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Abstract 

The main aim of this work was to study the influence of the Mixed Liquor Total Solids (MLTS) 

concentration on membrane permeability (K20) in a Submerged Anaerobic Membrane Bioreactor 

(SAnMBR) pilot plant, which is equipped with industrial hollow-fibre membranes and treats urban 

wastewater. This pilot plant was operated at 33 ºC and 70 days of SRT. Two different 

transmembrane fluxes (13.3 and 10 LMH) were tested with a gas sparging intensity of 0.23 Nm3 

m-2 h-1 (measured as Specific Gas Demand referred to membrane area). A linear dependence of K20 

on MLTS concentration was observed within a range of MLTS concentration from 13 to 32 g L-1 

and J20 of 10 LMH. K20 maintained at sustainable values (about 100 LMH bar-1) even at high 

MLTS concentrations (up to 20 g L-1). In addition, several short-tests were carried out when the 

membranes were operated at high MLTS concentrations in order to assess the effect of the 

physical cleaning strategies (relaxation and back-flush) on membrane performance. It was 

observed that, with the applied gas sparging intensity, the duration of the relaxation stage did not 

critically affect the membrane performance. On the other hand, the required back-flush frequency 

was considerably affected by the MLTS concentration. 
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INTRODUCTION 

In the latest years, membrane bioreactors (MBR) have been successfully implemented in a 

large number of wastewater treatment plants. Furthermore, this reliable and efficient 

technology has become a legitimate alternative to conventional activated sludge processes. 

This technology can no longer be considered as a novel process since it is already an option 

for urban wastewater treatment (Le-Chech el al., 2006). MBR technology presents as main 

advantages a complete physical retention of solids and almost all microorganisms, a high 

effluent quality and disinfection capability, and a small footprint (Judd, 2006). However, 

aerobic MBRs present the two main drawbacks of aerobic processes: the generation of large 

quantities of secondary sludge that requires treatment before re-use/cycle (Hughes et al., 

2010), and the high energy requirements for the aeration process (up to the 50% of the whole 

energy consumption of a conventional WWTP). Both high waste generation and high energy 

demand are against sustainability principles. In recent years there is an increasing interest in 

the study of anaerobic urban wastewater treatment at ambient temperature. This interest is 

focused on the sustainability benefits that anaerobic processes present compared to aerobic 

ones, such as: minimum sludge production due to the low biomass yield of anaerobic 

organisms; low energy demand since no aeration is required; biogas production that can be 

used to fulfil process energy requirements (Ho and Sung, 2010); and a negative balance of 

greenhouse gases emission, since most of the required energy comes from the wastewater 

instead of from fossil fuels. However, anaerobic processes present as main key issue the low 

growth-rates of anaerobic biomass at ambient temperature (Lin et al., 2010), which requires 

high solid retention times (SRT) in order to achieve proper organic matter removal rates. 

 



In this sense, the MBR technology can overcome the main limitations of anaerobic processes 

at low temperatures and loads: complete retention of slow-growth-rate microorganisms can be 

guaranteed (no washout of these microorganisms), and high SRT can be achieved with small 

volumes (no matter about settling problems). Furthermore, the membrane separation process 

allows high organic loading to be obtained with urban wastewater, since low COD 

concentrations are remedied by high treatment flow rates in small reaction volumes: 

something not possible with classical anaerobic systems (UASB and EGSB) due to the 

limitations of gravity-based separation processes. Thus, anaerobic membrane bioreactors 

(AnMBR) are a promising technology for urban wastewater treatment (Hu et al., 2006; Huang 

et al., 2008; Giménez et al., 2011). 

 

However, working at high Mixed Liquor Total Solid (MLTS) concentrations is one of the 

main operating restrictions in filtration-based technology (Judd, 2006). These large MLTS 

concentrations favour membrane fouling, which decreases membrane permeability (K) and 

increases operating and maintenance costs (Chang et al., 2002). In this respect, the effect of 

the MLTS concentration on membrane performance must be studied in order to assess 

AnMBR feasibility to treat urban wastewater. It is important to emphasise that AnMBR 

systems enable membranes to operate at MLTS concentrations higher than those achieved in 

aerobic MBRs because anaerobic MBRs do not present the oxygen transfer constraints that 

limit MLTS concentrations in aerobic MBRs (Stephenson et al., 2000). Hence, a considerable 

reduction in the design operating volume can be achieved in comparison with the volume 

required in aerobic conditions. 

 

In order to minimise membrane fouling, as well as to increase the membrane lifespan, the 

optimisation of membrane operation and configuration becomes the main operating challenge 

for AnMBR. With regard to membrane operation, the main variables to be optimised are: the 

frequency and duration of the physical cleaning stages (relaxation or back-flush), the cross-

flow sludge velocity, and the gas sparging intensity in the membrane tank. Moreover, 

membrane fouling can be reduced by means of operating membranes at sub-critical filtration 

conditions, which are bounded by the so-called critical flux (JC), firstly defined as “the flux 

below which no fouling occurs” (Bachin et al., 1995), or as “the flux below which a decline 

of flux with time does not occur; above it, fouling is observed” (Field et al., 1995). 

Concerning membrane configuration, the implementation of hollow-fibre (HF) membranes in 

the so-called submerged anaerobic membrane bioreactor (SAnMBR) seems to be one of the 

most feasible configurations to treat large wastewater volumes. Compared to cross-flow 

membranes, HF membranes present low energy consumption since they are located directly in 

the mixed liquor and the required energy gap for the vacuum filtration process is reduced. 

This configuration facilitates the recycle of the produced biogas to the membrane tank for in-

situ gas sparging (Lin et al., 2010), which reduces the cake layer formation-rate. Hence, 

AnMBR for treating urban wastewater can take advantage of the long experience on HF 

membranes in aerobic MBR plants. 

 

Several studies have been published where the feasibility of SAnMBR technology has been 

demonstrated. Most of these studies have been assessed at laboratory scale plants (Hu and 

Stuckey, 2006; Fawehinmi et al., 2007), with flat sheet or tubular membranes (Jeison and Van 

Lier, 2006; Lin et al., 2009), or treating synthetic wastewater (Huang et al., 2008; Ho and 

Sung, 2010). Nevertheless, fewer references have been found in the literature concerning the 

assessment of HF membranes performance at anaerobic conditions. Its feasibility has been 

mainly assessed at aerobic conditions (see v.g. Guglielmi et al., 2006, 2007). Moreover, no 

references have been found regarding HF-SAnMBR application at semi-industrial scale 

treating urban wastewater. In this sense, since the membrane performance cannot be directly 



scaled-up from laboratory to real plant, especially with HF-based technology, further studies 

at industrial-scale are needed in order to facilitate the design and implementation of this 

technology at full-scale WWTPs. 

 

To gain more insight into the optimisation of the physical separation process in a SAnMBR 

system on an industrial scale, the effect of the main operating variables on industrial HF 

membranes performance was evaluated in this work. The main objective was to assess the 

effect of MLTS concentration on membrane permeability. Furthermore, the effect of duration 

and frequency of the physical cleaning stages (relaxation and back-flush) on membrane 

performance was studied whilst operating the membranes at high MLTS concentrations. In 

order to obtain robust results that can be extrapolated to full-scale plants, a SAnMBR system 

featuring industrial HF membrane units was operated using effluent from the pre-treatment of 

the Carraixet WWTP (Valencia, Spain). 
 

 

MATERIAL AND METHODS 

Experimental set-up and operation 

The semi-industrial SAnMBR pilot plant (see Figure 1a) was designed to treat a maximum 

flow-rate of 1200 L h-1, assuming a net flux of 20 L m-2 h-1 in both membrane tanks. It 

consists of an anaerobic reactor of 1.3 m3 total volume (0.4 m3 head-space volume) connected 

to two membrane tanks of 0.8 m3 total volume each (0.2 m3 head-space volume). Each 

membrane tank includes one commercial hollow-fibre ultrafiltration membrane module 

(PURON®, Koch Membrane Systems, 0.05 µm pore size). Each module consists of 9 hollow-

fibre bundles of 1.8 m length that give a total of 30 m2 membrane surface. A rotofilter of 0.5 

mm screen size has been installed as pre-treatment system in order to minimise clogging 

problems. One equalization tank (0.3 m3) and one Clean-In-Place (CIP) tank (0.2 m3) are also 

included as main elements of the pilot plant. In order to control the temperature when 

necessary, the anaerobic reactor is jacketed and connected to a water heating/cooling system. 

 

    

(a)                                                                         (b) 

Figure 1. General view of (a) the pilot plant and (b) the flow diagram. (Nomenclature: RF: 

rotofilter; ET: equalization tank; AnR: anaerobic reactor; MT: membrane tanks; DV: 

degasification vessel; CIP: clean-in-place; P: pump; and B: blower). 

Figure 1b shows the flow diagram of the pilot plant. The pilot plant is fed with the effluent of 

the Carraixet WWTP pre-treatment, which consists of screening, degritter, and grease 

removal. After further pre-treatment in the rotofilter (RF) and homogenisation in the 

equalization tank (ET), the wastewater is pumped to the anaerobic reactor (AnR). In order to 

improve the stirring conditions of the anaerobic reactor and to favour the stripping of the 

produced gasses from the liquid phase, a fraction of the produced biogas is recycled to this 



reactor. The sludge is continuously recycled through the external membrane tanks (MT) 

where the effluent is obtained by vacuum filtration. In order to minimise the cake layer 

formation, another fraction of the produced biogas is also recycled to the membrane tanks 

from the bottom of each fibre bundle. With the aim of recovering the biogas bubbles extracted 

with the membrane effluent, a degasification vessel (DV) was installed between the MT and 

the vacuum pump. This DV consists of a conic-shaped pipe-section widening that favours the 

biogas accumulation at the top of this element. The obtained permeate is stored in the CIP 

tank. By using two membrane tanks in parallel, the pilot plant has been designed and 

automated with high operating flexibility, which allows the pilot plant to work with either one 

membrane tank or both tanks. In addition, an internal permeate recycle has been installed in 

both membrane tanks in order to allow decoupling both physical process and biological 

process study. Hence, different transmembrane fluxes can be tested without affecting the 

hydraulic retention time (HRT) of the plant. In order to control the solids retention time (SRT) 

in the system, a fraction of the sludge is intermittently extracted from the anaerobic reactor 

throughout the day. The treatment flow-rate is established by the selected membrane 

operating mode. Every membrane operating mode is carried out by a defined schedule of 

different individual stages that are combined from a filtration-relaxation (F-R) basic cycle (see 

Figure 2). Besides classical membrane operating stages (filtration, relaxation, and back-flush), 

two additional stages were also considered in the membrane operation (degasification and 

ventilation stages, see Durán et al. (2010)).  

 

 

Figure 2. Operating mode flow diagram. 

The SAnMBR pilot plant was operated at SRT of 70 days and controlled temperature of 33 

ºC. During the experimental period, membranes were operated at two different 20 ºC-

normalised transmembrane fluxes (J20), 13.3 LMH and 10 LMH. The membrane operating 

mode was established as follows: F-R basic cycles of 300 seconds in length (250 s filtration 

and 50 s relaxation); 30 seconds of back-flush every 10 F-R basic cycles; 30 seconds of 

ventilation every 10 F-R basic cycles; and 30 seconds of degasification every 50 F-R basic 

cycles. The effect of physical cleaning stages (duration of the relaxation stage and back-flush 

frequency) on K20 was assessed by performing several short-term tests at different MLTS 

concentrations. The specific gas demand referred to membrane area (SGDm) was set to 0.23 

Nm3 m-2 h-1 (overall recycled biogas flow-rate of 7 Nm3 h-1). 

 

Instrumentation, control and automation system description 

In order to obtain on-line information about the state of the process for proper control 

performance, numerous on-line sensors and automatic equipment have been installed. The 

instrumentation is connected to a network system which includes several transmitters, a 

Programmable Logic Controller (PLC) and a PC to perform multi-parameter control and data 

acquisition. Both, data logging and pilot plant control, are carried out by a SCADA system 

installed in the PC, which centralises all the signals from the different sensors and the 

automatic equipment that are installed in the plant. The group of on-line sensors associated to 

each membrane tank consists of the following: 1 pH-Temperature transmitter (Endress 

Hauser, Orbisint CPS11D Memosens); 1 level indicator transmitter (Endress Hauser, 

Waterpilot FMX167); 1 flow indicator transmitter for the mixed liquor fed pump (Endress 



Hauser, Promag 50W); 1 flow indicator transmitter for the permeate pump (Endress Hauser, 

Promag 50P); and a liquid pressure indicator transmitter in order to control the TMP (Endress 

Hauser, Cerabar M PMC41). In addition, the pilot plant is equipped with several automatic 

actuators used for control purposes. The group of actuators associated to each membrane tank 

consists of a group of on-off control valves, which are used to establish the flow direction 

aimed to control the different membrane operation stages (filtration, back-flush, relaxation…), 

and 3 frequency converters (Micromaster Siemens 420). Each frequency converter commands 

the rotational speed of the permeate pump (JUROP VL02 NBR), the mixed liquor fed pump 

(CompAir NEMO), and the blower (FPZ 30HD) associated to each membrane tank. 

 

Pilot plant monitoring and membrane performance analysis 

Pilot plant performance is evaluated through the available on-line information and the 

analytical monitoring of the main process parameters. Samples of influent, mixed sludge, and 

effluent were taken periodically from the system. Most of the basic analytical techniques, 

including MLTS, were carried out in accordance with Standard Methods (APHA, 2005).  

 

The 20 ºC-normalised membrane permeability (K20) was calculated using a simple filtration 

model (Eq. 1) that takes into account the on-line monitored data of TMP and J. This simple 

filtration model includes temperature (T) correction (Eq. 2) to account for the dependence of 

permeate viscosity (η) on temperature (Rosenberger et al., 2006), and therefore J20 was 

obtained by using Eq. 3. The total membrane resistance (RT) was supposed to be represented 

by the following partial resistances (Eq. 4): membrane resistance (RM); cake layer resistance 

(RC); and irreversible layer resistance (RI). Fouling rate was calculated using a classical 

regression model (Eq. 5) that takes into account the total number of monitored data (n) during. 

 

𝐾20 =  
1

𝜂·𝑅𝑇
=  

𝐽𝑇𝑓𝑇

𝑇𝑀𝑃
 (Eq. 1) 

𝑓𝑇 =  𝑒−0.0239 (𝑇−20) (Eq. 2) 

𝐽20 = 𝐽𝑇 ·  𝑒−0.0239 (𝑇−20) (Eq. 3) 

𝑅𝑇 = 𝑅𝑀 + 𝑅𝐶 + 𝑅𝐼 (Eq. 4) 
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1

 (Eq. 5) 

 

RESULTS AND DISCUSSIONS 

Long-term test: influence of MLTS concentration on membrane performance 

Figure 3a shows the K20 profile obtained during the whole experimental period, as well as the 

MLTS concentration in the anaerobic sludge fed to the membrane tank. Important to highlight 

is that this concentration increased in the membrane tank according to the ratio between the 

sludge flow-rate fed to the membrane tank and the net permeate flow-rate. This figure shows a 

high influence of the MLTS concentration on K20 for the two series carried out at different J20. 

Every MLTS concentration variation was inversely reflected on K20. Nevertheless, even for 

high MLTS concentrations (up to 23 g L-1) the K20 maintained at sustainable values. As can 

be observed in this Figure, for a J20 of 10 LMH the K20 maintained above 100 LMH bar-1 until 

the MLTS raised a concentration around 25 g L-1. Figure 3a shows how for an almost stable 

MLTS concentration (see period from days 90 to 110 or period from days 120 to 135), K20 

was quite stable. The stability in K20 could be attributed to the low TMP obtained during this 

period, which minimises membrane compression thus giving a stable RM value. Moreover, 



following studies showed that K20 came back to previous values when the MLTS decreased 

(data not shown), which indicates the absence of irreversible fouling over the membrane 

surface (related to RI). Hence, the higher K20 obtained during the initial months of operation 

was related to a lower cake layer formation-rate due to lower MLTS concentrations. Important 

to highlight is that there are two different effects that determine RC: the cake layer formation-

rate (due to the filtration process) and the cake layer removal-rate (mainly due to the biogas 

sparging). It is a well-known fact that for an established SGDm the cake layer removal-

efficiency decreases when the MLTS concentration increases. Therefore, in this work the 

decrease of the K20 due to increasing the MLTS concentration was mainly related to an 

increase in the RC. 

 

A linear dependence of the K20 on the MLTS concentration can be observed in Figure 3b for 

the two series carried out at different J20. As can be observed in this Figure, any increase in 

the MLTS concentration results in a proportional decrease of the K20. Despite no clear 

differences were observed between both series, for similar MLTS concentration the higher the 

applied flux, the lower the obtained K20. This little difference can also be observed in the 

slope of the linear regression between the MLTS concentration and the K20. This slope was 

slightly higher for J20 = 13.3 LMH than for 10 LMH, which indicates a higher fouling rate at 

higher fluxes. Moreover, both slopes seem to indicate that the influence of MLTS 

concentration on K20 starts getting independent on flux when the MLTS concentration tends 

to zero. This approach is in good agreement with the classical definition of membrane 

permeability treating pure water. On the contrary, while working at J20 = 10 LMH, the MLTS 

concentration became one of the main factors affecting K20 when it suddenly increased above 

30 g L-1.  

 

 
(a)                                                                     (b) 

Figure 3. (a) Evolution of the K20 and the MLTS concentration throughout the experimental 

period. (b) Linear dependence of K20 on the MLTS concentration for the two series carried 

out at different J20. 

Similar to Figure 3a, the MLTS concentration and the fouling rate are shown in Figure 4. As 

can be observed in this figure, the fouling rate maintained at low values until the MLTS 

concentration was around 25 g L-1. Above this value, the fouling rate showed a sudden 

increase due to the exceeding of the critical filtration conditions. For a SGDm of 0.23 Nm3 h-1 

m-2 and MLTS of 28 g L-1, the 20 ºC-normalised critical flux was around 10 LMH, whilst for 

the same SGDm and MLTS of 23 g L-1 it was around 13 LMH. The fouling rate presented in 

this Figure shows that filtration process was kept at sub-critical conditions until day 135. 

Afterwards, the SGDm applied to the membrane tank was not enough to maintain sub-critical 

filtration conditions because of the high MLTS concentrations reached. However, as can be 

observed in Figure 4 it was possible to operate the membranes at low fouling rates at high 



MLTS concentrations (up to 23 g L-1).  

 

 
Figure 4. Evolution of the fouling rate (FR) and the MLTS concentration throughout the 

experimental period.  

 

With regard to the biological process performance, Table 1 shows the average characteristics 

of influent and effluent SAnMBR streams. This table highlights the relatively low influent 

COD concentration, as well as the strong variability of the influent load as can be deduced 

from the high values of standard deviation associated to each parameter. The uncertainty 

associated to each value includes both the standard deviation of the different samples analysed 

throughout the experimental period and the coefficient of variation associated to the analytical 

methods. As can be observed, low effluent COD and VFA concentrations were achieved.  

 

Overall, high treatment efficiency was obtained and no irreversible fouling problems were 

detected, and therefore, no chemical cleaning was conducted. Further details on the biological 

process performance of this SAnMBR system can be found in Giménez et al. (2011). 

 

Table 1. Average characteristics of influent and effluent SAnMBR streams.  

Parameter Unit 
Influent 

Mean ± SD 

Effluent 

Mean ± SD 

TSS mgTSS L-1 186 ± 61 < 1 

VSS mgVSS L-1 150 ± 54 < 1 

Total COD mgCOD L-1 445 ± 95 77 ± 33 

Soluble COD mgCOD L-1 73 ± 25 77 ± 33 

VFA mgCOD L-1 11 ± 7 12 ± 7 

NH4-N mgN L-1 27.0 ± 8.1 33.4 ± 8.2 

PO4-P mgP L-1 2.7 ± 0.9 3.1 ± 0.9 

Alkalinity  mgCaCO3 L-1 292.5 ± 37.2 596.5 ± 65.6 

 

Short-term tests: effect of the physical cleaning stages on membrane performance  

With regard to the physical cleaning stages, several short-term tests were carried out in order 

to assess the influence of the relaxation stage duration and the back-flush application 

frequency on K20. Experiments for MLTS concentrations below 28 g L-1, J20 of 10 LMH, and 

back-flush frequency of 1 back-flush every 10 F-R cycles resulted in a total recovery of the 

K20 after the relaxation stage. Moreover, it was observed that the membrane performance was 

not critically affected by the duration of the relaxation stage when it was ranged between 30 

and 60 seconds. On the other hand, Figure 5 shows the influence of the back-flush frequency 

on the TMP for different MLTS concentrations. This figure, which corresponds to a J20 of 10 

LMH, shows how for MLTS below 26 g L-1 the TMP recovery did not depend on the back-



flush frequency. Above this MLTS value, a significant increase of the TMP was observed, 

which made necessary to increase the back-flush frequency in order to keep the filtration 

process working below the safety threshold value (established at 0.4 bars). As can be 

observed in this figure, the safety threshold value was reached when membranes were 

operated at MLTS concentrations above 30 g L-1. However, as a result of the application of 

relaxation stages the membrane could be operated properly without a significant increase in 

the back-flush frequency.   

 

 
(a)                                                                           (b) 

Figure 5. TMP evolution for different MLTS concentrations for a back-flush frequency of: 

(a) 1 back-flush every 30 F-R cycles; and (b) 1 back-flush every 10 F-R cycles. 

As can be observed in Figure 5b, the membrane performance considerably improved due to 

increasing the back-flush frequency from 1 back-flush every 30 F-R cycles to 1 back-flush 

every 10 F-R cycles. However, for MLTS concentrations above 30 g L-1 the TMP threshold 

value was still reached. As mentioned above, the MLTS concentration inside the membrane 

tank increased according to the ratio between the sludge flow-rate fed to the membrane tank 

and the net permeate flow-rate. For the established ratio, this concentration could have 

reached the value of 35 g L-1 when the MLTS concentration fed to the tank was 31 g L-1. The 

high fouling rate observed for both 31.5 g L-1 series was related to the increase predicted for 

the MLTS concentration in the membrane tank due to the mentioned ratio. For these 

experimental series the fouling rate increased from around 7 mbar min-1 to 65 mbar min-1. 

This increase throughout the experiment indicates that the MLTS limit which leads to operate 

the membranes above the critical filtration conditions were exceeded. 

 

CONCLUSIONS 

A SAnMBR pilot plant that includes industrial HF membranes was operated at mesophilic 

conditions (at 33 ºC) and 70 days SRT with urban wastewater coming from the Carraixet 

WWTP (Valencia, Spain). The effect of the MLTS concentration on membrane fouling was 

assessed by operating the membranes at two different J20: 13.3 and 10 LMH. It was observed 

that the MLTS concentration highly affected the K20. However, the K20 maintained at 

sustainable values (over 100 LMH bar-1) even operating at high MLTS concentrations (up to 

20 g L-1). The fouling rate maintained at low values and it only showed a sudden increase 

when the threshold value (about 25 g L-1) was exceeded. Moreover, a linear dependence 

between K20 and MLTS concentration was observed within a range of MLTS concentration 

from 13 to 32 g L-1 and J20 of 10 LMH, which predicts a proportional decrease in the K20 

when the MLTS increases. Short-term tests showed that the duration of the relaxation stage 

did not critically affect the membrane performance. On the other hand, it was observed that 

the influence of the required back-flush frequency on membrane performance was strongly 

influenced by the MLTS concentration.  
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