

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1109/TPDS.2011.30

http://hdl.handle.net/10251/35192

Institute of Electrical and Electronics Engineers (IEEE)

Cuesta Sáez, BA.; Robles Martínez, A.; Duato Marín, JF. (2011). Efficient and scalable
starvation prevention mechanism for token coherence. IEEE Transactions on Parallel and
Distributed Systems. 22(10):1610-1623. doi:10.1109/TPDS.2011.30.

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 1

Efficient and Scalable Starvation Prevention
Mechanism for Token Coherence

Blas Cuesta, Antonio Robles, Member, IEEE Computer Society, and José Duato

Abstract—Token Coherence is a cache coherence protocol that simultaneously captures the best attributes of the traditional

approximations to coherence: direct communication between processors (like snooping-based protocols) and no reliance on bus-

like interconnects (like directory-based protocols). This is possible thanks to a class of unordered requests that usually succeed in

resolving the cache misses. The problem of the unordered requests is that they can cause protocol races, which prevent some misses

from being resolved. To eliminate races and ensure the completion of the unresolved misses, Token Coherence uses a starvation

prevention mechanism named persistent requests. This mechanism is extremely inefficient and, besides, it compromises the scalability

of Token Coherence since it requires storage structures (at each node) whose size grows proportionally to the system size. While

multiprocessors continue including an increasingly number of nodes, both the performance and scalability of cache coherence protocols

will continue to be key aspects.

In this work we propose an alternative starvation prevention mechanism, named priority requests, that outperforms the persistent

request one. It is able to reduce the application runtime more than 20% (on average) in a 64-processor system. Furthermore, thanks

to the flexibility shown by priority requests, it is possible to drastically minimize its storage requirements, thereby improving the whole

scalability of Token Coherence. Although this is achieved at the expense of a slight performance degradation, priority requests still

outperform persistent requests significantly.

Index Terms—Cache coherence, Token Coherence, starvation prevention, scalability.

F

1 INTRODUCTION

SHARED-MEMORY multiprocessors [1], [2], [3], [4] are
quite popular nowadays because they provide high

performance while being relatively easy to program. To
coordinate the different caches, these systems require a
cache coherence protocol, which has high impact on the
system performance. Multiprocessors include an increas-
ingly number of nodes and, consequently, to perform
well, they require low-latency and scalable cache coher-
ence protocols. Although a broad quantity of protocols
has been proposed, they are based on two traditional
ideas, each one with their own advantages and disad-
vantages. On the one hand, snooping-based protocols
[5] commonly provide low-latency cache misses when
they rely on bus-like interconnects, which are not scal-
able. However, they can also be applied to non-ordered
interconnects at the expense of introducing indirection or
using a greedy algorithm [6], which increases the miss
latency. On the other hand, directory-based protocols [7]
can use low-latency interconnects (not bus-like) which
scale better. However, the communication among nodes
is performed through a slow component called directory,
which introduces indirection and increases the latency.

To simultaneously capture the best attributes of these
two approximations, a new class of protocols based on
tokens (Token Coherence [8]) has been proposed. Hence,
unlike the snooping-based and directory-based approx-

• B. Cuesta, A. Robles, and J. Duato are with the Department of Computer
Engineering, Universidad Politécnica de Valencia, Camino de Vera, s/n,
46021, Valencia, Spain.
E-mail: {blacuesa, arobles, jduato}@gap.upv.es

imations, Token Coherence is able to exploit any un-
ordered interconnect while providing low-latency cache
misses. This is possible thanks to transient requests,
which are fast messages that usually succeed in solving
cache misses. However, transient requests may fail when
contending for the same memory block because they are
unordered and may lead to the occurrence of protocol
races. To solve races and guarantee miss completion,
Token Coherence uses a starvation prevention mecha-
nism. Initially, several implementations of a mechanism
named persistent requests [9] were proposed. Some of
these proposals are extremely inefficient since they use
additional components (arbiters) that introduce indirec-
tion and increase the latency of cache misses. There exists
another proposal without arbiters that outperforms the
other implementations, but it is still inefficient. Besides,
this approach requires a table at each node whose size
grows proportionally to the number of nodes in the
system and which requires associative lookup. These
facts represent a serious drawback because there is a
trend towards incorporating more and more nodes onto
systems, being the scalability a key issue.

Despite their advantages, actual multiprocessor sys-
tems do not implement protocols based on tokens be-
cause they have serious drawbacks too. Most of these
drawbacks are caused by both the timeouts used to
detect starvation and the mechanism used to solve it
(the persistent request mechanism). Since the problems
related to timeouts have already been tackled in other
works [6], here we focus on addressing the main prob-
lems of the persistent request mechanism, thereby mak-
ing more feasible the incorporation of Token Coherence

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 2

into actual systems. To this end, in this work we propose
an alternative starvation prevention mechanism, named
priority requests [10]. The priority request mechanism
relies on a total order of requests. However, in this case,
unlike the snooping-based approximations, the ordering
is provided by the routing algorithm. Hence, priority
requests can resolve starvation in a way much more
elegant, natural, and efficient than that used by the per-
sistent request mechanism. Furthermore, the flexibility
shown by priority requests allows to define a strategy
to decouple the size of the storage structures required at
each node from the number of system nodes. Therefore,
the size of the structures required to solve starvation can
be drastically reduced.

The rest of this paper is organized as follows. In
Section 2, we present some background about Token
Coherence that is necessary to better understand the
rest of this paper. Section 3 analyzes the problems of
the starvation prevention mechanisms proposed up to
now, which motivate this work. In Section 4, we describe
the proposal of a more efficient and scalable starvation
prevention mechanism. In Section 5, we show and dis-
cuss the main contributions of the proposals made in
this work. Finally, in Section 6, we summarize the main
conclusions of our work.

2 BACKGROUND AND RELATED WORK

2.1 The Token Coherence Protocol

Token Coherence [8] is a framework for producing co-
herence protocols. It captures the best aspects of the
traditional approximations by decoupling the correct-
ness substrate (which provides coherence) from the
performance policy (which provides efficiency). Thus,
coherence can be ensured without the need of relying
on bus-like interconnects or directories.

Token protocols use token counting to enforce the co-
herence invariant of a single writer or multiple readers.
At system initialization, the system assigns each block
of the shared memory T tokens. One of the tokens is
designated as the owner token that can be marked as
either clean or dirty. Initially, the block’s home memory
module holds all the tokens for a block. Tokens are
allowed to move between nodes as long as the system
maintains the following rules, which can correspond to
the MOESI coherence states [11], as shown in Table 1:

1) Conservation of tokens. After system initializa-
tion, tokens cannot be created or destroyed. One
token for each block is the owner token.

2) Write rule. A node can write a block only if it holds
all the T tokens for that block and has valid data.
After writing the block, the writer sets the owner
token to dirty.

3) Read rule. A node can read a block only if it holds
at least one token for that block and has valid data.

4) Data transfer rule. If a coherence message contains
a dirty owner token, it must contain data.

TABLE 1
Mapping of MOESI states to token counts

State Tokens

Invalid 0 tokens

Shared At least 1 token, but not the owner token

Owned At least the owner token

Exclusive All tokens (dirty bit unset)

Modified All tokens (dirty bit set)

5) Valid-data bit rule. A node sets its valid-data bit
for a block when a message arrives with data and
at least one token. A node clears the valid-data bit
when it no longer holds any tokens.

Although the rules above ensure coherence, they do
not ensure forward progress. This must be guaranteed in
all cases not explicitly disallowed by the token counting
rules. For example, tokens can be delayed arbitrarily
in transit, tokens can be “ping-pong” back and forth
between nodes, or many nodes may wish to simulta-
neously access to the same block (protocol race). Thus,
to ensure that all attempts to read or write a block will
eventually succeed, Token Coherence uses the persistent
request mechanism. A processor invokes a persistent re-
quest whenever it detects it has failed to collect sufficient
tokens during a timeout interval. The substrate arbitrates
among the outstanding persistent requests to determine
the current active request for each block. Once decided,
the substrate broadcasts the active persistent requests to
all the system nodes. The nodes must both remember all
the active persistent requests and redirect their tokens
(those tokens currently available and those received in
the future) to the requesting processor until the starved
requester deactivates it. A processor initiates the deacti-
vation of its persistent request when it receives sufficient
tokens and the read/write operation is accomplished.

To determine the active persistent request, several
alternatives have been proposed [9]. The first option is
a single centralized arbiter. In this case, persistent requests
are directed to the arbiter. The arbiter stores all the
received persistent requests in a table and activates a
single one by a broadcast. Nodes remember the active
request by a single-entry persistent request table. While
a persistent request is active, all processors send their
tokens to the initiator. Once the initiator has (1) received
sufficient tokens, (2) received valid data, and (3) ob-
served the activation of its own persistent request, it
sends a message to the arbiter to deactivate the request.
The arbiter deactivates it by informing all nodes, which
delete the entry from their tables.

To avoid that a single centralized arbiter becomes a
bottleneck, several arbiters can be used (banked arbitra-
tion). Each arbiter is responsible for a fixed portion of
the global address space. In this case, the nodes each
must have a persistent request table that contains one
entry per arbiter. The process of preventing starvation is
similar to the process followed by a single arbiter.

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 3

The solutions based on arbiters present the problem of
indirection: activation/deactivation messages are sent to
the arbiter, which is in charge of broadcasting them. This
delays the delivery of persistent requests and, therefore,
increases the latency. To avoid it, a distributed arbitration
option was proposed. When a processor detects possible
starvation, it sends a persistent request directly to all
the processors and the home memory module. Each one
of them remembers the received persistent requests in
a table. Since the table may have multiple persistent
requests for the same memory block, the persistent
request issued by the processor with the lowest identifier
is the active persistent request. Same as before, the
processors forward their tokens to the initiator of the
active persistent request. Once the requester has received
sufficient tokens, it deactivates its request by broadcast-
ing a deactivation message. To prevent higher-priority
processors from starving out lower-priority processors,
this approach uses a simple strategy: a high-priority
processor cannot issue a persistent request until all the
persistent requests received before its last deactivation
have been deactivated too.

Both the token counting rules and the starvation
prevention mechanism ensure correct operation in all
cases. However, they do not provide efficiency nor fast
operation. The component that deals with it is the perfor-
mance policy. Thus, in absence of persistent requests, this
component decides when and to which processors the
system should send coherence messages (requests and
responses). Three different policies have been proposed
to solve cache misses. First, in TokenB (Token Broadcast),
transient requests are directly broadcast to all the proces-
sors and the home memory module. Second, in TokenD
(Token Directory), transient requests are first sent to the
home memory module, where a directory decides to
which processors (if any) it should forward the request.
Third, TokenM (Token Multicast), transient requests are
directly sent to a predicted destination set of processors
based on the observation of past events.

Processors respond to transient requests as they would
do in a MOESI protocol depending on: (1) the request
type (read or write), (2) the recipient state, and (3) the
presence of active persistent requests. If after twice the
processor’s average miss latency the request has not
been completed, the persistent request mechanism is
used. Note that, if there is not any active persistent
request, transient requests are efficiently served. Further-
more, their service is quite fast because they do not need
to wait for completing one transient request to begin
to serve the next one. However, we cannot get those
advantages by persistent requests because they override
the performance policy and a persistent request cannot
be served until the issuer of the active persistent request
informs about its completion. In fact, persistent requests
make transient requests lose their advantages because
transient requests cannot be served while there is at least
one active persistent request.

2.2 Related Work

Michael R. Marty et al. [6] proposed several improve-
ments over the persistent request mechanism. The con-
cept of persistent read request is introduced, which lets
processors keep one token instead of forwarding all of
them. Furthermore, the starvation prevention mecha-
nism is used in several ways: after resending several
times the same transient request, after sending once a
transient request, or when a highly-contended block is
detected (to avoid the timeout). Furthermore, a delay
is introduced after modifying a memory block, thereby
ensuring that a processor will hold permissions for the
block long enough to perform a short critical section.

In [12] Michael R. Marty et al. proposed using a
Ring-Order protocol to order requests and, therefore, to
avoid generating protocol races, which eliminates the
need to reissue requests or to issue persistent requests.
However, this protocol is restricted to systems with ring
interconnects, being impossible its implementation in
systems with other interconnects.

Arun Raghavan et al. proposed in [13] an alternative
method to prevent starvation. Tokens are associated a
timer at their arrival at nodes. If the timer associated
with the tokens finishes and an acknowledgment is
not received from the directory, a possible starvation
situation is assumed, having to forward the tokens to the
directory. The directory then activates a single request
and sends all the tokens it receives until completing it.
Although correct, this scheme has several problems. In
particular, each cache miss requires an acknowledgment,
which increases the network traffic. In addition, each
node will require as many timers as the maximum num-
ber of cache misses that can be served before receiving
the acknowledgments from the directory. Besides, the
starvation prevention mechanism is specially inefficient
in case of highly-contended blocks, since requests are
served one by one and a scheme based on acknowl-
edgments between the nodes and the directory is used,
which may increase the cache miss latency considerably.

Niket Agarwal et al. proposed in [14] a technique that
lets the network order requests in a distributed manner.
When a request is injected into the network, it is assigned
a snoop-order. The snoop-orders are used by the NICs to
deliver all the requests in the same order. An important
problem of this proposal is the fact that requests must
remain stored in NIC buffers until they can be delivered
in order. Although several alternatives have been pro-
posed, the number of buffers grows proportionally to the
system size (either in NICs or in routers), which is not
scalable. In addition, expiration messages are broadcast
to avoid deadlock, which increases the generated traffic
significantly. In order for this technique to work, point-
to-point ordering and deterministic routing algorithms
are required. In addition, to provide finite destination
buffering, the routers must implement techniques that
add considerable complexity.

We proposed in [15] a mechanism to pack several

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 4

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 10 20 30 40 50 60 70

N
u
m

b
er

 o
f

ra
ce

s

System size

Fig. 1. Number of protocol races for Barnes

priority requests into just one, which reduces the harm
of broadcasts and improves their scalability. That mech-
anism is complementary to that proposed in [16], which
allows to simultaneously serve several transient/starved
requests by using a single multicast response.

3 MOTIVATION

In very small systems, the starvation prevention mech-
anism used by Token Coherence will be rarely used
since the probability of contention among processors
is low and unordered requests quickly resolve cache
misses. However, in larger systems, the average latency
to solve a cache miss increases. As a result, the proba-
bility of contention (simultaneous misses for the same
block) increases and, therefore, the starvation preven-
tion mechanism will be more frequently used. This is
shown in Figure 1, which illustrates the number of cache
misses that must be resolved by the starvation pre-
vention mechanism during the execution of the Barnes
application. In relative terms, while in a 4-processor
system only 6% of the misses require the use of the
starvation prevention mechanism, it increases as long as
the system is getting larger (14% with 8 processors, 24%
with 16 processors, 31% with 32 processors, and 36%
with 64 processors). Thus, although in small systems the
starvation prevention mechanism has little impact on the
overall performance, in medium and large systems it sig-
nificantly affects the whole performance, being desirable
an efficient mechanism.

To date, two implementation options of persistent
requests have been proposed: one based on centralized
arbiters and another based on distributed arbiters. The
first option uses one or more arbiters. Processors first
send persistent requests to the arbiter. This activates one
of the requests and forwards it to all the processors.
Processors use a table (which has as many entries as
arbiters) to remember all the active persistent requests.
The main advantages of this option are its simplicity, it
requires tables whose size does not depend on the num-
ber of processors, and associative lookup is not required.
Nevertheless, it presents a serious disadvantage that
Token Coherence seeks to avoid: the indirection (which
considerably) increases the latency. On the contrary, with
the distributed arbiters option, processors communicate

directly and indirection is avoided. Furthermore, the lack
of centralized arbiters removes the associated queueing
and highly-contended blocks can be better managed.
Thanks to this, the distributed arbiters option outper-
forms the centralized arbiters, mainly in small/medium
systems. However, this option presents some disadvan-
tages that make it unsuitable for medium/large systems.
In particular, it requires tables that (1) require associative
lookup and (2) their size depends on the number of
processors. As a result, they do not scale and its ap-
plication in medium/large systems is not suitable. In
addition, the distributed arbiters option does not use any
ordering point for persistent requests. In consequence,
nodes may receive them in different order, which may
create temporal races and penalize the performance. The
temporal races are solved by a fixed-priority scheme that
decides the order in which the received requests must be
served. However, this scheme may create load imbalance
when using certain types of non-fair synchronization.

The described disadvantages are inherent to each im-
plementation option, but persistent requests also present
other problems common to all of them. In particular, one
of the most harmful disadvantages is the fact that per-
sistent requests override the performance policy, thereby
losing efficiency and low-latency. Thus, while transient
requests can be served simultaneously, persistent re-
quests must be served one after another, which increases
the latency noticeably. Furthermore, persistent requests
are so strict that they do not allow the service of transient
requests while they are active. Consequently, all the
transient requests generated while a persistent request
is active will not be served, which leads to new races.
This problem is aggravated by the deactivation messages
since, apart from increasing the network traffic, they
increase the time that the persistent requests are active.

To improve the starvation prevention mechanism and
avoid most of the problems caused by persistent re-
quests, in this work we propose an improved version
of the priority request mechanism. In [10], a prelimi-
nary version was presented. Here, we extend it with
a more refined and scalable version, including a more
extensive evaluation process too. In particular, in this
work we provide the priority request mechanism with
an effective strategy that decouples the table size from
the system size. The result is a new starvation prevention
mechanism that contributes to significantly increase the
efficiency and scalability of Token Coherence.

4 THE PRIORITY REQUEST MECHANISM

In snooping and directory-based protocols, requests al-
ways succeed in resolving cache misses because they are
ordered either by the interconnect or by the directory.
However, in token-based protocols, requests are not
ordered in any way and, therefore, they may generate
protocol races. Furthermore, requests are not remem-
bered and the token unavailability may also cause the
requests to fail.

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 5

P1

O, t=3

P0

O, t=3

I, t=0

P2

S, t=1

P3

I, t=0

S, t=1

Write Req Write Req

(a) Protocol Race

P1

O, t=3

P0

I, t=0

S, t=1

P2

O, t=2

I, t=0

P3

S, t=1

Write Req

delayed in
interconnect

(b) Tokens Unavailability

Fig. 2. Examples of unsuccessful transient requests. t
stands for the token count and O, S, and I refer to the

Owner, Shared, and Invalid states, respectively

A protocol race can occur anytime multiple transient
requests simultaneously contend for the same memory
block. Since they are unordered messages, their receipt
order may differ between nodes, which results ambigu-
ous and may prevent their completion. This situation
is illustrated in Figure 2(a). P1 and P2 each broadcast
a transient write request to collect all the block tokens,
which are initially shared by P0 (O state) and P3 (S state).
Due to the lack of global order, P0 receives the requests
in {P1,P2} order and P3 receives them in {P2,P1} order.
Consequently, P0 serves P1’s request and P3 serves P2’s.
As a result, both P1’s and P2’s requests fail to collect all
the block’s tokens.

The other reason why a transient request can fail is
token unavailability. Transient requests can only be
served at their arrival because nodes do not remember
them. Therefore, transient requests upon memory blocks
whose tokens are not available at their arrival will fail.
Figure 2(b) shows this situation. P1 requests all the
block’s tokens by a transient write request. When it
arrives at nodes, they forward to the issuer all the tokens
they hold at that moment. However, since there are some
tokens in transit (traveling from P2 to P3) that are not
forwarded, P1’s request fails.

When those situations happen, Token Coherence re-
quires the use of a starvation prevention mechanism
that can ensure the completion of all the cache misses.
In this work, we propose a new starvation prevention
mechanism named priority requests alternative to the
persistent request one. To ensure that all attempts to
read or write a block will eventually succeed, our mech-
anism relies on priority requests which (1) are ordered
messages (thereby avoiding the protocol races) and (2)
are remembered by nodes (thereby solving the token
unavailability problem). Hence, since the two situations
that can cause a request to fail are resolved, the comple-
tion of priority requests is guaranteed.

Although persistent requests also ensure completion,
priority requests have two essential advantages over
them. First, priority requests are as efficient as tran-
sient requests because they do not need to override the
performance policy. Second, their storage requirements
can be drastically reduced without causing a serious
degradation to the global system performance.

P0

P0 PR

P0

P2 PR

P0

P1 PR

P0

P1 PR

P0

P0 PR

P0

P0 PR

P0 table

P0 PR
P0 PR

P1 PR

P2 PR

P1 PR

P2 PR

P2

P0 PR

P2

P2 PR

P2

P1 PR

P2

P1 PR

P2

P0 PR

P0 PR

P0 PR

P2

P2 table

P0 PR

P1 PR

P2 PR

P1 PR

P2 PR

P1

P0 PR

P1

P2 PR

P1

P1 PR

P1

P1 PR

P1

P0 PR

P1

P0 PR

P1 table

P0 PR
P0 PR

P1 PR

P2 PR

P1 PR

P2 PR

Time 0 − P0, P1, P2 broadcast PR

Time 1 − P0’s PR is received and stored

Time 2 − P1’s PR is received and rejected. P0 registers it by setting a pointer to P1

Time 3 − P2’s PR is received and rejected. P1 registers it by setting a pointer to P2

Time 4 − P0’s PR is served and completed and P0 informes to P1

Time 5 − P1 resends its PR, replacing the completed P0’s PR

Time 6 − P1’s PR is served and completed and P1 informes to P2

Time 7 − P2 resends its PR, replacing the completed P1’s PR

Time 8 − P2’s PR is served and completed

resending
notification

resending
notification

Fig. 3. Sketch of how the priority request mechanism

works. Single-entry tables are assumed. PR stands for
Priority Requests

4.1 General Working Scheme

When a processor detects possible starvation, the priority
request mechanism is applied as follows:

1) The starved processor composes and sends a pri-
ority request.

2) The priority requests are broadcast through or-
dered paths. As a result, all nodes see all priority
requests in the same order.

3) At their arrival, priority requests are stored in a
table. If the table is full and the request cannot be
inserted, the incoming request is rejected and its
storage is postponed until a table entry is freed.

4) Nodes serve the stored priority requests in the
same order as they arrived.

5) The issuers of the stored priority requests inform of
their completion to the issuers of the rejected pri-
ority requests (if any), by a resending notification.

6) When the issuer of a rejected request receives a re-
sending notification, it resends its priority request,
replacing the completed one.

7) Nodes continue to serve the stored priority re-
quests until completing all of them.

Figure 3 shows a sketch of how the proposed mech-
anism works. At time 0, P0, P1, and P2 broadcast a
priority request. At time 1, P0’s request is received and,
since tables are empty, it is stored. At time 2, P1’s request
is received and, since tables are full, it is rejected. Besides,
given that the last received request was issued by P0, it
remembers that P1’s request has been rejected (arrow
from P0 to P1). Similarly, at time 3, P2’s request is
received and rejected and P1 remembers it. The stored

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 6

R

(a) Mesh

R

(b) MIN

Fig. 4. Examples of ordered paths in (a) a mesh and (b)

a MIN. The shaded switches (R) represent the root

request (P0’s) is served and, when it completes (time
4), its issuer informs to the issuer of the next rejected
request (P1). When P1 receives the resending notification
(time 5), it resends its priority request, which implicitly
informs of the completion of the stored one. Thus, on its
arrival, the resent request replaces the stored one. The
same happens for the P2’s request after completing P1’s.

4.2 Ordered Paths

Putting messages in order by bus-like interconnects or
directories may entail serious problems that token pro-
tocols seek to avoid. Thus, to provide a global order for
priority requests without trusting on those methods, in
this work we propose to use routing algorithms based
on ordered paths. An ordered path is just a sequence
of switches and links that comprises (at least) all the
switches which the system nodes are connected to. The
first switch of this sequence is usually referred to as
the root switch and it acts as ordering point. The main
property of ordered paths is that they provide a unique
route to reach each node. Therefore, assuming a FIFO
transmission, it is not possible that messages routed
through the same ordered path overtake each other. The
way to define the ordered paths depends on the network
topology. For example, in this work we assume both a
mesh and a Multistage Interconnection Network (MIN)
[17]. On these networks, an efficient solution can be the
spanning trees. Figure 4 shows how a spanning tree is
used to make an ordered path. The switch R represents
the root and the arrows represent the path that the
messages follow from the root.

Since the issuer of a priority request may not be
directly connected to the root switch of the ordered
path, the routing of priority requests is divided in two
stages. In the first stage, they go from their senders to
the root switch without being delivered to the nodes
connected to the visited switches. In the second stage,
the priority requests follow the ordered path from the
root and, unlike the first stage, they are delivered to all
the nodes connected to the visited switches. Thus, all
the priority requests sent through the same ordered path
are delivered in the same order. Figure 5 illustrates an
example of how two priority requests are put in order by
using this method. P0 and P8 detect possible starvation

starvation

0 1 2

3 4

root

5

6 7 8

First stage

detection

starvation

detection

Second stage

starvation

3

0

6

4

1

7

5

2

8

P8 priority request delivery t

starvation

3

0

6

4

1

7

5

2

8

P0 priority request delivery

Fig. 5. Examples of how two priority requests are ordered

and send two priority requests. Both priority requests
are first routed towards the root (switch 4). P8’s request
is the first to reach the root and, in the second stage,
it is broadcast through the ordered path. After routing
the P8’s request, the root routes the P0’s. As they cannot
overtake each other along the path and the path to each
node is unique, all the system nodes receive first P8’s
request and then P0’s. Note that, if there is a single
ordered path for all the priority requests, the root switch
may become a bottleneck in medium and large systems.
To avoid it, since we only need to maintain the order
between the priority requests upon the same block (but
not between priority requests upon different blocks),
several ordered paths can be used.

The single difference between the path followed by
priority requests and the rest of messages is that the
formers follow non-minimal paths (a two-stage routing
scheme through the root switch). Priority requests are
routed along each stage by using the same routing
algorithm as that used by the rest of messages (e-cube in
meshes or up/down [18] in MINs). However, to avoid
introducing cyclic channel dependencies that could lead
to deadlock, in some topologies (v.g. meshes) it may
be required to carry out a virtual channel transition
immediately after traversing the root switch. Hence,
an additional virtual channel may be required to route
priority requests in some network topologies.

Notice the differences between using ordered paths to
provide global order and the traditional methods. On the
one hand, when directories are used to provide global
order, the directories consume and process the received
requests, which takes long time. In case of ordered paths,
the root switch is only used to route the requests (it does
not consume them) and, therefore, it hardly penalizes
the latency. On the other hand, unlike totally-ordered
interconnects and logical buses (hierarchical switches),
which usually lack scalability, the ordered paths can be
implemented in any network topology.

4.3 Storage Structures

The proposed mechanism requires some data structures.
Namely, a priority request table to remember the out-
standing priority requests, an Ack register to know the
service sequence of the rejected requests, and a Counter
to determine the value of the Ack register.

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 7

At their arrival, priority requests are remembered in
tables, at least, until being completed. To this end, each
processor and memory controller holds a priority request
table. Each entry stores information about a specific prior-
ity request, which comprises the following fields: valid
bit (1 bit), which indicates whether the entry is valid;
issuer (2 bytes), which is the issuer’s identifier (processor
number); address (5 bytes), that is the physical address
of the requested memory block; identifier (2 bytes),
which is the priority level (arrival order) of the request;
operation (1 bit), which is used to distinguish between
read and write requests; state (1 bit), that indicates if the
priority request was completely served or is pending;
and used bit, which indicates whether the information
held by that entry can be included in a priority request
or not (we will see this in more detail later).

When a node receives a priority request, it remembers
the request by inserting the corresponding information
in the table: the valid bit is set; the requester identifier is
inserted in the issuer field; the requested memory block
address, in the address field; the operation bit is set accord-
ing to the request type (read/write); the state field is set
to pending; and the used bit is set to not used. Besides,
the received request is assigned an identifier, which will
be used to (1) unequivocally identify it and (2) know
the order in which it was received. Since this identifier
is related to the arrival order, then the lower the request
identifier is, the higher priority the request has. To
determine the identifier of every request, each node uses
a local counter. Given that all the priority requests are
received in the same order, all nodes will assign to them
the same value. The sequence numbers provided by the
counters are large enough, in practice, so that priority
requests always have unambiguous identifiers. By using
a 2-byte counter, the identifier space would wrap around
every 65536 priority requests. Therefore, once a priority
request is received, it should be completed and removed
from the tables before completing the subsequent 65535
priority requests. Taking into account that priority re-
quests are completed in order, that situation is very
unlikely to happen. However, if a priority request took
that long to complete, the processors would temporarily
pause the generation of new priority requests until the
delayed one was completed and removed. To this end,
nodes use a strategy based upon algorithms for handling
finite sequence numbers in retransmission schemes.

Since the priority request table can have multiple
entries that contain the same address, the entry for the
request with the lowest identifier and marked as pend-
ing corresponds to the request with the highest priority.
Notice that the entries that contain different addresses
refer to requests upon different memory blocks. As they
do not contend for the same block, they cannot cause
protocols races and their service is independent.

The number of entries of the priority request table can
be configured between a minimum (one entry) and a
maximum (as many entries as the maximum number of
outstanding priority requests per processor × number of

Starvation

Id

7

Issuer

P0

State

Comp

P1

P2

5

6

Pend

Pend

.. Id

7

Issuer

P0

State

Pend

P1

P2

5

6

Comp

Pend

.. Id

7

Issuer

P0

State

Pend

P1

P2

5

6

Pend

Comp

..

P0 P1 P2

Starvation

Id

7

Issuer

P0

State

Comp

P1

P2

8

6

Pend

Pend

.. Id

7

Issuer

P0

State

Pend

P1

P2

8

6

Pend

Pend

.. Id

7

Issuer

P0

State

Pend

P1

P2

8

6

Pend

Comp

..

Id

7

Issuer

P0

State

Comp

P1

P2

8

9

Pend

Pend

.. Id

7

Issuer

P0

State

Pend

P1

P2

8

9

Pend

Pend

.. Id

7

Issuer

P0

State

Pend

P1

P2

8

9

Pend

Pend

..

0

1

2

3

comp PR 5New P1’s PR

comp PR 6New P2’s PR

Time

PR id=5 replaced PR id=5 replaced PR id=5 replaced

PR id=6 replaced PR id=6 replaced PR id=6 replaced

Fig. 6. Replacement of the completed priority requests
with new outstanding priority requests

processors). When tables are the maximum size, they will
be able to contain all the outstanding priority requests.
Although this is the most effective option, it has the
problem that the table size depends on the system size
and this may jeopardize the scalability of the whole
protocol (in terms of storage requirements, latency, and
power due to the required associative access). This can
be avoided by using tables with less entries. However,
with those tables, all the outstanding priority requests
may not be able to be stored simultaneously. In that
situation, only some priority requests will be stored
and the other will be rejected. Once a stored request
completes, its issuer will inform of the completion to
the issuer of a rejected priority request (using a point-to-
point message called resending notification). To be aware
of the existence of rejected requests and to know the
processor to which a resending notification must be sent,
nodes use a register called Ack. To estimate the value
of this register, each node will additionally require a
Counter register. The value of Counter ranges from 0 to
N - 1, being N the number of table entries.

To sum up, the minimum requirements of priority
requests are a single-entry table and as many Ack and
Counter registers as maximum number of simultaneous
requests per node. Hence, in terms of storage, the pro-
posed mechanism significantly reduces the requirements
of persistent requests. Furthermore, since the table can
be configured to use just a few entries, the associative
lookup that it requires would not be a problem.

4.4 Ensuring the Priority Request Storage

Every outstanding priority request must be remembered
in the tables so that it can be served. Given that the
proposed mechanism does not use explicit messages
to remove the completed requests from tables, some
outstanding requests might find the tables full of com-
pleted requests at their arrival, which would prevent

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 8

Ack

Ack Ack Ack

AckAck

Id

6

Issuer

P4

Address

A

P5

P3

7 B

..

P0

P2

Accepted

Requests

Priority Request Table

P1

Rejected

Requests

x+1

x+2

x

x+3

x+4

x+5

R
ep

la
ce

m
en

ts

Arrival
Order P3

P5 P0 P1

P2P4 ..

..

Resending notifications

Fig. 7. Policy followed to ensure the storage of all priority
requests. 2-entry tables are assumed (N = 2)

their storage. In addition, the storage of outstanding
requests could also fail due to the fact that tables can
have less entries than the total number of simultaneous
outstanding priority requests. As a result, if each pro-
cessor issues a priority request, they will not be able
to be simultaneously stored. Next, we explain how the
mechanism deals with these situations. However, for
clarity, we address it separately in two sections.

4.4.1 Removal of Completed Priority Requests

When tables are the maximum size, each processor
is associated with a fixed number of table entries (as
many entries as the maximum number of simultaneous
requests that it can issue). The priority requests issued by
certain processor can only be stored in one of its associ-
ated entries. Given that one processor can be associated
with more than one entry, when it issues a new priority
request, it must indicate in which entry (among those
associated to it) it should be stored. To this end, the
header of the priority request messages includes a field
called completed PR. On a priority request sending, the
issuer includes in the completed PR field the identifier of
one of its stored requests that is completed. Thus, on
a priority request arrival, processors certainly know the
entry where the incoming request must be stored (i.e.,
the entry where the completed request is stored). Doing
so, nodes are implicitly informed of the priority request
completion. Notice that this strategy ensures the storage
when tables are the maximum size because the priority
requests issued by certain processor can only replace its
own (completed) priority requests. Figure 6 illustrates an
example of how this idea works. The example illustrates
a 3-processor system. The number of outstanding prior-
ity requests per processor is limited to one and tables
are the maximum size (3-entries). To simplify the figure
(and the following ones), the table entries only comprise
the fields required to follow the example. Initially, the
tables are full. Note that, although all the stored requests
are completed, only their issuers are aware of it (see the
State field). At time 0, P1 issues a new priority request.
This is possible because its previous priority request (id
5) is already completed. Hence, in the completed PR field
of the new priority request, P1 includes the identifier 5.
When the nodes receive it, they know that the completed
request (id 5) can be replaced with the new one. The
same happens for the P2’s request.

4.4.2 Use of Reduced Size Tables

When tables are not the maximum size, each processor
cannot be associated with a fixed number of entries
because there are less entries than the maximum number
of simultaneous outstanding requests. Therefore, when
a processor issues a new priority request, it may or
may not have a completed priority request (issued by
itself) in its table. If its table contains a completed
request issued by itself, it includes the identifier of that
request in the completed PR field, which will ensure its
acceptance and storage. However, if its table does not
have such information, it issues a priority request with
the completed PR field set to Nill. That priority request
will be rejected, but this is done just to inform of the
necessity of a table entry. Thanks to this, the processor
will receive a message (resending notification) informing
of the completion of one of the stored requests. Now,
the processor is allowed to issue again a priority request,
setting the completed PR field to the value received in the
resending notification. Thus, the resent priority request
is sure to be accepted.

Let us assume an M-processor system with N-entry
tables (where M > N). If each processor in the system
issues a priority request at the same time, only a maxi-
mum of N priority requests will be stored, whereas the
remaining M - N requests will be rejected. Processors
serve the stored requests and, as they complete, their
issuers inform of the completion to the issuers of the
rejected ones. When a processor is informed of the
completion of a stored request and it has a pending
request that was rejected, it sends its request again,
which will replace the completed one. To use a fair
replacement policy, processors use the arrival order of
requests. The idea is to replace (when completed) the
priority request received in the X

th place by the priority
request received and rejected in the (X + N)th place.
Figure 7 shows an example of how the replacement
policy works when 6 priority requests are received and
tables only have 2 entries. The priority requests are
received in the order [P4,P5,P3,P0,P2,P1]. Only the P4’s
and P5’s requests are stored, whereas the others are
rejected. When P4’s request completes, P4 informs of its
completion to the issuer of the priority request received
and rejected N th positions after the arrival of its own
request (i.e., P3 request). This is done by using a resending
notification. This message includes the identifier of the
completed request (id 6). When the issuer of the rejected
request (P3) receives the resending notification, it realizes
of the completion of the P4’s request and it resends
its priority request, including the received information
(id 6) in the completed PR field. Thus, when the resent
priority request is received, it will be accepted and stored
because it will replace a completed one. Notice that, to
avoid races, when a processor sends the identifier of a
completed priority request in a resending notification, it
cannot include such an identifier in new local requests.

To remember the node (just one) to which a certain

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 9

P0 P1 P2

S state, t=1O state, t=2I state, t=0

0

AckCount ## AckCount #0

Count #Count 0

1

Ack #Count #

Resend Priority Request

broadcast comp PR 5

Response to P0

data + token

5

4

3

2

Starvation − Priority Request

broadcast comp PR #

Resending Notification to P0

comp PR 5

Count # Ack #

Count 1 Ack P0

StateOpIdIssuer

P0 6 Rd Pend

StateOpIdIssuer

P0 6 Rd Pend

StateOpIdIssuer

P0 6 Rd Pend

StateOpIdIssuer

P2 5 Rd Pend

StateOpIdIssuer

P2 5 Rd Comp

StateOpIdIssuer

P2 5 Rd Comp

..

..

Time

rejected rejected rejected

accepted accepted accepted

Fig. 8. Resending of rejected priority requests. The value

stands for Nill and t stands for the token count. Single-
entry tables are assumed (N = 1)

processor has to send a resending notification (if any),
the Ack register is used. Its value is estimated by using a
Counter. Initially, Counter is disabled. When the issuer of
a priority request receives its own priority request with
the completed PR field set to Nill, the Counter is set to 0,
indicating that the count has begun. From this moment,
the Counter value is increased by 1 every time a new
priority request with the completed PR field set to Nill is
received. When the arrival of a priority request causes
the Counter value to overflow (a value higher than N
- 1), the issuer of such a request is registered in Ack
and the Counter is disabled. Making so, Ack will store
the identifier of the node that issued a priority request
N positions after the priority request issued by itself.
Thus, nodes can know the priority requests that were
rejected and their arrival order. However, note that the
information about the arrival order of the rejected re-
quests is distributed (instead of replicated) among some
the nodes. In particular, the arrival order is remembered
by linking a set of nodes by using their Ack registers,
constituting a linked list. It will be able to have as many
lists as the number of table entries, as shown in Figure
7 (two lists for a 2-entry table).

As soon as a node completes its stored priority request,
if its Ack register holds a valid value, it sends the
resending notification to the [Ack] processor. When the
notification is sent, the value of Ack is set to Nill and the
table entry holding the identifier included in the noti-
fication is marked as used (used bit). Doing so prevents
such information from being included in another priority
request issued by the node. Notice that, if a processor
marks one of its priority requests as completed and
that information can be included either in a resending
notification or in a local priority request, the processor

always prioritizes the notification. This prevents the local
priority requests from starving out the rejected requests
and guarantees that each identifier is included only once
in a completed PR field.

Figure 8 shows an example of how the whole process
works. In this example, we assume three processors and
single-entry tables. Initially, the tables are full. The stored
request with id 5 is completed, but only its issuer (P2)
and the owner (P1) are aware of it. P0’s Counter and Ack
registers are set to Nill (#). P1 is in Owner state and its
Counter and Ack registers are also set to Nill. However,
P2’s Counter is set to 0 because the stored priority request
belongs to it. At time 0, P0 broadcasts a priority request
for the same memory block. The priority request does
not hold any information about the completed priority
request to replace (completed PR is set to Nill) because
the P0’s table does not contain any information about
its own priority requests. Therefore, at time 1, the P0’s
priority request is rejected at its arrival because tables are
full. However, as P0 rejects its own request, it initializes
its Counter to 0. P1 does not modify its Counter because it
is disabled. P2 increases the value of its Counter (because
it is already enabled) and, as it exceeds the maximum
count (0), it stores in its Ack register the issuer (P0) of the
rejected request. Since P2’s priority request is completed
and it holds a valid value in Ack, at time 2 it sends a
resending notification to P0, notifying the completion of
the priority request with id 5. At time 3, P0 receives the
notification and it immediately proceeds to resend its
priority request, including in the completed PR field the
id 5. Thus, when the resent priority request is received
at time 4, all the processors accept and store it because it
can replace a stored priority request. As P1 is in Owner
state, at time 5, it will serve it.

4.5 Avoiding Serving Completed Priority Requests

Since we do not use explicit messages to inform of
the priority request completion, it may happen that the
nodes serve priority requests that have already been
completed. Although this does not cause the mechanism
to fail, this is quite inefficient. To avoid it, the response
messages include information of the completed requests.
Let us analyze separately the response messages due
to priority read and write requests. With respect to
priority read requests, only the owner node is in charge
of serving them. Thus, upon the reception of a priority
read request, the owner processor stores it in its table,
serves it by a data response, and marks it as completed.
The rest of processors keep their tokens because they
do not have to serve it. Therefore, to avoid serving a
completed priority read request, a processor will need
to know about its completion only when it becomes the
owner. To this end, when a node sends the owner token
in a response, it will have to indicate in it the priority
read requests completed until that moment. By doing
so, as soon as a node receives the owner token, it will
realize of the priority read requests that have already
been completed.

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 10

0

1

P3

I state, t=0

P0

data + 1 token comp PR #

Response to P1

P1

I state, t=0

P2

StateOpIdIssuer

P1 5 Rd Pend

P2

P3

6

7

Rd

Wr

Pend

Pend

StateOpIdIssuer

P2

P3

6

7

Rd

Wr

Pend

Pend

P1 5 Rd Pend

StateOpIdIssuer

P1 5 Rd Pend

P2

P3

6

7

Rd

Wr

Pend

Pend

StateOpIdIssuer

P1 5 Rd Pend

P2

P3

6

7

Rd

Wr

Pend

Pend

..

P1 5 Rd Comp ..

2

Response to P2

data + 1 token comp PR 5
P1 5 Rd Comp

P2 6 Rd Comp

..

O state, t=2

3

data + tokens comp PR 6

Response to P3 Response to P3

1 token comp PR #
P2 6 Rd Comp

P1 5 CompRd ..

4

Response to P3

1 token comp PR #
P2 6 Rd Comp

P1 5 Rd Comp ..

StateOpIdIssuer

P1 5 Rd Comp

P2

P3

6

7

Rd

Wr

Comp

Comp

StateOpIdIssuer

P1 5 Rd Comp

P2

P3

6

7

Rd

Wr

Comp

Pend

StateOpIdIssuer

P1 5 Rd Comp

P2

P3

6

7

Rd

Wr

Pend

Pend

StateOpIdIssuer

P1 5 Rd Comp

P2

P3

6

7

Rd

Wr

Comp

Pend

..

I state, t=0

I state, t=0

O state, t=3

E state, t=4 I state, t=0

I state, t=0S state, t=1 I state, t=0

I state, t=0S state, t=1S state, t=1

I state, t=0 S state, t=1 O state, t=3

M state, t=4I state, t=0I state, t=0

Time

Fig. 9. Spread of the information about the priority re-
quest completion. The value # stands for Nill and t stands
for the token count. 3-entry tables are assumed (N = 3)

In case of priority write requests, all the processors
holding tokens will have to send them. Unlike the pre-
vious case, only the issuer of a priority write request will
be sure about its completion. The rest of processors may
know it or may not. Note that, since the issuer of a write
request must receive all the block’s tokens, it will become
the owner processor and, therefore, it will be in charge
of serving the requests that arrive later. Therefore, this
node has to inform of its request completion each time
it sends a response message to another processor.

From this analysis, we conclude that, to avoid serving
again the completed priority requests, all the response
messages sent by the owner should indicate the priority
requests completed until that moment. To this end, the
header of data response messages includes a field (com-
pleted PR) that indicates just the last completed priority
request. Since priority requests for the same memory
block are completed in order, it implicitly indicates that
all the previous priority requests are completed too. To
set the value of this field, before sending a response, the
owner looks in its table for the priority request (upon
the same memory block as the token/s included in the
response) marked as completed and with the highest
identifier, which will be included in the completed PR
field1. On a response reception, processors first mark
as completed all the entries (upon the same memory
block as the response) holding a priority request with
an identifier lower than or equal to completed PR, then
use the tokens, and finally forward them to the pending

1. Obviously, if the owner node cannot find such information in its
table, it will be because it has already been removed from all the tables
and, therefore, it is not longer necessary to send it again.

priority requests that require them (if any). Note that,
nodes do not have to wait for the information included
in the response messages (they only have to wait for
the tokens) to serve the next stored outstanding priority
request, which speeds up the race resolution. On the
contrary, the deactivation messages used by persistent
requests contribute to increase the miss latency since
nodes cannot serve subsequent requests until receiving
the deactivation.

Figure 9 shows an example of how the information
about completed requests is spread by the responses. In
the depicted scenario, P1, P2, and P3 have sent a priority
request. P1’s request is the highest priority request. P0
(the owner) serves it by a data response and marks it
as completed. Next, at time 1, it proceeds to serve the
highest priority request at that moment (P2’s) and marks
it as completed too, indicating in the response the last
completed request (id 5). Finally, at time 2, P0 serves the
last stored request (id 7), indicating in the response the
last completed request (id 6). As it is a write request,
P0 does not mark it as completed. When P3 receives
the response, it realizes that the priority request with
id 6 and all the previous ones (the one with id 5) are
already completed, updating its table accordingly. This
prevents P3 (the new owner) from serving again P1’s
and P2’s requests. Notice that although P0, P1, and P2
maintain some completed requests marked as pending,
it is not a problem because none of these nodes is able
to continue to serve those priority requests until they
receive the token owner from P3.

4.6 Performance Policy

In this work we assumed a TokenB policy adapted to
the priority request mechanism. It proposes:

• On a cache miss occurrence, a transient request
is broadcast to all the processors and the home
memory module.

• If after twice the processor’s average miss latency
the transient request has not been completed, a
priority request is broadcast to all the processors and
memory modules.

• Processors and memory modules respond to both
transient and priority requests as they would do
in a traditional MOESI protocol. Since deactivation
messages are not needed, several transient/priority
requests can be served concurrently.

Figure 10(a) shows the state transition diagram due
to the reception of transient/priority requests. Together
with each transition, it is indicated (in gray) whether the
processor has to serve the request by sending a response
message. T/P Read (write) R refers to transient/priority
read (write) requests. The dotted arrows indicate that
from that state, the node cannot be completely sure about
the completion of the stored priority request and, there-
fore, it will remain in the table marked as pending. The
two additional Sp and Ip states are equivalent to S and I,
respectively. The difference is that those states (marked

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 11

I Ip

ME

Sp

S

O

T Read R

T/P Write R
T/P Read R

1 token

T Read R
P Read R

P Read R
T Read RT Write R

T Read R

all tokens
P Write R
T Write R

P Write R
P Read R

all tokens
P Write R
T Write R

T Read R

all tokens
P Write R

all tokens
T Write R

all tokens
T Write R

all tokens
P Write R

P Read R
1 token

P Read R

(a)

I Ip

ME

Sp

S

O

Token

Token

Token
Token

Owner

Get PR
Token

Get PR
Owner

Get PR
All Tokens

Get PR
All Tokens

Token

Owner

All Tokens

All Tokens

Get PR
Owner

All Tokens

(b)

Fig. 10. State transition diagram due to (a) request
reception and (b) response reception. T and P stands for

transient and priority, respectively

with the p subscript) indicate that there is, at least, one
pending priority request in the table. Note that, from the
Sp state a transient write request could be served. This is
because transient and priority requests can coexist and
their service can be performed concurrently. Notice that,
servicing a transient write request upon a block in Sp
does not threaten the forward progress because that state
indicates that there are only priority read requests, but
not priority write requests. Therefore, since a node in Sp
does not have to serve read requests, the tokens can be
sent to other requests that require them (e.g., transient
write requests).

Figure 10(b) depicts the state transition diagram due
to the reception of response messages. Note that, when
a node is in a state marked with the p subscript and it
receives some tokens, (1) it transitions to another state,
(2) gets from its table the highest priority request that
is pending (Get PR), and (3) serves it as indicated in
Figure 10(a) (if appropriate). It will continue to serve the
pending priority requests until completing all of them or
lacking requested tokens. In addition, if a processor is in
Ip/Sp, it transitions to I/S when all the pending priority
requests for that block are marked as completed (as a
result of updating the table by using the information
received in the completed PR field of a message). These
transitions are not shown in the figures to simplify them.

4.7 Optimizing Rejected Priority Requests

As commented before, if the storage of a priority request
does not succeed, the priority request will not be served
(although the processor that rejects it holds sufficient
tokens to do it). According to this, with small tables, the
majority of the starved requests will require two priority
requests to be resolved. Though this is correct, it entails
to flood the network twice. To alleviate this problem,
when a processor holds all the tokens requested by
a priority request that is going to be rejected, it will
proceed to serve it immediately. Hence, a single priority

TABLE 2
System parameters

split L1 I&D caches 32 KB, 4-way, 1 cycle

unified L2 caches 8 MB, 4-way, 6 cycles

cache block size 64 bytes

DRAM latency 80 cycles (4 GB)

memory controllers 6 cycles

network link latency 3 cycles

switch cross latency 1 cycle

network routing latency 1 cycle

message header size 8/10 bytes*

TABLE 3
Applications and parameters

FFT 65,536 complex data points

Cholesky input file tk29.O

Radix 256k keys, radix of 1024

Barnes 16384 particles

LU 512×512 matrix, block size of 16

FMM 256 particles

Ocean 258 × 258 ocean

Volrend head scaledown2

request may be enough to solve the starvation. Note that,
in this case, the priority request has been served without
being stored, in a similar way to transient requests. This
simple strategy lets the network traffic be alleviated
due to the reduction of broadcast messages. Besides, the
average latency of resolving starvation will decrease (as
the response messages may be received sooner), which in
turn will contribute to improve the overall performance.

5 EXPERIMENTAL RESULTS

5.1 System Configuration and Benchmarks

We evaluate our proposal with full-system simulation
using Virtutech Simics [19] extended with the Wisconsin
GEMS toolset [20] which enables detailed simulation of
multiprocessor systems. Additionally, we have extended
it with a multiprocessor interconnection network simu-
lator developed by the Parallel Architecture Group [21].
We simulate a single-threaded 32-processor Sparc v9
system. Processors are in-order, single-issue processors.
Each node includes a processor, split L1 caches, unified
L2 cache, and coherence protocol controllers. Table 2
shows the system parameters, which are similar to those
chosen in [22]. Note that the latency of memory (80
cycles) is quite optimistic, but we just assumed this value
to speed up the simulations. The message header is 8
bytes when it does not include the completed PR field,
whereas it is 10 bytes when it does includes it.

The used workloads consist of the applications from
the SPLASH 2 suite shown in Table 3. We have chosen
only these applications because of the difficulties to
simulate all the applications from the SPLASH suite (due

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 12

TABLE 4
Table Size (in Bytes)

Pers Prio32 Prio16 Prio08 Prio04 Prio02 Prio01

256 320 160 80 40 20 10

to their time requirements). 20 simulations were run for
each application. The points of the figures shown in the
next section were obtained by averaging the results for
each application as described in [23].

We evaluate the referred system assuming that proces-
sors are connected through a mesh and a MIN network
with the perfect-shuffle permutation. However, since the
results for these networks are very similar, in this work
we only show the results for the MIN interconnect.
Although only two virtual channels are required for
the MIN, in the simulations we assumed three virtual
channels for increasing the performance. Response mes-
sages and resending notifications use the first virtual
channel, transient requests use the second one, and the
third virtual channel is for persistent/priority requests.
Priority requests use a single ordered path. The size of
the network messages (transient requests, responses, and
persistent/priority requests) accounts for the additional
information that they include.

We compare the persistent request mechanism imple-
menting a distributed arbitration scheme, with point-to-
point ordering, and a fixed-priority scheme against the
priority request mechanism with different tables sizes.
Note that the assumed persistent request mechanism
incorporates the optimizations suggested in different
works [6], [9]. Therefore, it is the most efficient version
of the mechanism. We assume only one simultaneous
outstanding persistent/priority request per processor
like done in other works [8].

5.2 Performance Evaluation

We compare Token Coherence using the persistent re-
quest mechanism (Persistent R) against Token Coherence
using the priority request mechanism with tables pro-
portional to the system size, that is, with 32-entry tables
(Priority R). In addition, we also compare those mecha-
nisms against the priority request mechanism using 16-
entry tables (Priority-16), 8-entry tables (Priority-8), 4-
entry tables (Priority-4), 2-entry tables (Priority-2), and
single-entry tables (Priority-1). Table 4 shows the size
(in bytes) of the tables for each option. The comparison
is performed in terms of number of requests suffering
starvation, number of control messages (data-less and
tokens-less) used to manage starvation, network traffic,
latency of resolving a starved request, and runtime. Be-
sides, it is also shown how the runtime scales depending
on the system size. The results shown in the following
figures are normalized to the values obtained for Token
Coherence using persistent requests (Persistent R).

Figure 11 illustrates the normalized number of re-
quests suffering starvation. As shown, when Token Co-

herence uses the priority request mechanism (Priority
R), the number of starved requests reduces significantly
(10% on average) because (1) tokens are always managed
efficiently since the performance policy is not overrid-
den, (2) transient requests can be served simultaneously
with priority requests, and (3) it is not necessary to wait
for the reception of acknowledgments to complete the
service of priority requests. When the size of the priority
request tables lowers, the number of starved requests
diminishes even more, reaching 25% of reduction on
average in case of single-entry tables. This is due to
two main reasons. First, as the tables are reduced, the
average latency of completing starved requests increases
(as we see next), which, in turn, automatically increases
the timer used to detect starvation, causing only the
requests that actually suffer starvation to be served by
the starvation prevention mechanism. Second, since the
service of the starved requests is slower, tokens remain
longer in caches, avoiding forwarding them too soon
and, therefore, preventing new starvation situations from
being generated.

Figure 12 shows the number of control messages used
to manage the generated starvation situations. These
messages include activation/deactivation messages in
Persistent R, priority requests in Priority R, and priority
requests and resending notifications when tables with
reduced size are used. As depicted, Priority R needs sig-
nificantly less control messages (up to 60% on average)
than Persistent R to manage starvation situations. This
happens because, first, Priority R generates less starva-
tion situations and, second, each starved request requires
less control messages: while Priority R uses one message
per starved request (one priority request), Persistent R
uses two messages (one activation message and one
deactivation message). For Priority-16, Priority-8, Priority-
4, and Priority-2, despite the fact that the number of
generated starved requests is smaller than that generated
by Persistent R, the total number of control messages is
higher. This happens because each starved request will
require, at worst, three control messages (two priority
requests and one resending notification), which increases
the total number of control messages between 10% and
20% on average with respect to Persistent R. However,
note that the number of broadcast messages, which are
the most harmful messages for the overall performance,
is still lower (between 20% and 35%) than the total
number of broadcast messages generated by Persistent R.
In case of Priority-1, as the number of starved requests
is so low, the total number of control messages is 5%
smaller than that generated by Persistent R. Besides, in
this last case, the number of broadcast messages is 45%
lower than that generated by Persistent R.

The normalized total traffic (in packets) generated
by Token Coherence is depicted in Figure 13. Control
Response stands for data-less response messages and
Starvation Control stands for persistent/priority requests.
As shown, Priority R slightly reduces the number of
Transient Request messages due to the fact that less cache

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 13

Bar
ne

s

C
ho

le
sk

y
FFT

LU
1

LU
2

R
ad

ix

FM
M

O
ce

an
1

O
ce

an
2

Vol
re

nd

Ave
ra

ge
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 s

ta
rv

e
d
 r

e
q
u
e
s
ts

Applications

Persistent R Priority R Priority-16 Priority-8 Priority-4 Priority-2 Priority-1

Fig. 11. Normalized number of starved requests

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o
rm

a
liz

e
d
 c

o
n
tr

o
l
m

e
s
s
a
g
e
s

Broadcast Messages Point-to-point Messages

Barnes Cholesky FFT LU1 LU2 Radix FMM Ocean1 Ocean2 Volrend Average

Fig. 12. Normalized number of starvation control messages

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R
P

ri
o
ri
ty

-1
6

P
ri
o
ri
ty

-8
P

ri
o
ri
ty

-4
P

ri
o
ri
ty

-2
P

ri
o
ri
ty

-1

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 t
ra

ff
ic

 (
in

 p
a
c
k
e
ts

)

Transient Request Data Response Control Response Starvation Control Resendin. Notification

Barnes Cholesky FFT LU1 LU2 Radix FMM Ocean1 Ocean2 Volrend Average

Fig. 13. Normalized injected traffic

misses are generated because of the use of an efficient
performance policy all the time. In turn, the reduction
of cache misses causes the number of Data Response and
Control Response messages to lower. Furthermore, as we
commented previously, Priority R requires less Starvation
Control messages than Persistent R. Thus, Token Coher-
ence using Priority R reduces about 20% the total traffic
generated with respect to Persistent R mainly because
Priority R efficiently manages tokens and memory blocks
(as efficiently as in absence of races). For Priority-16,
Priority-8, Priority-4, and Priority-2, although the overall
traffic is still smaller than that generated when using
Persistent R, it slightly increases with respect to that gen-
erated by Priority R mainly because of the increase in the
Starvation Control and Resending Notification messages.
For Priority-1, thanks to the high reduction of starved
requests, the overall traffic is more or less similar to that

generated by Priority R.

Figure 14 shows the average latency of completing
starved requests. It includes the elapsed time from a
starved request is detected up to the service of that
request is completed. According to Figure 14, Priority R
reduces about 25 % the average latency of completing a
starved request with respect to Persistent R. This reduc-
tion is due to the fact that, unlike Persistent R, Priority
R serves the starved requests without having to wait
any acknowledgment (or deactivation message). When
using Priority-16, Priority-8, Priority-4, or Priority-2 the
average latency increases slightly, being more or less
similar to that of Persistent R, as the priority requests
may require to be sent twice, having to wait for a point-
to-point acknowledgment (the resending notification).
Finally, when using single-entry tables (Priority-1), the
average latency increases by a factor of about 1.5. This

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 14

Bar
ne

s

C
ho

le
sk

y
FFT

LU
1

LU
2

R
ad

ix

FM
M

O
ce

an
1

O
ce

an
2

Vol
re

nd

Ave
ra

ge
0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 s

ta
rv

a
ti
o
n
 l
a
te

n
c
y

Applications

Persistent R Priority R Priority-16 Priority-8 Priority-4 Priority-2 Priority-1

Fig. 14. Normalized starvation latency

increase is due to the fact that some starved requests
may be served one by one (only one priority request
can be stored in the tables). Despite that, the latency
is not extremely large because some priority requests
can be served without being stored (according to the
optimization proposed in Section 4.7). This is possible
thanks to the fact that priority requests are ordered
messages, which usually suffices to solve most of the
protocol races.

Figure 15 illustrates the normalized runtime of the
applications. As shown, Priority R reduces the runtime
between 8 % and 20 % (on average, more than 10 % in a
MIN and more than 8 % in a mesh). In spite of reducing
the table size, the runtime of the applications when using
our approach is only slightly higher than that of Priority
R as the increase in both the overall traffic and the
average latency of starvation is offset by the reduction of
the number of starved requests. Thus, even though the
table are reduced to a single entry, the runtime is even
lower than that of the most efficient implementation of
the persistent request mechanism (Persistent R). This is
possible thanks to the considerable decrease of the star-
vation situations and the use of an efficient performance
policy all the time, which affects all the processors in the
system (independently of whether they are involved in
a race or they are not).

Figure 16 depicts how the performance of priority
requests scales according to the system size. Because of
space reasons, the figure only shows the average runtime
of the applications. As shown, although in small sys-
tems (4, 8, and 16 processors) the starvation prevention

04 08 16 32 64
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

Number of processors

Persistent R Priority R

Fig. 16. Normalized runtime depending on the system

size when tables are the maximum size

mechanism does not significantly affect the runtime of
applications, in medium systems (32 and 64 processors)
it does. Thus, as the size of the system increases, the
differences between priority requests and persistent re-
quests are more and more significant, reaching 22% of
reduction on average in a 64-processor system.

Finally, Figure 17 shows the runtime of the appli-
cations depending on the system size when using 2-
entry tables. In this case, the runtime is normalized to
that obtained for the priority request mechanism using
as many entries as number of processors. As you can
observe in the figure, when 2-entry tables are used, the
runtime of the applications is practically the same to that
obtained when using tables proportional to the system
size. Only in the 32-processor system, a slight increase
of the runtime (less than 2%) can be appreciated. This
figure gives an idea of how scalable (in runtime terms)
the proposed strategy is.

6 CONCLUSIONS

We have proposed a new starvation prevention mech-
anism, named priority requests, for Token Coherence.
Unlike persistent requests, starvation situations are re-
solved without requiring explicit acknowledgments and
without overriding the component that provides high
performance. As a consequence, Token Coherence using
the priority request mechanism solves starvation situa-
tions faster and generates less network traffic. This fact
contributes to reduce the execution time of applications,
specially when races are common (like in medium and
large systems).

Additionally, the priority requests can improve the
scalability of Token Coherence by decoupling its storage
requirements from the system size, while still maintain-
ing the overall performance. Despite the fact that the
table size can be reduced to a minimum of one entry,
the execution time of the analyzed applications is never
higher than that of the most efficient implementation of
the persistent request mechanism.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their
useful and valuable comments to improve the quality

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 15

Bar
ne

s

C
ho

le
sk

y
FFT

LU
1

LU
2

R
ad

ix

FM
M

O
ce

an
1

O
ce

an
2

Vol
re

nd

Ave
ra

ge
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

Applications

Persistent R Priority R Priority-16 Priority-8 Priority-4 Priority-2 Priority-1

Fig. 15. Normalized runtime

Bar
ne

s

C
ho

le
sk

y
FFT

LU
1

LU
2

R
ad

ix

FM
M

O
ce

an
1

O
ce

an
2

Vol
re

nd

Ave
ra

ge
0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

Applications

4 processors 8 processors 16 processors 32 processors

Fig. 17. Runtime (normalized to priority requests using tables with the maximum size) depending on the system size
when using 2-entry tables

of this paper. This work was partially supported by the
Spanish MEC and MICINN, as well as European Com-
mission FEDER funds, under Grants CSD2006-00046 and
TIN2009-14475-C04-01. Antonio Robles is taking a sab-
batical granted by the Universidad Politécnica de Valen-
cia for updating his teaching and research activities.

REFERENCES

[1] Poonacha Kongetira et al. Niagara: A 32-way multithreaded
SPARC processor. IEEE Micro, 25(2):21–29, 2005.

[2] H. Q. Le et al. IBM POWER6 microarchitecture. IBM J. Res. Dev.,
51(6):639–662, 2007.

[3] Owen Liu. AMD technology: power, performance and the future.
CHINA HPC ’07: Proceedings of the 2007 Asian technology informa-
tion program’s (ATIP’s) 3rd workshop on High performance computing
in China, pages 89–94, 2007.

[4] J. A. Kahle et al. Introduction to the Cell multiprocessor. IBM J.
Res. Dev., 49(4/5):589–604, 2005.

[5] James R. Goodman. Using cache memory to reduce processor-
memory traffic. ISCA ’83: Proc. of the 10th annual inter. symp. on
Computer architecture, pages 124–131, 1983.

[6] M.R. Marty, J.D. Bingham, M.D. Hill, A.J. Hu, M.M.K. Martin,
and D.A. Wood. Improving multiple-CMP systems using Token
Coherence. HPCA ’05: Proceedings of the 11th Int. Symp. on High-
Performance Computer Architecture, pages 328–339, 2005.

[7] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An
evaluation of directory schemes for cache coherence. SIGARCH
Comput. Archit. News, 16(2):280–298, 1988.

[8] Milo M. K. Martin et al. Token Coherence: decoupling perfor-
mance and correctness. ISCA ’03: Proc. of the 30th annual inter.
symp. on Computer architecture, pages 182–193, 2003.

[9] Milo M. K. Martin. Token Coherence. The University of Wisconsin
- Madison, 2003. Supervisor-Mark D. Hill.

[10] Blas Cuesta, Antonio Robles, and Jose Duato. An effective
starvation avoidance mechanism to enhance the Token Coherence
protocol. PDP ’07: Proc. of the 15th Euromicro Int. Conf. on Parallel,
Distributed and Network-Based Processing, pages 47–54, 2007.

[11] P. Sweazey and A. J. Smith. A class of compatible cache
consistency protocols and their support by the IEEE Futurebus.
SIGARCH Comput. Archit. News, 14(2):414–423, 1986.

[12] Michael R. Marty and Mark D. Hill. Coherence ordering for ring-
based chip multiprocessors. MICRO 39: Proc. of the 39th Annual
IEEE/ACM Int. Symp. on Microarchitecture, pages 309–320, 2006.

[13] Arun Raghavan et al. Token tenure: Patching token counting
using directory-based cache coherence. MICRO 41: Proc. of the
41th Int. Symp. on Microarchitecture, 2008.

[14] N. Agarwal et al. In-network snoop ordering (inso): Snoopy
coherence on unordered interconnects. International Symposium on
High Performance Computer Architecture (HPCA), February 2009.

[15] Blas Cuesta, Antonio Robles, and José Duato. Switch-based
packing technique for improving Token Coherence scalability.
PDCAT’08: Parallel and Distributed Computing, Applications and
Technologies, pages 83–90, 2008.

[16] Blas Cuesta, Antonio Robles Martinez, and Jose Francisco Duato
Marin. Improving Token Coherence by multicast coherence
messages. PDP ’08: Proc. of the 16th Euromicro Conf. on Parallel,
Distributed and Network-Based Processing), pages 269–273, 2008.

[17] J. Duato, S. Yalamachili, and L. Ni. Interconnection networks: An
engineering approach. Morgan Kaufmann, 2003.

[18] Herbert Sullivan and T R Bashkow. A large scale, homogeneous,
fully distributed parallel machine, i. SIGARCH Comput. Archit.
News, 5(7):105–117, 1977.

[19] Peter S. Magnusson et al. Simics: A full system simulation
platform. Computer, 35(2):50–58, 2002. IEEE Computer Society
Press.

[20] Milo M. K. Martin et al. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. SIGARCH Comput.
Archit. News, 33(4):92–99, 2005.

[21] GAP - Parallel Architecture Group. http://www.gap.upv.es./.
[22] Jayaram Bobba et al. Performance pathologies in hardware

transactional memory. SIGARCH Comput. Archit. News, 35(2):81–
91, 2007.

[23] Alaa R. Alameldeen and David A. Wood. Variability in architec-
tural simulations of multi-threaded workloads. HPCA ’03: Proc.
of the 9th Int. Symp. on High-Performance Computer Architecture,
page 7, 2003.

CUESTA et al.: EFFICIENT AND SCALABLE STARVATION PREVENTION MECHANISM FOR TOKEN COHERENCE 16

Blas Cuesta received the MS degree in Com-
puter Science from the Universidad Politécnica
de Valencia, Spain, in 2002. In 2005, he joined
the Parallel Architecture Group (GAP) in the De-
partment of Computer Engineering at the same
university as a PhD student with a fellowship
from the Spanish government, receiving the PhD
degree in computer science in 2009. He is
working on designing and evaluating scalable
coherence protocols for shared-memory multi-
processors. His research interests include cache

coherence protocols, memory hierarchy designs, scalable cc-NUMA and
chip multiprocessor architectures, and interconnection networks.

Antonio Robles received the MS degree in
physics (electricity and electronics) from the Uni-
versidad de Valencia, Spain, in 1984 and the
PhD degree in computer engineering from the
Universidad Politécnica de Valencia in 1995. He
is currently a full professor in the Department
of Computer Engineering at the Universidad
Politécnica de Valencia, Spain. He has taught
several courses on computer organization and
architecture. His research interests include high-
performance interconnection networks for mul-

tiprocessor systems and clusters and scalable cache coherence pro-
tocols for SMP and CMP. He has published more than 70 refereed
conference and journal papers. He has served on program committees
for several major conferences. He is a member of the IEEE Computer
Society.

José Duato received the MS and PhD degrees
in electrical engineering from the Universidad
Politécnica de Valencia, Spain, in 1981 and
1985, respectively. He is currently a professor
in the Department of Computer Engineering
at the Universidad Politécnica de Valencia. He
was an adjunct professor in the Department
of Computer and Information Science at The
Ohio State University, Columbus. His research
interests include interconnection networks and
multiprocessor architectures. He has published

more than 380 refereed papers. He proposed a powerful theory of
deadlock-free adaptive routing for wormhole networks. Versions of this
theory have been used in the design of the routing algorithms for
the MIT Reliable Router, the Cray T3E supercomputer, the internal
router of the Alpha 21364 microprocessor, and the IBM BlueGene/L
supercomputer. He is the first author of the Interconnection Networks:
An Engineering Approach (Morgan Kaufmann, 2002). He was a mem-
ber of the editorial boards of the IEEE Transactions on Parallel and
Distributed Systems, the IEEE Transactions on Computers, and the
IEEE Computer Architecture Letters. He was a cochair, member of the
steering committee, vice chair, or member of the program committee in
more than 55 conferences, including the most prestigious conferences
in his area of interest: HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP, ICDCS,
EuroPar, and HiPC. He has been awarded with the National Research
Prize Julio Rey Pastor 2009, in the area of Mathematics and Information
and Communications Technology and the Rei Jaume I Award on New
Technologies 2006.

