the restricted sets of places and
transitions. In order to formalize this second condition, we require that, for all
firing sequences σ = t1 . . . tn that may move tokens to the places of the slicing
criterion, i.e.,

M0
t1−→ . . .

tn−1−→ Mn−1
tn−→Mn and Mn−1(p) < Mn(p), p ∈ Q

the restriction of this firing sequence can also be performed on the slice N ′, i.e.,

M ′0
σ′−→M ′m and M ′m ≥Mn

Trivially, given a Petri net N , the complete net N is always a correct slice
w.r.t. any slicing criterion. The challenge then is to produce a slice as small as
possible.

Algorithm 1 describes our method to extract a dynamic slice from a Petri
net. Intuitively speaking, Algorithm 1 constructs the slice of a Petri net (P, T, F )
for a set of places Q ⊆ P as follows. The key idea is to capture a possible token
flow relevant for places in Q. For this purpose,

• we first compute the possible paths which lead to the slicing criterion,
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Algorithm 1 Dynamic slicing of a marked Petri net.

Let N = (P, T, F ) be a Petri net and let 〈M0, Q〉 be a slicing criterion for N .
First, we compute a backward slice similar to that of [15]. This is obtained from
b sliceN (Q, { }), where function b sliceN is defined as follows:

b sliceN (W,Wdone) =





{ } if W = { }
T ∪ •T ∪ b sliceN (W \W ′done,W

′
done)

if W 6= { }, where T = •p, and W ′done = Wdone ∪ {p}
for some p ∈ P

Now, we compute a forward slice from

f sliceN ({p ∈ P |M0(p) > 0}, { }, {t ∈ T |M0
t−→})

where function f sliceN is defined as follows:

f sliceN (W,R, V ) =





W ∪R if V = { }
f sliceN (W ∪ V •, R ∪ V, V ′)

if V 6= { }, where V ′ = {t ∈ T \(R ∪ V ) | •t ⊆W ∪ V •}

Then, the dynamic slice is finally obtained from the intersection of the backward
and forward slices. Formally, let

P ′ ∪ T ′ = b sliceN (Q, { }) ∩ f sliceN ({p ∈ P |M0(p) > 0}, { }, {t ∈ T |M0
t−→})

with P ′ ⊆ P and T ′ ⊆ T , the computed slice is

N ′ = (P ′, T ′, F |(P ′,T ′))

• then we also compute the paths that may be followed by the tokens of the
initial marking.

This can be done by taking into account that (i) the marking of a place p
depends on its input and output transitions, (ii) a transition may only be fired
if it is enabled, and (iii) the enabling of a transition depends on the marking of
its input places. The algorithm is divided in three steps:

• The first step is a backward slicing method (which is similar to the basic
slicing algorithm of [15]) that obtains a slice N1 = (P1, T1, F1) defined as
the subnet of N that includes all input places of all transitions connected
to any place p in P1, starting with Q ⊆ P1.

– The core of this method is the auxiliary function b sliceN , which is
initially called with the set of places Q of the slicing criterion together
with an empty set of places.

– For a particular non-empty set of places W and a particular place
p ∈ W , function b sliceN returns the transitions T in •p and the
input places of these transitions •T . Then, function b sliceN moves
backwards adding the place p to the set Wdone and removing from
W the updated set Wdone until the set W becomes empty.

• The second step is a forward slicing method that obtains a slice N2 =
(P2, T2, F2) defined as the subnet ofN that includes all transitions initially
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enabled in M0 as well as those transitions connected as output transitions
of places in P2, starting with p ∈ P such that M0(p) > 0.

– We define an auxiliary function f sliceN , which is initially called with
the places that are marked at M0, an empty set of transitions and
the enabled transitions in M0.

– For a particular set of places W , a particular set of transitions R and
a particular non-empty set of transitions V , function f sliceN moves
forwards adding the places in V • to W , adding the transitions in V
to R and replacing the set of transitions V by a new set V ′ in which
are included the transitions that are not in R ∪ V and whose input
places are in W ∪ V •.

– Finally, when V is empty, function f sliceN returns the accumulated
set of places and transitions W ∪R.

• Finally, the third step obtains the slice N ′ = (P ′, T ′, F ′) defined as the
subnet ofN where P ′ is the intersection of P1 and P2, T ′ is the intersection
of T1 and T2, and F ′ is the restriction of F over P ′ and T ′, i.e., the
intersection of backward and forward slices.

The following result states the completeness of our algorithm for computing
Petri net slices. The proof of this result follows easily by induction on the length
of the firing sequences considered in Definition 6.

Theorem 1. Let N be a Petri net and 〈M0, Q〉 be a slicing criterion for N .
The dynamic slice N ′ computed in Algorithm 1 is a correct slice according to
Definition 6.

We will now show the usefulness of the technique with a simple example.

Example 2. Consider the Petri net N of Fig. 2(a) where the user wants to
produce a slice w.r.t. the slicing criterion 〈M0, {p5, p7, p8}〉. Figure 2(b) shows
the slice N1 obtained in the first part of Algorithm 1. Figure 2(c) shows the slice
N2 obtained in the second part of Algorithm 1. The subnet shown in Fig. 2(d) is
the final result of Algorithm 1 (the intersection of N1 and N2). This slice con-
tains all the places and transitions of the original Petri net which can transmit
tokens to the slicing criterion.

Clearly, using an initial marking allows us to produce smaller slices. Sur-
prisingly, previous approaches completely ignored the marking of the net, and
thus their slices are often rather big. For instance, the slice of Fig. 2(b) is a
subset of the slice produced by Rakow’s algorithm [15] (this algorithm would
also include transitions t4, t6 and t7). Clearly, this slice contains parts of the
Petri net that cannot be reached with the given initial marking (e.g., transition
t1 which could never be fired because place p2 is empty). Rakow’s algorithm
computes all the parts of the Petri net which could transmit tokens to the slicing
criterion and, thus, the associated slicing criterion is just 〈Q〉, where Q ⊆ P is a
set of places. In contrast, we compute all the parts of the Petri net which could
transmit tokens to the slicing criterion from the initial marking. Therefore, our
technique is essentially a generalization of Rakow’s technique because the slice
produced with Rakow’s algorithm w.r.t. 〈Q〉 is the same as the slice produced
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p4
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(d) Slice result of Algorithm 1

Figure 2: Example of an application of Algorithm 1

w.r.t. 〈M0, Q〉 if M0(p) > 0 for all p ∈ P and all t ∈ T are enabled transitions
at M0.

Our slicing technique is more general than Rakow’s technique but, at the
same time, it keeps its simplicity and efficiency because we still use the Petri net
structure to produce the slice. Therefore, our first approach can be considered
lightweight because its cost is bounded by the number of transitions T of the
original Petri net; namely, the cost of our algorithm is O(2T ).

4. Extracting Slices from Traces

In this section, we present an alternative approach to dynamic slicing that
generally produces smaller slices by also considering a particular firing sequence.

In principle, Algorithm 1 should consider all possible executions of the Petri
net starting from the initial marking. This approach can be useful in some
contexts but it is too imprecise for debugging when a particular simulation has
been performed. Therefore, in our second approach, we refine the notion of
slicing criterion so as to also include the firing sequence that represents the
erroneous simulation. By exploting this additional information, the new slicing
algorithm will usually produce smaller slices. Formally,

Definition 7. Let N = (P, T, F ) be a Petri net. A slicing criterion for N is
a triple 〈M0, σ,Q〉 where M0 is a marking for N , σ is an initial firing sequence
(i.e., starting from M0) and Q ⊆ P is a set of places.
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Roughly speaking, given a slicing criterion 〈M0, σ,Q〉 for a Petri net, we are
interested in extracting a subnet with those places and transitions which are
necessary to move tokens to the places in Q.

Our notion of dynamic slice is defined as follows:

Definition 8. Let N = (P, T, F ) be a Petri net. Let 〈M0, σ,Q〉 be a slicing
criterion for N , with σ = t1t2 . . . tn. Given a Petri net N ′ = (P ′, T ′, F ′), we say
that N ′ is a slice of N w.r.t. 〈M0, σ,Q〉 if the following conditions hold:

• the Petri net N ′ is a subnet of N ,

• the set of places Q appears in P ′ (i.e., Q ⊆ P ′), and

• there exists a firing sequence σ′ for (N ′,M ′0), with M ′0 = M0|P ′ , such that

– σ′ is a subsequence of σ w.r.t. T ′,

– M ′0
σ′−→M ′m, m ≤ n, and

– M ′m covers Mn|P ′ (i.e., M ′m ≥Mn|P ′).

Trivially, given a marked Petri net (N ,M0), the complete net N is always a
correct slice w.r.t. any slicing criterion. The challenge then is to produce a slice
as small as possible.

Algorithm 2 Extracting slices from traces.

Let N = (P, T, F ) be a Petri net and let 〈M0, σ,Q〉 be a slicing criterion for N ,
with σ = t1t2 . . . tn. Then, we compute a dynamic slice N ′ of N w.r.t. 〈M0, σ,Q〉
as follows:

• We have N ′ = (P ′, T ′, F ′), where M0
t1−→ M1

t2−→ . . .
tn−→ Mn, P ′ ∪ T ′ =

slice(Mn, σ,Q), P ′ ⊆ P , T ′ ⊆ T , and F ′ = F |(P ′,T ′). Auxiliary function slice
is defined as follows:

slice(Mi, σ,W ) =



W if i = 0
slice(Mi−1, σ,W ) if ∀p ∈W. Mi−1(p) ≥Mi(p), i > 0
{ti} ∪ slice(Mi−1, σ,W ∪ •ti) if ∃p ∈W. Mi−1(p) < Mi(p), i > 0

• The initial marking M ′0 is the restriction of M0 over P ′, i.e., M ′0 = M0|P ′ .

Intuitively speaking, given a slicing criterion 〈M0, σ,Q〉, the slicing algorithm
proceeds as follows:

• The core of the algorithm lies in the auxiliary function slice, which is
initially called with the marking Mn which is reachable from M0 through
σ, together with the firing sequence σ and the set of places Q of the slicing
criterion.

• For a particular marking Mi, i > 0, a firing sequence σ and a set of places
W , function slice just moves “backwards” when no place in W increased
its tokens by the considered firing.
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• Otherwise, the fired transition ti increased the number of tokens of some
place in W . In this case, function slice already returns this transition ti
and, moreover, it moves backwards also adding the places in •ti to the
previous set W .

• Finally, when the initial marking is reached, function slice returns the
accumulated set of places (which includes the initial places in Q).

We will now show the utility of the technique with a simple example.
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(a) Reachability graph
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(c) Slice of N w.r.t. 〈M0, σ, {p5, p7, p8}〉

Figure 3: Example of an application of Algorithm 2

Example 3. Consider the Petri net N of Example 2 shown in Fig. 2(a), to-
gether with the firing sequence σ shown in Fig. 3(b). The firing sequence
σ = t5t2t3t0t2t3 corresponds to the branch of the reachability graph shown in
Fig. 3(a) that goes from the root to the node M45. Then, the user can define
the slicing criterion 〈M0, σ, {p5, p7, p8}〉 for N ; where M0 is the initial marking
for N defined in Fig 2(a).

Clearly, this slicing criterion focus on a particular execution and thus the
slice produced is more precise than the one produced by Algorithm 1. In this case,
the slice of N w.r.t. 〈M0, σ, {p5, p7, p8}〉 is the Petri net shown in Fig. 3(c).
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The following result states the completeness of our algorithm for computing
Petri net slices.

Theorem 4. Let N = (P, T, F ) be a Petri net and let 〈M0, σ,Q〉 be a slicing
criterion for N . The dynamic slice N ′ computed in Algorithm 2 is a correct
slice according to Definition 8.

Proof. (Sketch) We prove the claim by induction on the number n of transi-
tions in σ.

If n = 0, then slice(M0, σ,Q) =
⋃
p∈Q slice(M0, σ, {p}) = Q and the claim

follows trivially for N ′ = (Q, {}, {}) and M ′0 = M0|Q.
If n > 0, then we distinguish two cases:

• If Mn−1(p) ≥Mn(p) for all p ∈ Q, then slice(Mn, σ,Q) = slice(Mn−1, σ,Q)
and the claim follows by induction.

• Otherwise, there exists some p ∈ Q with Mn−1(p) < Mn(p) and, therefore,
slice(Mn, σ,Q) = {tn} ∪ slice(Mn−1, σ,Q ∪ •tn). Let N ′ = (P ′, T ′, F ′),
F ′ = F |(P ′,T ′), and M ′0 = M0|P ′ . Now, we prove that N ′ is a slice of N
w.r.t. 〈M0, σ,Q〉:

– Trivially, N ′ is a subnet of N , M ′0 is a restriction of M0 and Q ⊆ P ′.
– Let N ′′ be the slice of N w.r.t. 〈M0, σn−1, Q ∪ •tn〉, with σn−1 =

M0
t1−→M1

t2−→ . . .Mn−1 and N ′′ = (P ′′, T ′′, F ′′).

By the inductive hypothesis, there exists a firing sequence σ′′ for
(N ′′,M ′′0 ), with M ′′0 = M0|P ′′ , such that

∗ σ′′ is a subsequence of σn−1 w.r.t. T ′′,

∗ M ′′0
σ′′−→M ′′k , k ≤ n− 1, and

∗ M ′′k covers Mn−1 (i.e., M ′′k ≥Mn−1).

Now, we consider a firing sequence σ′ for (N ′,M ′0) that mimicks σ′′

(which is safe since P ′′ = P ′ and T ′′ ⊆ T ′) and then adds one more
firing depending on whether tn ∈ T ′ or not. If σ′ = σ′′ then the claim
follows by induction. Otherwise, it follows trivially by the inductive
hypothesis and the fact that M ′′k covers Mn.

5. Conclusions and Future Work

In this work, we have introduced two different techniques for dynamic slicing
of Petri nets. To the best of our knowledge, this is the first approach to dynamic
slicing for Petri nets. The first approach takes into account the Petri net and
an initial marking, but produces a slice w.r.t. any possibly firing sequence. The
second approach further reduces the computed slice by fixing a particular firing
sequence. In general, our slices are smaller than previous (static) approaches
where no initial marking nor firing sequence were considered.

As a future work, we plan to carry on an experimental evaluation of our
slicing techniques in order to test its viability in practice. We also find it useful
to extend our slicing technique to other kind of Petri nets (e.g., coloured Petri
nets [10] and marked-controlled reconfigurable nets [12]).
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