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Abstract

The capability of reaching agreements is a necessary feature that large computer systems where agents
interoperate must include. In these systems, agents represent self-motivated entities that have a social
context, including dependency relations among them, and different preferences and beliefs. Without
agreement there is no cooperation and thus, complex tasks which require the interaction of agents with
different points of view cannot be performed. In this work, we propose a case-based argumentation
approach for Multi-Agent Systems where agents reach agreements by arguing and improve their argu-
mentation skills from experience. A set of knowledge resources and a reasoning process that agents
can use to manage their positions and arguments are presented. These elements are implemented and
validated in a customer support application.
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1. Introduction

Currently, most business transactions are operated by means of software components in large scale
computer systems. These components are often implemented as agents in a Multi-Agent System (MAS).
In this way, their reasoning autonomy, their social features and the fact that they can represent human
interests and preferences are highlighted. In MAS, agents perform complex tasks that require different
levels of intelligence and give rise to interactions among them. From these interactions, conflicts of interest
and opinion can arise among different agents, specially when MAS become open with heterogeneous agents
dynamically entering in or leaving the system). Therefore, software agents willing to participate in open
systems will require to include extra capabilities to explicitly represent and generate agreements, on top
of the simpler capacity to interoperate [1]. This paves the way for a new area of research to develop
software components and techniques that allow agents to reach agreements in these systems.

Argumentation is a natural way of reaching agreements between several parties with opposing positions
about a particular issue. Agents can reach agreements by engaging in argumentation dialogues with their
opponents. This has made Artificial Intelligence (AI) researchers to pay their attention on argumentation
theory [2, 3, 4]. However, some work in the area assumes human users interacting with software tools,
such as the approaches for argument authoring and diagramming [5], OVA1. Other research works where
the computational modelling of arguments has been studied are those on case-based argumentation. From
the first uses of argumentation in AI, arguments and cases are intertwined [6]. Case-based argumentation
particularly reported successful applications in American common law [7], whose judicial standard orders
that similar cases must be resolved with similar verdicts. In [8] a model of legal reasoning with cases
is proposed. But, again, this model assumed human-computer interaction and cases were not thought
to be only acceded by software agents. Case-Based Reasoning (CBR) systems [9] allow agents to learn
from their experiences. In MAS, the research in case-based argumentation is quite recent with just a few
proposals to date [10]. These proposals are highly domain-specific (e.g. persuasion [11], sensor networks
[12] and classification [13]) or centralise the argumentation functionality either in a mediator agent, which
manages the dialogue between the agents of the system [14], or in a specific module of the system itself
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[15]. Thus, the notions of argument and argumentation resources of these systems are not conceived for
being acceded only by software agents that perform automatic reasoning processes over them and that
can have partial knowledge about the domain.

In addition, agents can form societies that impose social dependencies among them and can have values
that they want to promote or demote. These values can be personal goods (e.g. efficiency, accuracy, etc.)
or also social goods inherited from the agents’ dependency relations. Thus, we endorse the view of value-
based argumentation frameworks [16, 17, 8, 18], which stress the importance of the audience (the set
of individuals that share a particular preference order over the set of values) in determining whether an
argument is persuasive or not. Value-based argumentation frameworks extend abstract argumentation
frameworks by addressing issues about the rational justification of choices. Preferences over values can
determine the reasons that lead an agent to propose a specific argument or to accept or refuse an argument
from another agent. To illustrate this statement, let us propose the following running example, which is
based on the evaluation scenario presented in Section 4. We have a MAS that controls the operation of a
call centre that provides customer support. In this centre, agents represent technicians that must reach
agreements about the best solution to apply to different types of software or hardware problems reported
to the centre. To solve each problem, a group of technicians engage in an persuasion dialogue proposing
their individual solutions and justifying the reasons that they have to propose them. Therefore, each
agent argues and interchanges arguments with the other agents to persuade them to accept its solution
as the best way of solving the problem. In this scenario, an agent representing a technician that wants to
promote efficiency may prefer to offer quick solutions to the problem without taking into account their
quality (e.g. if the problem reports an error on a computer that reboots automatically at random, this
technician may prefer to propose a complete reinstallation of the OS rather than wasting time finding out
the actual cause of the problem). However, let us now assume that the same agent belongs to a group
that prefers to promote accuracy over efficiency and that imposes its value preferences on its members.
In this case, if the agent is also able to generate an alternative solution that promotes accuracy (e.g.
running a test to detect a possible virus and, if the system is infected, install a tool to clean it), the agent
would propose that solution rather than the one that promotes its individual preferences. Therefore, we
also consider values as an important element of the social context of an agent.

Starting from the idea that the social context of agents determines the way in which they can argue and
reach agreements, it should have a decisive influence on the computational representation of arguments
and on the argument management process. This opens a new research challenge for the development of
a computational mechanism for reaching agreements in MAS in which the participating software agents
are able to manage and exchange arguments between themselves taking into account their social context.
To deal with this challenge the reasoning process by which agents can automatically generate, select and
evaluate arguments must be specified. Also, to allow agents to learn from argumentation experiences
and thus, to improve the efficiency and outcomes of further agreement processes is an interesting add-on
feature for this type of systems.

In this paper, we propose a reasoning process that agents of a society can follow to engage in argu-
mentation dialogues to reach agreements. This reasoning process makes use of the Case-Based Reasoning
(CBR) methodology [9] as an appropriate technique to manage arguments and enhance agreement pro-
cesses. Reasoning with cases is specially suitable when there is a weak domain theory, but acquiring
examples encountered in practice is easy. Most argumentation systems produce arguments and reason
about them by applying a set of inference rules (e.g. [19, 20]). Rule-based systems require to elicit a
explicit model of the domain. In open MAS, where agents can enter or leave the system, the domain is
highly dynamic and the set of rules that model it is difficult to specify in advance. However, tracking
the arguments that agents put forward in argumentation processes could be relatively simple. Therefore,
these arguments can be stored as cases codified in a specific case representation language that different
agents are able to understand. This is easier than creating an explicit domain model, as it is possible to
develop case-bases avoiding the knowledge-acquisition bottleneck. With these case-bases, agents are able
to perform lazy learning processes over argumentation information, as will be illustrated in the example
of Section 3. Another important problem with rule-based systems arises when the knowledge-base must
be updated (e.g. adding new knowledge that can invalidate the validity of a rule). Updates imply to
check the knowledge-base for conflicting or redundant rules. Case-based systems are easier to maintain
than rule-based systems since, in the worst case, the addition of new cases can give rise to updates in
some previous cases, but does affect the correct operation of the system, although it can have an impact
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in its performance. Hence, a case-based representation of the domain knowledge of the system is more
suitable for being applied in dynamic open MAS.

To allow agents to reason over arguments and the argumentation process itself, they must be able to
generate, select and evaluate arguments. Therefore, we propose a set of case-based knowledge resources
that agents can use to perform these tasks. In addition, we present an argumentation ontology to represent
the elements of these knowledge resources. This ontology enables a common understanding about the
argumentation concepts and allows heterogeneous agents to engage in agreement processes. Based on the
knowledge resources proposed, we present the reasoning process that agents follow to reach agreements
taking into account their argumentation experience and social context. Also, this process allows agents to
enhance their argumentation skills by learning from past argumentation experiences. All these elements
form a case-based argumentation framework for reaching agreements in agent societies. This framework
has been implemented and tested in a call centre that provides customer support.

This paper is structured as follows: Section 2 introduces our proposed argumentation framework for
agent societies; Section 3 presents the case-based reasoning process that agents follow to engage in argu-
mentation processes; in Section 4, the reasoning process is evaluated in a customer support application;
Section 5 provides a discussion about some issues and assumptions made in this work and compares it
with related approaches; finally, Section 6 summarises the contributions of this paper.

2. Case-Based Argumentation Framework

In open multi-agent argumentation systems the arguments that an agent generates to support its posi-
tion can conflict with arguments of other agents and these conflicts are solved by means of argumentation
dialogues between them. In [21, Chapter 3] we presented a computational case-based argumentation
framework that agents can use to manage argumentation processes. This section outlines the main
components of this framework. Thus, the framework consists of:

• A definition for the notion of arguments that agents use to justify their proposals.

• The logical language that agents use to represent knowledge and engage in argumentation processes.

• A definition for the concept of conflict between arguments, which specifies when an argument attacks
other different argument.

• A definition for the concept of defeat between arguments, which specifies which attacks over argu-
ments succeed.

• A definition for the possible acceptability status of an argument during the dialogue, which classifies
it as acceptable (not defeated by other argument), unacceptable (defeated) or undecided (there is not
enough information to decide its acceptability status) in view of its relations with other arguments
[22].

In addition, we proposed three types of knowledge resources that the agents can use to generate, select
and evaluate arguments by using our framework:

A case-base with domain-cases that represent previous problems and their solutions. Agents can
use this knowledge resource to generate their positions in a dialogue and arguments to support
them. Therefore, the position of an agent represents the solution that this agent proposes and both
terms are used interchangeably in this paper. Also, the acquisition of new domain-cases increases
the knowledge of agents about the domain under discussion.

A case-base with argument-cases that store previous argumentation experiences and their final out-
come. Argument-cases have three main objectives: they can be used by agents 1) to generate new
arguments; 2) to select the best position to put forward in view of past argumentation experiences;
and 3) to store the new argumentation knowledge gained in each agreement process, improving the
agents’ argumentation skills.
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A database of argumentation schemes with a set of schemes with the structure proposed in [23],
which represent stereotyped patterns of common reasoning in the application domain where the
framework is implemented. An argumentation scheme consists of a set of premises and a conclusion
that is presumed to follow from them. Also, each argumentation scheme has associated a set of
critical questions that represent potential attacks to the conclusion supported by the scheme. The
concrete argumentation schemes to be used depend on the application domain.

In our proposal, arguments that agents interchange are tuples of the form:

Definition 2.1 (Argument). Arg = {φ, v,< S >}, where φ is the conclusion of the argument, v is the
value that the agent wants to promote and < S > is a set of elements that justify the argument (the
support set).

The support set S can consist of different elements, depending on the argument purpose. On one hand,
if the argument justifies a potential solution for a problem, the support set is the set of features (premises)
that represent the context of the domain where the argument has been put forward (those premises that
match the problem to solve and other extra premises that do not appear in the description of this
problem but that have been also considered to draw the conclusion of the argument) and optionally, any
knowledge resource used by the proponent to generate the argument (domain-cases, argument-cases and
argumentation schemes). This type of argument is called a support argument. On the other hand, if the
argument attacks the argument of an opponent, the support set can also include any of the allowed attack
elements of our framework. These are: distinguishing premises, counter-examples or critical questions, as
proposed in [8]. This other type of argument is called an attack argument. Then, the support set consists
of the following tuple of sets of support elements 2:

Definition 2.2 (Support Set). A support set for an argument consists of a set of elements: S = <
{premises}, {domainCases}, {argumentCases}, {argumentationSchemes}, {criticalQuestions},
{distinguishingPremises}, {counterExamples} >

2.1. Domain-cases
The structure of domain-cases that an argumentation system that implements our framework has

depends on the application domain. As example, Figure 1 illustrates the structure of a possible domain-
case in the call centre example. Here, when a technician of the call centre, say operator 1 (O1), is
presented with the problem of a HP computer with Windows XP installed that reboots at random, he
searches its domain-cases case-base to generate a possible solution for that problem. In this example,
O1 has found the domain-case DC1 that matches de description of the problem to solve, also including
an extra feature (the specification of the computer model). Note that in the call centre example we
assume that domain-cases also store the value promoted by the solution that they represent. This is a
domain-dependent design decision. In other different application scenarios of our framework we may make
different assumptions, for instance, that all positions generated by an agent promote its most preferred
value.

2.2. Argumentation schemes
The concrete set of argumentation schemes used also depends on the application domain of our

argumentation framework. For instance, in the call centre example the following argumentation scheme
(based on Walton’s Appleal to Expert Opinion scheme [23]) represents the general pattern of reasoning
that gives credence to the opinion of an experienced operator, say an expert. Following this scheme, if a
technician is considered as expert in solving a specific type of problems, his solution should be taken as
the most appropriate solution to apply. However, as any Walton-like argumentation scheme, this scheme
includes critical questions that represent potential attacks to the conclusion drawn from the scheme.
Thus, in our example the position of technician T (proposing solution S ) may be rebutted if another
technician shows evidence that other different expert has proposed an alternative solution.

2This representation is only used for illustrative purposes and efficiency considerations about the implementation are
obviated.
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OS Windows XP
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Hardware 
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Model Pavillion

Customer 
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OS Automatic 
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SOLUTION

Description Reinstall OS

Value 
Promoted

Efficiency

Figure 1: Example Structure of a Domain-Case

ARGUMENTATION SCHEME

Major Premise: Technician T is an expert in solving software problems on HP computers
Minor Premise: T says that S is the best solution to apply for solving a software problem
P on a HP computer
Conclusion: S is the best solution to apply for solving the software problem P

Critical Questions
Consistency Question: Is S consistent with the solutions proposed by other experts?
...

2.3. Type of Attacks
As pointed out before, there are three types of elements that agents can use to attack arguments

in our argumentation framework: distinguishing premises, counter-examples or critical questions. The
following functions provide a formal definition for these elements. First, let us assume that we have a
problem to solve denoted as P , a set of cases denoted as C = {c1, c2, ..., cn}, a set of premises denoted
as Fi = {f1, f2, ..., fm} such that fj ∈ P represents a premise that describes the problem P and fi ∈ ci
represents a premise that describes the case ci (fi, fj ∈ Fi, thus, we represent both problems and the
problem description of cases with a set of premises), a function valueci(fi) that returns the value of a
premise in a case ci ∈ C (i.e. the actual data of that premise, do not confuse with the notion of value
promoted by arguments), a function acceptable(ci) that returns true if the case ci was deemed acceptable
at the end of the argumentation dialogue, and a function conclusion(ci) that returns the conclusion of the
case ci (i.e. the solution promoted by the case). Also, we have a function that defines a match between
two cases and a function that defines a subsumption between two cases.

Definition 2.3 (Match). A match between two cases ci, cj ∈ C is defined as: match(ci, cj) : C×C → true
iff Fi ∩ Fj 6= ∅ and ∀f ∈ Fi ∩ Fj , valueci

(f) = valuecj
(f).

Hence, two cases match if their common features match. Note that this does not mean that both
cases have the same features, since one of them can have extra features that do not appear in the other
case. In this case, we say that the case with the extra features subsumes the other case.

Definition 2.4 (Subsumption). A case ci subsumes other case cj (from a set of cases C): subsumes(ci, cj) :
C × C → true iff match(ci, cj) and ∀fi ∈ ci,∃fj ∈ cj/valueci

(fi) = valuecj
(fj).

Therefore, we also describe problems as cases without solution and assume that a match between the
problem to solve and a stored case means that the latter has some features of the problem and with the
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same values3. A total match between a problem and a case or between two cases means that both cases
have the same features and with the same values. Then, the attack elements of our framework are defined
as follows.

Definition 2.5 (Distinguishing Premise). A distinguishing premise fi with respect to a problem P between
two cases c1, c2 ∈ C is defined as: ∃fi ∈ c1∧ 6 ∃fi ∈ P/∃fi ∈ c2 ∧ valuec1(fi) 6= valuec2(fi) or else,
∃fi ∈ c1 ∧ ∃fi ∈ P/valuec1(fi) = valueP (fi)∧ 6 ∃fi ∈ c2

That is a premise that does not appear in the description of the problem to solve and has different
values for two cases or a premise that appears in the problem description and does not appear in one of
the cases. For instance, the premise ”Model” would be a distinguishing premise between the domain-case
shown in Figure 1 and another domain-case, say DC2, that has exactly the same problem description
than DC1, but that stores different data for this premise (a different model for the HP computer).

Definition 2.6 (Counter-Example). A counter-example for a case c1 ∈ C with respect to a problem P is
another case c2 ∈ C such that: acceptable(c2) ∧ ∀fi ∈ c2 ∩ P/valuec2(fi) = valueP (fi) ∧ ∀fi ∈ c1/(∃fi ∈
c2 ∧ valuefi

(c2) = valuefi
(c1)) ∧ conclusion(c2) 6= conclusion(c1)

That is, a counter-example for a case is a previous case (i.e. a domain-case or an argument-case
that was deemed acceptable), where the problem description of the counter-example matches the current
problem to solve and also subsumes the problem description of the case, but proposing a different solu-
tion. To illustrate this concept, let us assume that the domain-case DC2, which has the same problem
description than DC1, proposes an alternative solution (e.g ”Check for Memory Errors”) that promotes
the value accuracy. Therefore, DC2 could be used to generate a counter-example attack to DC1 and
vice-versa.

Finally, as explained before in this section, a critical question is a question associated to an argumen-
tation scheme that represents a potential way in which the conclusion drawn from the scheme can be
attacked. Therefore, if the opponent asks a critical question, the argument that supports this argumenta-
tion scheme remains temporally rebutted until the question is conveniently answered. This characteristic
of argumentation schemes makes them very suitable to devise ways of attack the conclusions drawn from
other agents.

2.4. Argument-cases
Argument-cases are the main structure that we use to computationally represent arguments in agent

societies. Also, their structure is generic and domain-independent. Argument-cases store the information
about a previous argument (or a set of similar arguments) that an agent posed in certain step of a
dialogue with other agents. To illustrate the components of an argument-case, let us now assume that
the operator O1 has generated a support argument SA1 to persuade another operator O2 to accept
his position. Recalling, this position proposes a solution for a software problem on a HP computer that
reboots automatically at random. The solution proposed by O1 was generated by using the domain-
case DC1 and consist on a reinstallation of the operative system, which promotes the same value than
DC1 promotes, say efficiency. If p1 = {”OS” = Windows XP}, p2 = {”Hardware Brand” = HP},
p3 = {”Model” = Pavillion} and p4 = {”Customer Observation” = OS Automatic Reboot}, then:

SA1 = {”Reinstall”, Efficiency, < {p1, p2, p3, p4}, {DC1}, -, -, -, -, - >}

Figure 2 illustrates an example of an argument-case that stores the information of the support argu-
ment SA1 in the call centre domain. Argument-cases have the three possible types of components that
usual cases of CBR systems have: the description of the state of the world when the case was stored
(Problem); the solution of the case (Conclusion); and the explanation of the process that gave rise to
this conclusion (Justification).

The problem description has a domain context that consists of the premises that characterise the
argument. In addition, if we want to store an argument and use it to generate a persuasive argument

3Different types of matches could define other types of similarity between cases. For instance, a different match function
could establish the threshold under which two features can be considered as similar or when a feature subsumes other
feature in a hierarchy (and hence the more specific feature could be considered as a matching feature).
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ARGUMENT-CASE

Conclusion: Reinstall
Value: Efficiency
Acceptability Status: Acceptable

SOLUTIONPROBLEM JUSTIFICATION

Dependency Relation:
charity

SOCIAL-CONTEXT

OS: Windows XP
Hardware Brand: HP
Model: Pavillion
Customer 
Observation: OS 
Automatic Reboot
...

DOMAIN-CONTEXT

ID: O2
Role: Operator
ValPref: 
Accuracy < Efficiency

OPONENT
ID: O1
Role: Operator
ValPref: 
Efficiency < Accuracy

PROPONENT

ID: Software Support
Role: Operators
ValPref: -

GROUP

RECEIVED ATTACKS Graph ID: DG1

DIALOGUE
GRAPHSCase ID: DC1

CASES

DISTINGUISHING 
PREMISES

Case ID: DC2

COUNTER
EXAMPLES

CRITICAL 
QUESTIONS

ARGUMENTATION
SCHEMES

Figure 2: Example Structure of an Argument-Case

in the future, the features that characterise its social context must also be kept. The social context
of the argument-case includes information about the proponent and the opponent of the argument and
about their group. Moreover, we also store the preferences (ValPref ) of each agent or group over the set
of values pre-defined in the system. Finally, the dependency relation between the proponent’s and the
opponent’s roles is also stored. In this work, we consider three types of dependency relations as defined
in [24]: Power, when an agent has to accept a request from other agent because of some pre-defined
domination relationship between them; and Charity, when an agent is willing to answer a request from
other agent without being obliged to do so. For instance, in the argument-case of Figure 2 proponent and
opponent play the same role (operators) and hence, we have set a charity dependency relation between
them. Also, both operators belong to the same group, which provides software support and does not
impose any specific value preference order over its members in this case.

In the solution part, the conclusion of the case, the value promoted, and the acceptability status
of the argument at the end of the dialogue are stored. The last feature shows if the argument was
deemed acceptable, unacceptable or undecided in view of the other arguments that were put forward in the
agreement process. Thus, the conclusion of the argument-case in Figure 2 represents the solution proposed
by the operator O1 when it was presented with the automatic reboot problem on the HP computer.
The argument-case promotes the same value than the solution proposed (efficiency). In addition, the
conclusion part includes information about the possible attacks that the argument received during the
process. These attacks could represent the justification for an argument to be deemed unacceptable or
else reinforce the persuasive power of an argument that, despite being attacked, was finally accepted.
As explained before, arguments in our framework can be attacked by putting forward distinguishing
premises, counter-examples or critical questions to them.

In the example of Figure 2, we can see that the opponent, say operator O2, attacked the argument
represented by this argument-case with the counter-example DC2. Therefore, O2 generated an attack
argument AA2 with this counter-example in the support set:

AA1 = {”Check for Memory Errors”, Accuracy, < {p1, p2, p3, p4}, -, -, -, -, -, {DC2} >}

However, as illustrated in Figure 2, O1 ’s support argument remained acceptable at the end of the
dialogue (when the argument-case that represents it was retained in the argument-cases case-base). At-
tacked arguments remain acceptable if the proponent of the argument is able to rebut the attack received,
or if the opponent that put forward the attack withdraws it.

The justification part of an argument-case stores the information about the knowledge resources that
were used to generate the argument represented by the argument-case (the set of domain-cases and
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argument-cases). In the example of Figure 2, the justification part of the argument-case includes the
domain-case DC1, that the operator O1 used to generate his position. In addition, the justification of
each argument-case has a dialogue-graph (or several) associated, which represents the dialogue where the
argument was put forward (DG1 in Figure 2). In this way, the sequence of arguments that were put
forward in a dialogue is represented, storing the complete conversation as a directed graph that links
argument-cases. This graph can be used later to improve the efficiency in an argumentation dialogue, as
explained in the following section.

3. Reasoning Process

This section presents the reasoning process that allows agents to use the knowledge resources presented
before to generate, select and evaluate their positions and arguments. Also, with this process, agents are
able to automatically learn from the argumentation experiences. The reasoning process consists of the
following subprocesses:

• Position Management. By this process agents are able to:

– Generate their positions.

– Select the best position to propose.

– Evaluate their positions in view of other different positions.

• Argument Management. By this process agents are able to:

– Generate support and attack arguments for arguments of other different agents.

– Select the best argument to put forward in each step of the argumentation dialogue.

– Evaluate their arguments in view of other different arguments.

Thus, as first step of the reasoning process, agents generate their potential positions (points of view)
and select the best one to propose. At this point, agents can either defend their positions if they are
attacked or else, attack other different positions proposed by their partners. To defend their positions,
agents have to evaluate the attack arguments received and generate and select the best support argument
to propose. To attack different positions, agents have to ask the agent that they want to attack for
providing them with a support argument for the position to attack. Then, agents can generate and
select the best argument to attack the support argument provided. The following sections explain these
subprocesses in detail. Along them, we assume that a set of agents with different positions are arguing
to reach an agreement to solve a complex problem. At this level of abstraction, we assume that this is
a generic problem of any type (e.g. resource allocation, classification, prediction, etc.) that could be
described with a set of features.

3.1. Position Management
In the first step to reach an agreement about the best solution for a problem to solve, an agent can

generate its individual position, which represents the best solution for the problem from the agent’s point
of view. This is not a compulsory step for agents to engage in the argumentation process to reach the
agreement, since some agents could argue about positions of others’ without having necessarily generated
their own. Then, with the set of generated positions agents generate associated argument-cases to support
them. After that, they can use their case-bases of argument-cases to select the best position to propose.
Finally, agents evaluate their positions in view of the others’ positions and their previous experience.

3.1.1. Position Generation.
In our argumentation framework, agents have several ways to generate positions, depending on their

design or even on strategical considerations. Thus, an agent could follow different mechanisms to generate
positions:
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1. From the Problem Description and Domain-Cases: This option would be followed by agents
that rely more on their experiences. The agent retrieves from the domain case-base those cases
that match with the specification of the current problem. With the solutions that were applied in
these cases, the agent generates a potential solution for the problem at hand, which represents its
position with respect to the problem. Note that the set of retrieved cases could provide different
solutions for the same problem.

2. From the Problem Description and Argumentation Schemes: This option would be followed
by agents that rely more on its pre-defined argumentation schemes. Then, an agent can generate its
position as the conclusion drawn by using the problem description to match (totally or partially)
the premises of a scheme.

3. From the Problem Description, Cases and Argumentation Schemes: This option would
be selected by agents that prefer to exploit all their resources and follow an hybrid generation policy.
The agent retrieves from its domain case-base the cases that match the current problem. Then,
it can extend the problem description by adding the set of attributes of the retrieved cases that
are consistent with this description (do not appear in the problem description) and with the set
of retrieved cases (have the same value in all retrieved cases that they appear). Finally, from this
new problem description and the argumentation schemes the agent can generate its position (or
positions), as explained above. This method for generating positions follows the idea of broadening
the space of possible solutions by considering features that, despite not being specified in the
current problem, have been observed in similar problems in the past. Note that only the cases that
match the problem description are retrieved and hence, the space of potential positions could not
be extended if we only consider positions generated from cases. However, the extended problem
description could add a new feature that makes the description to match an argumentation scheme
that was not considered before.

Algorithm 1 presents the pseudocode of the process to generate positions from domain-cases, ar-
gumentation schemes or both of them. In the algorithm, DomainCasesCB represents the case-base of
domain-cases and ArgumentationSchemesOnt represents the ontology of argumentation schemes. If the
generation method to follow is “D”, the algorithm generates positions from the case-base of domain-cases.
In case that the method is “S”, the algorithm generates positions from the ontology of argumentation
schemes. Similarly, if the method to follow is “M”, the algorithm generates positions from both the
case-base of domain-cases and the ontology of argumentation schemes.

Also, computeSimilarity is a domain-dependent function that computes the similarity between a cur-
rent problem and the description of the domain-cases or argumentation schemes stored in the knowledge
resources of the system. This similarity degree is stored for each potential position to solve the problem
(when the similarity degree exceeds a pre-defined threshold). generateSolutions is a domain-dependent
function that generates potential solutions for the problem to solve from the solutions of the domain-cases
that are deemed similar to the current problem or the conclusions of the similar argumentation schemes.
addPosition is a function that adds a new position to the list of potential solutions for the problem
to solve. aggregateDescriptions is a function that adds to the problem description the extra consistent
features that are found in the problem description of the similar domain-cases. Finally, addGeneration-
Method is a function that forces the algorithm to execute a specific generation method.

3.1.2. Position Selection.
With the set of potential positions, the agent has to decide the one it will propose first. The first step

for this selection is to order the positions in subsets, taking into account the value that promotes each
position. Thus, the agent will assign to each subset a Suitability Level (SL). Positions that promote the
agent’s most preferred value will be labelled with suitability level 1, positions that promote the second
most preferred value will be labelled with level 2 and so on. Then, positions will be ordered within each
level by its Similarity Degree (SimD) with the problem to solve, computed by using a domain-dependent
similarity measure.

After that, the agent will use the argumentation knowledge stored in its argument-cases case-base.
For each position generated, the agent creates an argument-case that represents this position. Thus, it
fills the argument-case structure with the available information for each element (the domain and social
contexts, the initial acceptability status set to undecided and the cases that form part of the justification).
Note that, depending on the actual problem to solve and the domain application, the proponent agent
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could not know some data about its opponent (e.g. in persuasion dialogues agents are usually unwilling
to share information about its values or preferences with other agents).

Then, the agent compares the argument-case created for each position with its case-base of argument-
cases and retrieves the sets arg of argument-cases that match the argument-case associated to each
position. In this way, the agent can assign to each position a Support Factor (SF) from the argumentation
perspective and decide which argument-case (and thus, which position) is most suitable to propose in
view of its past argumentation experience and its current social context. We consider the parameters
shown in the list below as criteria for making such decision.

In the equations, argC is the subset of argument-cases from the whole set arg stored in the agent
case-base with the same problem description and conclusion as the current argument; argAccC are those
in argC that were deemed acceptable at the end of the dialogue; argAccCAtt are those in argAccC
that were attacked; minAtt and maxAtt are the minimum and maximum number of attacks received by
any argument-case in argAccCAtt; minS and maxS are the minimum and maximum number of steps
from any argument-case in argC to the last node of its dialogue graph and; minKr and maxKr are the
minimum and maximum number of knowledge resources used to generate any argument-case in argC.
Also, we assume that the modifier # represents the number of elements of a set.

• Persuasiveness Degree (PD): is a value that represents the expected persuasive power of an
argument by checking how persuasive an argument-case with the same problem description and
conclusion was in the past. To compute this degree, the number #argAccC of argument-cases that
were deemed acceptable out of the total number of retrieved argument-cases #argC with the same
problem description and conclusion as the current argument is calculated:

PD =

 0, if #argC = ∅
#argAccC

#argC
, otherwise

(1)

with #argAccC, #argC ∈ N and PD ∈ [0, 1], from less to more persuasive power.

• Support Degree (SD): is a value that provides an estimation of the probability that the conclu-
sion of the current argument was acceptable at the end of the dialogue. It is based on the number of
argument-cases #argAccC with the same problem description and conclusion that where deemed
acceptable out of the total number of argument-cases arg retrieved.

SD =

 0, if #arg = ∅
#argAccC

#arg
, otherwise

(2)

with #argAccC,#arg ∈ N and SD ∈ [0, 1] from less to more support degree.

• Risk Degree (RD): is a value that estimates the risk for an argument to be attacked in view
of the attacks received for an argument(s) with the same problem description and conclusion in
the past. It is based on the number of argument-cases #argAccCAtt that were attacked out of
the total number of #argAccC argument-cases with the same problem description and conclusion
retrieved that were deemed acceptable.

RD =

 0, if #argAccC = ∅
#argAccCAtt

#argAccC
, otherwise

(3)

with #argAccCAtt, #argAccC ∈ N and RD ∈ [0, 1], from less to more risk of attack.

• Attack degree (AD): is a value that provides an estimation of the number of attacks att received
by a similar argument(s) in the past. To compute this degree, the set of argument-cases with the

10



same problem description that were deemed acceptable is retrieved. Then, this set is separated into
several subsets, one for each different conclusion that these argument-cases entail. The sets whose
conclusion match with the conclusions of the arguments to assess are considered, while the other
sets are discarded. Thus, we have a set of argument-cases for each different potential argument
(and its associated conclusion) that we want to evaluate. For each argument-case in each set,
the number of attacks received is computed (the number of distinguishing premises and counter-
examples received). Then, for each set of argument-cases, the average number of attacks received
is computed. The attack degree of each argument is calculated by a linear transformation:

AD =

{
0, if maxAtt = minAtt
att−minAtt

maxAtt−minAtt
, otherwise

(4)

with minAtt, maxAtt, att ∈ N and AD ∈ [0, 1] from less to more degree of attack.

• Efficiency degree (ED): is a value that provides an estimation of the number of steps that it
took to reach an agreement posing a similar argument in the past. It is based on the depth n from
the node representing a similar argument-case retrieved to the node representing the conclusion in
the dialogue graphs associated with it. To compute this degree, the same process to create the
subsets of argument-cases as in the above degree is performed. Then, for each argument-case in
each subset, the number of dialogue steps from the node that represents this argument-case to the
end of the dialogue is computed. Also, the average number of steps per subset is calculated. Finally,
the efficiency degree of each argument is calculated by a linear transformation:

ED =

{
0, if maxS = minS

1− n−minS
maxS −minS

, otherwise
(5)

with minS, maxS, n ∈ N and ED ∈ [0, 1] from less to more efficiency.

• Explanatory Power (EP ): is a value that represents the number of pieces of information that
each argument covers. It is based on the number kr of knowledge resources were used to generate
each similar argument-case retrieved. To compute this number, the same process to create the
subsets of argument-cases as in the above degrees is performed. Then, for each argument-case in
each set, the number of knowledge resources in the justification part is computed (the number of
domain-cases and argument-cases). Then, for each set of argument-cases, the average number of
knowledge resources used is computed. The explanatory power of each argument is calculated by a
linear transformation:

EP =

 0, if maxKr = minKr
kr −minKr

maxKr −minKr
, otherwise

(6)

with minKr, maxKr, kr ∈ N and EP ∈ [0, 1] from less to more explanatory power.

Finally, the suitability factor of a new argument-case and its associated position is computed by the
formula:

SF =((wPD ∗ PD + wSD ∗ SD + wRD ∗ (1−RD)
+ wAD ∗ (1−AD) + wED ∗ ED + wEP ∗ EP ))

(7)

where wi ∈ [0, 1],
∑
wi = 1 are weight values that allow the agent to give more or less importance to each

decision criteria. Finally, positions are ordered from more to less suitability by following the equation:

Suitability = wSimD ∗ SimD + wSF ∗ SF (8)

where wi ∈ [0, 1],
∑
wi = 1 are weight values that allow the agent to give more or less importance to

the similarity degree or the support factor. Finally, the most suitable position of suitability level 1 is
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selected as the one that the proponent agent is going to propose and defend first. Then, we assume that
agents follow their value preference criteria when they select the positions to propose. However, each
agent keeps the rest of positions to make alternative proposals if its original position is attacked and it
is forced to withdraw it.

Algorithm 2 presents the pseudocode of the algorithm that implements the generation of positions,
the generation of the associated argument-cases and the selection of positions. In the algorithm, the
function generatePositions generates the n first positions by using the Algorithm 1; generateArgument-
Case is a function that generates for each position its associated argument-case; retrieveSimilarityDegree
is a function that retrieves the similarity degree of each position with regard to the problem to solve;
selectPosition is a domain-dependent function that orders the set of positions from more to less suitable
with respect to some domain-dependent criteria; and mostSuitable is a domain-dependent function that
returns the most suitable position to solve the problem.

Also, computeSF, as shown in Algorithm 3, is a function that computes the support factor for each
position by means of its associated argument-case. In this algorithm, the function retrieveSameProblem
retrieves from the case-base of argument-cases those that have the same problem description than the
current argument-case; retrieveSameConclusion retrieves from the case-base of argument-cases those that
have the same problem description and conclusion than the current argument-case; retrieveAccepted re-
trieves from the case-base of argument-cases those that have the same problem description and conclusion
than the current argument-case and were deemed acceptable; retrieveAcceptedAttacked retrieves from the
case-base of argument-cases those that have the same problem description and conclusion than the current
argument-case, were deemed acceptable and were attacked; computeNumberOfAttacks computes the num-
ber of attacks received by an argument-case; computeNumberOfSteps computes the number of steps from
an argument-case to the node that represents the final conclusion in its associated dialogue-graph; and
computeNumberOfKR computes the number of knowledge resources used to generate an argument-case.

3.1.3. Position Evaluation.
Each agent engaged in the agreement process can receive attacks to its position or, on the contrary,

decide to attack the position of other agents. Thus, agents are able to evaluate its position with regard
to other positions. The first step to evaluate an agent’s position is to check if it is consistent with the
positions of other agents. For the sake of simplicity, here we assume that a position is consistent with
other position if they are the same (they totally match)4.

On one hand, if the opponent’s position matches the proponent’s position no attack arguments are
necessary, but the proponent generates a support argument to defend its position when it is attacked.
On the other hand, if the opponent’s position is in the set of positions generated by the proponent, but
not ranked first, the proponent would accept the opponent’s position if the latter has a power relation
over the proponent and would try to attack the opponent’s position otherwise. Finally, if the opponent’s
position is not in the set of positions generated by the proponent and the opponent does not have a power
relation over the proponent, the proponent can try to generate an argument to attack the opponent’s
position. Otherwise, the proponent must accept the opponent’s position. Next section explains the type
of arguments that agents can generate and how these arguments are selected and evaluated.

Algorithm 4 presents the pseudocode of the position evaluation process. In the algorithm, the function
checkDependencyRelation checks the dependency relation between the proponent and the opponent. As
explained above, if the opponent’s position is in the list of potential positions of the proponent but not
ranked first, the proponent can use the function decideAttack to decide if it would attack the incoming
position or just change its preferences. Also, askForSupport is a function that an agent can use to ask
other agent to support its position.

3.2. Argument Management
As introduced in Section 2, agents can generate different types of arguments depending on their

purposes. Also, agents can select the best argument to put forward and evaluate their arguments in view
of other agents’ arguments. The argument management process depends on the type of information that

4Broaden notions of consistency, such as one position being part or a more general position (e.g. an action that is part
of a course of action proposed to solve a problem), can be considered in specific domains.
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an agent receives from other agent. Here, we assume that this type can be identified from the type and
content of the locutions that agents receive from other agents.

3.2.1. Argument Generation.
Agents generate arguments when they are asked to provide evidence to support a position (support

arguments) or when they want to attack others’ positions or arguments (attack arguments). To offer
support evidences, a proponent agent can generate a support argument which support set consists of
the set premises that describe the problem and match the knowledge resources that the proponent has
used to generate and select its position and of any of these resources (domain-cases, argument-cases and
argumentation schemes).

Attack arguments are generated when the proponent of a position provides an argument to justify it
and an opponent wants to attack the position or more generally, when an opponent wants to attack the
argument of a proponent. Algorithm 5 presents the pseudocode of the argument generation process. In
the algorithm, the function evaluateIncomingRequest evaluates the type of the incoming request received.
If the agent has been asked for supporting its position, it can decide to generate a support argument by
using the domain-dependent function decideSupport. If the agent receives an attack, it must evaluate its
current argument in view of the attacking argument by using the function evaluateArgument, which will
be explained later in Section 3.2.3.

The attack arguments that the opponent can generate depend on the elements of the support set of the
argument that the proponent has put forward. On one hand, if the support set includes a set of premises,
the opponent can generate an attack argument including in its support set distinguishing premises that it
knows (e.g. if it is in a privileged situation and knows extra information about the problem). Alternatively,
the opponent can generate a distinguishing premise attack if it finds any premises implicit in a case that
it used to generate its own position and matches the problem description, but these premises do not
appear in the proponent’s support argument. In this situation, the opponent could also generate an
attack argument with this case as counter-example.

On the other hand, if the justification provided by the proponent is a domain-case or an argument-case,
the opponent can check its case-bases and try to find counter-examples to generate an attack argument
that includes them in the support set. Alternatively, it can also try to generate an attack argument with
distinguishing premises extracted from these cases.

Algorithm 6 presents the pseudocode of the attack generation process. In the algorithm, the function
checkSupportSet checks the elements of the support set of the incoming argument. With the function
selectElementToAttack, the agent selects which element(s) of the support set it wants to attack. By means
of genetateDPAttack the agent tries to attack the incoming argument with a distinguishing premise.
The function generateASAttack tries to attack the incoming argument with a critical question of the
argumentation scheme that supports the incoming argument. Also, storeAS is a function that agents can
use to store an unknown scheme and decide later if it will be added to the ontology of argumentation
schemes. With the function generateCounterExample the agent tries to generate a counter-example and
with the function generateCEAttack the agent tries to attack the incoming argument with this counter-
example.

3.2.2. Argument Selection.
Depending on the content of their knowledge resources, agents can generate several support or attack

arguments. Thus, the agent has to select the best argument to put forward from the potential candidates.
To select the best argument, the agent follows a similar process as it does for selecting positions. Therefore,
the agent creates an argument-case that represents each potential argument and uses its argument-cases
case-base to decide which one is most suitable to propose in view of its past argumentation experience
and its current social context.

In the case of argument-cases associated to support arguments, all possible support arguments gener-
ated can be represented with the same argument-case (share the same problem description) and have the
same conclusion (the position of the agent). Thus, the Suitability Factor does not provide useful informa-
tion, and we assume that arguments that include more justifications for a position are more persuasive
and should be proposed first.

In the case of attack arguments, as for selecting positions, the agent uses the information gained
from previous argumentation processes to decide which argument would have more Suitability Factor. In
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the case of draw, the agent has to decide which argument is going to put forward. In many cases this
decision depends on the actual implementation of the agent and the dialogue strategy that it follows.
However, by default, in our argumentation framework we propose a reflexive and transitive pre-order
relation <p among the persuasive power of the knowledge resources used to generate an argument:
premises <p distinguishing− premises <p domain− cases <p argument− cases. Accepted argument-
cases are the most persuasive knowledge resource to show as a justification for an argument, since they
store the the maximum quantity of information about past arguments and argumentation processes
(domain context, social context, if it was attacked and still remained accepted, etc.). Domain-cases
are also very persuasive, since they store the final solution applied for a problem, but they do not
provide information about the argumentation process and the social context. Finally, the premises that
describe the problem to solve are known by any agent in the argumentation process and have the lowest
persuasive power. In the case of attack arguments, distinguishing premises are more persuasive than
description premises, since they provide extra information about which description premises have been
taken into account to generate positions. Therefore, argument-cases with at least one argument-case in
the justification part would be preferred to others and so on. If the draw still persists, a random choice
will be made.

3.2.3. Argument Evaluation.
When agents receive arguments from other agents, they have to evaluate them. Then, a proponent

agent can decide if an opponent’s argument conflicts with its argument and hence, its argument is deemed
acceptable, non-acceptable or remains undecided (it cannot make a decision over it). This evaluation is
performed by using the defeat relation between arguments defined in our framework [21, Chapter 3],
which specifies which attacks over arguments succeed.

If the proponent considers that its argument defeats the opponent’s argument, it can try to generate
a new argument to attack the opponent’s, which would change the preliminary acceptability status of the
opponent’s argument to non-acceptable. Then, the opponent would evaluate the proponent’s argument
and try to counter-attack. On the contrary, if the proponent’s argument cannot defeat the opponent’s, it
can still try to withdraw its last argument and send to the opponent a different argument to support its
position, or even propose an alternative position (from its list of generated positions). In this case, the
proponent’s argument acceptability status would preliminary change to undecided. The final acceptability
status of arguments is decided at the end of the argumentation dialogue. To define the rules of this process,
we follow a dialogue-game protocol which complete definition is detailed in [21, Chapter 4].

Algorithm 7 presents the pseudocode of the argument evaluation process. As pointed out above, if
the proponent argument defeats the opponent’s argument, it can try to attack it by using the function
generateAttack, shown in Algorithm 6. With the function generateNewSupport the agent can try to
generate a new support for its position (since it cannot defeat the opponent’s argument). However, if
no new support can be generated, the agent has to withdraw its position from the dialogue by using the
function withdraw.

In this section, we have presented the reasoning process that agents can use to generate, select and
evaluate positions and arguments. In the following section, this process is illustrated by implementing
them in a customer support application.

4. Evaluation Example

In this section, we evaluate the performance of the case-based reasoning process presented in this
paper by running a set of empirical tests. With this objective, the underlying case-based argumentation
framework has been implemented in the domain of a customer support application. Concretely, we
consider a society of agents that act on behalf of a group of technicians that must solve problems in a
Technology Management Centre (TMC). TMCs are entities which control every process implicated in the
provision of technological and customer support services to private or public organisations. Usually, TMCs
are managed by a private company that communicates with its customers via a call centre. This kind of
centres allow customers to obtain general information, purchase products or lodge a complaint. They can
also efficiently communicate public administrations with citizens. In a call centre, there are a number
of technicians attending to a big amount of calls with different objectives –sales, marketing, customer
service, technical support and any business or administration activity–. The call centre technicians have
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computers provided with a helpdesk software and phone terminals connected to a telephone switchboard
that manages and balances the calls among technicians. The current implementation is based in previous
work that deployed a case-based multi-agent system in a real TCM [25]. This system was implemented
and is currently used by the TCM company. In the original implementation, agents were allowed to
use their case-bases to provide experience-based customer support. In this work, the system has been
enhanced by allowing agents to argue about the best way of solving the incidents that the call centre
receives.

Therefore, we consider a society composed by call-centre technicians with two possible roles, operator
and expert. Operators form groups that must solve the problems that the call centre receives. Experts
are specialised operators that have case-bases with knowledge about the suitable solutions to provide for
specific problems. Therefore, the dependency relations in this society establish that experts have a power
relation over operators and that technicians with the same role have a charity relation among them.

In this application domain we assume that each technician has a helpdesk application to manage the
big amount of information that processes the call centre. The basic functions of this helpdesk are the
following:

• To register the ticket information: customer data, entry channel and related project, which identifies
the customer and the specific service that is being provided.

• To track each ticket and to scale it from one technician to a more specialised one or to a different
technician in the same level.

• To warn when the maximum time to solve an incident is about to expire.

• To provide a solution for the ticket. This means to generate an own position or to ask for help to
the members of a group.

In addition, this helpdesk would implement an argumentation module to solve each ticket as proposed
in our framework. Hence, we assume the complex case where a ticket must be solved by a group of agents
representing technicians that argue to reach an agreement over the best solution to apply. Each agent
has its own knowledge resources (acceded via his helpdesk) to generate a solution for the ticket. The
data-flow for the problem-solving process (or argumentation process) to solve each ticket is the following:

1. The system presents a group of technicians with a new ticket to solve.
2. If possible, each technician generates his own position by using the argumentation module. This

module supports the argumentation framework proposed in this paper.
3. All technicians that are willing to participate in the argumentation process are aware of the positions

proposed in each moment.
4. The technicians argue to reach an agreement over the most suitable solution by following a delib-

eration dialogue controlled by the proposed dialogue game protocol.
5. The best solution is proposed to the user and feedback is provided and registered by each technician

helpdesk.

The helpdesk of each technician is provided with a case-based reasoning engine that helps them to
solve the ticket. The new argumentation module will allow different technicians to reach agreements over
the best solution to apply in each specific situation. In this example application, we assume that the
most efficient technicians are acknowledged and rewarded by the company. Therefore, each technician
follows a persuasion dialogue with their partners, trying to convince them to accept its solution as the
best way to solve the ticket received, while observing the common objective of providing the best solution
for a ticket from its point of view.

For the tests, a real database of 200 tickets solved in the past is used as domain knowledge. Translating
these tickets to domain-cases, we have obtained a tickets case-base with 48 cases. Despite the small size
of this case-base, we have rather preferred to use actual data instead of a larger case-base with simulated
data. The argument-cases case-bases of each agent are initially empty and populated with cases as the
agents acquire argumentation experience in execution of the system.

To diminish the influence of random noise, for each round in each test, all results report the average
and confidence interval of 48 simulation runs at a confidence level of 95%, thus using a different ticket of
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the tickets case-base as the problem to solve in each run. The results report the mean of the sampling
distribution (the population mean) by using the formula:

µ = x̄± t ∗ s√
n

(9)

where, x̄ is the sample mean (the mean of the 48 experiments), t is a parameter that increases or decreases
the standard error of the sample mean (

s√
n

), s is the sample standard deviation and n is the number

of experiments. For small samples, say below 100, t follows the Student’s t-distribution, which specifies
certain value for the t parameter to achieve a confidence level of 95% for different sizes of population. In
our case, with a population of 48 experiments the Student’s t-distribution establishes a value of 2.0106
for t.

In each simulation experiment, an agent is selected randomly as initiator of the discussion. This agent
has the additional function of collecting data for analysis. However, from the argumentation perspective,
its behaviour is exactly the same as the rest of agents and its positions and arguments do not have any
preference over others (unless there is a dependency relation that states it). The initiator agent receives
one problem to solve per run. Then, it contacts its partners (the agents of its group) to report them the
problem to solve. If the agents do not reach an agreement after a maximum time, the initiator chooses
the most supported (the most voted) solution as the final decision (or the most frequent in case of draw).
If the draw persists, the initiator makes a random choice among the most frequent solutions.

The case-based argumentation framework proposed in this work has been evaluated from different
perspectives. On one hand, the performance of the system that implements the framework in the customer
support application domain is tested and analysed. On the other hand, the ability of the system to take
into account the social context of the participating agents is also verified.

4.1. Testing the Performance
The performance tests have been repeated and their results compared for the following decision

policies:

• Random policy (CBR-R): each agent uses its Domain CBR module to propose a solution for the
problem to solve. Then, a random choice among all solutions proposed by the agents is made.
Agents do not have an Argumentation CBR module.

• Majority policy (CBR-M): each agent uses its Domain CBR module to propose a solution for the
problem to solve. Then, the system selects the most frequently proposed solution. Agents do not
have an Argumentation CBR module.

• Argumentation policy (CBR-ARG): agents have Domain and Argumentation CBR modules. Each
agent uses its Domain CBR module to propose a solution for the problem to solve and its Ar-
gumentation CBR module to select the best positions and arguments to propose in view of its
argumentation experience. Then, agents perform an argumentation dialogue to select the final
solution to apply.

To evaluate the effect of the available argumentative knowledge that agents have, some tests are also
repeated for the following specific settings of the argumentation policy. These settings cover the more
interesting options regarding which agents have argumentation skills:

• CBR-ARG All-Argument-Cases (CBR-ARG AAC): All participating agent have argument-cases in
their argument-cases case-base.

• CBR-ARG Initiator-Argument-Cases (CBR-ARG IAC): Only one agent, say the initiator agent,
has argument-cases in its argument-cases case-base. Note that the selection of the initiator as the
agent that has argumentative knowledge is just made for the sake of simplicity in the nomenclature.
The behaviour of this agent only differs from the other agents’ in the fact that it is in charge of
starting the dialogue process and conveying the information about the final outcome. This do not
affect its performance as dialogue participant and does not grant this agent any privileges over their
partners.
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• CBR-ARG Others-Argument-Cases (CBR-ARG OAC): All agents except from one, say the initiator,
have argument-cases in their argument-cases case-bases.

With these tests, we evaluate the efficiency of the system that implements our framework under the
different decision policies. By default, all agents know each other, all are in the same group and the
dependency relation between them is charity. The values of each agent have been randomly assigned and
agents know the values of their partners. Also, all agents play the role of operator. The influence of the
social context will be evaluated in the Section 4.2. In addition, the agents that follow the argumentation
policy assign weights to the similarity degree (wSimD) and the support factor (wSF ) proportionally to
the number of domain-cases and argument-cases that they have in their case-bases. Depending on the
application domain, a different assignment for the weights could influence the performance of the system.
However, due to the reduced size of our tickets case-bases, a proportional assignment is be suitable enough
for the objectives of this performance evaluation. Equation 10 shows the simple rule that has been used
in the tests.

wSimD =
#domaincases

#domaincases+ #argumentcases
(10)

wSF =
#argumentcases

#domaincases+ #argumentcases

Also, by default agents set the same weight for all elements of the support factor.

4.1.1. Number of cases that the framework learns with respect of the time.
To perform this test, all agents follow the argumentation policy, with an initial number of 5 domain-

cases in their domain-cases case-bases. The argument-cases case-base of all agents are initially empty.
In each iteration, the agents use their CBR modules to propose and select positions and arguments and
after this process, each agent updates its case-bases with the knowledge acquired.

If the system works properly, the knowledge acquired about past problem solving processes should
increase with the time until some threshold, where the learning process should stabilize (because the
cases in the case-bases of the agents cover most possible problems and arguments in the domain). To
perform this test, we have executed several rounds to simulate the use of the system over certain period
of time. For each repetition, we compute the average number of domain-cases and argument-cases in
the case-bases of the agents. Figure 3 illustrates the results obtained in this test. The experiment has
been repeated for 3, 5, 7 and 9 agents and the average number of domain-cases (DC) and argument-cases
(AC) that all agents learn in each iteration has been computed. As expected, in all cases, the agents
are able to learn the 48 domain-cases of the tickets case-base. However, if more agents participate in
the dialogue, the quantity of domain knowledge that agents have available and interchange among them
increases and the domain-cases case-bases are more quickly populated. Also, the quantity of argument-
cases that agents are able to learn increases with the number of agents, since more potential positions
and arguments give rise to more complex argumentation dialogues. As shown in the figure, the learning
curve for the argument-cases is less soft than for the domain-cases, presenting peaks at some points. This
is due to the fact that at some points of the dialogue, the agents can learn a specific domain-case that
change its opinion about the best solution to apply for a specific category of problem. Therefore, the
outcome of subsequent dialogues differ from the outcome that could be expected taking into account past
similar dialogues and the argument-cases learning rate of the agents in those situations notably increases.

The results of this test have helped us to set the value of some parameters of the subsequent evaluation
tests. The test shows that in 48 simulation runs, 3 agents are able to learn an average of the 54.8 %
domain-cases of the tickets case-base, 5 agents the 56,6 %, 7 agents the 66,9 % and 9 agents the 73.1 %.
The maximum number of argument-cases that agents are able to learn reaches an average of 20 argument-
cases when 9 agents participate in the dialogue (18 argument-cases in the worst case). Therefore, due to
the small size of the whole tickets case-base and the learning rates obtained in this test, the evaluation
tests have been executed with a maximum number of 9 agents participating in the dialogue, with domain-
cases case-bases populated with a maximum number of 45 domain-cases and argument-cases case-bases
populated with a maximum number of 20 argument-cases (except from the social context tests, where a
more varied choice of social contexts enables the learning of a larger number of argument-cases). Thus, the
domain-cases of the case-bases of the agents will be randomly populated and increased from 5 to 45 cases in
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Figure 3: Number of domain-cases (left) and argument-cases (right) that agents learn.

each experimental round. The argument-cases case-bases of the agents for the argumentation-based policy
are populated with 20 randomly selected argument-cases (from those acquired during the performance
of the present test). Also, to evaluate the influence of the quantity of argumentative knowledge that
the agents have in some tests, those tests are repeated for the case of 7 agents, setting the number of
domain-cases of the case-bases of the agents to 20 (approximately the half part of the available cases in
the tickets case-base), while varying the number or argument-cases of the argumentative agents from 0
to 18 cases, with an increase of 2 randomly selected argument-cases in each round. The number of the
agents for these tests has been set to 7 to allow complex enough argumentation dialogues where the use of
argument-cases can be useful, while having a reasonable case learning rate to avoid filling the case-bases
with all the available knowledge for this case of study with a small number of simulations.

4.1.2. Percentage of problems that were properly solved with respect to the knowledge of the agents.
In this test, the percentage of problems that the system is able to solve, providing a correct solution,

are computed. To check the solution accuracy, the solution agreed by the agents for each ticket requested
is compared with its original solution, stored in the tickets case-base. One can expect that with more
knowledge stored in the case-bases the number of problems that were correctly solved should increase.
Figure 4 illustrates how as the number of agents participating in the dialogue increases, the solution
proposed by them is more appropriate and similar to the actual solution registered in the tickets case-base
for the ticket that has been requested to the agents (the mean error percentage in the solution predicted
decreases). Obviously, if more agents participate in the problem solving process, the probability that
one or more of them have a suitable domain-case that can be used to provide a solution for the current
problem increases. The same happens if the number of domain-cases of the agents case-base increases.
This applies also in the case of the random policy, although this policy never achieves the 100% of correct
solution predictions. Also, the results achieved by the argumentation policy improve those achieved by
the other policies, even when the domain-cases case-bases are populated with a small number of cases.
The argumentation policy achieves more than a 50% of improvement for a domain-cases case-base size
up to 25 cases if 3 agents participate in the dialogue, up to 20 cases if 5 agents participate and up to 15
cases if there are 7 or 9 agents participating. These results demonstrate that if agents have the ability of
arguing, the agents whose solutions are more supported by evidence have more possibilities of wining the
argumentation dialogue and hence, the quality of the final solution selected among all potential solution
proposed by the agents increases. Finally, Figure 5 presents the results of this test if the number of
domain-cases is set to 20 and the number of argument-cases that the agents have is increased in each
round. The results show that the argumentative knowledge has no substantial influence on the accuracy
of the solution proposed, at least for the data used in this case of study.

4.1.3. Percentage of agreements reached with respect to the knowledge of the agents.
In this test, we evaluate the percentage of times that an agreement is reached and a frequency-based

or a random choice among all possible solutions proposed by the agents is not necessary. Figure 6 presents
the results obtained. For all policies, the overall trend of the agreement percentage is to increase as the
knowledge about the domain that agents have increases. Nevertheless, figures show slight fluctuations
between results. This behaviour can be explained since the addition of a small quantity of new domain-
cases between two simulation rounds can give rise to temporary situations, such as some agents changing
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Figure 4: Solution prediction accuracy achieved by 3 (top-left), 5 (top-right), 7 (bottom-left) and 9 (bottom-right) agents
([5, 45]∆5 domain-cases; 20 argument-cases).

temporarily their opinions until new information is gained or obtaining the same suitability degree for
several positions and arguments. In the last case random choices are made, which can have a slight
negative effect on the overall performance of the system.

For the case of 3 agents, the small number of participants in the dialogue results in all policies achieving
similar agreement percentages. However, when the number of agents grows up to 5, if agents follow an
argumentative policy that allows them to argue and persuade other agents, those who have more support
for their positions win the dialogue and convince the others to accept them. Thus, the percentage of
agreements reached increases. In addition, the improvement on the agreement percentage grows more
quickly for a larger number of agents, reaching more than the 80% with little knowledge about the domain
(e.g. 10 domain-cases) for 7 and 9 agents participating in the dialogue. These results capture the fact
that with more participating agents, the knowledge available among all of them to solve tickets increases
and more useful argument-cases improve the performance of complex argumentation dialogues.

More interesting results can be observed if we compare the agreement percentage that the argumen-
tation policy achieves when useful argument-cases are available. To perform this test, the percentage
of agreement that agents reach in those cases that they have been able to find useful argument-cases
(argument-cases which problem description matches the current situation) has been computed. Note
that the fact that agents have argument-cases in their argument-cases case-bases does not necessarily
mean that these cases match the current dialogue context and are actually used by the agents to make
their decisions. Therefore, Figure 7 illustrates the percentage of agreements that the argumentation pol-
icy achieves when one or more agents use their argumentative knowledge. In these tests, the fluctuations
between subsequent simulation rounds are notably greater than in the previous tests. These fluctuations
are due to the fact that the percentage of useful argument-cases highly depends on the domain knowledge
that agents have and on the dialogue context.

In the case of 3 agents, the small number of dialogue participants give rise to very simple dialogues and
no argument-cases are actually used. This explains that the CBR-ARG policy gets the same results in the
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Figure 5: Solution prediction accuracy achieved by 7 agents (20 domain-cases; [0, 18]∆2 argument-cases).

agreement percentage as the other policies, as shown in Figure 6. For 5, 7 and 9 agents, we can observe
that when enough domain knowledge is available and agents engage in more complex dialogues (up to
30 domain-cases for 5 agents and up to 15 domain-cases for 7 and 9 agents), the agreement percentage
has a global trend to increase when the initiator agent is the only agent that has useful argument-cases.
This behaviour shows how the use of argumentative knowledge allows the initiator to argue better and
persuade the other agents to accept their positions and reach an agreement. However, if more agents are
also able to improve their argumentation skills by using their argumentative knowledge (CBR-ARG AAC
and CBR-ARG OAC policies), less agents are persuaded to accept other agents’ positions and hence,
no agreement is reached in almost all simulations (except for the case of 45 domain-cases in the agents
domain-cases case-bases).

As in Figure 6, Figure 7 illustrates how when the number of agents that participate in the dialogue
increases, the agreement percentage also increases for the CBR-ARG IAC policy. This can be observed
by comparing the agreement percentage achieved between 5 and 7 agents. Between 7 and 9 agents, no
significant changes in the agreement percentage for the CBR-ARG IAC policy are observed, while the
CBR-ARG AAC and CBR-ARG OAC policies improve their results when agents have a high amount of
domain knowledge. However, this increase has less to do with the use of argumentative knowledge than
with the fact that more agents participate in the dialogue with almost full knowledge about the domain.
Thus, most of them are able to provide the same accurate solution for the problem to solve.

Figure 7 also presents the average number of locutions interchanged among the agents during the
argumentation dialogue. As expected, results demonstrate that more locutions are needed to solve tickets
if there are more agents participating in the process. However, the number of interchanged locutions seems
to stabilize when the percentage of agreements reached approaches to 100%. Also, when only one agent
has argumentative knowledge, the number of locutions (or let us say, the number of dialogue steps) that
are necessary to reach a final decision among agents is more stable than in the cases where more agents
use their argument-cases. In fact, the dialogue steps in the cases of 7 and 9 agents are almost the same
for this policy. Therefore, the CBR-ARG IAC policy is also the more efficient policy, achieving the best
performance results with shorter argumentation dialogues among the agents.

Finally, to evaluate the influence of the amount of argumentative knowledge of the agents on the
agreement percentage, Figure 8 presents the results obtained by the argumentation policy when the
number of argument-cases available for one or more agents is increased. When the initiator agent is the
only agent that uses argumentative knowledge, as this knowledge increases, the probability of finding
useful argument-cases to apply in each argumentation dialogue also increases. Therefore, this agent
improves its argumentation skills and it is able to persuade the others to reach an agreement and accept
its position as the best solution to apply for the ticket to solve. However, when several agents have a small
quantity of argument-cases, the probability of finding a useful argument-case is very low. In these cases
(CBR-ARG AAC with 6 argument-cases and CBR-ARG OAC with 2 argument-cases), the performance
of the system suffers from a high randomness, and this agent that finds a useful argument-case has a
higher advantage over the others, being able to persuade them to reach an agreement that favours its
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Figure 6: Percentage of agreement reached by 3 (top-left), 5 (top-right), 7 (bottom-left) and 9 (bottom-right) agents ([5,
45]∆5 domain-cases; 20 argument-cases).

preferences. Regarding the number of locutions interchanged among the agents, Figure 8 illustrates how
the number of locutions to reach the agreement is stable for all policies and does not depend on the
argumentation knowledge that agents have. Thus, as pointed out before, the CBR-ARG IAC policy gets
higher percentage of agreement when useful argument-cases are actually used.

4.1.4. Percentage of positions accepted with respect to the number of argument-cases.
This test evaluates the percentage of position that an agent (the initiator, for instance) gets accepted

by the other agents in different settings of the argumentative policy, when useful argument-cases are
used. The CBR-R and the CBR-M policies do not allow agents to argue and hence, they do not accept
or defeat the position of other agents. Therefore, these policies are not considered for this test. Figure 9
illustrates how, independently of the number of agents participating in the dialogue, once the knowledge
about the domain overpasses certain threshold (15 domain-cases), if an agent has argument-cases that
match the current dialogue context, it gets its position accepted, even if the other participants have also
useful argument-cases. However, if this agent does not have argumentative knowledge, but the other
agents does, the percentage of acceptance depends on how useful the argumentative knowledge of the
others is and it varies until the agent has enough domain knowledge to propose a good enough solution,
as shown by the results obtained by the CBR-ARG OAC policy.

Finally, to evaluate the influence of the amount of argumentative knowledge that an agent has in the
percentage of acceptance of its positions, Figure 10 presents the results obtained by setting the number of
domain-cases to 20 and increasing the number of argument-cases by 2 in each round. Results show that
if only one agent has argumentative knowledge (CBR-ARG IAC policy), once it has argument-cases that
apply to the current dialogue situation and enough domain knowledge, it gets its position accepted. If
other agents also have argumentative knowledge (CBR-ARG AAC policy), the percentage of acceptance
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Figure 7: Percentage of agreement reached by 5 (top), 7 (bottom-left) and 9 (bottom-right) agents when useful argument-
cases are available ([5, 45]∆5 domain-cases; 20 argument-cases).

varies until enough useful argument-cases can be used (from 10 forwards), since this percentage depends
also on how good are the argumentation skills of the other participants. Finally, if all participants have
useful argumentative knowledge (CBR-ARG OAC policy), the percentage of acceptance of the initiator’s
position depends on which agent is able to create more persuasive arguments and convince the others to
accept its position as the best to solve the requested ticket.

4.2. Testing the Social Context
The ability of the framework to represent the social context of the system has also been evaluated. To

perform these tests, the system has been executed with 7 participating agents, following the argumentation
policy (CBR-ARG). These settings are selected by taking into account the results of the performance
tests, which show that this configuration allows agents to argue with fair enough information to provide
suitable positions and arguments, but leaving room for the argumentation to make sense. The knowledge
about the domain that each agent has is increased by 5 domain-cases in each round, from 5 to 45 domain-
cases. Argumentative agents have a full argument-cases case-base populated with 20 cases. By default,
all agents know each other, all are in the same group and the dependency relation between them depends
on the specific test. The influence of different degrees of friendship and group membership are difficult to
evaluate with the limited amount of data of our tickets case-base and remains future work. The values
of each agent have been randomly assigned from a set of pre-defined values (efficiency of the problem
solving process, accuracy of the solution provided and savings in the resources used to solve the ticket).

In addition, argumentative agents assign weights to the similarity degree (wSimD) and the support
factor (wSF ) proportionally to the relation between the number of domain-cases and argument-cases that
they have in their case-bases, as it was done in the performance tests. Also, by default agents set the
same weight for all elements of the support factor.

Following, the influence of the presence of an expert and the knowledge about the values of other
agents in the system performance is evaluated.

4.2.1. Presence of an Expert
In this test, an agent has been allowed to play the role of an expert, while the rest of agents play the

role of operators. An expert is an agent that has specific knowledge to solve certain types (categories) of
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Figure 8: Percentage of agreement reached by 7 agents when useful argument-cases are available (20 domain-cases; [0, 18]∆2
argument-cases).

problems and has its case-base of domain-cases populated with cases that solve them. Thus, the expert
domain-cases case-base has as much knowledge as possible about the solution of past problems of the
same type. That is, if the expert is configured to have 5 domain-cases in its domain-cases case-base, and
there are enough suitable information in the original tickets case-base, these cases represent instances of
the same type of problems. In the case that the tickets case-base has less than 5 cases representing such
category of problems, 3 for instance, the remaining two cases are of the same category (if possible).

In our case, the expert agent has an power dependency relation over other technicians. Therefore,
if it is able to propose a solution for the ticket requested, it can generate arguments that support its
position and that will defeat other operators’ arguments. This relation assigns more importance to the
arguments of an agent that has a power dependency relation over other agents.

All simulation tests have been executed and their results compared for the random based decision
policy (CBR-R Expert), the majority based decision policy (CBR-M Expert) and the argumentation
based policy (CBR-ARG Expert). For these policies, the domain-cases case-base of the expert has
been populated with expert domain knowledge. To evaluate the global effect of this expert knowledge,
the results obtained for the accuracy of predictions when the domain-cases case-base of all agents are
populated with random data are also shown for each policy (CBR-R, CBR-M and CBR-ARG).

Figure 11 illustrates how all policies are able to solve the same percentage of problems, but the
accuracy of predictions is higher if agents are allowed to argue following the CBR-ARG Expert policy.
Comparing the results obtained when the initiator has (CBR-R Expert, CBR-M Expert and CBR-ARG
Expert) or does not have expert knowledge (CBR-R, CBR-M and CBR-ARG), as expected, agents are
able to reach better accuracy in their final prediction when they are able to argue and there is an expert
participating in the argumentation dialogue (CBR-ARG Expert). This demonstrates that the decisions of
the expert prevail and, as it has more specialised domain-knowledge to propose solutions, the predictions
of the system are more accurate.

4.2.2. Knowledge about Other Agents’ Social Context
With these tests, we have evaluated the influence that the knowledge about the social context has in

the performance of the system. Therefore, we have compared the performance of the system when the
participating agents follow an argumentation policy and have full information about the social context of
their partners (CBR-ARG), or on the contrary, do not know the preference over values that their partners
have (CBR-ARG NV). In a real company, the dependency relations over technicians and the group that
they belong are known by the staff. Hence, we assume that agents know this information about their
partners.

In our evaluation domain, an agent assigns the same importance (weight) to both domain and argu-
mentation knowledge to generate and select positions and arguments. However, if it does not know the
value preferences of their partners, many times the agent uses argument-cases that are not suitable for
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Figure 9: Percentage of positions accepted for 3 (top-left), 5 (top-right), 7 (bottom-left) and 9 (bottom-right) agents when
useful argument-cases are available ([5, 45]∆5 domain-cases; 20 argument-cases).

the current situation. This makes the agent to make wrong decisions that worsen the global performance
of the system.

Figure 12 presents clearly that the performance of the system is negatively affected when argumen-
tative agents use incorrect argument-cases to make their decisions. Then, for instance, the percentage
of solved problems that argumentative agent are able to solve when they have full knowledge about
the social context of their partners reaches almost the 100% with low knowledge about the domain (15
domain-cases), while it barely reaches the 50% when agents do not know the values of their partners.
Similarly, the prediction error for well-informed agents is almost null with 15 domain-cases, while it still
has a 5% error percentage with a high amount of knowledge about the domain (45 domain-cases) when
agents ignore the values of the other agents.

Finally, Figure 13 also illustrates how system presents a poor performance in terms of the agreement
percentage and the percentage of agents that agree when argumentative agents ignore the values of their
partners. Again, the use of wrong argument-cases makes argumentative agents to propose solutions and
arguments that hinder to reach agreements. This could be avoided if the system assigns less importance
to the argumentative knowledge, by reducing the weight of the support factor (wSF ). In this way, a
system that supports our framework can also perform well in domains where acquiring social context
information about competitors is difficult, although this would significantly reduce the advantages of
learning this type of information.
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Figure 10: Percentage of positions accepted for 7 agents (20 domain-cases; [0, 18]∆2 argument-cases).

Figure 11: Percentage of problems that are solved by 1 expert and 6 operators (left) and accuracy of their predictions
(right) ([5, 45]∆5 domain-cases; 20 argument-cases).

5. Discussion

In the abstract formalisation of the argumentation framework proposed, the approach that we have
followed is closely related with the proposal of value-based argumentation frameworks [26]. Also, a
related work on abstract argumentation scheme frameworks [27] combines argumentation frameworks with
argumentation schemes and makes use of the structure provided by the schemes to guide dialogues and
provide contextual elements of argument evaluation. However, unlike our framework, the actual structure
of arguments and their computational representation are obviated. In addition, previous argumentation
experiences are not used to guide current argumentation processes such as we propose.

Other works use domain-dependent structures for the computational representation of arguments. The
few current approaches for case-based argumentation in MAS, which use cases as previous knowledge to
manage arguments, suffer from this domain-dependency or centralise the case-based argumentation abili-
ties in a mediator agent [10]. The latter is the approach taken by the ProClaim system [14], which allows
agents to argue and decide who is the best recipient of an organ transplantation. Close to the approaches
on case-based argumentation is the research on experience-based argumentation using association rules,
presented as the PADUA protocol in [28]. This work pools the opinions of several agents that have access
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Figure 12: Percentage of problems that are solved by 7 agents (left) and accuracy of their predictions (right) ([5, 45]∆5
domain-cases; 20 argument-cases).

Figure 13: Percentage of agreement reached by 7 agents (left) and percentage of agents that agree (right) ([5, 45]∆5
domain-cases; 20 argument-cases).

to different datasets to predict the classification of a new example. In a subsequent research, the PADUA
protocol has been extended to allow multi-agent dialogues by proposing the PISA protocol [29, 30]. As
in our approach, in this research agents take profit from previous experiences to solve a new problem,
but the knowledge gained from the argumentation process is not stored nor used to improve the agents
argumentation skills. In addition, PISA and PADUA have been designed to solve classification problems
and not any type of problem that can be characterised by a set of features, which is the target of our
research. However, the extension of our framework to allow agents to dynamically create groups and
argue about the best move to make as a group in each step of the dialogue still remains future work.

In this work, we differentiate the concept of agent society from the concept of an agent organisation
or a group of agents that play specific roles, follow some interaction patterns and collaborate to reach
global objectives. Many works in argumentation in MAS that refer to the term ’agent societies’ follow
this approach [31][32], which is not targeted to the study of the structure of agent societies and the
underlying social dependencies between agents. By contrast, we consider that the society is the entity
that establishes the dependency relations between the agents, which have values and can dynamically
group together to pursue common objectives in a specific situation. Similarly, our approach of an agent
society differs from the notion of agent coalitions used in [33] and [34], which are temporary associations
between agents in order to carry out joint tasks, without any consideration about the social links and
values that characterise those agents.

Recent research presents a novel argumentation-based negotiation framework that allows agents to
detect, manage and resolve conflicts related to their social influences in a distributed manner within a
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structured agent society [35, 36]. However, this approach defines the social context of agents with a
set of roles that agents can play, a set of generic relationships over them and a set of weighted social
commitments for each of the active relationships, with no mention to values nor preferences over them.
Other important difference between this proposal and our argumentation framework is the main objective
pursued. While it focus on solving conflicts regarding conflicting social commitments between agents, our
framework enables argumentation to solve a generic problem by using previous experiences, taking into
account the social dependencies between agents but also their preferences over a set of values. Also, the
authors do not specify the types of dependency relations that agents can have, leaving this concept as a
generic relation. In our framework, the specific dependency relation between a pair of agents plays an
important role in deciding if an argument posed in a past argumentation dialogue can be still persuasive
in a current situation (where, possibly, agents hold a different dependency relation). For the time being,
we do not deal with conflicts on dependency relations between agents, but this is an interesting extension
that opens the pathway to future work.

For simplicity purposes, in this paper we have assumed that a proponent agent addresses its arguments
to an opponent of its same group, having complete knowledge about the dependency relation that links
them and about other agents’ preferences (except from the social context tests). However, in real systems,
some features of the social context of agents could be unknown. For instance, the proponent of an
argument obviously knows its value preferences, probably knows the preferences of its group but, in a
real open MAS, it is unlikely to know the opponent’s value preferences. However, the proponent could
know the value preferences of the opponent’s group or have some previous knowledge about the value
preferences of similar agents playing the same role as the opponent. If agents belong to different groups,
the group features could be unknown, but the proponent could use its experience with other agents of
the opponent’s group and infer them.

Moreover, either the proponent or the opponent’s features could represent information about agents
that act as representatives of a group and any agent can belong to different groups at the same time. In
any case, the framework is flexible enough to work with this lack of knowledge, although the reliability
of the conclusions drawn from previous experiences would be worse.

Also, this paper does not show how agents can set different weights to the elements of the support
factor to take strategic decisions about which arguments are more suitable in a specific situation. For
instance, by assigning more importance to the efficiency degree, an agent can use the information stored
in previous dialogue graphs to decide whether continuing with a current argumentation dialogue is worth.
Then, to improve efficiency an argumentation dialogue could be finished if it is being similar to a previous
one that didn’t reach an agreement. Else, opponent moves in a dialogue could be inferred by looking a
similar previous dialogue with the same opponent. These issues will be dealt with in future evaluation
tests.

In our argumentation framework, cases are stored at the end of the argumentation process, but not
all cases are necessarily stored. As in most CBR systems, argument-cases and domain-cases would be
only stored if there is no similar enough case in the case-bases and the new domain and argumentation
knowledge acquired must be kept. However, slightly different arguments could be represented with the
same past argument-case by only updating its attacks information or attaching a new dialogue graph
to its justification. Nevertheless, if the problem description, the acceptability of the argument or the
conclusion change, a new argument-case has to be created. Also, to improve efficiency in searches, case-
bases require a constant update to eliminate outdated cases, generalise and merge cases in a unique case
when they are always indistinctly used, etc. Different case-base maintenance policies would be studied
and tested in future research.

Regarding the application of the framework to different domains, our approach has also been tested
in the context of a society of agents that must reach agreements about water resources allocation in a
river basin [37]. Broadly speaking, the framework is suitable to be applied to any domain where different
entities can engage in argumentation dialogues and the social context of these entities determines the way
in which they can argue. In the call centre example we have assumed that agents do their best to win the
argumentation process, thus following a persuasion dialogue. In this way, they get economical rewards and
increase prestige. Despite that, those solutions that are better supported prevail. Hence, if agents do not
follow a dialogue strategy that deviates the final outcome of the dialogue to fit their individual objectives,
no matter if they give rise to the best solution to apply, the system reaches agreements that produce high
quality solutions for the tickets received. This assumption has allowed us to perform more comprehensive
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tests with the small amount of data that we have available. However, a cooperative approach where
agents are not interested and collaborate to reach the best agreement would be appropriate for this
example and will be implemented and evaluated in the future.

6. Conclusions

In this paper, we have followed a case-based approach to propose a reasoning process that agents can
follow to automatically manage their positions and arguments and be able to engage in argumentation
processes by taking into account their social context. This reasoning process makes use of the resources of
a case-based argumentation framework for agent societies. Our proposals have been tested in a customer-
support application domain.

The influence of the knowledge that an agent has about the social context of their partners has been
evaluated. Results show that the arguments of experts are preferred, due to their power dependency
relation over operators. Therefore, if an expert is actually better informed to assign high quality solutions
to specific types of problems, the performance of the system improves. In view of the results achieved,
we can conclude that our reasoning process actually performs an appropriate management of positions
and arguments in argumentation dialogues that take place in agent societies.

Also, the performance of the system has been evaluated under different settings. The tests show
how those agents that follow an argumentation policy based in our argumentation framework are able
to provide more accurate solutions to the problems that the system receives. The ability of the agents
to argue allows those who have better arguments to support their decisions to win the argumentation
dialogue. Therefore, the solutions with higher quality are selected among those proposed.

In terms of the percentage of agreement, the argumentative agents get better results than agents
following other policies, specially when the number of technicians that are arguing to solve the problem
increases. Agents that have proposed less accurate solutions are persuaded to withdraw them and accept
other agents’ proposals, resulting in more agreements reached. In addition, it has been demonstrated
that if an agent uses its argumentation knowledge and has enough domain-knowledge, its positions are
accepted by other agents with more frequency.

The influence of the amount of argumentation knowledge that argumentative agents have has also
been evaluated. If only one agent has argumentation knowledge that matches the context of current
argumentation processes, as this knowledge increases, the amount of agreements reached and the number
of agents that agree also increases. This demonstrates that this agent is effectively using its argumentation
knowledge to select the best positions and arguments to put forward in a dialogue with other agents.
Thus, as many useful arguments an agent has, as more proficient the agent is to persuade other agents
to accept its proposals. However, if all or most agents have the ability of learning from argumentation
dialogues, all of them have the same (high) persuasive power to defend their decisions and the agreement
is difficult to achieve.

Future work will deal with the issues discussed in the previous section. On the one hand, the framework
will be extended to allow agents to dynamically create groups and argue about the best move to make as a
group in each step of the dialogue. Also, since conflicts on dependency relations between agents can appear
in a real system, mechanisms to cope with them will be studied. On the other hand, further evaluation
tests will set different weights to the elements of the support factor to take strategic decisions about
which arguments are more suitable in a specific situation. In addition, different case-base maintenance
policies would be studied and tested in future research. Finally, we plan to implement the framework in
a cooperative environment where agents are not interested and collaborate to reach the best agreement
for them all.
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http://hdl.handle.net/10251/12497 (2011).
URL http://hdl.handle.net/10251/12497

[22] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming, and n -person games, Artificial Intelligence 77 (1995) 321–357.

29

http://hdl.handle.net/10251/12497
http://hdl.handle.net/10251/12497


[23] D. Walton, C. Reed, F. Macagno, Argumentation Schemes, Cambridge University Press, 2008.

[24] F. Dignum, H. Weigand, Communication and Deontic Logic, in: R. Wieringa, R. Feenstra (Eds.),
Information Systems - Correctness and Reusability. Selected papers from the IS-CORE Workshop,
World Scientific Publishing Co., 1995, pp. 242–260.
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Algorithm 1 generatePositions
Require: ProblemDescription, n, generation method (D, S, M) //The description of the problem to solve, the maximum

number n of positions to generate (all possible if n=0) and the method to generate positions
1: matchCases = ∅
2: solutions = ∅
3: positions = ∅
4: argSchemes = ∅
5: extendedDesc = ∅
6: similarity = 0
7: SD = ∅
8: i = 0; j = 0; k = 0
9: if D ∈ GenerationMethod then

10: for all c ∈ DomainCasesCB do
11: similarity = computeSimilarity(ProblemDescription, c)
12: if similarity > δ then
13: matchCases[i] = c //If the similarity exceeds certain threshold, the domain-case is selected to generate the

position
14: SD[i] = similarity //The similarity degree of this domain-case is stored
15: i++
16: solutions = generateSolutions(matchCases)
17: if lenght(solutions) ≥ 1 then
18: for [s = 0;s < lenght(solutions);s+ +] do
19: positions = addPosition(ProblemDescription, solutions[s], SD[i])
20: if M ∈ GenerationMethod then
21: for all c ∈ DomainCasesCB do
22: similarity = computeSimilarity(ProblemDescription, c)
23: if similarity > δ then
24: matchCases[i] = c //If the similarity exceeds certain threshold, the domain-case is selected to generate the

position
25: SD[i] = similarity //The similarity degree of this domain-case is stored
26: i++
27: extendedDesc = aggregateDescriptions(matchCases)
28: if ProblemDescription 6= extendedDesc then
29: ProblemDescription = extendedDesc
30: if S /∈ GenerationMethod then
31: addGenerationMethod(S)
32: else
33: solutions = generateSolutions(matchCases)
34: if lenght(solutions) ≥ 1 then
35: for [s = 0;s < lenght(solutions);s+ +] do
36: positions = addPosition(ProblemDescription, solutions[s], SD[i])
37: if S ∈ GenerationMethod then
38: for all as ∈ ArgumentationSchemesOnt do
39: similarity = computeSimilarity(ProblemDescription, as)
40: if similarity > η then
41: argSchemes[j] = k //If the similarity exceeds certain threshold, the argumentation-scheme is selected to generate

the position
42: SD[j] = similarity //The similarity degree of this argumentation-scheme is stored
43: j++
44: solutions = generateSolutions(argSchemes)
45: if lenght(solutions) ≥ 1 then
46: for [s = 0;s < lenght(solutions);s+ +] do
47: positions = addPosition(ProblemDescription, solutions[s], SD[i])
48: Return positions
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Algorithm 2 Position Generation and Selection
Require: ProblemDescription, generation method (D, S, M), wSimD, wPD, wSD, wRD, wAD, wED, wEP //The descrip-

tion of the problem to solve, the generation method for generating cases from domain-cases (D), argumentation-schemes
(S) or from both (M) and the weights for each element of the similarity degree and the support factor

1: positions = ∅
2: argumentCases = ∅
3: SimD = ∅
4: SF = ∅
5: selectedPositions = ∅
6: positions = generatePositions(ProblemDescription, n)
7: for [i = 1;i ≤ lenght(positions);i+ +] do
8: argumentCases[i] = generateArgumentCase(ProblemDescription, positions[i])
9: SimD[i] = retrieveSimilarityDegree(positions[i])

10: for [i = 1;i ≤ lenght(argumentCases);i+ +] do
11: SF[i] = computeSF(ProblemDescription, argumentCases[i], argumentCases, wPD, wSD, wRD, wAD, wED, wEP )
12: selectedPositions = selectPosition(positions, argumentCases, SD, SF)
13: Return mostSuitable(selectedPositions)
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Algorithm 3 computeSF
Require: ProblemDescription, argCase, argumentCases, wPD, wSD, wRD, wAD, wED, wEP //The description of the

problem to solve, an argument case, the set of all argument-cases that represent all potential positions and the weights
for each element of the support factor

1: SF=0; PD=0; SD=0; RD=0; AD=0; ED=0; EP=0
2: att=0; minAtt=0; maxAtt=0; attAC=0
3: n=0; minS=0; maxS=0; stepsAC=0
4: kr=0; minKr=0; maxKr=0; krAC=0
5: arg = ∅
6: argC = ∅
7: argAccC = ∅
8: argAccCAtt = ∅
9: arg = retrieveSameProblem(argCase, ArgumentCasesCB)

10: argC = retrieveSameConclusion(argCase, ArgumentCasesCB)
11: argAccC = retrieveAccepted(argCase, ArgumentCasesCB)
12: argAccCAtt = retrieveAcceptedAttacked(argCase, ArgumentCasesCB)
13: if lenght(argC) 6= 0 then
14: PD = argAccC/argC
15: if lenght(arg) 6= 0 then
16: SD = argAccC/arg
17: if lenght(argC) 6= 0 then
18: RD = argAccCAtt/argC
19: att = computeNumberOfAttacks(argCase)
20: minAtt = att
21: maxAtt = att
22: for all [ac ∈ argumentCases] do
23: attAC = computeNumberOfAttacks(ac)
24: if minAtt > attAC then
25: minAtt = attAC
26: if maxAtt < attAC then
27: maxAtt = attAC
28: if maxAtt 6= minAtt then
29: AD = (att - minAtt)/(maxAtt - minAtt)
30: n = computeNumberOfSteps(argCase)
31: minS = n
32: maxS = n
33: for all [ac ∈ argumentCases] do
34: stepsAC = computeNumberOfSteps(ac)
35: if minS > stepsAC then
36: minS = stepsAC
37: if maxS < stepsAC then
38: maxS = stepsAC
39: if maxS 6= minS then
40: ED = 1 - ((n - minS)/(maxS - minS))
41: kr = computeNumberOfKR(argCase)
42: minKr = kr
43: maxKr = kr
44: for all [ac ∈ argumentCases] do
45: krAC = computeNumberOfKR(ac)
46: if minKr > krAC then
47: minKr = krAC
48: if maxKr < krAC then
49: maxKr = krAC
50: if maxKr 6= minKr then
51: EP = (kr - minKr)/(maxKr - minKr)
52: Return SF = (wPD ∗ PD + wSD ∗ SD + wRD ∗ (1−RD) + wAD ∗ (1−AD) + wED ∗ ED + wEP ∗ EP )
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Algorithm 4 Position Evaluation
Require: position, incPosition, positions //The position of an agent, an incoming position and the set of potential positions

generated by the agent
1: dependencyR = checkDependencyRelation(opponent, proponent)
2: if (dependencyR =! ”Power”) then
3: if position = incPosition then
4: acceptPosition(incPosition) //If the positions are the same, the agent accepts the incoming position
5: if (position 6= incPosition) && (incPosition ∈ positions) then
6: decideAttack(incPosition)
7: if incPosition notin positions then
8: askForSupport(incPosition)
9: else

10: acceptPosition(incPosition) //If the opponent agent has a power relation over the proponent, it changes its position
and accepts the incoming position

Algorithm 5 Argument Generation
Require: position, incArgument //The position of the agent and the incoming argument
1: requestType = evaluateIncomingRequest()
2: if requestType = supportAsked then
3: decideSupport(position)
4: if requestType = attackReceived then
5: evaluateArgument(incArgument)

Algorithm 6 generateAttack
Require: incArgument, DomainCasesCB, ArgumentCasesCB, ArgumentationSchemes //The argument to attack, the case-

bases of domain-cases and argument-cases and the argumentation-schemes ontology
1: support = checkSupportSet(incArgument)
2: supportElement = selectElementToAttack(support)
3: if supportElement = Premises then
4: generateDPAttack(incArgument)
5: if supportElement = ArgumentationSchemes then
6: if ArgumentationScheme ∈ ArgumentationSchemesOnt then
7: generateASAttack(incArgument)
8: else
9: storeAS(ArgumentationScheme)

10: if (supportElement = Domain-Case) or (supportElement = Argument-Case) then
11: CE=generateCounterExample(incArgument)
12: if CE 6= ∅ then
13: generateCEAttack(incArgument)
14: else
15: generateDPAttack(incArgument)
16: if support = ∅ then
17: generateCEAttack(incArgument)

Algorithm 7 evaluateArgument
Require: incArgument //The incoming argument to evaluate
1: if defeats(currArgument, incArgument) then
2: generateAttack(incArgument)
3: else
4: newS = generateNewSupport(position)
5: if newS == 0 then
6: withdraw(position)
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