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Abstract

In this paper we propose a soft-switching filter to improve the performance

of recent colour image smoothing filters when processing homogeneous im-

age regions. We use a recent filter mixed with the classical arithmetic

mean filter (AMF). The recent method is used to process image pixels

close to edges, texture and details and the AMF is only used to process

homogeneous regions. To this end, we propose a method based on graph

theory to distinguish image details and homogeneous regions and to per-

form a soft-switching between the two filters. Experimental results show

that the proposed method provides improved results which supports the
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appropriateness of the graph theory-based method and suggests that the

same structure can be used to improve the performance of other nonlinear

colour image smoothing methods.

Keyword: Colour image smoothing, Graph theory, Kruskal algorithm

1 Introduction

Colour image denoising is a topic which has been extensively studied in the

fields of computer vision and digital image processing. The denoising (or filter-

ing) step is essential for almost every computer vision system because noise can

significantly affect the visual quality of the images as well as the performance of

most automatic image processing tasks. Among the different sources of noise in

digital imaging, probably the most common one is the so-called thermal noise,

which is mainly due to CCD sensor malfunction and specially intense with in-

appropriate illumination conditions. This kind of noise is modeled as additive

white Gaussian noise [1].

Many methods for reducing Gaussian noise from colour images have been

proposed in the literature [1, 2], with the aim of smoothing image noise while

keeping intact desired image features such as edges, texture and fine details.

The earliest approaches for Gaussian noise smoothing were based on a linear

approach. These methods, such as the Arithmetic Mean Filter (AMF) [1], are

able to suppress noise, because they take advantage of its zero-mean property, but

they blur edges and texture significantly. This fact motivated the development

of many nonlinear methods that try to overcome this drawback. Within the

nonlinear methods, we can find families of filters based on different approaches,

such as weighted averaging [3, 4, 5], peer group averaging [6], fuzzy logic or soft

switching [7, 8, 9, 10], regularization filters [11], and wavelet filtering [12, 13].
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Recent nonlinear methods exhibit an improved performance with respect to

the linear approaches, above all, from the edge and detail preservation point

of view, since they try to detect and preserve these features. However, as the

noise in the image is higher, many times image noise in homogeneous regions

is confused with an image structure that should be preserved and so it is not

properly reduced. In this paper we propose a method to improve performance

by overcoming this drawback. We propose a robust method based on graph

theory to classify image pixels into two classes: homogeneous regions and edge-

detail regions. Then, we use the AMF to process image homogeneous regions

since it is the filtering structure providing the maximum smoothing capability.

To process the rest of the image, we use a recent nonlinear method called Fuzzy

Noise Reduction Method (FNRM) [7]. The switching between AMF and FNRM

is performed in a soft fashion so that when the class of the image pixel is not

clearly determined the results of both methods are combined. The proposed filter

follows the idea presented in [8] but including a new graph-based classification

criteria that allows to achieve high level performance. Also, notice that although

we have used the FNRM, any other nonlinear method can be used within the

same structure and similar improvements are expected.

In the following section we review the basics on graph theory and Section

3 describes the graph-based classification method. Section 4 describes the pro-

posed filtering structure. Experimental results are shown in Section 5 and some

conclusions are drawn in Section 6.

2 Fundamentals of graph theory

A graph G is defined as a finite nonempty set V (G) of objects called vertices and

a set E(G) of unordered pairs of distinct vertices of G called edges. A graph H
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is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If V (H) = V (G)

then H is also called a spanning subgraph of G.

A walk W from a vertex v0 to a vertex vl in a graph is an alternating sequence

of vertices and edges, say v0, e1, v1, e2, . . . , el, vl where ei = (vi−1, vi), 0 < i ≤ l.

If a walk W = v0, e1, v1, e2, . . . , el, vl is such that l ≥ 3, v0 = vl and the vertices

vi, 0 < i < l, are distinct from each other and v0, then W is said to be a cycle.

A graph is connected if for every pair {vi, vj} of distinct vertices there is a walk

from vi to vj . A connected graph G without any cycles is a tree. A graph is

called complete if every pair of vertices is joined by an edge.

A weighted graph is a graph in which each edge e is assigned a real number

w(e). The weight w(H) of a subgraph H of a weighted graph is the sum of the

weights of the edges of H , that is w(H) =
∑

e∈E(H)

w(e).

A spanning tree T of G having minimum (maximum) weight is called a min-

imum (maximum) spanning tree. The Kruskal’s algorithm [14] allows to deter-

mine a minimum (maximum) spanning tree of a connected graph G.

3 Detection of homogeneous regions using graphs

In this work we will use digital colour images represented in the Red-Green-

Blue (RGB) colour space using 24 bits per pixel. This implies that each image

pixel is associated with a tern of values that represents the coordinates of the

colour of that pixel. Let us denote a digital image by F and each image pixel by

Fi = (F R
i , F G

i , F B
i ), where F R

i , F G
i , F B

i ∈ [0, 255].

Our method processes the digital image F by means of a sliding window

approach. Each image pixel Fi is processed independently using the pixels in

a n × n processing window Ω centered on Fi. For convenience, we denote the

N = n2 colour pixels in Ω by {F1, . . . ,FN}.
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Our method first classifies image pixels into homogeneous regions and edge-

detail regions. For this we will use a method based on graphs, in particular,

on maximum and minimum spanning trees. Associated to each sliding window

Ω we define a weighted complete graph which has as vertices V (G) the set of

colour image pixels in Ω, that is, V (G) = {F1, . . . ,FN}. The weight of an edge

w(ek) = w(Fi,Fj) = ‖Fi−Fj‖, where we use the Euclidean norm of the difference

between Fi and Fj to represent the dissimilarity between these two colours.

Then, we use the Kruskal algorithm [14] to determine the minimum and

maximum spanning trees of G, which we denote by Km and KM , respectively.

Considering the weights of Km and KM we define the following coefficients, which

will be used to perform the desired classification:

C1 =
log w(Km)

w(KM)
, C2 =

w(Km) − w(KM)2

W
, where W = w(G).

The reasoning behind these coefficients is that their values will be very different

in homogeneous and edge-detail regions of the image even in the presence of noise.

Indeed, w(KM) and w(Km) will be quite alike in homogeneous regions since all

edges will have similar weights and so will be the global weight of the minimum

and maximum spanning trees. In the presence of noise, some edge weights may

be larger and others may be smaller, but since all pixels (vertices) are involved in

the computation of the spanning trees, no large differences are expected between

w(KM) and w(Km), which implies the method is robust to the presence of noise.

On the other hand, w(KM) and w(Km) will be pretty different in edge-detail

regions. This happens because in these regions there exist some edges with large

weights and others with low weights. Most of the former will be included in KM

whereas the majority of the latter will be in Km, which implies that w(KM) and

w(Km) will be quite different, regardless the presence of noise. The expressions
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to determine C1 and C2 exploit these facts, making use of logarithms and squares

to enhance the difference between w(KM) and w(Km) when appropriate. For C1

and C2 larger values are associated to homogeneous regions whereas lower values

correspond to edge-detail regions, as we can observe in Fig. 1 where we denote

with N(Ci), i = 1, 2 the normalized values of the corresponding coefficients and

with N(w(KM)−w(Km)) the normalized one for the difference between w(KM)

and w(Km).

Figure 2 illustrates the performance of C1 and C2 with respect to the classifi-

cation of the homogeneous and edge-detail regions of the image, where the bright

and dark zones correspond to homogeneous and edge-detail regions, respectively.

Notice that our purpose is not to devise a pure edge detection method since to

properly detect edges more criteria concerning connection and single edge detec-

tion should be considered. So, the only advantage of our approach in front of

edge detection methods is related to its robustness against noise, which is indeed

our objective as explained above.
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Figure 1: Relationship between N(w(Km)) and (a) N(C1), (b) N(C2) and (c)
N(w(KM)−w(Km)) at each pixel in the Pills image with gaussian noise s = 10.

4 Soft-switching filtering structure

The proposed denoising method called Soft-Switching Graph Denoising Method

(SSGD) uses the AMF to process homogeneous regions of the image, whereas
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(a) (b) (c) (d)

Figure 2: Classification in edge-detail and homogeneous regions for the Pills
image with gaussian noise s = 10 using (a) C1 and (b) C2, and for the Lenna
image with gaussian noise s = 30 using (c) C1 and (d) C2.

the FNRM is employed to filter pixels in edge-detail regions. The switching

between these two methods is done in a soft fashion. So, the output of the

proposed method, SSGDout, will be obtained through a weighted combination

of the outputs of the two filters AMFout and FNRMout as

SSGDout = αAMFout + (1 − α)FNRMout,

for each image pixel. Notice that when α = 1 SSGD behaves as the AMF,

and when α = 0 SSGD equals FNRM. Thus, the value of α should depend on

the nature of the pixel under processing. That is, if the pixel belongs to an

homogeneous region of the image α should be large (closer to 1), otherwise, α

should be lower (closer to 0).

To decide whether the particular pixel belongs to one type of region or the

other we use the coefficients C1 and C2. It should be pointed out that the values

of these coefficients can vary significantly for different images depending on their

features such as image colour range, sharpness of edges, quantity of texture in the

image, etc. So, after computing the value of the coefficient for all image pixels,

we normalize the obtained values to the interval [0, 1] in a linear way, which will

ease the processing of different images.

If using C1, we know that “if C1 is large, then the pixel belongs to an ho-
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mogeneous region”. Since “C1 is large” is a vague statement, it can be modeled

using fuzzy theory [15]. So, we use a membership function that provides a value

in [0, 1] that represents the certainty degree of the vague statement. In this case,

we have selected a S-type membership function µ defined as in [15]:

µ(x, a, b) =



































0 if x < a

2
(

x−a
b−a

)2
if a ≤ x ≤ a+b

2

1 − 2
(

x−b
b−a

)2
if a+b

2
< x ≤ b

1 if x > b

, (1)

where a, b are two function parameters. Thus, we can directly assign α =

µ(C1, a, b) so that we obtain the weight that makes our denoising method be-

have as desired. An analogous process can be followed for the coefficient C2.

5 Experimental results and comparisons

In the experimental section we have used the test images (Fig. 3) Lenna, Pepper,

Parrot, Pills, Aerial and Baboon. These images have been corrupted with noise

using the classical white additive Gaussian model [1]. Each colour image channel

has been contaminated independently varying the standard deviation s which

represents the noise intensity. To assess the performance of the filtering process,

we use the Peak Signal to Noise Ratio (PSNR) as defined in [1, 2]. Notice that

other types of noise such as impulsive noise or alpha-stable noise also affect

colour images. However, we focus on the study of the additive white Gaussian

noise since FNRM, AMF and our edge-detail detection method are devised for

this type of noise and we believe that the method will not be appropriate for

other types of noise in general, although it might perform well in particular noise

ranges.
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(a) (b) (c) (d)

(e) (f)

Figure 3: Test images : (a) Lenna, (b) Pepper, (c) Parrot, (d) Pills, (e) Aerial,
and (f) Baboon.

First, we need to find appropriate settings for the parameters a, b in Eq. (1).

To this end, we have experimentally analyzed the filter performance in terms of

PSNR as a function of these parameters. The images Lenna, Parrot, Pepper and

Pills (Figure 3 (a), (b), (c) and (d)) have been contaminated with noise varying

s in {10, 20, 30} and the performance in terms of PSNR has been calculated for

different values of a, b ∈ [0, 1]. We have observed that optimal parameter setting

depends on both noise density and the image to be processed. However, we have

seen that the settings in Table 1 are able to provide sub-optimal performance.

In fact, the settings of the a and b parameters are not critical for the filter

performance. We have observed that varying the value of a and b in the intervals

in Table 1 leads to PSNR differences lower than 0.5 units, which implies that any

value in these intervals can be safely used. Notice that the standard deviation

of the corrupting Gaussian noise s can be estimated using the method in [16], so

the information in Table 1 can be used to set the parameters for processing any

input image.
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Table 1: Intervals of parameter sub-optimal performance and suggested parame-
ter setting for different noise densities obtained through experimental evaluation

Coefficient C1 C2

s = 10 s = 20 s = 30 s = 10 s = 20 s = 30
sub-optimal range for a [0.1, 0.3] [0, 0.2] [0, 0.3] [0.8, 0.9] [0.7, 0.8] [0.55, 0.65]

robust setting for a 0.10 0.10 0.10 0.90 0.75 0.55
sub-optimal range for b [0.65, 0.9] [0.5, 0.9] [0.5, 0.7] [0.95, 1] [0.95, 1] [0.9, 1]

robust setting for b 0.85 0.75 0.60 1.00 1.00 1.00

Now, using the parameter setting in Table 1, the test images in Figure 3

contaminated with different densities of noise have been processed using the

AMF, FNRM and the proposed SSGD method with the coefficients C1 and C2.

As above, the quality of the filtered images has been evaluated using the PSNR

quality measure. These numerical results are given in Tables 2, 3.

Table 2: Performance comparison in terms of PSNR using the images contami-
nated with different standard deviation of Gaussian noise

Filter PillsD PeppersD ParrotsD2 LennaD

10 20 30 10 20 30 10 20 30 10 20 30

None 28.40 22.59 19.21 28.55 22.48 19.16 19.16 22.44 19.16 19.17 22.54 19.17

AMF 25.90 25.21 24.14 26.50 25.62 24.61 23.36 22.91 22.33 27.69 26.61 25.28

FNRM 32.28 28.14 25.13 32.14 27.84 25.16 30.84 27.36 24.66 32.53 28.14 25.20

SSGD C1F 32.40 28.90 26.13 32.44 28.65 26.36 30.91 27.94 25.45 32.82 29.04 26.50

SSGD C2F 32.48 28.89 26.17 32.47 28.62 26.39 30.94 27.92 25.26 32.86 29.12 26.55

Table 3: Performance comparison in terms of PSNR using the images contami-
nated with different standard deviation of Gaussian noise

Filter Aerial Baboon

10 20 30 10 20 30

None 28.42 22.55 19.23 28.34 22.17 19.47

AMF 18.90 18.68 18.37 23.26 22.86 22.70

FNRM 27.39 25.37 23.37 30.12 27.08 24.65

SSGD C1F 27.39 25.38 23.38 30.13 27.20 25.00

SSGD C2F 27.39 25.38 23.40 30.14 27.21 24.99

We can see that the quality of the AMF is clearly below the rest of the

methods. On the other hand, we can see that the SSGD method is in general

able to provide improved performance with respect to the FNRM. The numeri-

cal results indicate that the improvements obtained are higher for higher noise

and for images with larger homogeneous regions than for high frequency images

(Aerial and Baboon). Some of these filtered images are shown in Figs. 4-6 for
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visual inspection. Also, we tested the performance of our proposal over an image

contaminated with real noise (see Fig. 7).

(a) (b) (c) (d) (e)

Figure 4: Experimental results: (a) Lenna image contaminated with noise s = 10
and outputs from (b) AMF, (c) FNRM, (d) SSGD C1 with a = 0.1, b = 0.85 and
(e) SSGD C2 with a = 0.9, b = 1.

(a) (b) (c) (d) (e)

Figure 5: Experimental results: (a) Pills image contaminated with noise s = 20
and outputs from (b) AMF, (c) FNRM, (d) SSGD C1 with a = 0.1, b = 0.75 and
(e) SSGD C2 with a = 0.75, b = 1.

In Figures 4-6 we can see that SSGD is able to smooth the noise in the

homogeneous regions of the image better than FNRM, specially as the noise is

higher, while keeping the same quality in edge-detail regions, which explains the

PSNR improvement. This also confirms the good classification performed by the

graph theory based method. These points are supported by the results over the

real noisy image in Figure 7, where we can see that our filter produces the most

visually pleasing image.

Finally, it is interesting to point out that, as this filtering structure has been

used to improve the performance of the FNRM, it can be also used to improve

the performance of other colour image smoothing methods.
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(a) (b) (c) (d) (e)

Figure 6: Experimental results: (a) Parrots image contaminated with noise s =
30 and outputs from (b) AMF, (c) FNRM, (d) SSGD C1 with a = 0.1, b = 0.6
and (e) SSGD C2 with a = 0.55, b = 1.

6 Conclusions

In this paper, we deal with the problem of smoothing highly contaminated im-

ages where the performance of nonlinear methods can be improved, specially in

homogeneous image regions. We propose to use a method based on graph theory

to detect pixels in homogeneous regions, which are processed using the Arith-

metic Mean Filter (AMF) to obtain the higher smoothing capability. The rest of

the image pixels are processed using a recent nonlinear method and the switching

between these two filters is implemented in a soft fashion. Experimental results

show that the proposed approach outperforms the recent method used. Notice,

that the same filter structure can be used with any other nonlinear method and

similar improvements are expected.
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(a) (b) (c)

(d) (e)

Figure 7: Experimental results: (a) An image contaminated with real noise
acquired using a domestic camera and outputs from (b) AMF, (c) FNRM, (d)
SSGD C1 with a = 0, b = 0.5 and (e) SSGD C2 with a = 0.8, b = 1.

References

[1] Plataniotis, K.N., and Venetsanopoulos, A.N.: ‘Color Image processing and

applications’ (Springer-Verlag, Berlin, 2000)

[2] Lukac, R., Plataniotis, K.N.: ‘A taxonomy of color image filtering and en-

hancement solutions’, in Hawkes, P.W. (Ed.): ‘Advances in Imaging and

Electron Physics’ (Elsevier Acedemic Press, 2006), pp. 187-264

[3] Lucchese, L., and Mitra, S.K.: ‘A new class of chromatic filters for color

image processing: theory and applications’, IEEE Transactions on Image

Processing, 2004, 13, pp. 534-548

13



[4] Morillas, S., Gregori, V., and Sapena, A.: ‘Fuzzy Bilateral Filtering for color

images’, Lecture Notes in Computer Science, 2006, 4141, pp. 138-145

[5] Luszczkiewicz, M., and Smolka, B.: ‘Application of bilateral filtering and

Gaussian mixture modeling for the retrieval of paintings’, Proceedings -

International Conference on Image Processing, ICIP, 2009, art. no. 5414097,

pp. 77-80

[6] Morillas, S., Gregori, V., and Hervás, A.: ‘Fuzzy peer groups for reducing

mixed Gaussian-impulse noise from color images’, IEEE Transactions on

Image Processing, 2009, 18, pp. 1452-1466

[7] Schulte, S., De Witte, V., and Kerre, E.E.: ‘A fuzzy noise reduction method

for colour images’, IEEE Transactions on Image Processing, 2007, 16, pp.

1425-1436

[8] Morillas, S., Schulte, S., Mélange, T., Kerre, E.E., and Gregori, V.: ‘A

soft-switching approach to improve visual quality of colour image smoothing

filters’, in: ‘Proceedings of Advanced Concepts for Intelligent Vision Systems

ACIVS0’ (Lecture Notes in Computer Science, 2007,4678 ), pp. 254-261

[9] Smolka, B. and Plataniotis, K. N.: ‘Soft-Switching Adaptive Technique of

Impulsive Noise Removal in Color Images’, ICIAR, 2005 pp. 686-693

[10] Szczepanski, M., Smolka, B., Plataniotis, K.N., and Venetsanopoulos, A.N.:

‘On the distance function approach to color image enhancement’, Discrete

Applied Mathematics, 2004, 139, pp. 283-305

[11] Elmoataz, A. , Lezoray, O., and Bougleux, S.: ‘Nonlocal discrete regulariza-

tion on weighted graphs: A framework for image and manifold processing’,

IEEE Transactions on Image Processing, 2008, 17, pp. 1047-1060

14



[12] De Backer, S., Pizurica, A., Huysmans, B., Philips, W., and Scheunders

P.: ‘Denoising of multicomponent images using wavelet least-squares esti-

mators’, Image and Vision Computing, 2008, 26, pp. 1038-1051

[13] Miller, M., and Kingsbury, N.: ‘Image denoising using derotated complex

wavelet coefficients’, IEEE Transactions on Image Processing, 2008, 17, pp.

1500-1511

[14] Gross, J.L., and Yellen, J.: ‘Graph Theory and its applications’ (Chap-

man&Hall CRC, 2nd edn. 2006)

[15] Kerre, E.E.: ‘Fuzzy Sets and Approximate Reasoning’ (Xian Jiaotong Uni-

versity Press, 1998)

[16] Immerkaer, J.: ‘Fast noise variance estimation’, Computer Vision and Image

Understanding, 1996, 64, pp. 300-302

15


