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Abstract

Replication is used by databases to implement reliability and provide scalability. However,

achieving transparent replication is not an easy task. A replicated database is transparent if it

can seamlessly replace a standard stand-alone database without requiring any changes to the

components of the system. Database replication transparency can be achieved if: (a) replication

protocols remain hidden for all other components of the system; and (b) the functionality of a

stand-alone database is provided.

The ability to simultaneously execute transactions under different isolation levels is a func-

tionality offered by all stand-alone databases but not by their replicated counterparts. Allowing

different isolation levels may improve overall system performance. For example, the TPC-C

benchmark specification [33] tolerates execution of some transactions at weaker isolation levels

in order to increase throughput of committed transactions. In this paper, we show how replication

protocols can be extended to enable transactions to be executed under different isolation levels.
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1. Introduction

Replication is considered transparent if it can be implemented and deployed in existing sys-

tems without requiring changes to system components or external applications.

Existing replication protocols hide replication management by implementing a standard database

access interface such as Java database connectivity (JDBC). Unfortunately, these solutions do

not really implement all the functionality available in stand-alone databases. A typical database

management system (DBMS) simultaneously executes transactions under different isolation lev-

els, but most replication protocols support a single level, which is usually either serialisable [7]

or snapshot isolation [4]. The authors of [8] identified this problem as one of the challenges in

database replication. Both TPC-C and TPC-W benchmarks also demonstrate that typical appli-

cations need to execute transactions at different isolation levels, mainly for performance reasons.

1.1. Benefits of supporting multiple isolation levels

In a database, transactions should ideally be executed in isolation without interfering with

each other. However, DBMSs allow some interference in order to increase concurrency and so,
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improve system response time and throughput. Unfortunately, concurrent execution of transac-

tions may generate anomalies (or phenomena) that must be resolved at the application tier. For

example, transaction T1 reads x data item while T2, another concurrent transaction, is updating

the same data item. Such a situation is defined as non-repeatable or fuzzy read phenomenon in

[4]. If transaction T1 reads data item x again, it may read a different value. Isolation levels are

defined by the anomalies that are forbidden in the execution of transactions [4].

The strongest isolation level is a serial execution of transactions (i.e., transactions can not be

executed concurrently). Due to performance issues, serialisability1 is usually the strongest isola-

tion level provided by a commercial DBMS. Not all transactions require such strong guarantees.

Therefore, commercial DBMSs also support weaker isolation levels. Many DBMSs (e.g., Post-

greSQL [29], Oracle [25], and Microsoft SQL Server [24]) use by default the read committed

[4] (RC) isolation level. This level is much weaker than the serialisable level since it allows non-

repeatable reads and phantom reads [4] (a transaction obtains differing results if it executes the

same read operation twice). These DBMSs delegate strong isolation levels for sensitive transac-

tions with strong isolation restrictions. For example, a transaction T1 that withdraws cash from a

bank account requires stronger isolation than a transaction T2 that only retrieves a list of account

balances. Notice that transaction T1 probably first reads the balance to check if there is enough

money to withdraw. Meanwhile if another transaction T3 modifies the same account balance, the

application may take incorrect decisions since the account balance changed when T1 updated the

account. However, this anomaly would never be produced by T2. Therefore, transaction T2 may

be executed under a weaker isolation level.

Although multiple commercial DBMSs agree on using RC by default they do not agree on

how the American National Standards Institute (ANSI) serialisable [14] isolation level should

be implemented. Several DBMSs provide a slightly weaker isolation level known as snapshot

isolation (SI) [4] that is faster but may produce non-serialisable executions. Some commercial

DBMSs, such as Microsoft SQL Server [24], allow applications to decide if they want to use

serialisable or SI. It is uncommon for applications to mix serialisable and SI transactions; yet

this may happen when multiple applications accessing the same database select different isolation

levels for transactions with strong isolation requirements. As a result, these DBMSs may face

situations in which serialisable, SI and RC transactions need to be executed concurrently.

Weak isolation levels reduce the complexity of concurrency control management and so may

improve the performance of DBMSs. Note that these levels can allow higher degrees of concur-

rency than the strictest isolation levels. Performance improvements are especially appealing for

ROWAA (read-once, write-all-available) [7] replication protocols since in these protocols isola-

tion management usually involves all database replicas. In several ROWAA replication solutions,

transactions are executed optimistically at a single replica (local replica); and updates are prop-

agated to all replicas before the transaction commits. Once updates are delivered, a validation

step is executed to guarantee that no forbidden phenomena occur due to conflicts with transac-

tions executed in other replicas. The stronger the isolation level, the larger the set of phenomena

that must be checked. Therefore, the complexity of the validation step depends on the isolation

level. Furthermore, the stronger the isolation level of a transaction, the greater is the probability

that the transaction will abort. For example, as we explain later in Section 5, serialisable trans-

actions require either the inclusion of the accessed values when updates are broadcast; or the

propagation of the local replica validation result. However, this step is unnecessary when weak

1Serialisability allows concurrency as long as the final result can be considered equivalent to a serial execution.



isolation levels are used. Under high workloads replicas spend resources validating transactions

that cannot be mitigated by adding more replicas, since all replicas have to perform the same

validation step. If many transactions can be executed under weaker isolation levels such as RC,

then network and CPU loads, as well as transaction abort rates, can be reduced significantly. For

instance, the performance results presented in [32] show that with the SIRC replication protocol

and for a given type of update transactions, only 60% of the completion time needed with SI was

required when RC isolation was used. Additionally, the abortion rate with RC isolation was 26

times lower than with SI.

In other ROWAA protocols (for example, primary copy replication protocols) validation is

entirely performed by one replica (usually known as the primary replica or the central validator).

In these cases, the validation gains obtained by weak isolation levels are negligible since no data

propagation is demanded to complete the validation step. Note, however, that in a system based

on a central validator the performance may degrade under medium and high workloads because

the central validator does most of the work and so easily becomes a bottleneck [35]. It also might

become a single point of failure. As a result, there is no optimal deployment for the validation

tasks, and relaxed isolation levels can always increase concurrency.

In this article we identify the conditions under which replication protocols transparently man-

age isolation levels and prove that protocols that satisfy these conditions are correct. We then

show how some popular ROWAA-based replication schemes can be extended to support different

isolation levels.

1.2. Related work

One of the main goals of this paper is to specify the correctness criteria needed to decide

whether a replication protocol is correct when it supports multiple isolation levels. Traditionally,

serialisability theory has been used as a correctness criterion for centralised systems [7]. The

execution of a set of transactions is considered correct if the result is equivalent to one possible

serial execution of the same set of transactions. If this set is executed in a replicated system, it is

considered correct if it is equivalent to one possible execution of the same set of transactions in a

serialisable centralised DBMS. This criterion was introduced by Bernstein et al. [7] as one-copy

serialisability or 1SR. However, serialisability can be expensive and to improve performance ex-

isting DBMSs allow transactions to be executed with weaker isolation guarantees. Most DBMSs

support the set of isolation levels defined by ANSI [14]. Unfortunately, ANSI definitions have

proven to be ambiguous and incomplete [4] and some systems that apparently provided serialis-

ability were actually providing a slightly weaker isolation level defined as snapshot isolation (SI)

by Berenson et al. [4]. SI is supported today by many commercial DBMSs (Oracle, PostgreSQL,

MS SQL Server, etc.) and is widely used by applications. Some works extended Bernstein equiv-

alence theory to one-copy-SI [21, 20] to define under which circumstances a replicated system

behaves as a centralised DBMS providing SI.

However, sometimes even SI is too expensive and regular applications use weaker isolation

levels for some transactions [33]. This may be reasonable in some cases. Note that some iso-

lation guarantees may be ensured at the application tier. In other cases, the appearance of some

phenomena (such as the reading of stale data) in the execution of some transactions is considered

a minor problem and can be accepted if there are some performance improvements (e.g., a higher

degree of concurrency that enables a faster transaction completion time). Unfortunately, as far as

we know, existing one-copy equivalence definitions are not general enough and cannot be used

when multiple isolation levels are supported concurrently in a replicated system. Our paper tries

to fill this void.



Papers [6] and [32] presented specific protocols that support several isolation levels simulta-

neously ([32] includes some empirical results). However, these papers do not present a general

solution, nor do they formally demonstrate the correctness of their proposals.

In [30], the authors present a meta-protocol that can execute several replication protocols

at the same time. Before the execution of a transaction, one of the supported replication pro-

tocols is selected based on the transaction requirements. This approach is more modular and

general than [6, 32] since isolation is only one possible criterion to match a protocol to a given

transaction. However, sometimes modifying an existing and implemented protocol is a more

straightforward solution than deploying a meta-protocol and developing at least one protocol per

supported isolation level. Furthermore, the work in [30] does not prove the correctness of the

protocols, since it only discusses the architecture of the meta-protocol. The specifications pre-

sented here can be applied to prove the correctness of a given combination of protocols managed

by the meta-protocol.

In [16] the authors present a replication protocol supporting serialisable, snapshot isola-

tion (SI) and generalized SI (GSI) [11], a variation of SI more suitable to distributed databases

(in GSI, each transaction may start immediately in its local replica by reading from its cur-

rently available database snapshot, whilst a strict interpretation of SI semantics requires the latest

system-wide database snapshot to be obtained and this might demand an additional synchroni-

sation step at each transaction start). Our work can be used to prove the correctness of these

protocols and all their variations.

The correctness theory presented here to prove the correctness of replication protocols mixes

serialisation graphs and one-copy-equivalence concepts introduced by Bernstein et al. [7] with

the mixing theorem introduced by Adya [1] for centralised systems.

Serialisation graphs are used to represent dependencies among transactions during an exe-

cution in a DBMS. Since Bernstein’s work focuses on the serialisable isolation level, we use

Adya’s mixed serialisation graphs (MSG) and mixing-correct definition [1] to support other iso-

lation levels as well. Unfortunately, Adya’s mixing theory does not include the SI level and, most

importantly, his specifications are not directly applicable to replicated systems, as illustrated by

Lin et al.’s [20] extensions. In Section 3.3 we extend MSG and mixing-correct definitions to

examine the SI level. In Section 4.1 we make a further extension to support replicated systems.

One-copy-equivalence is needed to decide, from the user point of view, whether the execution

of a set of transactions in a replicated system can be considered equivalent to an execution of the

same set in a correct stand-alone system. We use our serialisation graph extensions to make

that comparison. Some other works use similar concepts and methodologies but none support

multiple isolation levels. For example, Lin et al.’s 1-copy-SI [20] focuses on SI replication

protocols. Our paper extends this approach since our correctness criteria can be applied to any

replication protocol supporting one, all, or a subset of the main isolation levels.

The protocol SER CBR used in Section 7 is a serialisable version of existing SI CBR [31]

that supports snapshot isolation. Both can be considered variations or interpretations of well

known serialisable and snapshot isolation protocols [17, 11, 21, 9]. MUL CBR combines SER

CBR and SI CBR to support the four main isolation levels considered in this work (see Section

3).

As it has been commented above, when multiple isolation levels are allowed in a database

replication system, its throughput is improved. There are some other means to optimise perfor-

mance in this kind of systems. A careful design of the replication mechanisms or the replication

protocol [10, 22] is the other common way. Both approaches are complementary and can be

integrated without problems.



Another related research line is that of managing data elements as abstract data types, consid-

ering their semantics in their accessing operations [23]. Thus, those operations are not restricted

to only read or write accesses and higher levels of concurrency may be allowed with specific

concurrency control mechanisms.

1.3. Roadmap

In Section 2 we provide a basis for this work by introducing the assumed system model.

Section 3 discusses the existing definitions and why they can not be used in our case. Section

4 identifies the conditions a replication protocol must satisfy to behave like a stand-alone com-

mercial DBMS. Section 5 shows a general scheme to upgrade existing replication protocols to

simultaneously support multiple isolation levels. Section 6 shows how the suggested scheme can

be applied to some existing ROWAA update-everywhere replication protocols; and an example

protocol is presented in Section 7. Finally, Section 8 concludes the article.

2. Background

2.1. Model

We assume an asynchronous system composed of a set of nodes N . Each node has a com-

plete copy of the database managed by a typical stand-alone DBMS locally supporting several

isolation levels. Replication is implemented by middleware deployed on top of the DBMS. This

middleware has access to a group communication system with an atomic broadcast primitive

[13]. A transaction can be initially submitted to any node in the system and which then becomes

its local node.

Nodes may fail by crashing. However, note that node failures and their recoveries are not the

focus of this paper. Database replication protocols should deal with failures, and many papers

have provided solutions to this problem, including [15, 19]. The recovery subprotocols that are

needed to manage this problem do not have any effect on our specifications nor on the architec-

tural protocol details needed for adequately managing multiple isolation levels. Therefore, no

further discussion on failures is given.

2.2. Databases and transactions

A database is composed of data items that can be read and modified by clients executing

transactions. A transaction Ti is a set of read and write operations executed atomically [1], that

is, either all operations execute or none execute. We represent the set of items read and written

by Ti as RS i and WS i, respectively. We call a transaction read-only if it does not contain any

write operations (WS i = ∅), and update otherwise. Every transaction terminates with a special

operation which can be a commit ci (committed transaction) or an abort ai (aborted transaction).

The commit persists all of Ti’s writes and the abort invalidates them. With ri(x) and wi(x) we

denote Ti’s read and write operations for a data item x. ri(x j) represents Ti’s read on the latest

modification of x performed by transaction T j. w j(x j) represents T j’s last update on x. If the

data item value read or written is the l−th update of T j on data item x, it is denoted by ri(x j.l) and

w j(x j.l). By x0 we represent an initial state of the item x. Finally, oi denotes any operation of Ti.

Hereafter, we present a formal definition of a transaction:

Definition 1 (Transaction). A transaction Ti for a set of operations oi is a total order < for which

the following holds:



• ci ∈ Ti iff ai < Ti

• If ci ∈ Ti,∀oi , ci ∈ Ti, oi < ci

• If ai ∈ Ti,∀oi , ai ∈ Ti, oi < ai

• Given o1, o2 ∈ Ti, o1 < o2 ∨ o2 < o1

If it is necessary to explicitly refer to a replicated system, a copy of data item x at node Na

is represented by xa; while T a
i

denotes the subset of transaction Ti operations executed at Na.

The notation of read, write, commit, and abort operations is also extended in the same way.

For example, ra
i
(x j) represents transaction Ti’s read operation executed at node Na over the last

update on x j performed by transaction T j on node Na.

2.3. Execution of transactions

Transaction executions are represented by their histories [7]. Relation o1 < o2 belongs to

a history H if both operations o1 and o2 execute in this order and either belong to the same

transaction or are conflicting (i.e., both operations access the same data item and at least one

of them is a write). Therefore, two read operations from distinct transactions are not directly

ordered in a history. More formally:

Definition 2 (History). A history H over a set of transactions T = {T1, ...,Tn} is a partial order

over a relation <H where:

• For every Ti ∈ T and every ok ∈ Ti: ok ∈ H.

• For every Ti ∈ T and every o1, o2 ∈ Ti: if o1 < o2 ∈ Ti, then o1 <H o2 ∈ H.

• If ri(x j) ∈ H, then w j(x j) ∈ H ∧ w j(x j) <H ri(x j).

• For any two conflicting operations oi(x), o j(x) ∈ H: oi(x) <H o j(x) ∨ o j(x) <H oi(x).

For the sake of simplicity and readability we use < instead of <H except in cases of ambiguity.

Hence, oi < o j ∈ H is equivalent to oi <H o j ∈ H.

In replicated systems, a transaction execution history over the replicated nodes is composed

of all the local executions. Given a set of transactions T , T a is the subset of T executed in node

Na. Thus, if Ti ∈ T , T a
i
∈ T a. Hence, the replicated history is defined as follows:

Definition 3 (Replicated history). A replicated history Hr over a set of transactions T and a set

of nodes N is a partial order with a relation <r where, for all Na ∈ N:

• For every T a
i
∈ T a and every oa

k
∈ T a

i
: oa

k
∈ Hr.

• For every T a
i
∈ T and every oa

1
, oa

2
∈ T a

i
: if oa

1
< oa

2
∈ T a

i
, then oa

1
<r oa

2
∈ Hr.

• If ra
i
(x j) ∈ Hr then there exists wa

j
(x j) ∈ Hr such that wa

j
(x j) <r ra

i
(x j).

• For any two conflicting oa
i
(x), oa

j
(x) ∈ Hr: oa

i
(x) <r oa

j
(x) ∈ Hr ∨ oa

j
(x) <r oa

i
(x) ∈ Hr.



For the sake of readability we use oa
i
< oa

j
∈ Hr instead of oa

i
<r oa

j
∈ Hr. We use oi ∈ Hr to

indicate that at least one node has executed operation oi. oi < o j ∈ Hr states that the operations

are executed in a given order in at least one node and there is no other node where operations

execute in different order (i.e., ∃Na ∈ N such that oa
i
< oa

j
∈ Hr and ∄Nb ∈ N such that

ob
j
< ob

i
∈ Hr). Finally, to show that any two conflicting operations oi ∈ Ti and o j ∈ T j, and

oi < o j ∈ Hr, we use Ti < T j ∈ Hr.

In this article we focus on update everywhere replication solutions that implement a ROWAA

scheme. In those protocols, the read operations of a transaction only execute at the local node

and write operations must be applied in all the database replicas. More formally:

Definition 4 (ROWA transaction). Given a transaction Ti and a node Na, we define T a
i

as:

• T a
i

is a subset of Ti .

• If T a
i
, ∅ and ci ∈ Ti, then ca

i
∈ T a

i
.

• If T a
i
, ∅ and ai ∈ Ti, then aa

i
∈ T a

i
.

• If ri(x) ∈ Ti, then ra
i
(x) ∈ T a

i
iff Ti is local to Na.

• If o1 < o2 ∈ Ti, and oa
1
, oa

2
∈ T a

i
, then oa

1
< oa

2
∈ T a

i
.

• If ci ∈ Ti, then ∀wi(x) ∈ Ti: wa
i
(x) ∈ T a

i
.

3. Stand-alone systems

3.1. Concurrency control mechanisms

In stand-alone systems, isolation is managed by concurrency control protocols that usually

rely on locks, versions, or both to manage concurrency. With a lock-based concurrency control

[4], transaction operations acquire locks to access data items that block the operations of other

transactions until the lock is released. A blocked operation can execute once the lock is released.

There are two kinds of locks: read and write; and they can be used for different durations: long

and short. Read locks only block write operations while write locks block both reads and writes.

Long locks are released when the transaction finishes, short locks are released when the operation

finishes. The isolation level provided depends on the locks used during transactions execution.

Version-based concurrency control mechanisms store multiple versions per item [7, 34]. A

new version of a data item is created in every write operation, but it becomes definitive (i.e.,

visible to new transactions) only when the transaction commits. In order to commit, a validation

test must be applied to abort transactions that violate isolation constraints. The isolation level is

determined by phenomena forbidden by this test.

3.2. Isolation levels

Several isolation level classifications have been proposed in the literature [14, 4, 1]. The

majority describe and classify different types of transaction phenomena and define isolation lev-

els depending on the forbidden phenomena. ANSI [14] and Berenson et al. [4] are probably

two of the most referenced classifications. However, the ANSI classification has been proven to

be ambiguous and the classification in [4] is oriented to lock-based concurrency control mech-

anisms and cannot be directly applied to version-based protocols [1]. To avoid ambiguity and

implementation dependency we rely on the specifications given in [2].



Adya et al. [2] analyse each of the isolation levels assuming that the same isolation level is

granted to all transactions. The study is based on directed graphs that represent dependencies

between transactions — direct serialisation graphs (DSG). For completeness, we discuss DSGs

in the following section.

3.2.1. Direct serialisation graphs (DSG)

DSGs represent dependencies between transactions. Those dependencies are based on con-

flicts.

Definition 5 (DSG). Given a history H, DS G(H) is a directed graph containing one vertex

per committed transaction in H and an edge from Ti to T j if one of the following dependencies

occurs2:

• Direct read-dependency: T j directly read-depends on Ti, denoted by Ti
wr

−→ T j, if r j(xi) ∈

H.

• Direct write-dependency: T j directly write-depends on Ti, denoted by Ti
ww

−→ T j, if

wi(xi),w j(x j) ∈ H, wi(xi) <H w j(x j) and there is no wk(xk) ∈ H: wi(xi) <H wk(xk) <H

w j(x j).

• Direct anti-dependency: T j directly anti-depends on Ti, denoted by Ti
rw

−→ T j, if ri(xm),w j(x j) ∈

H ∧ ri(xm) <H w j(x j) and there is no wk(xk) ∈ H: ri(xm) <H wk(xk) <H w j(x j).

T j depends on Ti if T j either directly read-depends or directly write-depends on Ti. We also

say that T j anti-depends on Ti when T j directly anti-depends on Ti.

As an example, consider the following history:

H1 = ri(x0)wi(xi)ri(y0)ciw j(y j)w j(x j)c j.

The example assumes that an initial transaction T0 creates the original versions of all data

items. The associated DSG is depicted in Figure 1. The execution history results in four depen-

dencies and one anti-dependency.

T0 Ti T jwr/ww rw/ww

ww

Figure 1: DSG of H1

Using DSGs, the following isolation levels were defined: PL-1, PL-2 and PL-3 [1] which

replace the conventional isolation levels read uncommitted (RU), read committed (RC) and seri-

alisable (S), although they are not exactly the same. For example, PL-2 is weaker than RC [1].

Adya also defined the isolation level PL-SI, equivalent to the original SI [4], using start-ordered

serialisation graphs (SSGs)3 instead of DSG. We suggest a different definition that is based on

2We refer to the definitions given in [2] instead of those presented in [1].
3SSG contemplates start-dependencies, a new type of dependency edges.



DSG and can be easily included in the Adya mixing theory explained later in this section. To

this end, the conditions assumed by start dependencies are explicitly stated in our SI condition

(b), so avoiding the G-SIa (interference) phenomenon introduced by Adya [2], whilst our condi-

tion (c) complements (b) in order to avoid G-SIb phenomenon (missed effects). As a result, our

SI definition is equivalent to that of PL-SI in [2], since Adya’s definition requires a PL-2 basis

complemented with the avoidance of G-SIa and G-SIb phenomena in order to specify the PL-SI

level.

The conditions demanded by these basic isolation levels are summarised below:

Definition 6 (Basic isolation levels). Given a history H:

• PL-1: A history is PL-1 if DS G(H) does not contain any cycles composed only of direct

write-dependencies.

• PL-2: A history is PL-2 if:

(a) A committed transaction does not read a value written by an aborted transaction

(aborted value in the sequel)

(b) For every ri(x j.l) ∈ H, if T j commits in H there is no w j(x j.m) with l < m (intermediate

value), and

(c) DS G(H) does not have any cycle composed by dependency edges.

• SI: A history is SI if:

(a) H is PL-2.

(b) If T j
ww

−→ Ti ∈ DS G(H) ∨ T j
wr

−→ Ti ∈ DS G(H), then c j < si.

(c) If T j
rw

−→ Ti ∈ DS G(H), then s j < ci.

Note that, given an index k, the logical operation sk is only an alias for the first operation

of transaction Tk in H. It can be understood as the starting point of Tk.

• PL-3: A history is PL-3 if:

(a) H is PL-2.

(b) H does not have any cycle containing anti-dependency edges.

3.3. Extended mixed serialisation graph (EMSG)

To analyse transactions that can be executed under different isolation levels we use a variation

of DSGs: extended mixed serialisation graphs (EMSG) [5]. The following example explains why

DSGs can not be used in such cases:

The DSG in Figure 2 depicts the dependencies between transactions Ti and T j. The execution

history is PL-1 if both Ti and T j requested PL-1; if Ti and T j requested PL-2 the given execution

is not PL-2. If transaction Ti requested PL-1 and transaction T j requested PL-2, the given DSG is

insufficient to detect if the given execution history is correct. EMSGs are instead used to define

correct execution histories if different isolation levels are used for different transactions.

EMSG [5] is an extension of the mixed serialisation graph (MSG) introduced by Adya [1].

MSGs represent dependencies among PL-1, PL-2 and PL-3 transactions in histories. Given a



Ti T j

ww

wr

Figure 2: Example graph

history H, MS G(H) is a subset of DS G(H) including only the obligatory edges that depend on

the isolation levels of the different transactions. EMSG extends MSG to also consider histories

with SI transactions:

Definition 7 (EMSG4). Given a history H, an EMS G(H) has the same vertices as DS G(H)

and a subset of its edges known as obligatory edges. The edge e ∈ DS G(H) from Ti to T j is an

obligatory edge in EMS G(H) if either:

• e is a direct write-dependency edge, or

• e is a direct read-dependency edge and T j is executed under PL-2, PL-3 or SI, or

• e is a direct anti-dependency edge and Ti is executed under PL-3.

Therefore, EMSGs only include those edges that may violate at least one transaction isolation

restriction. Adya’s mixing-correct [1] definition can also be extended to identify valid execution

histories with PL-1, PL-2, SI and PL-3 transactions:

Definition 8 (Valid history). A history H is valid if:

(a) PL-2, PL-3 or SI transactions do not read aborted or intermediate values.

(b) EMS G(H) does not contain any cycle.

(c) If ri(xk) < w j(x j) ∈ H and Ti is SI, then si < c j ∈ H.

(d) If T j
ww

−→ Ti ∈ EMS G(H) or T j
wr

−→ Ti ∈ EMS G(H) and Ti is SI, then c j < si ∈ H.

(e) If Ti
ww

−→ T j ∈ EMS G(Hr) and Ti is SI, then ci < c j ∈ H.

Note that EMSGs should not contain any cycle. Since cycles with anti-dependency edges are

not explicitly considered in our SI definition, these edges are not obligatory for SI transactions

in Definition 7.

Thus, the execution history presented in Figure 2 is valid if transaction Ti is executed under

PL-1 and transaction T j is executed under PL-2. The history is also invalid if Ti requested PL-2

and T j requested PL-1.

Definition 8 does not necessarily mean that concurrency control protocols should search for

cycles in EMSGs. It only points out what should be considered to detect valid execution histories

and not how that should be done.

4This definition is taken from [5]. Def. 8, Sect. 4 and the appendices extend, complement, and prove the preliminary

results presented in [5].



Unfortunately, EMSGs and Definition 8 cannot be used in replicated environments. In repli-

cated systems there is one transaction execution history per node and so Definition 8 cannot be

applied directly because it does not account for dependencies between nodes. For example, two

conflicting transactions can execute at two distinct nodes in different order but the local graphs

at each node could still satisfy the conditions of Definition 8. In the following section, we extend

the EMSGs and define an equivalent set of conditions suitable for replicated environments.

4. Extending EMSG to replicated environments

Firstly, we extend EMSGs to model replicated executions; then, in Section 4.2 we define

when a replicated execution is equivalent to a given stand-alone execution; independently of the

isolation level used by transactions. Finally, in Section 4.3 we identify the conditions under

which the transaction history produced by a replication protocol is correct.

4.1. Extending EMSG to replicated systems

Although EMSGs can be used to separately model and evaluate the execution of each node,

they cannot represent a transaction execution history of the whole replicated system. For exam-

ple, assume two transactions Ti and T j update the same data item x at nodes Na and Nb but in a

different order. The EMSGs representing the two executions are depicted in Figure 3.

Ti T j Ti T j

ww

ww

Figure 3: Example: Na and Nb EMSGs

Taken separately each EMSG presents a valid execution history, but unfortunately, the global

execution is invalid. The cycle is depicted in Figure 4.

Ti T j

ww

ww

Figure 4: Example: global execution

We extended EMSG by combining local EMSGs into a single graph — a replicated mixed

serialisation graph or RMSG. Some authors have proposed similar solutions but oriented to

single isolation-level executions. Recently, Lin et al. [20] defined union serialisation graphs

(USG) to present 1-copy-SI, a set of conditions to ensure valid SI-only executions. Previously,

Bernstein et al. [7] used a similar approach to define 1-copy-serialisability.

Definition 9 (Replicated mixed serialisation graph (RMSG)). Given a replicated history Hr over

a set of transactions T and a set of local historiesH , RMS G(Hr) is constructed as follows:



• Every committed transaction in T is a vertex in RMS G(Hr).

• For every local history Ha ∈ H , if T a
i

ww

−→ T a
j
∈ EMS G(Ha), then Ti

ww

−→ T j ∈ RMS G(Hr).

Similarly, if T a
i

wr

−→ T a
j
∈ EMS G(Ha) (resp. T a

i

rw

−→ T a
j
∈ EMS G(Ha)), then Ti

wr

−→ T j ∈

RMS G(Hr) (resp. Ti
rw

−→ T j ∈ RMS G(Hr)).

4.2. Equivalence between replicated and stand-alone histories

To the best of our knowledge, all research on equivalence between transaction histories is

based on a single isolation level. Conflict and view equivalences were defined for protocols that

guarantee serialisability [7]; SI-equivalence was proposed in [21]. Hereafter we propose a new

definition that is suitable for transaction executions where multiple isolation levels are supported.

Informally, a replicated history is equivalent to a stand-alone history if all the following

conditions are held:

• Uniform writes: all replicas and the stand-alone system see the same sequence of updates

on each database item (however, note that this does not imply that every replica sees exactly

the same sequence of database states since updates on different items may be served in

different orders in different replicas),

• Uniform reads: a read operation obtains the same value in the replica histories and in the

stand-alone history,

• Uniform isolation management: all replicas and the stand-alone system implement isola-

tion levels in the same way.

The above concepts are formalised as follows:

Definition 10 (Equivalence definition). Given a replicated history Hr and a stand-alone history

H, Hr is equivalent to H if:

C1: H and Hr execute the same set of transactions T and commit the same subset Tc ∈ T .

C2: For any committed transaction Ti ∈ Tc, ri(x j) ∈ H iff ri(x j) ∈ Hr.

C3: For every two transactions Ti,T j ∈ Tc, wi(x) < w j(x) ∈ H iff wi(x) < w j(x) ∈ Hr.

C4: For every transaction Ti ∈ Tc executed under SI and any other transaction T j ∈ Tc:

(a) If WS j ∩WS i , ∅ then c j < si ∈ H iff c j < si ∈ Hr

(b) If WS j ∩WS i , ∅ then ci < c j ∈ H iff ci < c j ∈ Hr

(c) If WS j ∩ RS i , ∅ then c j < si ∈ H iff c j < si ∈ Hr.

An index k, in a replicated environment sk, represents the starting point of Tk. Thus, sk is

an alias of the first Tk operation executed in its local node. For example, if Na is the local node

of Tk and o1 is its first operation (i.e., ∄oi ∈ Tk for which oi < o1 ∈ Tk), then sk = oa
1
. Thus,

ci < sk ∈ Hr means that ca
i
< oa

1
∈ Hr.

C1, C2 and C3 are taken from Bernstein et al. [7] equivalence definition and adapted to

our context. C1 ensures that H and Hr are over the same sets of transactions and committed

transactions. C2 guarantees that every read sees the same value in Hr and in H. C3 ensures that

both H and Hr see the same sequence of states on every database item. Finally, C4 shows that H

and Hr resolve snapshot-read and snapshot-write SI restrictions [1] in the same way.



4.3. Replication protocol correctness

Definition 11 extends Definition 8 and defines when a replicated history can be considered

valid.

Definition 11 (Valid replicated history). A replicated history Hr is considered valid if the fol-

lowing conditions hold:

(a) Transactions executing under PL-2, PL-3 or SI isolation levels never read aborted or in-

termediate data at any replica.

(b) RMS G(Hr) does not contain any cycle.

(c) If ri(xk) < w j(x j) ∈ Hr and Ti executes under SI, then si < c j ∈ Hr.

(d) If T j
ww

−→ Ti ∈ RMS G(Hr) or T j
wr

−→ Ti ∈ RMS G(Hr) and Ti executes under SI, then

c j < si ∈ Hr.

(e) If Ti
ww

−→ T j ∈ RMS G(Hr) and Ti executes under SI, then ci < c j ∈ Hr.

Definition 12 states when a valid replicated history Hr should be considered correct.

Definition 12 (Correct replicated history). A valid replicated history Hr is correct if there is an

equivalent valid history H.

Theorem 1 says that all valid replicated histories are correct.

Theorem 1 (Correctness). Every valid replicated history Hr has an equivalent valid history H.

Therefore, every valid Hr is correct.

A correctness proof and a set of interesting properties can be found in the appendices.

5. Supporting multiple isolation levels in replication protocols

Theorem 1 meets one of the main goals of this work by showing when a replication protocol

that allows transaction executions under several isolation levels, produces a correct execution

history. We show below how some popular replication solutions can be extended to support

different isolation levels.

5.1. Protocol classification

There have been several attempts in the past to classify replication protocols [12, 36, 35, 9].

In this paper we focus on the classification presented in [36]. Different protocol types are iden-

tified based on three parameters (server architecture, server interaction and transaction termina-

tion), with each parameter having two possible alternatives. Replication protocols belonging to

any of the eight possible categories should be able to provide multiple isolation levels. Unfor-

tunately, there are subtle differences among the protocols in different classes, and providing a

single schema to extend them to support different isolation levels is not a trivial task.

Based on the server architecture two protocol classes are distinguished: primary copy and

update everywhere. Primary copy protocols use a primary database replica where all update

transactions are executed and only read-only transactions may be executed in secondary replicas.

Update everywhere protocols allow the execution of update transactions at any node. It is fairly



straightforward to provide multiple isolation levels in primary copy protocols, since the execution

of update transactions is fully handled by local concurrency control mechanisms in a primary

replica. Protocols that fall into linear interaction category (one of the alternatives for server

interaction) result in high communication overheads among replicas, and are not considered in

this work.

Therefore, only two of the original eight classes identified in [36] are further studied in this

section: those based on update everywhere replication that require a constant number of messages

to complete the transaction.

5.2. Protocol implementation choices

There are many update everywhere replication protocols with constant server interaction pro-

posed in the literature [3, 27, 18, 28, 21]; many of which share the same characteristics:

• Transactions can be submitted and executed in any replica. There is no dedicated replica

that centralises transaction management.

• For any transaction a constant number of messages is exchanged among replicas. These

messages usually propagate transaction updates. Although other solutions are possible,

we limit our discussion to protocols that broadcast transaction data at the end of each

transaction, i.e., when the transaction requests a commit locally.

• Write-set (and, in some cases, read-set [26]) dissemination is achieved using atomic broad-

cast primitives. This ensures that all replicas see the same sequence of updates, i.e., the

same sequence of transactions.

• Local transactions execute under the requested isolation level provided by the underlying

DBMS. The replication middleware must ensure that the global execution history, that

combines both local and remote transactions, is correct.

Depending on transaction termination, two conflict resolution schemes are possible [36]:

voting and certification. Protocols based on voting can be further divided into two categories:

those that are symmetric and require a vote from every replica, and those that rely on the decision

of a single replica (weak voting replication [35]). In the following, we will focus only on the

weak voting approach. The communication costs imposed by symmetric voting are equivalent to

2PC [36]. Certification-based replication is quite similar to weak voting and only differs on how

transaction reads are propagated for PL-3 protocols. Certification-based PL-3 solutions require

both the read-set and the write-set for the validation step at every replica. Weak voting PL-3

protocols validate reads only at the local replica which later broadcasts the decision to the rest

of the nodes. For SI protocols no read-set or extra message propagation is necessary [17] and so

there are no substantial differences between both replication schemes.

5.3. A generic scheme to provide multiple isolation levels in replication

Our generic scheme is based on the principles presented in [6]. These principles are general

enough to be applied to any transaction termination approach (i.e., voting and certification).

A database replication protocol based on weak voting or certification consists of the following

steps [35]:

1. Start: when a local node Ni receives a transaction Ti from a client Ci and executes the

transaction locally.



2. Broadcast: when client Ci requests the transaction commit, the transaction write-set (and

maybe the read-set) is propagated to all replicas using atomic broadcast. Note that if a

transaction has an empty write-set (i.e., it is a read-only transaction) no broadcast is needed

and it can commit immediately.

3. Validation: on delivery of such a broadcast message, each replica checks if any conflicting

transaction has been executed concurrently and is already committed.

4. Termination: if a conflict is detected, transaction Ti is aborted. Otherwise, it is committed.

Depending on the protocol, the local replica Ni may use a reliable broadcast to propagate

the commit or abort decision to other replicas.

To support multiple isolation levels in such a sample protocol, we apply our generic scheme

and extend the protocol steps as follows:

a) The start step is extended to request the appropriate isolation level from the DBMS.

b) The broadcast step is extended to include the isolation level of the transaction in the broad-

cast message.

c) The validation step is updated to use the appropriate conflict detection rules for each iso-

lation level.

This last topic deserves further explanation and is discussed in the following section.

6. Conflict resolution

In this section we modify the start, broadcast and validation steps of a protocol that manages

PL-3 to also support PL-1, PL-2 and SI isolation levels. For the sake of simplicity, we focus on

certification-based techniques. We later explain adjustments that can be made if weak voting is

used. We also show how Theorem 1 can be used to prove the correctness of the new scheme.

Multiple isolation level scheme or MLS:

1. Start: when a replica Ni receives a transaction Ti from a client Ci:

• The number of committed update transactions is taken as Ti’s start-timestamp sti.

• Ti is started at the underlying DBMS with the requested isolation level.

• Ti’s operations are executed until commit is requested5. In PL-2, PL-3 and SI trans-

actions, reads are not allowed to obtain values written by non-committed transac-

tions. In lock-based concurrency control protocols this is achieved by using long

write locks for writes (released only at transaction commit or abort) and at least short

read locks for reads (released at the end of operation). In version-based protocols,

the same is ensured by obtaining the latest version confirmed by committed transac-

tions. For PL-1 transactions, read dependencies are not obligatory and so there are

no restrictions on reads.

2. Broadcast: when Ci requests to commit Ti:

• Ti’s writes are collected into WS i. For PL-3 transactions, reads are also gathered into

RS i.

5Some protocols [17] delay writes until the termination step.



• If WS i = ∅, Ti is committed.

• If WS i , ∅, WS i, RS i (only for PL-3 transactions), Ti’s isolation level and sti are

atomically broadcast to all replicas.

3. Validation: when WS i is delivered at a replica Na:

• The number of committed update transactions is taken as Ti’s commit-timestamp cti.

• If Ti is PL-3, WS i is discarded if there is a T j, that has already been validated, RS i ∩

WS j , ∅ and sti < ct j.

• If Ti is SI, WS i is discarded if there is a T j, that has already been validated, WS i ∩

WS j , ∅ and sti < ct j.

• If there are any other PL-3 T j transaction that is local to node Na, and has not reached

the validation yet and WS i contains an x item read by T j, then T j is aborted and the

respective client C j is informed.

4. Termination: if Ti terminates the validation step in Na:

• If Ni = Na, Ti is aborted if WS i is discarded during the validation step. Otherwise,

it is committed and the updates are persisted. Notice that local transaction writes

are persisted in committing order, not in execution order. Fortunately, all known

concurrency control mechanisms ensure such a restriction. The result is sent to Ci.

• If Ti passes the validation step and Ni , Na, WS i is applied. The implementation of

the protocol must ensure that WS i is not aborted by the replica’s DBMS.

Notice that validation and termination steps are executed as a single atomic step. To increase

the performance of the system, some existing protocols [17, 21] execute validation and termina-

tion separately, allowing validation even if the previous write-sets are not yet applied. However,

the authors of [31] revealed that this improvement can produce some undesirable effects (for

example, the abort of correct transactions).

Below we first prove that all replicas apply write-sets in the same order, and then we show

that the conditions of Definition 11 are satisfied.

Lemma 1 (MLS applies write-sets in the same order). Given a replicated history Hr over a set

of transactions T and a set of nodes N .

• for any two replicas Na,Nb ∈ N that apply WS i and WS j, they apply WS i and WS j in the

same order.

• if a replica Na ∈ N applies WS i then every other replica Nb ∈ N applies WS i.

Proof. Write-sets are propagated using an atomic broadcast and, hence, are delivered to all active

replicas in the same order. Validation and termination are executed in a single atomic step and so

all the write-sets are applied in order of their delivery, and this fact proves the first part of Lemma

1.

We prove the second part of the Lemma by induction. Assume WS i to be validated. If no

update transaction has been previously delivered and committed, Ti validates and commits at Na

and Nb. Assume now that the same setU of update transactions has committed previously at Na

and Nb. If Ti requests a PL-1 or PL-2 isolation level it is directly validated. If Ti is SI, then the

validation result will be different in both replicas if there is a committed transaction T j at Na for



which WS i ∩WS j , ∅ and sti < ct j; but this does not happen at Nb. Since T j commits before Ti

at Na and it is an update transaction, T j ∈ U. SinceU has been applied also at Nb, from the first

part of the lemma, T j commits at Nb before the Ti validation and so the only possible difference

can be in how ct j and sti are ordered.

sti is calculated at the local replica when the transaction starts and is propagated in the broad-

cast message. Hence, all replicas share the same value. ct j is calculated at every replica as the

number of previously committed transactions when T j is validated. Since we assume all nodes

have applied U and, from the first part of the lemma, in the same order, cti must take the same

value at Na and Nb. Thus, if sti and ct j have the same value at Na and Nb, and WS j is applied in

both before Ti is validated, then the validation must produce the same result, i.e., Ti is accepted

or aborted at both replicas. Notice that the same proof can be applied for PL-3 transactions since

the only difference is that RS i is used instead of WS i. However, in both cases, it is compared

against previously applied write-sets. Therefore, Ti never obtains a different validation result at

Na and Nb and this proves the Lemma’s second assertion.

Theorem 2 (MLS protocol correctness). Any possible history Hr that can be produced by the

MLS protocol is correct.

Proof. To begin with, we prove each condition of Definition 11 separately:

• Condition (a). MLS is based on the assumption that every DBMS locally ensures the

isolation levels requested globally by replication protocols. Thus, the local DBMS never

allows PL-2, SI or PL-3 transactions to read any aborted or intermediate value.

• Condition (b). This condition forbids cycles in RMS G(Hr). We can prove this by defining

a function f over Hr in such a way that for every two committed transactions Ti,T j ∈ Hr

and an edge e ∈ RMS G(Hr) from Ti to T j, f (Ti) < f (T j). If a function such as this can

be defined in MLS, a cycle T1 → T2 → ... → Tn → T1 is impossible because, otherwise,

f (T1) < f (T2) < ... < f (Tn) < f (T1), which is a contradiction.

To define f we use transaction event ordering. Thus, given a transaction Ti, f (Ti) = ci

(i.e., the position in Hr of the transaction commit event). We should prove that for any

edge e ∈ RMS G(Hr) from Ti to T j, ci <r c j ∈ Hr (ci < c j ∈ Hr in the sequel).

As shown in Definition 9, the dependency edges included in RMSG depend on the iso-

lation levels requested by their vertices. Given a committed transaction Ti and an edge e

involving Ti and another transaction T j, e is in RMS G(Hr) if:

– e is T j
ww

−→ Ti.

– e is T j
wr

−→ Ti and Ti is PL-2, PL-3 or SI.

– e is Ti
rw

−→ T j and Ti is PL-3.

Lemma 1 shows that write-sets are applied in the same order at every node and, hence, if

e = Ti
ww

−→ T j then ci < c j at all replicas.

If e = Ti
wr

−→ T j then T j has read a value written by Ti at its local node Na. Thus, the read

has been executed after WS i is applied at Na and hence, ca
i
< ca

j
. If T j is read-only then

it does not propagate any write-set and ci < c j is the global order. Otherwise, Lemma 1

ensures that WS j is delivered after WS i at all nodes and so ci < c j at all replicas.



If e = Ti
rw

−→ T j then Ti is PL-3. Hence, ri(xk) < w j(x j) (otherwise x j value would be read)

and si < c j at the local replica of Ti. If Ti is validated at this replica after T j then PL-3

validation step aborts Ti because sti < ct j and RS i ∩ WS j , ∅. Hence, if e = Ti
rw

−→ T j

then Ti must be validated and applied before T j, which means cti ≤ ct j (if Ti is read-only

cti may be equal to ct j). Since the commit-timestamp is the number of committed update

transactions when the transaction commits and T j is an update transaction, if cti ≤ ct j

then ci < c j. If Ti is a read-only transaction that order can be taken as the global order.

Otherwise, atomic broadcast ensures that ci < c j at all system nodes.

To sum up, for any edge e ∈ RMS G(Hr), if e connects Ti to T j then fc(Ti) = ci < c j =

fc(T j) and, hence, cycles are impossible.

• Condition (c). This condition is held if for every SI transaction Ti, if ri(xk) < w j(x j) then

si < c j. si < c j in a replicated history Hr if ∄Nb for which c j < si ∈ Hb (Section 2.3).

Assume Na as Ti local replica. Since Ti reads are executed only at Na and local DBMSs

support SI locally, sa
i
< ca

j
∈ Na. sta

i
is calculated only at the local replica and, from

Lemma 1, ct j obtains the same value at all replicas because the same sequence of write-

sets is observed in them. Hence, if sta
i
≤ cta

j
∈ Na (Ti may be a read-only transaction) then

sti ≤ ct j in the entire system, and this also implies that si < c j.

• Condition (d). In this condition, if T j
ww

−→ Ti ∈ RMS G(Hr) or T j
wr

−→ Ti ∈ RMS G(Hr)

and Ti is SI then c j < si. Assume Na as Ti’s local replica. Since Na’s local DBMS ensures

SI for Ti, ca
j
< sa

i
and cta

j
< sta

i
. From Lemma 1, ct j is the same at all system replicas.

Hence, if ca
j
< sa

i
∈ Ni, then c j < si for the entire system.

• Condition (e). In this condition, if Ti
ww

−→ T j and Ti is SI then ci < c j. By Lemma 1, this

property is trivially ensured in MLS protocols.

As a result, every replicated history Hr generated by the MLS protocol is valid. Hence,

Theorem 1 is applicable to Hr and the valid replicated history is correct.

6.1. MLS and weak-voting

Below we explain how MLS can be modified if weak-voting is used instead of certification.

In weak voting, read-sets (RSs) are not included in the update (or write-set, WS) propagation

message. Thus, if reads are necessary during the validation step, only the local replica can val-

idate a transaction. In this case, the result must be propagated and updates will not be applied

until that validation message is delivered. Luckily, reads are only needed to validate PL-3 trans-

actions while the others can be deterministically validated in the same way as with certification.

We detail below the necessary changes to the original scheme:

1. Broadcast: when Ci requests to commit Ti:

• Ti’s writes are gathered into WS i.

• If WS i , ∅, WS i, Ti isolation level and sti are atomically broadcast to all replicas.

2. Validation: when WS i is delivered at a replica Na:

• If Ti is PL-3 and Na = Ni, WS i is discarded if T j exists and has been previously

validated, RS i ∩WS j , ∅ and sti < ct j. The result is propagated.

• If Ti is PL-3 and Na , Ni, wait for the Na validation result.



7. Example

t.start← count 1 t.start← count
Execute t. 2 Execute t.
On t commit request: 3 On t commit request:

ws.data← wset(t) 4 ws.data← wset(t)
ws.start← t.start 5 ws.start← t.start
ws.local← Na 6 ws.local← Na

7 ws.level← t.level
8 if (t.level = PL-3)
9 rs.data← rset(t)

10 else
rs.data← rset(t) 11 rs.data← 0
TO-bcast(N, 〈rs, ws〉) 12 TO-bcast(N, 〈rs, ws〉)

Upon 〈rs, ws〉 reception: 13 Upon 〈rs, ws〉 reception:
mutex.lock 14 mutex.lock
statust ← certify(rs, ws, wslista) 15 statust ← certify(rs, ws, wslista)
if (statust = commit) then 16 if (statust = commit) then

count++ 17 count++
ws.commit← count; 18 ws.commit← count;
append(wslista, ws) 19 append(wslista, ws)
if (ws.local , Na) then 20 if (ws.local , Na) then

DB.apply(ws) 21 DB.apply(ws)
statust ← DB.commit(t) 22 statust ← DB.commit(t)
if (statust = abort) then 23 if (statust = abort) then

remove(wslista, ws) 24 remove(wslista, ws)
else DB.abort(t) 25 else DB.abort(t)
mutex.unlock 26 mutex.unlock
if (ws.local = Na) then 27 if (ws.local = Na) then

send(c, statust) 28 send(c, statust)

certify(rs, ws, wslista): 29 certify(rs, ws, wslista):
for (old ws ∈ wslista) do 30 for (old ws ∈ wslista) do

31 if (level = PL-3) and
(ws.start 〈 old ws.commit) and 32 (ws.start 〈 old ws.commit) and
(rs ∩ old ws , ∅) and 33 (rs ∩ old ws , ∅) and
(ws.local , old ws.local) then 34 (ws.local , old ws.local) then
return abort 35 return abort

36 else if (level = SI) and
37 (ws.start 〈 old ws.commit) and
38 (ws ∩ old ws , ∅) then
39 return abort

return commit 40 return commit

a) SER CBR protocol. b) MUL CBR protocol.

Figure 5: SER and MUL certification-based protocols.

In this section we show how the changes suggested in Section 6 can be applied to an existing

protocol. We have taken SER CBR, a variation of the SI CBR protocol from [31] (also an

adaptation from [18, 28]), which supports only PL-3, and extended it to also support SI, PL-

2 and PL-1. We call the new protocol multiple isolation level certification-based replication

protocol or MUL CBR. SER CBR and SI CBR are combinations and variations of other well

known protocols [17, 11, 21, 9] and the changes suggested in this section can be easily exported

to those protocols. SER CBR and MUL CBR are presented in Figure 5.

SER CBR needs transaction read-sets in order to validate transactions (see its certify



method). The first difference revealed by MUL CBR is that it includes transaction isolation level

as a part of the broadcast message (line 7). The second difference is that read-set propagation is

used only for PL-3 transactions (lines 8-11). In contrast to SER CBR, the certify method of

MUL CBR validates transactions depending on their isolation level (lines 31-35). PL-2 and PL-1

transactions do not require validation: atomic broadcast together with local DBMS concurrency

control are sufficient to forbid the phenomena. SI transactions only require checks for conflicts

between writes. Thus, reads are only involved in PL-3 transactions validation and, hence, only in

those cases where the local replica decision must be propagated. Notice that only a few changes

are required to the original protocol.

8. Conclusions

We have addressed the problem of supporting multiple isolation levels in existing ROWAA

replication protocols. The authors of [8] identified this problem as one of the challenges in

database replication. Most existing replication solutions support a single isolation level which is

one generally of the strictest: serialisability or snapshot isolation.

In this article we have identified the conditions under which replication protocols may man-

age multiple isolation levels transparently and proven that protocols that satisfy these conditions

are correct. We have then modified the popular ROWAA-based replication scheme to support

different isolation levels. As an example, we have further demonstrated how these extensions

can be applied to a specific protocol. The majority of the replication solutions under consid-

eration require only minor changes to support multiple isolation levels, which may result in an

improved degree of concurrency and minor transaction completion times for those transactions

that can be executed in a relaxed isolation level.

Our model is general enough to be applied to any database replication protocol. As a pos-

sible future work we plan to use this model in order to prove the correctness of several existing

metaprotocols (e.g., [30]) that concurrently support several replication protocols, each being able

to support a different isolation level.

A. Appendices

The aim of these appendices is to provide the necessary basis for proving the correctness of

Theorem 1 (given in Section A.2). To this end, Section A.1 presents several properties derived

from Def. 11 that will provide lemmas needed in Section A.2.

A.1. Properties of valid replicated histories

A valid replicated history Hr provides a set of useful properties that are deduced from Def.

11. For example, given any pair of conflicting operations oi, o j, if ∃Na for which oa
i
< oa

j
∈ Ha

then oi < o j ∈ Hr.

Lemma 2 (Global order of conflicting operations). Given a valid replicated history Hr over a set

of transactions T , for any two conflicting operations oi, o j of committed transactions Ti,T j ∈ T ,

oi < o j ∈ Hr ∨ o j < oi ∈ Hr.

Proof. Recall that oi < o j ∈ Hr if ∃Na for which oa
i
< oa

j
∈ Ha but ∄Nb for which ob

j
< ob

i
∈ Hb.

Since we follow ROWAA protocols, if one operation is a read then the conflict appears only

in that specific read local replica and, hence, it is impossible to have them ordered backwards



in any other node. If both are writes, then they are executed in all replicas in the system and

in the same order because otherwise there would be a cycle in the RMS G. As an example,

assume wa
i
(x) < wa

j
(x) ∈ Ha but wb

j
(x) < wb

i
(x) ∈ Hb. Write-dependencies are always obligatory

edges, so, Ti
ww

−→ T j ∈ EMS G(Ha) and T j
ww

−→ Ti ∈ EMS G(Hb). Since RMS G(Hr) is the

union of all local EMS G, from Ha we obtain Ti
ww

−→ T j ∈ RMS G(Hr) and from Hb we obtain

T j
ww

−→ Ti ∈ RMS G(Hr), which close the cycle, and contradict the absence of cycles in a valid

Hr.

Another interesting property says that transactions are ordered due to their writes.

Lemma 3 (Write-write order of transactions). Given a valid replicated history Hr over a set

of transactions T , ∀Ti,T j ∈ T , if wi(x) < w j(x) ∈ Hr then ∄wi(y),w j(y) ∈ Hr for which

w j(y) < wi(y) ∈ Hr.

We also show that WS i < WS j ∈ Hr (WS i represents the set of writes performed by Ti).

Proof. The correctness proof is similar to the one in Lemma 2. If wi(x) < w j(x) ∈ Hr then

Ti
ww

−→ T j in RMS G(Hr). In the same way, if w j(y) < wi(y) ∈ Hr then T j
ww

−→ Ti in RMS G(Hr).

If both edges appear at the same time, we have a cycle in RMS G(Hr) involving Ti and T j.

However, cycles are forbidden in Hr.

When SI transactions come into play we can still extract some other interesting properties.

For example:

Lemma 4 (SI transaction write-write ordering). Given a valid replicated history Hr over a set

of transactions T , ∀Ti,T j ∈ T , if Ti is SI and WS i < WS j ∈ Hr then ci < c j ∈ Hr. However, if

WS j < WS i ∈ Hr then c j < si ∈ Hr.

Proof. This lemma is directly proven by applying Lemma 3 to the conditions (d) and (e) of Def.

11.

Lemma 5 (Read-write order of SI transactions). Given a valid replicated history Hr over a set

of transactions T , ∀Ti,T j ∈ T , if Ti is SI then never ri(xk) < w j(x j) ∈ Hr ∧ ri(y j) ∈ Hr.

We also show that as RS i < WS j ∈ Hr if ri(xk) < w j(x j) ∈ Hr or WS j < RS j ∈ Hr if

ri(y j) ∈ Hr.

Proof. From ri(xk) < w j(x j) and Definition 11 condition (c) we obtain that si < c j ∈ Hr but from

read-dependency ri(y j) and condition (d) we obtain that c j < si and it is impossible to have both

at the same time.

Notice that Lemmas 4 and 5 are equivalent to snapshot write and snapshot read conditions

of Adya’s snapshot isolation definition [1].



A.2. Correctness proof of Theorem 1

Hereafter, we prove the correctness of Theorem 1; i.e. if Hr is valid (see Definition 11), then

there is a valid and equivalent H. To this end, we firstly suggest a methodology to extract a stand-

alone history H from the RMSG of a replicated history Hr. We then show that H is equivalent to

Hr and fulfils the conditions of Definition 8. Theorem 1 is therefore proven.

Definition 13 (Replicated history projection). Given a valid replicated history Hr, we can con-

struct a stand-alone history H by applying the following steps:

1. If operation o ∈ Hr then o ∈ H.

2. ∀Ti ∈ T and ∀o1, o2 ∈ Ti, if o1 < o2 ∈ Ti then o1 < o2 ∈ H.

3. ∀oi, o j ∈ Hr, if oi < o j ∈ Hr then oi < o j ∈ H.

4. If w j(x) < wi(x) ∈ Hr, Ti and T j commit and Ti is SI then c j < si ∈ H.

5. If wi(x) < w j(x) ∈ Hr, Ti and T j commit and Ti is SI then ci < c j ∈ H.

6. If ri(x j) ∈ Hr, Ti,T j commit and Ti is SI then c j < si ∈ H.

7. If ri(xk) < w j(x j) ∈ Hr, Ti,T j commit and Ti is SI then si < c j ∈ H.

As previously remarked, this process assumes that Hr is valid. Otherwise, some steps would

be impossible to accomplish. For example, if two committed transactions execute conflicting

writes over all the replicas but in a different order, it is impossible to decide how they are ordered

in H. We also assume a read one write all available (ROWAA) scheme (i.e., writes are executed

everywhere but reads only in the local replica). If this condition is not accomplished, it is not

possible to decide which value has been read by an operation in H unless a new condition is added

to ensure that the same value is obtained in all the replicas in which the operation is executed.

With the previous steps we produce a stand-alone history H, but the question is whether it is

equivalent to Hr.

Lemma 6 (A replicated history and its projection are equivalent). Given a valid replicated his-

tory Hr and its projection H constructed as shown in Def. 13, Hr and H are equivalent.

Proof. This can be proven by showing that all equivalence conditions are held.

C1: By construction of H (steps 1 and 2), both H and Hr execute the same operations and,

hence, the same transactions commit.

C2: Step 3 ensures that H reads the same values as Hr. Recall that reads are executed in just

one replica and, hence, the same operation never obtains different values in different nodes.

C3: From Lemma 2, all replicas execute conflicting writes (of committed transactions) in the

same order. This order is preserved in H by step 3.

C4(a): If WS i ∩ WS j , ∅ then, from Lemma 3, either WS i < WS j ∈ Hr ∨ WS j < WS i ∈ Hr.

From Lemma 4, if Ti is SI then either ci < c j ∈ Hr ∨ c j < si ∈ Hr. Since si < ci then either

si < c j ∈ Hr ∨ c j < si ∈ Hr. Steps 4 and 5 ensure the same ordering in H.

C4(b): From C4(a) proof, if WS i ∩WS j , ∅ then either ci < c j ∈ Hr ∨ c j < si ∈ Hr. Since si < ci

we can also deduce that either ci < c j ∈ Hr ∨ c j < ci ∈ Hr. Steps 4 and 5 ensure the same

ordering in H.



C4(c): If WS j ∩ RS i , ∅ then, from Lemma 5, either WS j < RS i ∈ Hr ∨ RS i < WS j ∈ Hr. If

Ti is SI then we can deduce that either c j < si (if WS j < RS i) or si < c j. Steps 6 and 7

ensure the same ordering in H.

Therefore, we have proved that given any valid Hr we can construct an equivalent stand-alone

history H. However, is H valid?

Lemma 7 (A replicated history projection is valid). Given a valid replicated history Hr and its

projection H constructed as shown in Def. 13, H is valid.

Proof. It is valid if the conditions (a), (b), (c), (d) and (e) of Def. 8 are held:

• Condition (a): That condition is trivially held since reads obtain the same value in H and

Hr which is supposed to be valid and, hence, reads never obtain aborted or intermediate

values.

• Condition (b): The form in which H is constructed ensures that it contains all Hr depen-

dencies and hence, EMS G(H) has all RMS G(Hr) edges. However, is it possible for H to

show dependencies not present in Hr? Since H and Hr are over the same operations, if

oi, o j conflict in H then both also conflict in Hr. By Lemma 2, only oi < o j ∈ H but not in

Hr if o j < oi ∈ Hr. However, by construction of H, if o j < oi ∈ Hr hence o j < oi ∈ H and

this contradicts the initial assumption. Thus, H and Hr show the same dependencies and

hence EMS G(H) and RMS G(Hr) have the same vertices, edges and cycles. Since there

are no cycles in RMS G(Hr) then there are no cycles in EMS G(H).

• Conditions (c), (d) and (e): We have proven for condition (b) that H and Hr show the

same dependencies. Because of steps 4, 5, 6 and 7, dependencies involving SI transactions

produce the same orderings between commits and starts. Therefore, since Hr is valid then

H must also be valid.

Therefore, given any valid replicated history Hr, we have proven that it is possible to con-

struct a valid and equivalent stand-alone history H. As a result, Hr is correct and Theorem 1 is

proven.
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