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Abstract. This paper presents a new application of independent component 

analysis mixture modeling (ICAMM) for prediction of electroencephalographic 

(EEG) signals. Demonstrations in prediction of missing EEG data in a working 

memory task using classic methods and an ICAMM-based algorithm are 

included. The performance of the methods is measured by using four error 

indicators: signal-to-interference (SIR) ratio, Kullback-Leibler divergence, 

correlation at lag zero and mean structural similarity index. The results show 

that the ICAMM-based algorithm outperforms the classical spherical splines 

method which is commonly used in EEG signal processing. Hence, the potential 

of using mixtures of independent component analyzers (ICAs) to improve 

prediction, as opposed on estimating only one ICA is demonstrated. 
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1 Introduction 

Independent Component Analysis (ICA) is a research area that is progressively 

finding more applications for blind source separation (BSS) and feature 

modeling/extraction. The objective of ICA is finding a linear transformation of the 

observed signals, such that the resulting signals (the sources or generators of observed 

data) are as statistically independent as possible [1]. 

The ICA method is extended in the ICA mixture model (ICAMM), a kind of 

nonlinear ICA, where multiple ICA models are learned and weighted in a 

probabilistic manner. ICAMM is a model of conditional independence, i.e. the 

assumption of independence only holds for data within the same class, with 

dependencies between classes being possible [2, 3]. ICAMM has been proposed 

recently as a flexible approximation for modeling mixtures of arbitrary probability 

densities with non-Gaussian distributions for the independent components (i.e. 

relaxing the restriction of modeling each component as a multivariable Gaussian) [4]. 

There is extensive literature of ICA applications in electroencephalographic (EEG) 

signal processing. For instance, study of developmental differences in the saccadic 

contingent negative variation [5], EEG and event-related potential (ERP) data [6, 7], 

and removal of artifacts in the EEG signal [8]. However, there are a few references of 
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the use of ICAMM for EEG signal processing. Recently, ICAMM was extended to 

the case of having sequential dependence in the feature observation record [9] in order 

to model the nonlinear dynamical system underlying the EEG signals [10]. 

This paper proposes an application of ICAMM to prediction of EEG signals. The 

application is demonstrated in the field of scanning human short-term memory during 

a working memory task [11, 12]. Although there are several applications of ICA as 

preprocessor in prediction of temporal series (see for instance [13]), the prediction 

itself has not been done considering an underlying ICA model of the data density. In 

this work, we propose a new ICAMM-based algorithm for EEG signal prediction. 

Data are assumed to come from several mutually-exclusive classes that are each 

generated by a different ICA model. This strategy allows for linear local projections 

that can adapt to partial segments of a data set, while keeping generalization (i.e. the 

capability of nonlinear modeling) given the mixture of the different ICA models. 

2 Materials and methods 

2.1 Working memory task 

We implemented the Sternberg task that is a classic test of multi-item short-term 

memory [11]. Each participant was shown series (or trials) of one to five symbols (or 

items), each one taken at random from a fixed set shown in Fig. 1. Each symbol was 

displayed during 0.2 seconds (item stage), after which the screen was cleared for 1 

second (pause stage), and then the following symbol appeared on screen. The length 

of the series varied at random from trial to trial. After the last symbol, there followed 

a further 1-second delay (retention stage), a warning signal, and then a test symbol. 

The subject was required to decide whether or not the test symbol is one of the 

symbols shown in this series (probe stage). Positive and negative responses were 

required with equal frequency. Finally, after the subject had decided, there was a 

pause of 0.5 s until the next trial. Each experiment comprised 30 trials.  

Fig. 2 shows an outline of the stages in a Sternberg working memory task. There were 

a total of three subjects, with 2 to 5 experiments per subject. The subjects showed a 

success rate of 98 %, with an average response time of 1.17 s. 

 

 

Fig. 1. Set of 28 symbols used for the experiment. 



 

Fig. 2. Stage diagram in a single trial of the Sternberg task. 

2.2 EEG recording 

EEG signals were recorded from electrodes using water-based gel coupling and 

placed according to the 10-10 system. Sixty-four channels were recorded, using Cz as 

reference. The signals were recorded using a Biosemi device with active electrodes. 

The sampling rate for data acquisition was 512 Hz. All channels were band-pass 

filtered between 1 and 70 Hz, with an additional narrow notch filter at 50 Hz. 

2.3 Independent Component Analysis Mixture Modeling 

Independent component analysis is a technique that aims to maximize statistical 

independence between hidden variables in observation vectors [1]. The standard 

noiseless ICA model assumes that the observations,  1 2, ,...,
T

Mx x xx , are 

composed by linear mixtures of random variables that are mutually independent, the 

sources  1 2, ,...,
T

Ns s s s . That is, for some matrix A : 

 x As    (1) 

ICA methods estimate the so-called mixing matrix, A , or its inverse, 1W A . 

This matrix contains the coefficients of the linear transformations from sources to 

observations. Thus, the mixing matrix can be applied to separate each of the sources 

, 1,...,i i i N s w x , where 
iw  is the i -th row of W . For the sake of simplicity, we 

will assume the square problem (the same number of sources as mixtures). 

ICA mixture modeling (ICAMM) is proposed in the framework of pattern 

recognition, considering that the observed data come from a mixture model and that 

they can be categorized in K  mutually exclusive classes. Each one of these classes is 

modeled as an ICA, i.e. linear combinations of independent non-Gaussian sources. 

The general formulation of ICAMM is: 

 , 1,...,k k k k k K  x A s b   (2) 

where each class k  is described by an ICA model with mixing matrix kA  (or  its 

inverse 
1

k k

W A ) and bias vector kb . Essentially, kb  determines the location of 

the cluster and the mixing matrix determines its shape. The goal of an ICAMM 

algorithm is to determine the parameters for each class. 

ICAMM was introduced in [3] considering a source model switching between 

Laplacian and bimodal densities. Recently, a generalization of the ICAMM 

framework was proposed which includes non-parametric density estimation, semi-



supervised learning, using any ICA algorithm for parameter updating, and correction 

of residual dependencies [2]. 

2.4 ICAMM-based algorithm for prediction 

Let us consider data vector x  of size  1N   which can be modeled through an 

ICAMM model such as the one in equation (2). Assuming that 
2N  values of vector x  

are unknown, known and unknown values can be grouped into two smaller vectors, y  

(known values) and z  (unknown values). Thus, we can write: 

 
 

  
 

y
x

z
 (3) 

The parameters of the ICAMM model are estimated previously using training data. 

Once the model is estimated, the probability density function of data vector x  can be 

expressed as a function of the probability densities conditioned to each class. The 

proposed predictor is a maximum a posteriori (MAP) estimator of z  that maximizes 

the joint probability density of known and unknown data,  p y,z . This joint 

probability density can be derived from (2) and (3). If we derivate it: 
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where 
kC  denotes class k , and ,k ns  is the n -th source of class k . The calculation 

of the derivative of  kp s  is complex for most distributions. By applying the 

principle of independence of the sources 
ks  (one of the assumptions of the ICAMM 

model), this probability can be obtained as the product of the probability densities of 

each individual source,  ,k np s . In this work,  ,k np s  and its derivatives were found 

using a non-parametric estimator. The target function is then maximized using a 

steepest ascent algorithm to achieve the prediction, ẑ . We have called the algorithm 

above Predicamm.  

2.5 Spherical splines 

Spherical splines are a classical method for interpolation of EEG data first introduced 

in [16]. Let  V r  be the potential at some position r  on the surface of a sphere of 

radius r , and let 
ir  be the location of one of the N  measurement electrodes. 

Spherical splines assume that the potential at any point r  on the surface of the sphere 

can be approximated by    0

1

N

i m i

i

V c c g
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 , where  nP x  is the ordinary Legendre polynomial 



of order n . In practice, the sum is truncated at some finite number of terms, 
maxn , 

depending upon the value of the parameter m . The best results are achieved when m  

equals 3 or 4.  

The coefficients 
ic  are determined by satisfying two conditions. First, the 

interpolation function must return the data when evaluated at the original data points. 

Second, the coefficients must add up to zero. These two conditions can be combined 

into a single linear system of equations. 

3 EEG data prediction using ICAMM 

A case was considered where the values at one or more of the electrodes were 

considered unusable and had to be predicted. This would be the case, e.g. if some of 

the electrodes had been disconnected, or for artifact-removal purposes. To test the 

performance of Predicamm compared with spline method, a Monte Carlo experiment 

with 1,000 steps was applied, with the end result being the average of each of the step 

results. At each step, one or more of the channels (randomly chosen) were removed, 

and their values were predicted using the proposed algorithm. 

To estimate the ICA mixture model in the EEG data, we used the on-line ICAMM 

algorithm in [14]. Four figures of merit or indices were used to evaluate the quality of 

the prediction: Signal-to-Interference Ratio (SIR), the Kullback-Leibler divergence 

(KLD), the correlation at lag zero (CORR) and the Mean Structural Similarity 

(MSSIM). SIR measures the prediction error, CORR considers the temporal 

correlation between the prediction and the true data, both indices considering the 

amplitude of the signals. KLD, on the other hand, measures the distance between the 

probability densities of predicted and true data. Finally, MSSIM is an index, 

commonly used in image processing, that measures the structural similarity between 

predicted and true data [17]. 

Fig. 3 shows the average prediction results for an increasing number of missing 

channels for sphere splines, and for Predicamm using either a single-class or a 

multiple-class model. Predicamm achieves the best result for all the cases considering 

SIR, CORR and MSSIM. Note that most of the index values are significantly 

improved with an increasing number of missing channels, more notably for MSSIM 

and SIR. Both methods achieve a similar result for the KLD. Even though both 

ICAMM models achieve a good result, the multiple-classes model always achieves a 

better result than the single-class model. As we will consider in the following section, 

the multiple-class model achieves this improved result by modeling the local behavior 

of the EEG signals. Higher-amplitude channels (e.g. frontal channels) are easier to 

interpolate correctly than lower-amplitude ones. Since the missing channels were 

chosen at random, with an increasing number of missing channels comes an increase 

in the probability of easy-to-predict missing channels, thus increasing overall 

performance. SIR, on the other hand, is not affected by this effect. 

In order to demonstrate the difference in performance, a 32-missing-channel case 

was performed. Fig. 4 shows the original scalp map, the predicted scalp maps 

obtained by the spline and Predicamm methods and the error achieved by the 

predictions. Note that the error achieved by spline method is much higher than the 



error achieved by Predicamm. The high amplitudes recorded at prefrontal and 

parietal-occipital areas of the scalp map are incorrectly recovered by the spline 

method. The prediction assessment indices measure these differences (see Table 1). 

 

  
 

 

Fig. 3. Evolution of the indices for an increasing number of missing channels. 

 

Fig. 4. Prediction results for a 32-missing-channel case for the proposed and spline methods. 

The missing channels positioning are highlighted by asterisk. 

 

 



Table 1. Indices for the 32-missing-channel case. 

 SIR (dB) KLD CORR MSSIM 

Splines 4.15 0.1614 0.5727 0.3771 

Predicamm 15.41 0.0006 0.9337 0.9070 

Conclusion 

A novel ICAMM-based algorithm (Predicamm) was proposed for the prediction of 

EEG signals. The results of Predicamm clearly outperformed the classic spline 

method commonly used in EEG signal processing. ICA mixture models allow for 

greater flexibility, modelling local nonlinearities while keeping the general structure 

of the data, and thus improving the result of the prediction. 

Taking into account the success of ICA application to EEG signal processing, the 

flexibility of ICAMM as a non-linear extension of ICA suggest it for future EEG 

applications. We demonstrate that the ICA mixture model can detect changes in the 

EEG signal, particularly in a working memory task. From this work, there are some 

open issues for future research such as obtaining greater insights into the sources and 

mixing matrices for EEG signal analysis. One of the problems with these methods is 

the high computational burden involved, especially if an on-line monitoring is 

required. Currently, we are researching in the parallelization of the algorithms in 

order to implement them in multiprocessor structures. 
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