

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Reverse engineering Internet banking

Proyecto Final de Carrera

Ingeniería Técnica de Informática de Sistemas

Autor: Eduardo Pablo Novella Lorente

Director: Ismael Ripoll

04-09-2013

Reverse engineering Internet

Banking

Eduardo Pablo Novella Lorente

Institute for Computing and Information Science

Digital Security Group

Radboud University Nijmegen

The Netherlands

A thesis supervised by:

Erik Poll and Joeri de Ruiter

2013 June

mailto:e.novellalorente@student.ru.nl
http://www.ru.nl/ds/
http://www.ru.nl/ds/
http://www.ru.nl/english/
http://www.ru.nl/english/

Abstract

This paper presents a security analysis of the online banking system of

one of the most important banks of the Netherlands. New security devices

have been designed in order to authorize transactions in a handy and user-

friendly way. In doing so, it has been attempted to strengthen the online

authentication system using hand-held smartcard readers connected by a

USB-cable to a PC. These USB-connected smartcard readers are devices

with a small display and numeric keyboard with two additional keys in

order to accept or deny operations. The customers of Internet banking can

perform any operation in a ”secure way” with such devices.

In this document we will discuss different USB-connected smartcard readers

from several Dutch banks. For ABN-AMRO we will discuss the smartcard

reader called the e.dentifier2 made by Gemalto, which we will principally

focus on it in more detail, and for ING the reader DigiPass 850, made by

VASCO.

We will focus on reverse engineering the ABN-AMRO’s readers. We will

verify that last attack [1] on those devices is not working in the new version

of the e.dentifier2 and we will also reverse engineer some additional func-

tionalities,which were not considered in earlier research about ABN-AMRO

e.dentifier2 reverse engineering [2], and currently do not seem to be used in

ABN-AMRO’s internet banking website. These additional functionalities

[6] could be used for authentications and transactions in Internet banking

in the future.

iv

Acknowledgements

To my family and best friends ... Specially for some who will not stay with

us anymore.

To the best teachers I ever had. For those who tried to motivate students

in order to have fun with computers and education. I will name some of

them but not all : José Verdoy, Jon Ander Gómez Adriá, Germán Moltó,

Alićıa Roca, Ismaell Ripoll and Juan Vicente Capella Hernández.

To my supervisors Erik Poll and Joeri de Ruiter for their support and for

giving me a chance to get to know a bit about bank smartcards.

To my English teacher Karin Kessels for giving some corrections in this

document.

And finally for my Faculties : Universidad Politécnica de Valencia and

Radboud Universiteit Nijmegen.

ii

Contents

1 Introduction 1

1.1 Smartcard readers for Internet banking 1

2 Background 3

2.1 ”Sign What You See”(SWYS) . 3

2.2 The USB Protocol . 4

2.3 EMV . 6

2.4 EMV-CAP . 6

2.5 e.dentifier2 . 6

2.5.1 Connected mode . 7

2.5.1.1 Login . 7

2.5.1.2 Signing transaction . 8

2.5.2 Unconnected mode . 9

2.6 DigiPass 850 . 10

3 Tools 11

3.1 USBTrace . 11

3.2 Wireshark . 12

3.3 RebelSim & Realterm . 12

3.4 JavaCard bankcard . 13

3.5 Firebug . 13

3.6 Own webpage . 14

3.7 Operating Systems . 15

3.7.1 Ubuntu 10.04LTS 32 bits . 15

3.7.2 Windows XP sp3 32 bits . 15

iii

CONTENTS

4 The improved e.dentifier2 17

4.1 Background : Old attack . 17

4.2 How was fixed the vulnerability? : New e.dentifier2 18

5 Reverse engineering of additional functionality 21

5.1 Cheat sheet USB commands-responses 21

5.2 Traces of USB traffic . 24

5.3 Javascript and plugin . 33

5.3.1 GetMode1Response . 36

5.3.2 GetMode2Response . 39

6 Future work 45

7 Conclusion 47

References 49

iv

Chapter 1

Introduction

1.1 Smartcard readers for Internet banking

Some important banks in the Netherlands are using new security devices in order to

strengthen the authentication process with their customers. As usual, any bankcard

always requires a PIN code as the essential authentication method in any transaction

with the bank. However, banks are establishing new security policies, which try to offer

more security in the challenges generated mainly by 3 factors: cardholders interaction,

bankcard and own smartcard reader of the bank. In these cases the cardholder can

log into the bank, sign payments, send transactions, generate secure codes and so on.

Banks are attempting to give cardholders more insight into detail of transactions and

involve them more in them.

Secondly, we will discuss two versions of ABN-AMRO USB-connected smartcard

reader. We will talk about an older version and a newer one of the e.dentifier2. With

the older version of e.dentifier2, a new security feature was presented as its main aim:

”What You Sign Is What You See”(WYSWYS). This new signing method lets users

can understand what they are signing with their devices in a friendly way. However,

this was totally proven false in the paper ”Design to Fail: A USB-Connected Reader

for Online Banking” [1], where a design flaw in the protocol was exposed, where an

infected PC clearly could give the go-ahead without waiting for the user to press ′OK ′.

This flaw could allow the computer to choose transaction details and then carry out a

bank transfer without confirmation by the end user. After this failure was discovered,

readers could not be patched and ABN-AMRO got in touch with their supplier in order

1

1. INTRODUCTION

to develop a new version of e.dentifier2.

Thirdly, we will talk in detail about DigiPass 850, an ING USB-connected smartcard

reader made by the vendor VASCO. This smartcard reader seems to be a new version

of USB-unconnected DigiPass 800 but now this model can work with USB connection

and without. We know that DigiPass 850 was showcased with the Belgian e-ID around

2004 and we guess that it is used for inside payments. According to the vendor this

device ”has multiple authentication methods as one-time passwords (OTP) and PKI

infrastructure” and it is used with its own software called VACMAN.

Core objectives of this paper will be to investigate if they fixed the problem with the

new version of e.dentifier2 and continue the reverse engineering with readers previously

mentioned. Mostly we will focus on the e.dentifier2 where some functions of its plugin

are still of unknown use and they will be investigated from a low-level overview in

some detail. These functions are known in EMV-CAP specifications [6] as Mode1 and

Mode2 and they are used for authentication in transactions although they are secret.

Nowadays we do not see these functions interact with the plugin, but they could be

activated in the future. We will analyze different protocols used in communications

between e.dentifier2, host PC and smartcard with different tools discussed further.

2

Chapter 2

Background

In order to make the following chapters easier to follow, we will give some background

on the EMV and EMV-CAP standards and some details about challenges-responses or

one-time passwords. Moreover we will take a look how the USB protocol works. Also

we will have a look at step-by-step several operations like login and send transactions

using the USB-connected and unconnected mode of the e.dentifier2. This chapter is

also offering important information on the main goal of the e.dentifier2, ”What You

Sign Is What You See”, which is trying to avoid fraud in e-banking.

2.1 ”Sign What You See”(SWYS)

A challenge-response authentication protocol is a security protocol that verifies an

identity with a response to a challenge. This challenge is issued by a sender, which

usually consists of a totally unpredictable random number, also known as nonce, and

from this nonce the receiver must answer with a nonce and something else that shows

who he really is. There are lots of different types of challenge-response authentication

processes in the real world, but specifically in Internet banking, those nonces are random

numbers of 8 digits with ABN-AMRO. If our bank wants us to authenticate, it will send

a challenge to us and we will copy this number in the smartcard reader in addition to a

PIN code and our smartcard reader will generate a response to this challenge; therefore

this number is a proof that we are the cardholders and of course we have the correct

PIN code.

3

2. BACKGROUND

The digital signature is an operation where a transaction is authorized or confirmed;

the way to do this is by using these challenges-responses. Digital signatures can be

done by cardholders, authorizing payments, or by smartcards giving responses towards

the e.dentifier2 in order to verify the right way in the last operation computed by

the smartcard. This data is signed using asymmetric cryptography, but they also use

symmetric cryptography in order to generate MAC (Message Authentication Code).

Those codes are evidence to verify the source of messages. Smartcards and banks

know those symmetric keys (usually 3DES keys). The main goal is that the cardholder

can control the signing of transactions in a handy way. For that a new feature was

included in the e.dentifier2, called by the vendors: ”What You Sign Is What You

See” (WYSIWYS), also called ”Sign What You See”(SWYS). This technique tries to

prevent Man-in-the-Browser attacks. Those attacks infect web browsers in order to

evilly modify transactions in the host. Due to those attacks, USB-connected smartcard

readers can be more secure because the smartcard reader displays transaction details

that the cardholder can understand and decide if he wants to accept or deny it, so the

cardholder does not just see meaningless random numbers. So apparently it would be

more difficult to exploit these sorts of attacks with this new USB-connected design.

This new system tries to defeat Man-in-the-Browser attacks definitively.

2.2 The USB Protocol

In this section we will discuss background information about the USB protocol quickly

in order to better understand some later sections. First of all, we can say that USB

devices are classified as a hub or a function. Hubs provide additional attachment points,

whereas functions provide capabilities to the system. In a USB system we can highlight

3 main parts:

• USB Host. There only exists one in the system. A USB host has a root hub

which offers more ports. A cardholder will be able to connect the e.dentifier2 to

any free port of the USB host (PC of the cardholder).

• USB interconnect. This provides a connection from USB device(s) to USB Host.

• USB devices (hub or function). A hub simply offers additional ports, and a

function offers capabilities to the system. The e.dentifier2 will be a USB device

4

2.2 The USB Protocol

connected to this hub in order to provide e-banking services to customers of

ABN-AMRO.

A USB communication is created between these parts creating a data flow. In this

communication we can also highlight some parts such as:

• Endpoints. They are unique addressable points in devices. This endpoints have

different characteristics like frecuency, latency, bandwith, number identifier, trans-

fer type and so on. They can be In/Out depending on its direction. ”In” is from

the USB device (e.dentifier2) to the USB Host (PC). ”Out” is from USB host to

the USB device.

• Pipes. These are associating endpoints with the USB host. They are the way to

communicate USB host and endpoints.

Briefly, we can have a look at the four basic transfer types:

• Control. These lossless transmissions are used for the configurations.

• Bulk data . Sequential lossless transmissions are used to transfer a large amount

of data.

• Interrupt data . Transmissions need priority over others. Typically, a mouse or

pointers.

• Isochronous data . Transmissions for streaming data. This can have loss but also

have priority on the USB bus.

The e.dentifier2 is a USB device and a USB host can be the cardholder’s computer.

The e.dentifier2 will be able to create communications over USB-cable thanks to end-

points, where it will be sent data over pipes in both directions (In/Out). This means

e.dentifier2 to PC and vice versa. Mostly in the cases of the USB traffic, which has

been eavesdropped in this research, it was bulk data.

5

2. BACKGROUND

2.3 EMV

EMV stands for Europay, MasterCard and Visa. EMV is the standard used for bank-

ing smartcards. In this standard is defined in detail the interaction at the physical,

electrical, data and application levels between banking smartcards and terminals (eg.

ATMs and point-of-sale terminals).

2.4 EMV-CAP

The Chip Authentication Program (CAP) is a specification for using EMV banking

smartcards for Internet banking. It started as an initiative of MasterCard, and later

for Visa. This specification defines a handheld device, also known as CAP reader or

EMV-CAP reader, with a smartcard slot and a numeric keypad capable of displaying

between 8 and 12 characters.

In EMV-CAP, when the user signs an operation from a EMV-CAP reader, a couple

of cryptograms are created as proof of authorization by the smartcard. Those cryp-

tograms are called Application Cryptograms (AC) and we can distinguish the following:

• ARQC (Authorization Request Cryptogram). This is the response from smartcard

against the challenge sent by the e.dentifier2.

• AAC (Application Authentication Cryptogram). This second cryptogram is a step

more in order to correctly complete the transaction.

Although EMV is not public it has frequently been reverse engineered [5], specifi-

cally the EMV-CAP standard used in the e.dentifier2 is still unknown. Some internal

functions are creating a kind of ”black box” with data, which are totally ”mangled” in

the output.

2.5 e.dentifier2

In this section we will discuss ABN-AMRO’s reader, also known as the e.dentifier2,

which is a hand-held smartcard reader that has a small display and numeric keyboard

with two additional keys in order to accept or deny operations. This device can work in

USB-connected or unconnected mode. However, we will just focus on USB-connected

mode in this paper.

6

2.5 e.dentifier2

It seems that several versions have been released. For finding out the information

which version is running in the device we just keep the key ≪ 5 ≫ held in the keypad

and insert any smartcard. We think that there are only two versions of e.dentifier2 but

we do not know how many versions are running nowadays. Specifically in this paper

we are working with the two following versions:

• e.dentifier2 F/W 01.02 H/W C Dec 19 2007 18:39:42 . This will be called old

version or old e.dentifier2 in this document.

• e.dentifier2 F/W 01.05 H/W C Feb 07 2012 14:54:39 . This will be called new

version or the improved e.dentifier2 in this document.

The manufacturers of the smartcard reader of ABN-AMRO claim the e.dentifier2

is ”the most secure sign-what-you-see end-user device ever seen” 1. In this document

we will discuss this.

2.5.1 Connected mode

In this section we deal with two operations: login and signing transaction. Any trans-

action can be done if the cardholder is previously logged in. In a login, the e.dentifier2

will reply with a response in order to be able to login to the website. In a transaction,

a challenge and response will play a role in the operation on both sides of the commu-

nication. Those operations will be outlined in the following point. They were already

explained in detail in other research [2].

2.5.1.1 Login

The cardholder wants to log into the Internet banking system using e.dentifier2 con-

nected over USB-cable. Hence, these are the main steps:

1. Cardholder plugs his e.dentifier2 into a free USB port in his system.

2. If the driver is not installed then the cardholder installs e.dentifier2 drivers 2 in

his system. A plugin is installed in the web browser and other files to recognize

the USB-reader in the operativing system.

1http://www.gemalto.com/financial/ebanking/about/case_studies/ABN_AMRO.html
2Drivers available only for Windows and MacOS systems

7

http://www.gemalto.com/financial/ebanking/about/case_studies/ABN_AMRO.html

2. BACKGROUND

3. Cardholder inserts bankcard into e.dentifier2.

4. Cardholder visits login ABN-AMROs website.

5. Web browser starts an SSL-TLS session between bank and cardholder PC.

6. Bank website reads the account number from the smartcard using JavaScript

program called BECON.js1. This is also checking if a card is inserted and if the

e.dentifier2 is ready. A couple of functions in this Javascript program will be

called: CheckConnection() and CheckCard() 2 .

7. If everything is right, e.dentifier2 asks the cardholder for PIN code

8. Cardholder types PIN code in the e.dentifier2.

9. E.dentifier2 lets the smartcard verify the PIN code for this account number.

10. If the PIN code is okay, the e.dentifier2 returns a response to the website.

11. The bank verifies if the responses match because it calculates its own response.

12. If the responses match, then the cardholder is logged in.

2.5.1.2 Signing transaction

The cardholder wants to make a transaction in the Internet banking system using

e.dentifier2 connected over USB-cable. Hence, these are the main steps:

1. Cardholder is already logged in.

2. Cardholder wants to make a payment in the website and he orders the transaction

in a web form.

3. The JavaScript program, BECON.js, calls to GetResponse(p sSignData) where

the input is data with details of the transaction by the bank. This data is sent

to e.dentifier2 over USB traffic.

4. The e.dentifier2 asks the cardholder for PIN code

1https://www.abnamro.nl/en/logon/generic/scripts/BECON.js
2These functions will be commented further in the next chapter.

8

https://www.abnamro.nl/en/logon/generic/scripts/BECON.js

2.5 e.dentifier2

5. Cardholder types PIN code in the e.dentifier2.

6. E.dentifier2 lets the smartcard verify the PIN code for this account number.

7. If the PIN code is okay, then the e.dentifier2 shows a text in the display’s screen

with the amount received by the bank, where the cardholder can be accepted or

denied the transaction in the display of the e.dentifier2 pressing ’OK’ or ’C’ ,

which means Cancel.

8. If the user presses ’OK’, the e.dentifier2 sends a cryptogram to the smartcard using

a challenge-response with SignData, the smartcard also returns a cryptogram that

is converted for the e.dentifier2 in a response. This response is sent to the bank

as proof of the fact that user want to accept this transaction.

9. The bank can verify if responses match because it calculates its own response.

10. If they are identical, then the payment is carried out.

2.5.2 Unconnected mode

We will also discuss the unconnected mode, but it is not really relevant for this thesis.

The cardholder wants to log into the Internet banking system using unconnected

e.dentifier2. Hence, these are the main steps:

1. Cardholder visits login ABN-AMROs website.

2. Cardholder inserts card and account number.

3. Web browser starts an SSL-TLS session between bank and cardholder PC.

4. A JavaScript code called BECON.js is checking if card and account number exits

and are correct.

5. If everything is right, ABN-AMRO starts a challenge-response, and the website

shows a challenge in the web browser.

6. Cardholder inserts bankcard into e.dentifier2 and presses login key.

7. E.dentifier2 asks to the cardholder for PIN code.

9

2. BACKGROUND

8. Cardholder types PIN code in the e.dentifier2.

9. E.dentifier2 internally checks PIN code for this account number.

10. If PIN code is okay, e.dentifier2 shows the response number.

11. Cardholder enters this response in the ABN-AMROs website.

12. Cardholder is logged in.

2.6 DigiPass 850

Other banks like ING Direct have also designed USB-connected readers. The company

VASCO was responsible for creating these readers for ING. In this paper we started

to research the version DigiPass 850 1. Nowadays these readers are not applied yet in

the real life for regular ING customers but they seem to be used for business payments 2.

A main aim for ING is also to prevent the PIN code leakage over PC or internet

like ABN-AMRO tried when they made its reader. Also it tries to achieve a more user

friendly mode, avoiding having to type bank account numbers, challenges and so on.

The manufacturer VASCO remarks the use of DIGIPASS: ”a propietary system of two-

factor authentication in the cloud”, as new feature of these devices. In this document

we have attempted to find out how USB communications work in these devices and

how protocols are working on them.

1http://download.alsoft.cz/vasco/pdf/Digipass_Desk_850.pdf
2https://start.inginsidebusiness.com/EAILogonWebApp/EAILogon.jsp

10

http://download.alsoft.cz/vasco/pdf/Digipass_Desk_850.pdf
https://start.inginsidebusiness.com/EAILogonWebApp/EAILogon.jsp

Chapter 3

Tools

In this section we are going to talk about every tool that we used to achieve information

about the system. It is very important if we have a big picture about scenario. Therefore

let’s have a look in the following picture to understand better next discussions:

Figure 3.1: Real scenario - Big picture about possible eavesdropping points

3.1 USBTrace

This program was easy, comfortable and quick to use because you could watch raw USB

traffic in a single packets. After using this program, USB commands findings were very

useful to write our own driver to replay USB bulk data over e.dentifier2. We noticed

11

3. TOOLS

that all packets were multiple of 8. So communication is always multiple of 8 bytes.

It was used to eavesdrop USB raw traffic from DigiPass 850 and it was observed

multiple of 6 bytes. Due to using other system to interact with the smartcard reader,

not many USB commands have been retrieved.

This tool was run in a Windows machine.

3.2 Wireshark

To sniff USB communications we also use Wireshark. The Operating System and this

tool ”convert” the raw USB packets into the network traffic. So it works as a network

interface. In addition a special configuration is required if we want to properly intercept

USB packets and it is that we need at least libpcap 1.0.0 in our machine. It was another

overview about USB taffic, with much more information that USBTrace. Fortunately

this tool can be launched in console mode (tshark) using filters to automate the research.

For instance, some filter like this was used for capturing USB commands:

usb.capdata && usb.endpoint number==2 && usb.device address

Being ”2” the numerical identifier of the endpoint of the e.dentifier2 and the field ’cap-

data’ contains information about the USB traffic.

It was used to find out USB commands in a Linux and Windows machine.

3.3 RebelSim & Realterm

This hardware interface allowed the passive monitoring of data between the e.dentifier2

and the smartcard. This kit is offered like ”Scanner tool of APDU commands from

GSM/UMTS Simcard for Analysis” and it was used with RealTerm software 1. Any

smartcard can be exposed to Man-in-the-Middle if we are able to achieve its baud rate.

Some previous steps were configured in order to sniff APDU commands. The baud rate

was established to 5200 , and the RealTerm output was dumped in hexadecimal format

1 http://sourceforge.net/projects/realterm/

12

http://sourceforge.net/projects/realterm/

3.4 JavaCard bankcard

in a text file. [2]

Once we got raw APDU buffer and with help of EMV specifications, we were able to

discover the applet ID (AID),SELECT operations, GENERATE AC and their payloads

and traces. They will be discussed in the next chapter.

It was used to find out APDU traffic in a Windows machine.

3.4 JavaCard bankcard

The JavaCard smartcards allow applets (Java Applications) to be run securely on

smartcards. These smartcards are based on the Java Card Platform specifications de-

veloped by Sun Microsystems and they can be programmed using JavaCard API. When

a smartcard is inserted in the e.dentifier2, it will try select certain applet ID (AID).

This AID is hard-coded in the device and it is first EMV operation together with get

ATR 1. ABN-AMRO’s AID was found out using RealTerm being able to develop our

own applet2 with identical AID. Some functions were disabled as : PIN verification or

Application Transaction Counter (ATC).

We used these kind of smartcards:

• JCOP41 V2.3.1, SmartCard 72 Kbyte EEPROM, Dual Interface [7].

With these smartcards was possible to emulate a real card and it was used to achieve

replaying attacks and other functions in the e.dentifier2.

3.5 Firebug

As we know, the e.dentifier2 is connected over USB cable to host PC. This host PC

needs a web browser in order to communicate with the Bank website. This web browser

is using a JavaScript file when user’s PC is visiting logon Bank website. Through those

JavaScripts functions, it will be possible to start a communication. This Javascript code

will be responsible to verify bank account number with the bank, if the e.dentifier2 is

1http://en.wikipedia.org/wiki/Answer_to_reset
2 Proof of concept of an EMV applet simulating an ABN-AMRO card by Joeri de Ruiter [1].

13

http://en.wikipedia.org/wiki/Answer_to_reset

3. TOOLS

connected, if the connection is correct, version of driver and plugin and so on.

We noticed that a HTML embedded object 1 was working as plugin to communicate

with the e.dentifier2, this object was responsible to intercept requests and send them

to smartcard reader and it sends the response back.

It was very useful to use a Javascript debugger to find out some USB instructions

and the order of operations. It was used Mozilla Firefox with the Firebug Add-on

installed in it. The JavaScript file that was debugged, BECON.js, resides in the Bank

website but it is loaded in user’s web browser.

Further information about these JavaScript functions will be discussed later.(Chapter 5)

3.6 Own webpage

In order to make reverse engineering of some JavaScript functions was created our own

HTML page, which called to JavaScript functions of BECON.js to retrieve information.

Our own HTML page was combined with a couple of tools mentioned previously. First

of all, we loaded our own HTML page to run these JavaScript functions and we activated

these tools : USBTrace eavesdropping the USB commands with the e.dentifier2 and

RealTerm sniffing APDU traffic with smartcards. This way makes sure a complete

session how the information is being encapsulated with different protocols.

As we explained before in the introduction, this web page was created to find

out how GetMode1Response and GetMode2Response were internally working. These

functions are defined in EMV-CAP standard [6] although their specifications are secret,

so we think they are executed to do authentication and signing transactions using

cryptograms. With this web page we were able to send our crafted input values and

investigate further.

Although we were focused on two functions, the rest of functions were also im-

plemented in our own web page. We could observe how every function worked using

Firebug, USBTrace and RealTerm at the same time.

Further information in the reverse engineering section.(Chapter 5)

1 embed id="PLUGIN BECON" hidden="true" type="application/BECON-PlugIn"

name="PLUGIN BECON"

14

3.7 Operating Systems

3.7 Operating Systems

A couple of Virtual Machines were used to manage those tools. We did not choose last

Operating Systems due to the fact that we do not need them in order to achieve our

goals in reverse engineering. Two Operating Systems well-known are Ubuntu 10.04LTS

and the old Windows XP sp3.

3.7.1 Ubuntu 10.04LTS 32 bits

It was also important use a Linux system for using Wireshark in mode USB-sniffing.

Python code was run in Linux system because it is more comfortable than Windows

for these purposes even because libraries to create our own USB driver: liusb and

PyUSB were not stable yet in Windows. These libraries were uninstalled and installed

manually to get a stable environment. For instance, libusb and PyUSB were updated

to the last version avoiding repositories of the Operating System. Moreover libpcap,

a library to intercept traffic in the Operating System, was updated to libpcap 1.3.0 to

manage Wireshark with USB sniffing support.

3.7.2 Windows XP sp3 32 bits

It was very important to use a Windows system for e.dentifier2’s drivers. We know

that drivers are only available for MacOS and Windows systems. But thinking of in-

terception of USB traffic with Wireshark, I preferred using Windows because MacOS

didn’t have any reference at Wireshark Wiki1. Moreover this machine was also used to

realize Man-in-the-Middle between e.dentifier2 and smartcard, in this case the software

RealTerm was used with the following hardware: ”RebelSim APDU scanner”.Finally

a lot of time was spent using Windows so it were installed the libraries PyUSB and

libusb-win32 in order to use all in the same machine.

So it was able to get the following actions with this machine:

• Logging and eavesdropping at ABN-AMRO with USB-connected reader with

Javacards.

In this part, USB traffic and their payloads were analyzed with details. And they

1http://wiki.wireshark.org/CaptureSetup/USB

15

http://wiki.wireshark.org/CaptureSetup/USB

3. TOOLS

were important to understand some actions with other commands or APDU-

commands sent from the smartcard.

• Replaying USB-traffic with PyUSB.

Thanks to a proof of concept written in Python code 1, it was able to attack

the main goal of e.dentifier2 [1] , SWYS (”Sign What You See”). This proof of

concept just worked in the old versions of e.dentifier2.

1http://www.cs.ru.nl/~joeri/

16

 http://www.cs.ru.nl/~joeri/

Chapter 4

The improved e.dentifier2

A important question is now treated :

What will it happen with new version of e.dentifier2? How did they fix this

big problem?

4.1 Background : Old attack

As we explained before in the introduction, the main goal of the design of SWYS

protocol(”Sign What You See”) in the old e.dentifier2 was principally provide to clients

more security in operations. For that, their own reader would be a right solution in

order to defeat any kind of Man-in-the-browser or clientside attacks. This protocol was

designed wrongly and it was widely reverse engineered [1] finding a critical design error.

This flaw was that the e.dentifier2 sent a message to PC informing that the cardholder

had pressed ’OK’ (Step 7 in the diagram 4.1 SWYS protocol). This is clearly incorrect

because an infected PC could press OK itself and inmediately generate a cryptogram

(Step 8 in the diagram 4.1 SWYS protocol) accepting the transaction. In this way, the

main goal the e.dentifier2 was violated because the cardholder was unable to decide for

the transaction. Below we can have a look at SWYS protocol, diagram 4.1, and the

critical error is highlighted with bold.

The e.dentifier2 never had to communicate the user action of pressing OK. The

e.dentifier2 should have been designed to detect when the cardholder was really pressing

OK and in this moment, when cardholder pressed OK, then ask to smartcard for a

17

4. THE IMPROVED E.DENTIFIER2

cryptogram. In this way would achieve main goal of SWYS protocol protecting to the

cardholder of a PC infected with malware.

Figure 4.1: SWYS protocol. - Diagram for login and transactions in the old e.dentifier2 [1].

4.2 How was fixed the vulnerability? : New e.dentifier2

Once that ABN-AMRO watched the severity of this problem, their manufacturer de-

signed a new e.dentifier2 fixing the vulnerability. This new e.dentifier2 has been tested

against this attack[1] again. Now, the new e.dentifier2 knows if the user really pressed

OK or not. Verifying an internal state into the e.dentifier2 which show if it was pressed

by the cardholder. This internal state was not checked in the old version of e.dentifier2.

A simple error that was not detected in testings being maybe, the most obvious attack

in the SWYS protocol. We do not know if such internal state existed or not anytime

in the old e.dentifier2 and it was not used or it was simply forgotten.

18

4.2 How was fixed the vulnerability? : New e.dentifier2

This new version asks to PC for generating a cryptogram to start a challenge-

response but the e.dentifier2 is able to recognize if the cardholder pressed OK himself.

Actually, the new version aborts any following operation if this internal state does not

show that the cardholder signed the transaction with OK. This means, if we observe

this patch in the following messages (Steps: 7 and 8 at diagram 4.2), that the e.dentifier

is now able to recognize if such internal state has been activated to go ahead with the

transaction, otherwise it will always take the default mode to abort a operation: Can-

cellation (Caldholder pressed OK). This default mode is also activated for a timeout in

the e.dentifier2. This timeout will be activated, for instance, if the cardholder forgets

his e.dentifier2 with the displayed text in the screen waiting OK/C for the user.

Figure 4.2: Attack to SWYS protocol. - Diagram for the attack on the new

e.dentifier.

19

4. THE IMPROVED E.DENTIFIER2

The following diagram 4.3 could have been a proper design of SWYS protocol in

the old e.dentifier to defeat whatever attack of this sort. Unfortunately the new design

of patched SWYS protocol was established in the new version after 5 years being vul-

nerable (As we discussed a couple of versions between 2007-2012). So far, we have not

found more attacks in this protocol, but it should be analyzed further. An improved

version of SWYS protocol could have been if the e.dentifier2 does not send a message

to PC confirming that the cardholder pressed OK. So, we know the e.dentifier2 has an

internal state, which shows if OK was pressed by user or not. Therefore, steps 7,8 in

Diagram 4.1 or 4.2 should have completely been disabled. The PC does not need to

know if the user pressed OK or not yet. Hence, below we offer a possible improved de-

sign of SWYS protocol. Unfortunately, this new design could not be deployed because

old e.dentifier2 had to keep working despite vulnerability.

Figure 4.3: How SWYS should have been designed. - Diagram of SWYS improved

protocol.

20

Chapter 5

Reverse engineering of additional

functionality

In this section we will discuss protocols with a low level overview. We will sum up

all USB instructions that we found on the both e.dentifiers. But also we will observe

possible traces of USB traffic depending of the kind of EMV card, cardholder’s deci-

sion to accept or deny transactions, changing input values in transactions in order to

investigate what is happening and so on.

We will focus on two unknown functions and probably not used nowadays, which

were not reverse engineered in the others research [1-2]. This functions were found in

JavaScript program resident in ABN-AMRO website as we explained earlier. These

functions could be used in order to login and sign transactions. Both functions will be

named as GetMode1Response and GetMode2Response. Every function or trace will be

discussed below or above of its corresponding table. Some tips will be explained later

to understand the following traces of USB traffic.

5.1 Cheat sheet USB commands-responses

To be able to follow better this research, a summary of USB commands and responses

can be checked along this document anytime. Some USB traffic has not been reverse

engineerd yet, although we think that it has not been relevant to understand core aims

of protocols.

21

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

Table 5.1: Cheat sheet of USB commands in the e.dentifier2

The following table lists USB commands sent to the smartcard. Let us realize as just first

4 bytes are constructing the USB command. Some functions were not clear enough to give

a description.

USBcommand Description

00 02 6E 6C 00 00 00 00 SET LANGUAGE NL(6E6C)

00 02 65 6E 00 00 00 00 SET LANGUAGE EN(656E)

02 01 00 00 00 00 00 00 GET ATR

02 09 00 00 00 00 00 00 SHOW SHIELD IN DISPLAY

02 0B 00 00 00 00 00 00 Channel is ready?? Detected after functions

01 03 01 02 00 00 00 00 SHOW PICTOGRAM : INSERT CARD

01 03 02 00 00 00 00 00 Card inserted??? Detected in CheckConnection

01 03 03 00 00 00 00 00 ??UNKNOWN Detected in CheckCard

01 03 04 00 00 00 00 00 ASK PIN

01 03 05 05 00 00 00 00 SEND SIGNDATA-DATA-login

01 03 05 16 00 00 00 00 SEND SIGNDATA-DATA-transaction

01 03 05 46 00 00 00 00 SEND SIGNDATA-TEXT to display

01 03 06 00 00 00 00 00 GENERATE CRYPTOGRAM

01 03 07 01 00 00 00 00 GETMODE2RESPONSE login

01 03 07 17 00 00 00 00 GETMODE1RESPONSE transaction

01 03 08 15 00 00 00 00 LAST LOGIN MESSAGE ? Guess

22

5.1 Cheat sheet USB commands-responses

Table 5.2: Cheat sheet of USB responses in the e.dentifier2

The following table lists USB responses from smartcard to e.dentifier2. Let us realize as

just first 4 bytes are constructing the USB responses. Also we can watch the payload

attached to commands, where it is marked with XX can go different values depending of

data.

USBresponse Description

00 01 25 01 00 00 00 00 Communication error II

01 01 01 01 00 00 00 00 Card inserted

01 03 01 01 00 00 00 00 Card inserted

01 03 02 00 00 00 00 00 User pressed OK in ASK PIN

01 03 03 04 00 00 00 00 User pressed OK in Mode1-Mode2Response

01 03 03 XX 00 00 00 00 Successful operation

01 03 05 06 00 00 00 00 Card inserted? Future work

01 03 07 00 00 00 00 00 User presses Cancel in ASK PIN,Mode1-Mode2

01 03 08 01 00 00 00 00 Communication error I

02 81 00 00 00 00 00 00 Unknown

02 81 01 00 00 00 00 00 Unknown

23

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

5.2 Traces of USB traffic

In this section we will have a look at USB traffic using the USB-connected e.dentifier2.

For those data I have used several bank cards to find out extra information. The

following cards were used in order to extract information:

• RaboBank Card (Netherlands). Type: Maestro.

• JavaCard. Type: Emulating Maestro of ABN-AMRO.

• Bankia Card (Spain). Type: VISA Electron.

• NovaGalicia (Spain). Type: MasterCard.

Before the next tables some clarifications about how I have tried to show my research

must be explained a bit:

• Out: PC sends to e.dentifier2. It is called USB-command and we observe that

they always start with : 02 XX or 01 03.

• In: e.dentifier2 sends to PC. It is usually called USB-response in the tables.

• Payload: Data will be attached in the commands. Usually 00 06 and ending

with 00 0X where X can be 2,3,4,5.

• XX : Variable Bytes.

• ?? : It is not sure.

• Snipped. Look at payload size to understand that.

• End: Possibly payloads are ending with this line, that means the end of payload.

It could be that second byte in the last 8 bytes of a USB response, that could

mean the length of payload’s data which are remaining. But this assumption is

not sure.

• Possible changes of bytes depending of Bank card type and company. Normally

in bold, and marked with MasterCard, VISA or others.

• RESPONSE1 or RESPONSE2. We have an if-else condition. Normally when the

cardholder presses OK or Cancel.

24

5.2 Traces of USB traffic

Table 5.3: SHOW LOGO IN DISPLAY and SET LANGUAGE.

These USB instructions can be individually each other.Although they have been detected

for going together mostly of time. SHOW SHIELD IN DISPLAY is displaying the logo of

ABN-AMRO, in the screen of the e.dentifier2. In this manner, the language can be set to

English(EN) or Dutch(NL) without altering USB responses, which are always fixed for

both languages if these two USB commands are sent together. Also the USB command

SET LANGUAGE has been seen with other USB command (SHOW INSERT PICTOGRAM) in

the JavaScript function CheckCard() of BECON.js.

This USB traffic has been detected trying to do authentication in the ABN-AMRO’s

website and in the beginning of any operation as login or transaction.

USBcommand Description

Out: 02 09 00 00 00 00 00 00 SHOW SHIELDS IN DISPLAY

Out: 00 02 6E 6C 00 00 00 00 SET LANGUAGE NL = ascii(6E6C)

...... or

00 02 65 6E 00 00 00 00 SET LANGUAGE EN = ascii(65 6E)

USBresponse Description

In: 01 03 01 01 00 00 00 00 Response

In: 00 01 01 01 00 00 00 00 Response

• Filling means that sometimes the command fills ’XX’ with 0x20 or 0x00. De-

pending if it binary data or it is ascii text in order to display in the e.dentifier2.

• Ex: A example of trace or normal values.

25

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

Table 5.4: GET ATR (Answer To Reset).

This USB command will ask for the ATR to smartcard and this will answer with its

ATR. The USB response will contain the ATR between third and eighth byte in the USB

response. The ATR has been marked with XX. Also we found some variations in the

last response to end the response in the second byte. It has been highlighted with bold

showing different kinds of EMV cards.

This command was detected along many operations interacting with the driver due

to its importance. Any operation with the bank requires this command previously.

USBcommand Description

Out: 02 01 00 00 00 00 00 00 GET ATR

USBresponse Description

24 bytes (4x8) for ATR (X)

In: 00 06 XX XX XX XX XX XX 3B......

In: 00 06 XX XX XX XX XX XX

In: 00 06 XX XX XX XX XX XX

In: 00 03 XX XX XX XX XX XX Ending Maestro

00 02 90 00 ... Ending VISA?

26

5.2 Traces of USB traffic

Table 5.5: Card inserted?

This USB traffic is not clear yet. For that, we use an interrogation ’?’ in its name.

We have shown both responses depending if the card was inserted (RESPONSE1) or

not(RESPONSE2). If the card was not inserted,then we saw that a lack of 8 bytes in the

USB response. This lack are the first 8 bytes in the USB RESPONSE1, and the result of

that is RESPONSE2.

Another variation that we found was the seventh byte of USB response marked

with bold in the tables. This byte can change depending of kind of EMV card which is

inserted. Actually, we do not know why this byte is changing sometimes. Below we can

watch as this value can change without a known pattern.

USBcommand Description

Out: 01 03 02 00 00 00 00 00 CARD INSERTED?

USBresponse Description

RESPONSE1: 2x8 bytes

In: 01 03 05 06 00 00 00 00 Card was inserted!

In: 00 06 30 31 2E 30 35 00 VISA,Maestro,Mastercard

Highlighted byte could change:32 (MasterCard)

RESPONSE2: 8 bytes

In: 00 06 30 31 2E 30 35 00 No card inserted!

27

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

Table 5.6: SHOW INSERT CARD PICTOGRAM and SET LANGUAGE

These USB commands are very similar to SHOW SHIELD IN DISPLAY and SET LANGUAGE.

To read further information about SET LANGUAGE can be looked up at table 5.3. A language

is needed for the e.dentifier2 in order to send messages towards the smartcard. If language

bytes are set to 00 00, the e.dentifier2 will use Dutch language by default.

The difference with this command is the information displayed in the screen of e.dentifier2,

this command shows a pictogram asking for a smartcard. Identical response has been

observed in this USB traffic. Let us realize that if the smartcard is not inserted, the

e.dentifier2 will wait any smartcard to continue. The USB response is only sent after a

smartcard has been inserted.

USBcommand Description

Out: 01 03 01 02 00 00 00 00 SHOW INSERT CARD PICTOGRAM

Out: 00 02 6E 6C 00 00 00 00 SET LANGUAGE: NL (6E 6C)

...... or

00 02 65 6E 00 00 00 00 SET LANGUAGE: EN (65 6E)

USBresponse Description

In: 01 03 01 01 00 00 00 00 Response Card inserted 1

In: 00 01 01 01 00 00 00 00 Response Card inserted 2

Table 5.7: ??UNKNOWN.

Totally unknown for us. This USB command was detected during a login session with

ABN-AMRO’s website. A couple of bytes have been observed for their variation. The first

of them, is the fourth byte of first 8 bytes of USB response (It is highlighted with bold

and value 0B). This byte was observed with close values (0B and 0C). The other bytes

highlighted mean the length of data in the octet of USB commands. Below we also observe

as different measures with VISA, MasterCard and Maestro. The seventh byte could be

length of the payload, but this is not sure.

USBcommand Description

Out: 01 03 03 00 00 00 00 00 ??UNKNOWN

RESPONSE: 3x8 bytes

In: 01 03 04 0B 00 00 00 00 Maestro,VISA,MasterCard can change seventh byte

In: 00 06 XX XX XX XX XX XX

In: 00 06 XX XX XX XX XX XX Maestro

00 05 XX XX XX XX XX XX MasterCard,VISA

28

5.2 Traces of USB traffic

Table 5.8: TRANSACTIONS: SEND SIGNDATA-DATA.

Send data to e.dentifier2 in a transaction in order to sign. Signed data of transaction will

be attached in the payload (Marked with XX in the table) of the USB command. This

USB command was widely reverse engineered at Arjam Blom’s thesis [2].

USBcommand Description

Out: 01 03 05 16 00 00 00 00 SEND SIGNDATA-DATA transaction

PAYLOAD: ??x 8bytes

Usually 4x8bytes.

Out: 00 06 XX XX XX XX XX XX Data to send

Out: 00 06 XX XX XX XX XX XX Data

........

Out: 00 06 XX XX XX XX XX XX Data

Out: 00 04 XX XX XX XX XX XX End of data .Filling with 0x00

Table 5.9: LOGIN: SEND SIGNDATA-DATA.

Send data to e.dentifier2 from PC in login operations. This USB command was widely

reverse engineered at Arjam Blom’s thesis [2]. Not relevant for the attack [1].

USBcommand Description

Out: 01 03 05 05 00 00 00 00 SEND SIGNDATA-DATA login

Table 5.10: ASK PIN

Ask for the PIN code of 4 digits to cardholder. The cardholder will enter his PIN code and

he will be able to press two options: the key ’OK’ (RESPONSE1) or ’C’(RESPONSE2).

Both USB responses are showed below.

USBcommand Description

Out: 01 03 04 00 00 00 00 00 ASK PIN

USBresponse Description

In: 01 03 02 00 00 00 00 00 RESPONSE1: OK

In: 01 03 07 00 00 00 00 00 RESPONSE2: CANCEL

29

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

Table 5.11: SEND SIGNDATA-TEXT

Send text from PC to e.dentifier2 to be signed in it. When a transaction occurs, first it is

sent a USB command with data of the transaction(SEND SIGNDATA-DATA-transaction),

and the next instant is sent a USB command with a text to be displayed in the e.dentifier2

(SEND SIGNDATA-TEXT). Now the cardholder can decide if he wants to authorize the

transaction, let us remember that now the cardholder is seeing the e.dentifier2’s screen and

he can understand the message sent from PC with details of transaction. This step can

be checked in more details in the Chapter 4, figures 4.1, 4.2 and 4.3. Then the cardholder

could press ’OK’ or ’C’. From here, the attack to SWYS protocol [1] started pressing OK

instead of the cardholder without waiting for a response from e.dentifier2 towards PC. In

this moment, the text disappeared in less than one second and e.dentifier2 and smartcard

created a cryptogram authorizing the transaction without the cardholder’s participation.

This cardholder’s decision, the main goal of SWYS, is only vulnerable in some millions of

old e.dentifier2.

The payload for this USB command is established to 12x8 bytes covering full screen on

the e.dentifier2. A possible payload asking for pressing ’OK’ can be this: 00 04 4F 4B

20 20 74 20. That means, the key ’OK’ is encoded in hexadecimal as 4F 4B.

USBcommand Description

Out: 01 03 05 46 00 00 00 00 SEND SIGNDATA-TEXT

PAYLOAD: 12x8bytes aprox.

Out: 00 06 XX XX XX XX XX XX Text to be displayed

Out: 00 06 XX XX XX XX XX XX Text to be displayed

........

Out: 00 06 XX XX XX XX XX XX Text. Fill 0x20 (Blank space)

Out: 00 04 XX XX XX XX 74 XX End of text

30

5.2 Traces of USB traffic

Table 5.12: GENERATE AC

This USB command will attempt to create a cryptogram (Step 7 in the Figures 4.1,4.2

and 4.3). As we explained earlier in the background chapter, a cryptogram (Application

Cryptograms (AC)) can be an : ARQC and AAC (Check Chapter 2 for further informa-

tion). This command is sent to e.dentifier2, and this will create both cryptograms asking

to the smartcard. Those cryptograms are unpredictable because there is a function f

which is mangling data and they are proof of confirmation of an operation : transaction

or login with the bank.

Two responses have been shown bellow to observe the behavior of both e.dentifiers2 (Old

and new version). Let us look at the new e.dentifier2 how presses ’C’ itself if it detects

that the cardholder have not pressed ’OK’ yet (Steps 7-8 at Figure 4.2).

USBcommand Description

Out: 01 03 06 00 00 00 00 00 GENERATE CRYPTOGRAM

USBresponse Description

RESPONSE1 with old e.dentifier2

PAYLOAD: ??x8bytes

In: 01 03 03 XX 00 00 00 00 Attack WORKS.The cryptogram will be created

In: 00 06 XX XX XX XX XX XX cryptogram

........

In: 00 06 XX XX XX XX XX XX cryptogram

In: 00 02 XX XX XX XX XX XX End of cryptogram: Maestro,VISA

03 MasterCard

RESPONSE2 with new e.dentifier2

PAYLOAD: 2x8bytes

In: 01 03 08 01 00 00 00 00 Attack FAILS.The cryptogram won’t be created

In: 00 01 25 01 00 00 00 00

31

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

Table 5.13: Possible traces with GENERATE AC.

USB traces when the attack [1] works with several EMV Bank cards with old e.dentifier2.

Different USB responses have been shown when the attack works, with our emulation of

EMV-card ABN-AMRO the attack failed due to some functions that were not implemented

on the Javacard.

USBcommand Description

Out: 01 03 06 00 00 00 00 00 GENERATE CRYPTOGRAM

In: 01 03 08 03 00 00 00 00 RESPONSE1: attack fails

In: 00 03 81 6D 00 00 00 00 Fake-card ABN

In: 01 03 03 0E 00 00 00 00 RESPONSE2: attack works VISA

PAYLOAD: 3x8 bytes

In: 00 06 80 00 0A 02 EC 2B Spanish VISA electron (Bankia)

In: 00 06 08 06 01 0A 03 A4

In: 00 02 A0 00 01 0A 03 A4 End

In: 00 06 80 00 0B 89 A5 CB Spanish VISA electron (Bankia)

In: 00 06 6B 06 01 0A 03 A4

In: 00 02 A0 00 01 0A 03 A4 End

In: 01 03 03 0F 00 00 00 00 RESPONSE3: attack works MasterCard

PAYLOAD: 3x8 bytes

In: 00 06 80 00 28 12 EA B7 Spanish MasterCard (NovaGalicia)

In: 00 06 FE 01 01 03 A4 20

In: 00 03 06 00 00 03 A4 20 End with 03

In: 01 03 03 1A 00 00 00 00 RESPONSE4: attack works Maestro

PAYLOAD: 5x8bytes

In: 00 06 04 80 01 21 68 35 Maestro (Rabobank)

In: 00 06 B5 04 1C 10 A5 00

In: 00 06 03 04 00 00 00 00

In: 00 06 00 00 00 00 00 00

In: 00 02 00 FF 00 00 00 00 End

In: 00 06 04 80 01 22 90 8A RESPONSE5: attack works Maestro

In: 00 06 A1 97 1C 10 A5 00

In: 00 06 03 04 00 00 00 00

In: 00 06 00 00 00 00 00 00

In: 00 02 00 FF 00 00 00 00 End

32

5.3 Javascript and plugin

5.3 Javascript and plugin

A costumer of Internet Banking is able to interact with USB-connected e.dentifier2

through of a web browser and a driver installed previously in his computer. Such

driver will be responsible to have a conversation between computer and Banking website

using this plugin. This driver will be able to sent USB commands to e.dentifier2 to

interact with the smartcard. Such smartcard will converse with e.dentifier2 using APDU

commands.

When a costumer visits the Banking website of ABN-AMRO using his web browser,

then a HTML embedded object called PLUGIN BECON will take care of the commu-

nication through JavaScript code asking for the device e.dentifier2 every time that

costumer performs any operation. This JavaScript program is called BECON.js and

many functions were discussed in Arjan Blom’s thesis [2]. Some functions were not

analyzed in Arjan Blom’s thesis [2] due to the fact that they are not used, but however

they exist in the JavaScript code. A little background of these functions follows and

moreover we can observe a possible output afterwards of JavaScript’s function calls.

• function BECON CheckConnection(); Checks if e.dentifier2 and smartcard

are ready to start.Moreover it checks if the driver is installed and its version and

version of plugin.

For instance, below we show a successful response (Status=0) when e.dentifier2

and smartcard are ready to create a communication: Let us observe device, driver

and plugin versions in the response as well. We have watched both versions of

e.dentifier2, the old one with Device Version=01.02 and the new one with this

version: 01.05.

Status=0

StatusDescription=Success

Device Version=01.05

Driver Version=01.24

BECON Version=01.04

• function BECON CheckCard(); Returns bankaccount and card number of

the smartcard if device and card are inserted.

33

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

For instance, below we show a successful response(Status=0) when e.dentifier2

”ChecksCard”.Let us have a look at CardId PAN where e.dentifier2 returns Bank

account number of a JavaCard programmed with this number.

Status=0

StatusDescription=Success

CardId PAN=67030500055981007F

CardId PSN=01

• function BECON GetResponse(p sSignData); Returns a signed cryptogram

to e.dentifier2 as response. Further details at Arjan Blom’s thesis [2].

In this example, it was inserted ’00000000’ as p sSignData and we obtained the

following cryptogram.

Status=0

StatusDescription=Success

Response=0480010604C6D7D61C10A50003040000000000000000000000FF0105

• function BECON DisplayResult(p iMessageId, p sLastLogon); It will

display last logon on e.dentifier2’s display. Not relevant for this thesis.

• function BECON Cancel(); Cancels whatever current transaction when cald-

holder presses cancel button.

• function BECON GetObject(); Returns the object’s reference.

• function BECON GetLanguage(); Returns two digits with an identifier "nl"

for Netherlands or "en" for English language).

• function BECON GetMode1Response(p sChallenge, p iCurrency, p sAmount);

Will ask the smartcard to generate a cryptogram using a challenge-response with

user’s interaction. This function could be used for signing transactions. Further

information later.

• function BECON GetMode2Response(); Will ask the smartcard to generate

a cryptogram using a challenge-response but without input parameters,it means

34

5.3 Javascript and plugin

no user’s interaction. This function could be used for login operations. It will

use a challenge-response between smartcard-e.dentifier2 and it will be displayed

thanks to the plugin and JavaScript.

Due to secrecy of the protocols, anything is hidden and there is no public documen-

tation. This concept of ”Security by obscurity” is very common in Internet Banking and

surely quite probably what is the main error mostly of times. The following JavaScript

functions, which it will be studied along this section, they are of unknown use. In Ar-

jan Blom’s thesis [2], these functions were not investigated. They seem to be unused.

Although we have not explicitly seen to the driver calls those functions, we have found

them out in detail how they are working.

The following JavaScript functions [6] to analyze:

• functionBECON GetMode1Response(p sChallenge, p iCurrency, p sAmount);

• function BECON GetMode2Response();

These were tools we used to achieve hidden information:

• Own HTML webpage + JavaScript BECON.js in order to launch functions to

e.dentifier2.

• RebelSim device in order to eavesdrop APDU command-response.

• USBTrace in order to intercept USB-commands.

First at all, it was found out how long parameters were to avoid input errors with the

plugin. Through of unix command ’strings’ against the driver we could obtain infor-

mation about the right length. This was important in order to interact with the plugin

to recover right data.

Secondly, our own webpage was created in order to call every function of BECON.js and

get information about how those functions work.Using the RebelSim device in order

to achieve a Man-in-the-middle between smartcard and reader and then were able to

discover raw APDUs associated to those functions. Finally RebelSim, USBTrace and

our own webpage, in this order exactly,were executed to sniff as much traffic as possible.

35

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

Table 5.14: USB commands and responses for Getmode1-Getmode2Response

In the following table we can have a big picture of main USB commands and responses in

the e.dentifier2. Both functions share USB responses when the cardholder accepts/denies

transactions or do an authentication with bank for login operations.

Below, we can observe USB traffic that we will use later.

USBcommand Description

Out: 01 03 07 17 00 00 00 00 GetMode1Response + 32 bytes of payload

Out: 01 03 07 01 00 00 00 00 Getmode2Response

USBresponse Description

In: 01 03 07 00 00 00 00 00 User presses Cancel

In: 01 03 03 04 00 00 00 00 User presses OK

In: 01 03 08 01 00 00 00 00 Communication error

In: 00 04 R0R1R2R3R4R5R6R7 00 00 Response=R0R1R2R3R4R5R6R7

5.3.1 GetMode1Response

In this section, we have reverse engineered the JavaScript function GetMode1Response.

This function is used in USB-unconnected mode, also called as ’5.Securecode’, but it

has also been developed for Internet Banking. Nowadays this function seems unused

in USB-connected mode. This function is used to authorize payments using challenge-

response authentication protocol.

This function has a header such as:

BECON GetMode1Response(p sChallenge, p iCurrency, p sAmount)

To understand better this function, it has been marked with numbers in the diagram

to follow with next steps explained below:

1. The web browser sends to cardholder’s PC a challenge, currency and amount

following this order in this header: BECON GetMode1Response(p sChallenge,

p iCurrency, p sAmount). Web browser will check out input parameters before

sending to PC. Some values have to be between those lengths:

• Amount: 12 digits and it must be among [0000.000.000,00 - 0999.999.999,99]

36

5.3 Javascript and plugin

Figure 5.1: GetMode1Response diagram. - It could be used as signing transaction.

• Currency : 4 digits. It was observed that the currency icon was displayed on

the screen with different values depending on the currency code according

to the EMV specifications:

– EMV code: 0978 to use e Euros.

– EMV code: 0826 to use £ Pounds sterling.

– EMV code: 0840 to use $ Dollars.

• Challenge: 8 numeric digits.

2. The PC sends a USB command with 32 bytes of payload. Some curious findings

were the following:

• If the currency was not matched with EMV specifications, a value of 0999 1

was taken by default.

• The last byte of payload is the same that is in the amount : z10z11 (Two

last bytes in the step 2 Fig.5.1).

1 The codes assigned for transactions where no currency is involved

37

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

A message will be displayed in the screen with details of the transaction and

cardholder will be able to decide if he wants to accept or deny the payment. In

this example, we assume that user presses ’OK’.

3. The cardholder enters his PIN code and presses ’OK’. The e.dentifier2 tries to

verify if the PIN code is right.

4. If the PIN code matches, smartcard returns ’OK’.

5. The e.dentifier2 starts to generate a cryptogram with input parameters of USB

command payload such as: GENERATE AC f(x,y,z).

6. The smartcard returns a ARQC (Authorization ReQuest Cryptogram).

7. The e.dentifier2 sends GENERATE AC f(x) in order to achieve a confirmation in

the transaction.

8. The smartcard returns an AAC (Application Authentication Cryptogram) as con-

firmation towards e.dentifier2.

9. The e.dentifier2 calculates a response with cryptograms appling a bitfilter [3,4]

and it returns a USB response that takes a confirmation (User pressed ’OK’) and

4 bytes with 8 numeric digits as response to challenge.

10. PC received this response over USB response, and now PC sends through of driver

a response to Web browser. And two parameters explaining if operation was right

or something was wrong. A status ’0’ means successful.

Note that in Figure 5.1, 5.3 there is no communication back to PC saying that

the user pressed OK. Let us remember in Chapter ”The new e.dentifier2”, that in the

attack [1] the e.dentifier2 notified a message back to PC.

38

5.3 Javascript and plugin

Figure 5.2: BECON GetMode1Response - Challenge with maximal allowed amount

sent to e.dentifier2 (Step 2 in the diagram of GetMode1Response, this picture was exactly

taken before user pressed OK).

5.3.2 GetMode2Response

In this section we are going to reverse engineer another unused function in the JavaScript

code called BECON.js. The difference with GetMode1Response is that this function

has no input parameters, so this function could be used to login with ABN-AMRO’s

website generating a signed response. Moreover, we can note a difference in USB com-

mands because are always fixed. Therefore its APDU payload is empty (The digits

”8-34-10002 are always fixed in both functions).

However, now the cardholder has not to sign any transaction, he just needs to enter

his PIN code and achieve a response in order to get authentication with the bank.

Once PIN code is verified, two cryptograms will be generated for the smartcard. Then

e.dentifier2 will calculate a response with those cryptograms.

1. The web browser uses JavaScript code to call GetMode2Response. This sends it

to PC.

2. The PC sends a USB command using e.dentifie2’s driver. The e.dentifier2, when

receives this USB command, asks for PIN code in the display.

39

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

Table 5.15: BECON GetMode1Response (’99999999’, ’5555’,’012345678901’)

In the following table we have sent a wrong currency, directly the code 0999 is assigned

when currency is not involved. As challenge, we sent 4 bytes with a value of ’99999999 and

an amount of 6 bytes ’012345678901’. We already explained as last byte of amount was

repeated at the final of payload (It is undercored in the table bellow as well). We observe

in APDU commands, GENERATE AC, as challenge-amount-currency are sent to calculate

ARQC in the smartcard. Also we have seen in order to calculate AAC, it is only sent the

challenge. We do not know how response is generated, it must be researched with different

bit filters. Some bit filters [3,4] have been checked without success. To apply these filters,

we have used ATC (Application Transaction counter, which has not been shown in this

table) and both cryptograms: ARQC and AAC.

Javascript Input USB command APDU command: Generate AC

80AE80002B AE (generate ARQC)

01 03 07 17 00 00 00 00 01234567890100000000000000008000

Challenge=99999999 00 06 01 15 9F 37 04 99 0000000999000000009999999934

Currency=5555 00 06 99 99 99 9F 02 06 00000000000000000000010002

Amount=012345678901 00 06 01 23 45 67 89 01 80AE00001D AE (generate AAC)

00 05 5F 2A 02 55 55 01 000000000000000000005A33800000000

0999999990000000000000000

Javascript Output USB response APDU response: ARQC and AAC

00C000002B (response)

Status=0 User presses OK 9F2608 5BAA4E31F8F56A (ARQC)

StatusDescription=Success 01 03 03 04 00 00 00 00 9F1012 1C10A50003040...00FF

Response=39046235 Response 00C000002B (response)

00 04 39 04 62 35 00 00 9F2608 4EFD77D8F7438B1 (AAC)

9F1012 1C10250003440...00FF

40

5.3 Javascript and plugin

Table 5.16: BECON GetMode1Response(’66666666’, ’0978’, ’033333333333’)

In the following table we have sent euros as Currency using its EMV code (0978).

As challenge, we sent 4 bytes with a value of ’66666666 and an amount of 6 bytes

’033333333333’. In this example, we can also have a look to last byte of the amount

because is repeated at the end of the payload (underscored).

This example is very similar to table 5.15. Read more specifications there.

Javascript Input USB command APDU command: Generate AC

80AE80002B AE (generate ARQC)

01 03 07 17 00 00 00 00 03333333333300000000000000008000

Challenge=66666666 00 06 01 15 9F 37 04 66 0000000978000000006666666634

Currency=0978 00 06 66 66 66 9F 02 06 00000000000000000000010002

Amount=033333333333 00 06 03 33 33 33 33 33 80AE00001D AE (generate AAC)

00 05 5F 2A 02 09 78 33 000000000000000000005A33800000000

0666666660000000000000000

Javascript Output USB response APDU response: ARQC and AAC

00C000002B (response)

Status=0 User presses OK 9F2608 61F59498685E2762 (ARQC)

StatusDescription=Success 01 03 03 04 00 00 00 00 9F1012 1C10A50003040...00FF

Response=37511669 Response 00C000002B (response)

00 04 37 51 16 69 00 00 9F2608 8B4BD52036AECD3F (AAC)

9F1012 1C10250003440...00FF

41

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

Table 5.17: Log of USB-communication during GetMode1Response method

Executing BECON GetMode1Response(’66666666’, ’0978’, ’033333333333’)

During this trace the language was not set and it was possible to observe as 2

language’s bytes remained empty. We observed that language by default is Dutch in

this case. We sent e as currency (0978) and different values to easily detect challenge’s

and amount’s bytes. Moreover you can note the two USB commands previous to

GetMode1Response as usual.

USBcommand Description

Out: 01 03 01 02 00 00 00 00 SHOW PICTOGRAM

Out: 00 02 00 00 00 00 00 00 SET LANGUAGE

Out: 00 02 00 00 00 00 00 00 SET LANGUAGE

USBresponse Description

In: 01 03 01 01 00 00 00 00 Card’s inserted

In: 00 01 01 01 00 00 00 00 Card’s inserted

USBcommand Description

Out: 01 03 07 17 00 00 00 00 GetMode1Response + 32 byte Payload

Out: 00 06 01 15 9F 37 04 66 Challenge:1 byte= 66

Out: 00 06 66 66 66 9F 02 06 Challenge:3 bytes = 66 66 66

Out: 00 06 03 33 33 33 33 33 Amount:6 bytes 03 33 33 33 33 33

Out: 00 05 5F 2A 02 09 78 33 Currency e:2 bytes 09 78

USBresponse1 OK Description

In: 01 03 03 04 00 00 00 00 User presses OK

In: 00 04 38 73 38 76 00 00 Response 38 73 38 76

Out: 00 02 00 00 00 00 00 00 GET ATR

In: 00 06 3B 67 00 00 29 20 APDU 3B6700002920-006F78-9000

In: 00 05 00 6F 78 90 00 20

Out: 00 02 00 00 00 00 00 00

USBresponse2 CANCEL Description

In: 01 03 07 00 00 00 00 00 User presses Cancel

In: 02 81 00 00 00 00 00 00 Sometimes is not in trace

In: 02 81 01 00 00 00 00 00 Sometimes is not in trace

Out: 02 01 00 00 00 00 00 00 GET ATR

In: 00 06 3B 67 00 00 29 20 APDU 3B6700002920-006F78-9000

In: 00 05 00 6F 78 90 00 20

Out: 00 02 00 00 00 00 00 00

42

5.3 Javascript and plugin

3. The e.dentifier2 lets smartcard verify PIN code.

4. The smartcard returns ’OK’ is the PIN code is correct.

5. The e.dentifier2 asks for ARQC sending GENERATE AC APDU command.

6. The smartcard generates and returns ARQC.

7. The e.dentifier2 asks for AAC sending GENERATE AC APDU command.

8. The smartcard generates and returns AAC.

9. The e.dentifier2 replies to PC sending two USB responses, first with ’OK’ and

then with the response. In this point the e.dentifier2 calculates the response from

cryptograms.

10. PC sends the response to web browser using the plugin and driver. And two

parameters explaining if operation was right or something was wrong. A status

’0’ means successful.

Figure 5.3: GetMode2Response diagram. - It could be used as login.

43

5. REVERSE ENGINEERING OF ADDITIONAL FUNCTIONALITY

Table 5.18: BECON GetMode2Response()

The following table is showing how GetMode2Response is working. This function could be

used as login in order to generate a signed response.

Javascript Input USB command APDU command: Generate AC

80AE80002B AE (generate ARQC)

00000000000000000000000000008000

0000000000000000000000000034

01 03 07 01 00 00 00 00 00000000000000000000010002

00 01 02 00 00 00 00 00 80AE00001D AE (generate AAC)

000000000000000000005A33800000000

0000000000000000000000000

Javascript Output USB response APDU response: ARQC and AAC

00C000002B (response)

Status=0 User presses OK 9F2608 3817E8EC705522AE (ARQC)

StatusDescription=Success 01 03 03 04 00 00 00 00 9F1012 1C10A50003040...00FF

Response=37435415 Response 00C000002B (response)

00 04 37 43 54 15 00 00 9F2608 1D2409403CE420A5 (AAC)

9F1012 1C10250003440...00FF

44

Chapter 6

Future work

In this chapter, we will discuss some points which could be not researched given the

time. They could be useful for future students who want to research the e.dentifier2 or

whatever EMV-CAP smartcard reader. Actually, we encourage to start with DigiPass

850, an EMV-CAP smartcard reader of ING Direct. Also it would be interesting to

find out if more versions of e.dentifier2 are being used nowadays. A list of possible

suggestions :

For the EMV-CAP smartcard reader of ING:

• Detect baud rate for DigiPass 850.

• Find out USB traffic. We attached a web link for login. Unfortunately, I did not

have an ING account to try get information about it. We observed 6 bytes USB

commands in attempts with this weblink and using USBTrace. It was attempted

to get login in this weblink, but we did not get a special CD with additional

information to achieve our web browser interacts with DigiPass 850.

• Investigate more versions of VASCO vendor. They could use similar systems and

protocols.

For the e.dentifier2:

• Some USB commands are still unknown. They are highlighted with ?? in this

thesis.

45

6. FUTURE WORK

• Try to figure out how the function f(x,y,z) in GetMode1Response is returning

the response from cryptograms. This can be done tweaking more values as Cur-

rency,Amount and Challenge and trying out more bit filters [3,4]. The same for

GetMode2Response in the response. Some bit filters were attempted but they

went wrong to calculating the response.

46

Chapter 7

Conclusion

In this chapter we will discuss questions so far unanswered in this document. A big ques-

tion is if ABN-AMRO was able to properly implement SWYS in the new e.dentifier2.

This question includes more subquestions than we can talk about in this chapter.

The main goal of the e.dentifier2 was and is: manage a handy and secure way

to authorize transactions for customers. This way, also known as SWYS by ABN-

AMRO, seems to be safer than the old e.dentifier2. Nevertheless, this does not mean

that SWYS is completely reliable. In this document, we have compared both ver-

sions of e.dentifier2. The new version is not vulnerable to last attack [1]. New vectors

of malware could appear in the new version in the future. In this thesis, we also

looked at unused functionalities in the USB-connected mode. The JavaScript func-

tion GetMode1Response(Challenge, Amount,Currency) does not have the problem of

sending a message to the PC when the user has pressed OK. In the function to authorize

transactions, GetMode1Response, the SWYS protocol appears to have been correctly

implemented. This means that the user is asked to authorize a transaction that can

be understandable for him. This transaction is shown in the screen of the e.dentifier2

and the user can press OK, however now this message is not ”leaked” towards the PC

as happened in the SIGN-DATA-TEXT (Only old e.dentifier2). The e.dentifier2 waits for

the user response in the smartcard reader, after asking for a PIN and immediately after

starts to generate a couple of cryptograms with GENERATE AC in order to get a response.

47

7. CONCLUSION

Some questions are still without an answer:

Why does this function not have this flaw while the other does? If they are doing more

or less same operations.

Why was not it used in USB-connected mode if it was much more secure?

Possibly ABN-AMRO did not pick GetMode1Response due to the website being able to

give more information on the screen of the smartcard readers using (SIGN-DATA-TEXT).

Why is this function only available in USB-unconnected mode smartcard readers?

These questions are still a mystery and they are out side of our scope. Nevertheless,

they are still open further discussion.

48

References

[1] Arjan Blom, Gerhard de Koning Gans, Erik Poll, Joeri de Ruiter, and Roel

Verdult. Designed to Fail: A USB-Connected Reader for Online Banking. 17th

Nordic Conference in Secure IT. Karlskrona, Sweden.Octobre 31, 2012.

[2] Arjan Blom. Supervisor: Erik Poll .Master thesis. ABN-AMRO e-dentifier2

reverse engineering. Digital Security Group. Institute for Computing and Information

Science. Radboud University Nijmegen, December 19, 2011.

[3] Michael Schouwenaar. Dutch EMV-cards and Internet Banking. Digital Security

Group. Institute for Computing and Information Science Radboud University Nijmegen.

[4] Saar Drimer, Steven J. Murdoch, and Ross Anderson. Optimised to Fail: Card

Readers for Online Banking. Computer Laboratory, University of Cambridge, UK .

[5] Daniele Bianco, Adam Laurie, Andrea Barisani, Zac Franklen. Chip and PIN

is definitely broken. Credit Card skimming and PIN harvesting in an EMV.

InversePath and ApertureLabs 2011.

[6] Wikipedia. Chip Authentication Program . http: // en. wikipedia. org/ wiki/

Chip_ Authentication_ Program# Operating_ principle .

[7] Erik Poll, Joeri de Ruiter and Lejla Batina. Website of Hardware Security

subject. Digital Security Group. Institute for Computing and Information Science. Radboud

University Nijmegen. http: // www. cs. ru. nl/ ~ erikpoll/ hw/ index. html .

[8] Joeri de Ruiter. Smart cards en EMV. Guest lecture for the Bachelor course Security

at Utrecht University. May 11, 2012.

49

http://en.wikipedia.org/wiki/Chip_Authentication_Program##Operating_principle
http://en.wikipedia.org/wiki/Chip_Authentication_Program##Operating_principle
 http://www.cs.ru.nl/~erikpoll/hw/index.html

	1 Introduction
	1.1 Smartcard readers for Internet banking

	2 Background
	2.1 "Sign What You See"(SWYS)
	2.2 The USB Protocol
	2.3 EMV
	2.4 EMV-CAP
	2.5 e.dentifier2
	2.5.1 Connected mode
	2.5.1.1 Login
	2.5.1.2 Signing transaction

	2.5.2 Unconnected mode

	2.6 DigiPass 850

	3 Tools
	3.1 USBTrace
	3.2 Wireshark
	3.3 RebelSim & Realterm
	3.4 JavaCard bankcard
	3.5 Firebug
	3.6 Own webpage
	3.7 Operating Systems
	3.7.1 Ubuntu 10.04LTS 32 bits
	3.7.2 Windows XP sp3 32 bits

	4 The improved e.dentifier2
	4.1 Background : Old attack
	4.2 How was fixed the vulnerability? : New e.dentifier2

	5 Reverse engineering of additional functionality
	5.1 Cheat sheet USB commands-responses
	5.2 Traces of USB traffic
	5.3 Javascript and plugin
	5.3.1 GetMode1Response
	5.3.2 GetMode2Response

	6 Future work
	7 Conclusion
	References

