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A scalable and simple process was developed for the preparation of

Fe3O4 nanoparticles embedded in carbon using nontoxic and

affordable materials. The resulting composite showed a high

reversible capacity of 702 mA h g�1 as anode material in a Li-ion

battery after 50 cycles.
Li-ion batteries are considered as one of the best technologies for

reversible energy storage and can play in the future a major role as

energy vector in transportation.1–3 For this reason there is a contin-

uous interest in improving the efficiency and developingmore durable

Li-ion batteries. One of themajor research interests in Li-ion batteries

has been the nature of the anodematerial.4,5Graphite has beenwidely

employed for anode preparation but has as major limitation its low

gravimetric capacity (372mAh g�1). Therefore there is still a need for

investigating alternative materials that can eventually overcome the

limited capacity of graphite.

In this context transition metal oxides have received considerable

attention since they can exhibit about three times higher capacity than

graphite.6–8 This higher capacity is due to the different way in which

lithium is incorporated into the anode. Thus, while in the case of

graphite lithium becomes incorporated into the interlayer space

(lithium intercalation), in the case of metal oxides it is accepted that a

different mechanism denoted as ‘‘conversion reaction’’ takes place.9

This conversion reaction consists in the storage of lithium as lithium

oxide while the transition metal oxides form some metal domains. In

this regard, one of the metal oxides that has been preferred in these

studies is magnetite (Fe3O4) due to the lack of toxicity, availability

and low cost of this iron oxide.10–13 Eqn (1) summarizes the electro-

chemical reaction taking place between Fe3O4 and Li at the anode:

Fe3O4 + 8Li+ + 8e� 4 3Fe + 4Li2O (1)

This conversion process exhibits a theoretical capacity of 924 mA h

g�1. While the proof of principle of this Fe3O4 conversion has been

already demonstrated there are still some practical problems that

have to be solved before the system can be implemented at the

commercial level. In particular, one of the major concerns in this
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anodic process is the large structural changes that occur during

cycling which lead to remarkable variations in the volume and crystal

structure that eventually produce a rapid decrease in the energy

capacity.9

The two methodologies that have been reported to tackle with the

durability and stability of the Fe3O4 films at the anode are comple-

mentary and are based on the use of nanoparticles (NPs) with small

dimensions and large external surface area which facilitates reversible

crystal changes and also the use of hybrid metal oxide–carbon

composites.14–16 Carbon in various forms improves the mechanical

flexibility of the active Fe3O4 and at the same time ensures the elec-

trical conductivity and reduces the resistance of the metal oxide.

There are several ways to form the Fe3O4 and carbon composites.

One of these ways consists in the coating of the iron oxide NP with a

carbon precursor that forming a shell coating the Fe3O4 NP will be

subsequently converted into carbon with high electrical conduc-

tivity.17,18 This procedure presents some advantages with respect to

other more conventional methods such as the mechanical mixing of

preformed Fe3O4 and carbons derived from the high contact area

between the Fe3O4 phase and carbon. Other examples of Fe3O4–

carbonaceous material composites applied in Li-ion batteries include

the impregnation of porous carbons or the mixing of graphene layers

with Fe3O4 precursors.19–21 Common to all these precedents of

Fe3O4–carbonaceous material composites is the need of lengthy

protocols requiring the independent and previous preparation either

of the carbon or of the Fe3O4.

In the present manuscript we report an innovative preparation

procedure for a Fe3O4–carbon composite that is reliable, effects the

simultaneous formation of Fe3O4 and carbon, uses affordable

precursors and can be scaled up in a simple way. In fact, the present

report constitutes a remarkable example of a sustainable process and

valorization of biomass waste.

The preparation of the material (Fig. 1) starts with the precipita-

tion of an alkaline alginate solution in water by dropwise addition

into a FeCl3 aqueous solution (see ESI† for Experimental details). As

soon as the drops of alginate enter into the FeCl3 solution beads of

this biopolymer containing Fe3+ are formed and sediment at the

bottom of the FeCl3 solution. There are precedents in the literature

describing similar precipitation of metal containing alginates.22 In

fact, alginates are widely used in water purification treatments to trap

transition metal ions.23,24 After formation of the hydrogel beads,

water was gradually replaced by ethanol to form the corresponding

alcogel before submitting the beads to supercritical CO2 drying. This
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Fig. 1 Procedure for the preparation of the Fe3O4–C composite.
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step of water removal by exchange with ethanol has been found

essential for the success of supercritical CO2 drying since supercritical

CO2 dissolves ethanol but is not miscible with water. As a result of

this drying procedure a highly porous, high BET surface area (290m2

g�1) iron containing alginate aerogel is obtained (Fe-alg). The iron

content of Fe-alg determined by induced coupled plasma is 2.6 wt%

and its morphology was assessed by scanning electron microscopy

(SEM) (Fig. S1, ESI†). These Fe-alg beads were submitted to

pyrolysis under argon atmosphere at 500 �C to form the Fe3O4–

carbon composite (Fe3O4–C). It is known that polysaccharides

undergo thermal decomposition towards graphitic carbons depend-

ing on the pyrolysis temperature.25 Similar carbon materials as

Fe3O4–C but using higher temperatures have been already used for

supercapacitors.26 In the present case we have maintained the

pyrolysis temperature as low as possible to avoid the growth of Fe3O4

NPs and the chemical reduction of iron oxides to iron metal that has

been reported to occur starting at 600 �C for other carbonaceous

materials.16 There are in the literature some precedents in which

Fe3O4–carbon composites have also been obtained by pyrolysis

of iron containing synthetic polymers such as polyacrylic acid or

polyacrylonitrile,16,27 but our method avoids the use of volatile

organic compounds and toxic chemicals, makes use of affordable

alginate that is valorized in this application and is carried out in

aqueous media.
Fig. 2 (A) XRD pattern, (B) TEM image (scale bar: 200 nm), (C) SEM

image (the scale bar corresponds to 10microns) and (D) Raman spectrum

of the Fe3O4–C composite.

21374 | J. Mater. Chem., 2012, 22, 21373–21375
Fe3O4–C was characterized by a combination of techniques. The

presence of magnetite NPs with small particle size was assessed by

X-ray diffraction (XRD) of the powder (Fig. 2A) that, in addition,

indicates the absence of iron metal (JCPDS card no. 19-629). Fe3O4

NPs are also observed by transmission electronic microscopy (TEM)

that allows determination of a broad distribution of particles between

15 and 30 nm embedded in carbon (Fig. 2B and S2 in ESI†). The

content of Fe3O4 in the Fe3O4–C composite was determined by

thermogravimetry (Fig. S3 in ESI†), and was found to be 50.5 wt%.

The morphology of the submillimetric beads Fe3O4–C was deter-

mined by SEM showing that the quasi spherical beads are highly

porous and constituted of the agglomeration of small crystallites

(Fig. 2C and S4 in ESI†). The formation of the carbon was assessed

by Raman spectroscopy where the expected G band at 1590 cm�1

and a very broad D band peaking at 1350 cm�1 were recorded

(Fig. 2D). In fact the very broad D band associated with defects can

be deconvoluted into three components (D1, D3, D4). D1 and D4

(1358 and 1230 cm�1, respectively) have been previously assigned to

correspond to disordered graphite while D3 appearing at 1492 cm�1

is due to amorphous carbon.28,29 Overall the Raman spectrum is

compatible with pyrolysis of alginate forming a carbonaceous

material tending to graphite (G band) but with a considerable level of

disorder and accompanied by the presence of amorphous carbon.

The BET surface area of Fe3O4–C is 620m2 g�1, which is remarkably

high for a composite containing about 50 wt% of Fe3O4.

Fe3O4–C was used as anode material to construct a Li-ion battery

(see ESI†). Fig. 3A shows the first two cyclic voltammetry (CV)

curves of this cell in the potential window of 0–3 V at a scan rate of

0.5 mV s�1. These CV profiles and the observed variations upon

cycling are in agreement with those previously reported in the liter-

ature for analogous Fe3O4–carbon materials and, therefore, can

be interpreted similarly.18,27 Thus, in the first scan the strong peak

at 0.6 V must correspond to the reduction of Fe3+ and Fe2+ to Fe0

accompanied by the irreversible reaction related to the decomposition

of electrolyte. In the anodic part, the peak corresponding to the

oxidation of Fe0 to Fe3+ appears at 1.65 V. The second and subse-

quent scans show lower intensity of the cathodic and anodic peaks,

which indicates capacity loss during the charging process.
Fig. 3 (A) Cyclic voltammetry profiles and (B) galvanostatic discharge–

charge curves for the first two cycles of the Fe3O4–C composite. (C)

Cycling performance of (a) Fe3O4–C, (b) Fe3O4–CNT, (c) commercial

Fe3O4 NP and (d) carbon made from pyrolysis of Ca-alg precursor.

This journal is ª The Royal Society of Chemistry 2012

http://dx.doi.org/10.1039/c2jm34978g


D
ow

nl
oa

de
d 

by
 I

ns
tit

ut
o 

de
 T

ec
no

lo
gí

a 
Q

uí
m

ic
a 

on
 1

8/
04

/2
01

3 
11

:2
8:

37
. 

Pu
bl

is
he

d 
on

 0
7 

Se
pt

em
be

r 
20

12
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2J

M
34

97
8G

View Article Online
Fig. 3B shows the discharge–charge profiles of the Fe3O4–C

composite for the first two cycles. As can be seen in the figure the first

discharge gives a capacity of 1550 mA h g�1 which is higher than the

theoretical capacity of Fe3O4 (eqn (1)) and has been attributed to the

formation of a solid–electrolyte interface film associated with

the electrolyte decomposition and the formation of organic

compounds with lithium as has been reported previously in the

literature.27,30These chemical reactions are not observed in the second

cycle where the charge capacity is about the theoretical value.

To characterize the cyclic performance of the Li-ion battery based

on the Fe3O4–C composite as anode material we performed 50 cycles

of charge and discharge (Fig. 3C) and compared the capacity of this

battery with two other devices prepared using commercial Fe3O4

(<50 nm in size from Sigma-Aldrich) and carbon made from

pyrolysis of Ca-alginate prepared following the same protocol as the

one indicated in Fig. 1 but using Ca2+ instead of Fe3+ (Ca-alg). These

measurements of charge–discharge cycles were carried out at a high

current rate of 350 mA g�1 between the voltage limits of 0.01–3 V vs.

Li+/Li. The capacity value in Fig. 3C for Fe3O4–C has been calcu-

lated based on themass of Fe3O4, because no significant contribution

to the capacity is expected to be due to the presence of carbon. To

support the absence of significant contribution to the capacity value

by the carbon matrix containing iron oxide we performed analogous

studies using pyrolyzed Ca-alg (80.4 wt% carbon content, determined

by thermogravimetry under air atmosphere, Fig. S5 in ESI†)

whereby no significant capacity was observed (see Fig. 3C, d)).

Similarly, negligible capacities were measured for Li-ion batteries in

which the anode was simply the carbonaceous residue obtained by

pyrolysis of alginic acid under identical conditions. As can be seen in

this figure, while commercial Fe3O4 NP loses capacity very rapidly

upon cycling, Fe3O4–C composite shows a remarkable capacity

retention to a high value of 702mA h g�1 after 50 cycles that is much

higher than the capacity of graphite and compares favorably with

data reported in the literature for other Fe3O4–carbon compos-

ites.14,15,17,19To better put into context the performance of the Fe3O4–

C hybrid material prepared here with those other Fe3O4–carbona-

ceous anodes reported in the literature we prepared a nanocomposite

consisting of Fe3O4 NPs supported on multi-walled carbon nano-

tubes (Fe3O4–CNT) following a reported procedure15 and tested this

material as anode in a Li+-ion battery under the same conditions.

The results are shown in Fig. 3C and indicate the better performance

of our Fe3O4–C material in spite of its much simpler and convenient

preparation procedure.

Taking into account that the carbon content of Fe3O4–C is about

49.5 wt%, capacity values for the batteries containing this material

considering the total mass are after 50 cycles about 355 mA h g�1.

Although the maximum iron content of the Fe3O4–C has a limit on

the maximum Fe3+ uptake of alginate during the precipitation of Fe

alginate (see Fig. 1) and is about the one that we have used for the

preparation of the anodes in the present work, further optimization

of the pyrolysis treatment leading to a more crystalline graphitic

carbon accompanying Fe3O4 nanoparticles could probably increase

the charge capacity value of the battery by allowing Li+ ion inter-

calation also into the carbon host.
This journal is ª The Royal Society of Chemistry 2012
In conclusion, in the present work we have shown an innovative

preparation of Fe3O4–carbon composite for application as Li-ion

battery anode in which the formation of iron oxide NPs and carbon

occurs simultaneously from a precursor characterized by a high

surface area and porosity that is prepared by flocculation of alginate

with a Fe3+ solution. This material complies with principles of green

chemistry and represents a good example of biomass waste valori-

zation reaching a performance in par with that of analogous mate-

rials obtained by more complex procedures and with less available

precursors.
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