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Abstract. This study presents a novel Hybrid Intelligent Intrusion Detection System (IDS) 
known as RT-MOVICAB-IDS that incorporates temporal control. One of its main goals is to 
facilitate real-time Intrusion Detection, as accurate and swift responses are crucial in this 
field, especially if automatic abortion mechanisms are running. The formulation of this 
hybrid IDS combines Artificial Neural Networks (ANN) and Case-Based Reasoning (CBR) 
within a Multi-Agent System (MAS) to detect intrusions in dynamic computer networks. 
Temporal restrictions are imposed on this IDS, in order to perform real/execution time 
processing and assure system response predictability. Therefore, a dynamic real-time multi-
agent architecture for IDS is proposed in this study, allowing the addition of predictable 
agents (both reactive and deliberative). In particular, two of the deliberative agents deployed 
in this system incorporate temporal- bounded CBR. This upgraded CBR is based on an 
anytime approximation, which allows the adaptation of this Artificial Intelligence paradigm 
to real-time requirements. Experimental results using real data sets are presented which 
validate the performance of this novel hybrid IDS. 

Research highlights: RT-MOVICAB-IDS, a novel hybrid IDS incorporating temporal 
control, is presented.> Temporal restrictions allow real time processing and system response 
predictability.> Experimental results using real data sets are presented which validate the 
performance. 

Keywords: Hybrid Artificial Intelligent Systems, Unsupervised Learning, Artificial Neural 
Networks, Multi-agent Systems, Case-Based Reasoning, Computer Network Security, 
Intrusion Detection, Time Bounded Deliberative Process. 
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1   Introduction 

A network attack or intrusion is an action that threatens to affect any of the three computer 
security principles: availability, integrity and confidentiality by exploiting, for example, Denial of 
Service, Modification, or Destruction vulnerabilities [1]. One of the most harmful points of attacks 
and intrusions, increasing the difficulty of protecting computer systems, is the ever-changing 
nature of attack technologies and strategies. For this reason among others, Intrusion Detection 
Systems (IDSs) have become a required asset in addition to the computer security infrastructure of 
most organizations. In the context of computer networks, an IDS can, in broad terms, be defined 
as a tool that is designed to detect suspicious patterns that may be related to a network or system 
attack. Intrusion Detection (ID) is therefore a field that focuses on the identification of attempted 
or ongoing attacks on a computer system or network. 

A Real-Time (RT) response in this field (computer security) is very important as less than 
fifteen minutes are required by some distributed and coordinated attacks to stop a large area of the 
Internet from normal functioning [2]. As a consequence, response time [3] is a critical issue for 
most of the security infrastructure components of an organization. The importance of a fast, 
predictable and smart response increases in the case of IDSs as spending too much time on 
training is clearly inadequate for RT self-adaptive ID [4]. Furthermore, an automated response 
will be almost useless if triggered after a host is infected [5].  

Systems that require a response before a specific deadline, as determined by their requirements, 
make it essential to monitor execution times. Each task must be performed by the system within a 
predictable timeframe, within which accurate execution of the given response must be guaranteed. 
This is the main reason for time-bounding the analytical tasks of IDSs. This temporal issue has 
been also addressed by the Artificial Intelligence (AI) community. Over recent years, AI 
techniques have been applied in RT environments to provide RT systems with intelligent methods 
to solve complex problems. More precisely, there are various proposals to adapt AI techniques to 
RT requirements; the most promising algorithms within this field are Anytime algorithms [6] and 
approximate processing [7]. One line of research in RT Artificial Intelligence (RTAI) is related to 
large applications or hybrid system architectures that embody RT concerns in many components 
[7], such as Guardian [8], Phoenix [9], or SA-CIRCA [10]. In the context of the aforementioned 
research in the area of RTAI and the well-known area of Multi-Agent Systems (MAS), a Real-
Time Agent (RTA) can be defined as an agent with temporal constraints in at least one of its 
responsibilities [11]. So, an agent assigned to RT environments must accomplish its goals, 
responsibilities and tasks with the additional difficulty of temporal constraints. Such agents may 
have temporal bounded interactions, a modification that will affect all communication processes in 
the MAS where the RTA is located.  

Accordingly, the paper presents RT-MOVICAB-IDS (MObile VIsualisation Connectionist 
Agent-Based IDS) [12-14]: a novel Hybrid Artificial Intelligent System (HAIS) IDS with a 
temporal-bounded intrusion detection mechanism. This system monitors network activity to 
identify intrusive events by combining different AI paradigms to visualise network traffic for ID 
at packet level [15]. It is based on a dynamic MAS, which integrates an unsupervised neural 
projection model and the Case-Based Reasoning (CBR) paradigm [16], through the use of 
deliberative agents that are capable of learning and evolving with the environment. It is worth 
highlighting that temporal restrictions are imposed on this IDS in order to perform real/execution 
time processing and assure system response predictability. To do so, some of the deliberative 
agents within RT-MOVICAB-IDS have been designed according to these temporal restrictions. 

The rest of the paper is organized as follows. Section 2 contains a brief review of the state of 
the art of IDSs, Real Time and AI areas and methodologies applied in this interdisciplinary study. 
Section 3 provides an overview of the novel proposed Hybrid-IDS, in which each step forming 
this system is described in detail. Additionally, sample visualizations of real-traffic data are shown 
in Section 4 to illustrate the output of the system. Some experimental results on CPU utilization 
and Average Execution Time are also presented in this section to show the main outcomes of the 
proposed system. Finally, the conclusions and future work are discussed in Section 5. 
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2 Previous Work 

This section presents the state of the art of several AI areas and methodologies applied to the 
novel Hybrid IDS presented in this research. There are three main research areas related to this 
interdisciplinary study: visualization tools based on unsupervised learning, intrusion detection 
systems and RT agents. These areas are explained and reviewed in the following subsections. 

2.1 Visualization Tools Based on Unsupervised Learning 

Projection methods project high-dimensional data points onto lower dimensions in order to 
identify "interesting" directions in terms of any specific index or projection. Such indices or 
projections are, for example, based on the identification of directions that account for the largest 
variance of a dataset, such as Principal Component Analysis (PCA) [17-19], or the identification 
of higher-order statistics such as the skew or kurtosis index, which is the case of Exploratory 
Projection Pursuit (EPP) [20]. Having identified the interesting projections, the data is then 
projected onto a lower dimensional subspace plotted in two or three dimensions, which makes it 
possible to examine its structure with the naked eye. The remaining dimensions are discarded as 
they mainly relate to a very small percentage of the information or the dataset structure. In that 
way, the structure identified through a multivariable dataset may be visually analysed with greater 
ease. 

The combination of this type of technique together with the use of scatter plot matrixes 
constitutes a very useful visualization tool to investigate the intrinsic structure of 
multidimensional datasets, allowing experts to study the relations between different components, 
factors or projections, depending on the technique that is used. 

From a purely "projection-of-packets" standpoint, some dimensionality reduction techniques -
e.g. PCA- have previously been proposed for visualising network data through scatter plots [21-
25]. 

2.2 Intrusion Detection Systems 

Intrusion Detection (ID) has been approached from several different points of view up to now; 
many different intelligent and Soft Computing techniques (such as Genetic Programming [21], 
Data Mining [22, 23], Fuzzy Logic [24, 25], or Neural Networks [26-28] among others) together 
with statistical [29] and signature verification [30] techniques have mainly been applied to 
perform a 2-class classification (normal/anomalous or intrusive/non-intrusive). Most of these 
systems can generate different alarms when an anomalous situation is detected, but they cannot 
provide a general overview of what is happening inside a computer network. 

In contrast, a great variety of visualization-based approaches to Intrusion Detection have also 
been proposed. In this case, the ID task is enabled by providing a visual depiction of the network 
or the traffic. Thus, the identification of attacks must be performed through visual features 
because no alarms are triggered. Visualization tools rely on the human ability to recognize 
different features and detect anomalies through graphical devices [31]. Apart from enabling the 
detection of anomalies, one of the main advantages of this approach is that it can provide a general 
snapshot of network traffic. As this study focuses on the visualization of network traffic data 
rather than network structure or topology, only previous work on network data visualization is 
considered in this section. 

Network data are summarized in previous work by:  
 IP addresses: that is the case of the Galaxy View of NVisionIP [32]. In [33], Border Gateway 

Protocol data are visualized by a diagram based on IP addresses. IP segments are used in NIVA 
[34] to locate and colour the data. The Time-based Network Traffic Visualizer [35] combines a 
matrix display of host IP address and packet timestamps. An IP address-based matrix is also 
proposed in [36] to detect the propagation of the Welchia and Sasser. D worms. 
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 Port numbers: the main visualization proposed in [37] is based on port and time information. 
Stacked histograms of aggregate port activity are proposed in [38]. By using port numbers and 
IP addresses, the system proposed in [38] is able to see the penetration and subsequent activity 
of the Sasser worm. 

 Different measurements of network traffic: the Multi Router Traffic Grapher [39] shows the 
incoming/outgoing traffic in Bits per Second while IDGraphs [40] uses the number of 
unsuccessful connections. 

 Alarm data: generated by different IDSs, such as Snort [41] or StealthWatch IDS [42]. 
 Others: additional kinds of data can be also processed by different visualization tools, such as 

VIAssist [43] or IDtk [44] that are applied to raw TCP packet data or alerts generated by IDS 
tools. 
 
In contrast to other security tools, IDSs need to be monitored [45]. So, an IDS can be useless if 

nobody is looking at its outputs. In keeping with this idea, the proposed IDS combines several 
features extracted from packet headers to depict each simple packet by using neural unsupervised 
methods based on Exploratory Projection Pursuit (EPP) [20, 46]. It provides the network 
administrator with a snapshot of network traffic, protocol interactions, and traffic volume 
generally in order to identify anomalous situations. To do so, an unsupervised neural model (see 
section 3.4) is applied. 

Most of the solutions described in this section use a glyph metaphor [34, 44, 47] to encode 
information by changing different features (colour, size, opacity, etc.) in addition to the spatial 
coordinates, while others use traditional representation techniques such as histograms [38, 48], 
histographs [49] or other graphs [50, 51]. The novel IDS proposed in this research employs the 
glyph metaphor as well, using different colours and shapes in addition to the spatial coordinates to 
provide information on the protocol of each packet. 

Multi-Agent Systems have been previously applied to the ID problem [52-54]. CIDS (Cougaar-
based IDS) [52] provides a hierarchical security agent framework, where a security node consists 
of four different agents (manager agent, monitor agent, decision agent and action agent) developed 
over the Cougaar framework [55]. Some works [56, 57] have been carried out using the mobile-
agent approach. APHIDS [56] implements the distributed search and analysis tasks with mobile 
agents equipped with scripting capability to automate evidence gathering.  

Considering all this previous work on agent-based ID, the main novelty of RT-MOVICAB-IDS 
is the inclusion of deliberative (CBR-BDI) agents in a specific IDS for packet ID through 
visualization based on neural models. Additionally, the IDS proposed in this study incorporates 
temporal restrictions to state a predictable response time. 

2.3 Agents and Real-Time Systems 

Real-Time Systems are computer systems in which the correctness of the system behaviour 
depends not only on the logical results of the computations, but also on the physical instant at 
which these results are produced. That is the case of security systems where it is important that the 
detection of the problem will be on time in order to make corrective actions at the right time. The 
main reason is that less than fifteen minutes are required by some distributed and coordinated 
attacks to stop a large area of the Internet from functioning [2]. Furthermore, an automated 
response will be almost useless if triggered after a host is infected [5]. 

However, classical RT systems are typically rigid and deterministic systems. Classical 
techniques used in such systems are insufficient if we manage dynamic environments where goals 
require complex deliberative processes.  Conceived to overcome the shortcomings of classic RT 
systems, RTAI studies how to adapt artificial intelligence techniques to domains where a RT 
response is required. Anytime algorithms [6] and approximate processing [7] are some examples 
of the adaptation of AI techniques to RT domains. Another example of AI in the RT domain is 
proposed by Garvey et al. in [58], where a design-to-time scheduling algorithm for incremental 
decision-making is presented. This algorithm is extended in [59] to develop a more general model 
that can take any scheduling criteria into account, such as time, cost, and quality and can use 
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uncertainty as part of the decision-making process. An example of the use of the design-to-criteria 
model is the DECAF architecture [60], which incorporates scheduling algorithms based on this 
model. One line of research in RTAI has been to build large applications or architectures that 
embody RT concerns in many components [7], such as Guardian [8], Phoenix [9] and SA-CIRCA 
(Self-Adaptive Cooperative Intelligent Real-Time Control Architecture), proposed by Musliner et 
al. [10]. 

In research relating to RTAI Systems, a Real-Time Agent (RTA) can be defined as an agent 
with temporal restrictions [11]. Temporal correctness has to be taken into account for this kind of 
agent, which is expressed by means of a set of temporal restrictions that are imposed by the 
environment, compliance with which must be ensured by the RTA. Over recent years, some 
examples of the application of agent technology in RT domains have been studied. DiPippo et al. 
[61, 62] presented a Real-Time Multi-Agent system (RT-MAS) based on RT-Corba [63]. The 
operation of the system is based on CORBA, but here the client and server have RT features. 
However, this approach has some problems. On one hand, the time needed by one of the offered 
services, the Scheduling Service, is unknown and, on the other hand, the communication process 
is temporal unbounded, and therefore, unpredictable.  

The ObjectAgent Architecture is another example of RTAs. This architecture, developed by 
Princeton Satellites in 2001 [64], is used to control little mono-functional satellite systems. These 
satellites work together as a unique satellite with multiple functions. Each mini-satellite is 
identified by an agent with its temporal restrictions. This architecture supports RT communication, 
while the net topology is known and predictable. Unfortunately, this assumption is only true for 
very specific networks (CAN networks, inter-satellite laser links, etc.). Thus, if this platform were 
extrapolated to common network media (Ethernet, serial, wifi, etc ), this feature would be lost.  

Another example of RTA is presented by Prouskas and Pitt in [65]. They define time-aware 
agents as agents capable of operating in two temporal dimensions: agent-agent and human-agent, 
seamlessly combining the predictability and reliability of small-scale RT exchanges with the fuzzy 
temporal requirements of large-scale human interactions. Time-aware agent systems deal with an 
amalgam of hard, soft, human and non-RT interactions, reason the temporal constraints placed on 
the system by each type of interaction, make transformations between themselves and co-ordinate 
(schedule) activities seamlessly irrespective of their constituent constraints.  

In addition, the ARTIS agent architecture, specially designed to develop RT Systems was also 
developed [66]. An ARTIS agent is an agent able to operate in distributed RT domains. The 
ARTIS architecture is an extension of the blackboard model [67], which has been adapted to work 
in hard RT environments. This architecture includes the use of well-known RTAIS techniques in 
an approach that is guaranteed to react with the environment in a dynamic and flexible way. The 
main problems of this proposal are the lack of complex reasoning capabilities in ARTIS agents 
and the complexity of the design and implementation processes, which makes practical use of this 
proposal very difficult.  

The research projects that are above reviewed show the feasibility of using agent technology 
within RT domains so as to provide more dynamicity, distribution, flexibility and greater 
deliberative capabilities than previous approaches. With this in mind, the use of RTA technology 
appears appropriate for the development of the security systems presented in this paper. 

The issue of RT has been considered earlier in the field of ID, mainly because the underlying 
techniques can reduce processing time so as to enable a faster response time. That is the case of 
the MAID formulation [68], in which an algorithm for the RT updating of the reference model 
was designed. Singular Value Decomposition is proposed in [69] as a pre-processing step to 
reduce the dimensionality of the data for fast ID. RT ID is approached in [70] by mathematically 
proving that the number of computational steps is reduced by applying Fast Time Delay Neural 
Networks instead of applying other conventional time delay neural networks. Fast response is also 
pursued in [71] by speeding up data analysis through Non-negative Matrix Factorization. Apart 
from the ID engine, [72] proposed a load-balancing device to perform RT ID in high-speed 
networks. None of these previous studies focus on MAS-based IDSs. As a result, response times 
of deliberative agents are not taken into account when pursuing a fast and timely IDS responses, 
which is one of the main novelties, along with predictability, of the present research. 
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3 RT-MOVICAB-IDS 

RT-MOVICAB-IDS (Real-Time MObile VIsualisation Connectionist Agent-Based IDS) focuses 
on network-based Intrusion Detection (ID) from the visualisation and hybrid AI standpoints. It 
combines different AI paradigms to visualise network traffic for ID at packet level. As a result of 
depicting each simple packet and preserving the temporal context, RT-MOVICAB-IDS is able to 
provide security personnel with a synthetic, intuitive snapshot of network traffic and protocol 
interactions. This visualisation interface supports the straightforward detection of anomalous 
situations and their identification (as shown in Section 3.5). Additionally, it can help to ascertain 
the internal structure and behaviour of the traffic data, thereby improving supervision of network 
activity. 
Different tasks are required to perform traffic monitoring and ID, such as those proposed for 
traffic management [73], (collecting data, processing collected data, and deploying mechanisms). 
For the data collecting task, a 4-stage framework [74] is adapted to RT-MOVICAB-IDS in the 
following way: 
1. Data capture: as network-based ID is pursued, the continual data flow of network traffic must 

be managed. This data flow contains information on all the packets travelling along the 
network to be monitored. Only a reduced portion of this data is captured at this time for further 
process. Accordingly, few fields from the packet headers (timestamp, source and destination 
ports, size and protocol) are selected to generate the datasets. 

2. Data selection: Network IDSs have to deal with the practical problem of high volumes of quite 
diverse data [75]. To manage high diversity of data, RT-MOVICAB-IDS splits the traffic into 
different groups, taking into account the protocol (UDP, TCP, ICMP, and so on) over IP, as 
there are differences between the headers of these protocols. Once the captured data is 
classified by the protocol, it can be processed in different ways. 

3. Segmentation: The two first stages do not deal with the problem of continuity in network 
traffic data. The neural model to be later applied cannot process data "on the fly". To overcome 
this shortcoming, the segmentation task is in charge of creating temporarily limited datasets 
from the continuous network data flow. To do so, RT-MOVICAB-IDS splits the pre-processed 
data stream into simple (containing all the packets whose timestamp is between the segment 
initial and final time limit) and accumulated segments (consisting of the addition of several 
consecutive simple segments). 

4. Data pre-processing: Finally, the different datasets must be pre-processed before presenting 
them to the neural model in subsequent stages. At this stage, categorical features are converted 
into numerical ones. This happens with the protocol information; each packet is assigned a 
previously defined value according to the protocol to which it belongs. 
 
Once the data-collecting task is performed and the data is ready, the ID process of RT-

MOVICAB-IDS performs two further tasks: 
 Data analysis: a neural model called Cooperative Maximum Likelihood Hebbian Learning 

(CMLHL) [76] is applied to analyse the data. Some other unsupervised models have also been 
applied to perform this task for comparison purposes. 

 Visualisation: the projections of simple and accumulated segments are presented to the 
network administrator for scrutiny and monitoring. One interesting feature of the proposed IDS 
is its mobility; this visualisation task may be performed on a different device other than the one 
used for the previous tasks. To improve the accessibility of the system, results may be 
visualised on a mobile device (such as phones or blackberries), enabling informed decisions to 
be taken anywhere and at any time.  
 
In summary, the RT-MOVICAB-IDS task organisation comprises the six tasks described 

above. The following AI paradigms are combined within RT-MOVICAB-IDS to perform these 
tasks: 
 Multi-agent system: some of the components are wrapped as deliberative agents, capable of 

learning and evolving with the environment [77]. As described below, they integrate AI 
techniques and models, becoming intelligent agents [78]. 
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 Case-based reasoning: some of the agents contained in the MAS are known as CBR-BDI 
agents [79] because they integrate the BDI (Beliefs, Desires and Intentions) [80] model and the 
CBR (Case-Based Reasoning) [16] paradigm. 

 Artificial neural networks: the connectionist approach fits the ID challenge mainly because it 
allows a system to learn, in an empirical way, the input-output relationship between traffic data 
and its subsequent interpretation [28]. Some of the previously described CBR-BDI agents 
incorporate an unsupervised neural model to generate projections of network traffic. 
 
To assess RT-MOVICAB-IDS in the fulfilment of the ID tasks, a novel testing method based 

on mutations was developed [14]. The main idea behind this technique is to confront RT-
MOVICAB-IDS (and some other visualization-based IDSs) with previously unseen attacks. These 
novel situations simulate the new attacks (known as "0-day" attacks) that a computer system may 
face for the first time. Additionally, the neural model supporting the visualization capabilities of 
RT-MOVICAB-IDS is tested by comparing its projections to those generated by some other 
neural projection models. 

3.1 Multiagent System 

An extended version of the Gaia methodology [81, 82] was applied to design the RT-MOVICAB-
IDS MAS according to the previously introduced tasks. The following roles were identified after 
the Architectural Design Stage of the methodology: 
 SNIFFER: this role involves continuously capturing the traffic data flowing across a network 

segment. At the same time, when there is enough captured data, this data is split and its 
readiness is communicated to other roles. 

 PREPROCESSOR: this role preprocesses the captured data. After that, an analysis for this new 
piece of data is requested. 

 ANALYZER: this role negotiates for data analysis. Once an analysis is assigned to this role, it 
analyzes the new preprocessed data. 

 CONFIGURATIONMANAGER: this role involves managing the configuration of several 
parameters (related to the splitting, pre-processing and the analysis of traffic data) and making 
such information available to some other roles. 

 COORDINATOR: this organizational role involves coordinating some of the other roles and 
balancing the workload among them. 

 VISUALIZER: this role is responsible for updating the visualization when new information 
(analyzed data or system information) is generated. 
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The following protocols were also defined after this stage: AnalysisAborted, 
AnalysisCompleted, ChangeSplitConfig, ChangePreprocessConfig, ChangeAnalysisConfig, 
ManageSplitError, NegotiateAnalysis, PreprocessAborted, PreprocessedDataReady, 
RequestAnalysisConfig, RequestAnalyzedData, RequestPreprocessConfig, 
RequestPreprocessedData, RequestSplitConfig, RequestSplitData, RequestVisualization, 
SplitAborted, SplitDataReady, UpdateAnalysisConfig, UpdatePreprocessConfig, 
UpdateSplitConfig, UpdateSystemInfo. 

It may be concluded from the Detailed Design Stage that there is a one-to-one correspondence 
between roles and agent classes in the system. As a result, RT-MOVICAB-IDS incorporates six 
agents, as shown in Fig. 1.  
 

 

Fig. 1. RT-MOVICAB-IDS architecture. 

The agents included in RT-MOVICAB-IDS can therefore be defined as: 
 Sniffer (S in Fig. 1): this reactive agent is in charge of capturing traffic data. The continuous 

traffic flow is captured and split into segments in order to send them through the network for 
further processing. Then, the readiness of the data for pre-processing is communicated. One 
agent of this class is located in each of the network segments that the IDS has to cover (from 1 
to n). 

 Preprocessor (P in Fig. 1): after splitting traffic data, the generated segments are pre-processed 
prior to their analysis. Once the data has been pre-processed, an analysis for this new piece of 
data is requested. 

 Analyzer (A in Fig. 1): this is a CBR-BDI agent. It has a connectionist model (CMLHL [76]) 
embedded in the adaptation stage of its CBR system that helps to analyze the pre-processed 
traffic data. This agent generates a solution (or achieves its goals) by retrieving a case and 
analyzing the new one using a CMLHL network. This RT agent is comprehensively described 
in section 3.4. 

 ConfigurationManager (CONF in Fig. 1): the configuration information (such as packets to 
capture, segment length, features to extract,...) is managed by this agent, which is in charge of 
providing this information to the Sniffer, Pre-processor, and Analyzer agents. A reactive 
architecture was chosen as this agent requires no training and all of its decisions are based on 
local information. 

 Coordinator (COOR in Fig. 1): there can be several Analyzer agents (from 1 to m) but only 
one Coordinator. The latter is in charge of distributing the analyses among the former. In order 
to improve the efficiency and perform RT processing, the pre-processed data must be 
dynamically and optimally assigned. This assignment is performed taking into account both the 

Network Segment  #n Network Segment  #3 

Network Segment  #1 Network Segment  #2 
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capabilities of the machines where the Analyzer agents are located and the analytical demands 
(amount and volume of data to be analysed). 

 Visualizer (V in Fig. 1): This is an interface agent. At the very end of the process, the analyzed 
data is presented to the network administrator (or the person in charge of the network) by 
means of a functional, mobile visualization interface. To improve the accessibility of the 
system, the administrator may visualize the results on a mobile device, enabling informed 
decisions to be taken anywhere and at any time. 

3.2 Addressing Real-Time 

The agents in charge of the analysis and the coordination of the whole process must be temporally 
bounded, in order for RT-MOVICAB-IDS to complete its analysis within a maximum time. It is 
therefore necessary to adapt the AI techniques they employ in order to guarantee RT constraints. 
For this reason, RTAs, which provide the necessary control mechanisms to carry out this task, are 
used to complete the analysis and coordination on time. When a new segment is ready for 
analysis, the Coordinator agent has a limited amount of time to assign the pending analysis to the 
available Analyzer agents, which in turn, must provide an answer as soon as possible before a 
given deadline. 

To apply the CBR paradigm [16] as a reasoning mechanism in RTAs, it is necessary to adapt 
the techniques to be executed so that they satisfy RT requirements. In RT environments, the CBR 
stages (Retrieve, Revise, Reuse and Retain) must be temporally bounded to ensure that the 
solutions are produced on time; giving the system a temporal bounded deliberative case-based 
behaviour. Thus, a Temporal Bounded CBR (TB-CBR) mechanism [83] is suitable as the basis of 
the deliberative reasoning of  RTAs. 

The proposed TB-CBR algorithm is a modification of the classical CBR cycle to be applied in 
domains with RT constraints. Algorithm 1 shows a pseudo-code of this approach. First, the four 
phases of the CBR cycle are grouped in two stages defined as: 
 Learning stage, which consists of the revise and retain phases. 
 Deliberative stage, which includes the retrieve and reuse phases. 

 
Each phase will schedule its execution time. Therefore, the designer can choose to either assign 

more time to the deliberative stage, or keep some time for the learning stage (and thus the 
designed agents will be more sensitive to updates). These CBR stages must be designed as an 
anytime algorithm, where the process is iterative and each iteration is time-bounded and may 
improve the final response. 
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Algorithm 1. Time-Bounded CBR algorithm. 

The TB-CBR cycle starts at the learning stage, which entails checking whether previous cases 
are awaiting revision and could be stored in the case-base. The plans provided at the end of the 
deliberative stage are stored in a solution list while feedback on their utility is received. This list is 
accessed when each new TB-CBR cycle begins. If there is sufficient time, the learning stage is 
implemented for cases where solution feedback has recently been received. If the list is empty, 
this process is omitted. 

The next stage to be implemented is the deliberative stage. The retrieval algorithm is used to 
search the case-base and chose a case that is similar to the current case (i.e. the one that 
characterizes the problem to be solved). Each time a similar case is found, it is sent to the reuse 
phase where it is transformed into a suitable plan for the current problem by using a reuse 
algorithm. Therefore, at the end of each iteration of the deliberative stage, the TB-CBR method is 
able to provide a solution to the problem at hand, which may be improved in subsequent iterations 
if there is any time remaining at the deliberative stage. 

The temporal cost of executing the cognitive task is greater than or equal to the sum of the 
execution times of the learning and deliberative stages (as shown in equation 1): 

 

tcognitiveTask  tlearning  tdeliberative

tlearning  (trevise  tretain )* n

tdeliberative  (tretrieve  treuse ) * m

  (1)  

 
where tcognitiveTask  is the maximum time available for the agent to provide a response; tlearning  and 
tdeliberative are respectively the total execution times of the learning and the deliberative stages; tx is 
the execution time of phase x; and n and m are the number of iterations of the learning and 
deliberative stages, respectively. 

The RTA can launch the TB-CBR algorithm when needed and if there is enough time to 
execute it. The maximum time available to complete the execution cycle (tmax, where tmax ≥ 
tcognitiveTask) must be stated. tmax must be split into the learning and the deliberative stages to 
guarantee the execution of each stage. The timeManager function is in charge of completing this 
task. Through this function, the designer specifies how the agent acts in the environment. The 
designer can assign more time to the learning stage, if an agent with a greater learning capacity is 
required. Otherwise, the function can allocate more time to the deliberation stage. Regardless of 
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the type of agent, the timeManager function should allow enough time for each deliberative stage 
to ensure that at least one answer will be given by the stated deadline. Naturally, the greater the 
time allocated to the deliberative stages, the better the response, using an anytime algorithm that 
enables RTAs to refine the result of each iteration. The anytime behaviour of the TB-CBR 
mechanism is achieved through the use of two loop control sequences. The loop condition is built 
by using the enoughTime function, which determines if a new iteration can be performed 
according to the total time allocated to each stage of the TB-CBR. 

The first phase of the algorithm executes the learning stage if the agent has the solutions from 
previous executions stored in the solutionQueue. The solutions are stored just after the end of the 
deliberative stage. The deliberative stage is only launched if there is a problem in the 
problemQueue that the agent cannot solve. This configuration allows the agent to launch the TB-
CBR so that it only learns (no solution is needed and the agent has enough time to reason previous 
decisions), only deliberates (there are no previous solutions to consider and there is a new problem 
to solve) or so that it performs both functions. 

For RT-MOVICAB-IDS to perform RT ID, a temporal constraint on the process (starting with 
a new generated segment and ending with the Analyzer agent generating the projection) is 
essential to ensure prompt execution. To perform this temporal control, all the steps in the process 
must be known and temporal bounded. Additionally, the system has to be deterministic. The 
deliberative agents within RT-MOVICAB-IDS agent environment (Coordinator and Analyzer 
agents) take advantage of the TB-CBR method to assign the pending analysis and complete the 
analysis in order to guarantee these conditions. The most relevant issues of these two agents are 
described in the following two sections. 

3.3   Time-Bounded Coordinator Agent 

The RT-MOVICAB-IDS Coordinator agent, in charge of assigning the pending analyses to the 
available Analyzer agents, is defined as a Case-Based Planning (CBP-BDI) agent [84]. CBP [85] 
attempts to solve new planning problems by reusing past successful plans [86]. The Coordinator 
agent plans to allocate an analysis to one of the available Analyzer agents based on the following 
criteria: 
 Location: analyzer agents located in the network segment where the Visualizer or Pre-

processor agents are placed would be prioritised. 
 Available resources: the computer resources where each Analyzer agent is running and their 

rate of use all have to be taken into account in such a way that the workload of the computers is 
measured. 

 Analysis demands: the amount and volume of data to be analysed are key issues to be 
considered. 

 Analyser agent behaviour: these agents behave in a "learning" or "exploitation" mode. 
Learning behaviour causes an Analyzer agent to spend more time over an analysis than 
exploitation behaviour does. 
As a computer network is an unstable environment, the availability of the Analyzer agents 

changes dynamically. Network links may stop working from time to time, so the Coordinator 
agent must be able to re-assign the analyses previously sent to the Analyzer agents located in the 
network segment that may be down at any time. These issues are included in the representation of 
cases, as indicated in Table 1. 
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Class Feature Type Description 
P #packets Integer Total number of packets contained in the dataset to 

be analysed. 
P Analyzers / 

location 
Array An array (of variable length depending on the 

number of available Analyzer agents) indicating 
the network segment where the Analyzer agent is 
located. 

P Analyzers / 
features 

Array An array (of variable length depending on the 
number of available Analyzer agents) containing 
information about the resources, their availability, 
and pending tasks. 

P Analyzers / 
failures 

Array An array (of variable length depending on the 
number of available Analyzer agents) containing 
information about the number of times each 
Analyzer agent has stopped working in the recent 
past (execution failures). 

S Analyzers / 
plans 

Array An array (of variable length depending on the 
number of available Analyzer agents) containing 
the analyses assigned to each Analyzer agent. 

Table 1. Coordinator agent-representation of case features. Classes: P (problem description attribute) and S 
(solution description attribute). 

The Coordinator agent must provide a distribution of the analysis between the different Analyzer 
agents. In order to complete the analysis within the maximum predefined time, the Coordinator 
agent must apply CBR to generate the plan that best distributes the analysis and its allocation on 
time. Therefore, it is necessary to employ a temporal-bounded CBP, which is able to ensure 
compliance with the deadlines. Then, the Coordinator agent is modelled using a TB-CBP, which is 
a simple adaptation of the previously presented TB-CBR approach. On this occasion, the case-
base stores previously executed and validated plans. 

The four phases of the TB-CBP cycle of the Coordinator agent are re-defined to comply with 
the temporal constraints. As a solution must be provided within a preset time, the retrieval and 
reuse stages are initially performed. When a solution for the new problem is obtained, if no 
analysis is pending, the Coordinator agent executes the revise and retain stages. Consequently, the 
four phases are defined as follows: 
 (Plan) Retrieve: when a new pre-processed dataset is ready, an analysis is requested from the 

Coordinator agent. The most similar plan is obtained by associative retrieval, taking into 
account the case/plan description shown in Table 2. As the time required to extract a case is 
predictable, this RTA knows how long it takes to arrive at the first solution. If there is some 
extra time before the deadline, the Coordinator agent will attempt to improve this first solution 
within the available time by allocating additional time to search for alternative plans. Once the 
time is finished, the best plan is used as a retrieved plan. 

 Reuse: the retrieved plan is adapted to the new planning problem. The only restriction is that 
the analyses running at that time (the results of which have not yet been reported) cannot be 
reassigned. The others (pending) can be reassigned in order to optimize overall performance. 
The Coordinator agent knows when the adaptation of the cases to the new planning problem 
will finish. In this phase, as the Coordinator agent calculates when the Analyzer agents will 
complete their assigned tasks, it also knows that it can continue building the new plan, because 
the Analyzer agents will still be executing pending analyses when this phase is completed. 
Thus, the new assignment of an analysis to an Analyzer agent depends on its workload at that 
particular time. 

 Revise: the plan revision consists of a two-fold analysis. On the one hand, planning failures are 
identified by finding under-exploited resources. As an example, the following hypothetical 
situation is identified as a planning failure: one of the Analyzer agents is not performing any 
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 Retain: when a plan is adopted, the Coordinator agent stores a new case containing the dataset-
descriptor and the solution (see Table 1). 

3.4    Time-bounded Analyzer Agent 

The Analyzer agent is a temporal-bounded, hybrid deliberative agent. It employs the CMLHL 
neural model to analyse pre-processed traffic data. In other words, this neural projection model is 
applied to reduce the dimensionality of the captured segments and generate subsequent 
visualizations of them. 

The CMLHL model is based on Maximum Likelihood Hebbian Learning (MLHL) [87]. 
Considering an N-dimensional input vector ( x ), and an M-dimensional output vector ( y ), with 

being the weight (linking inputijW j  to output i ), then CMLHL can be expressed as:  

 
1. Feed-forward step: 

ixWy
1j

jiji 


N

, . (2) 

2. Lateral activation passing: 

     Aybτ(t)yty ii 1 . (3) 

3. Feedback step: 



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i
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1

, . (4) 

4. Weight change: 

  1||..  p
jjiij eesignyW  . (5) 

Where:   is the learning rate,   is the “strength” of the lateral connections,  the bias 

parameter,  a parameter related to the energy function [76, 87] and 

b
p A  a symmetric matrix used 

to modify the response to the data [76]. The effect of this matrix is based on the relation between 
the distances separating the output neurons. 

This agent also incorporates an intelligent paradigm (TB-CBR) to tune the  parameters of the 
neural model introduced above. This agent generates a solution (or achieves its goals) by 
retrieving a previous case and analysing the new one through the CMLHL architecture. Cases are 
defined by several features, as can be seen in Table 2. 
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Class Feature Type Description 

P Segment length Integer Total segment length (in ms). 
P Network segment Integer Network segment where the traffic comes 

from. 
P Date Date Date of capturing. 
P #source ports Integer Total number of source ports. 
P #destination ports Integer Total number of destination ports. 
P #protocols Integer Total number of protocols. 
P #packets Integer Total number of packets. 
P Protocol/packets Array An array (of variable length depending 

on each dataset) containing information 
on how many packets of each protocol 
there are in the dataset. 

S #iterations Integer Number of iterations. 
S Learning rate Float Learning rate. 
S P Float CMLHL parameter. 
S Lateral strength Float CMLHL parameter. 
S Weights Matrix A matrix containing the synaptic weights 

calculated by the CMLHL model after 
training. 

Table 2. Analyzer agent - representation of case features. Classes: P (problem description attribute) and S 
(solution description attribute). 

The Analyzer agent incorporates two different behaviours, namely "learning" and 
"exploitation". As previously described, this agent initially incorporates new knowledge (modelled 
as sets of problem/solution) into the case base during the set-up stage. This learning behaviour is 
characterized by the TB-CBR stages described below, through which the agent stores the results 
on previous similar datasets to generate the parameter values of a new problem in the future. Once 
the case base is wide enough (according to different criteria), the exploitation behaviour is started. 
From then on, the revise and retain stages of the cycle are no longer performed as there is a wide 
range of previous cases already stored in the case base. When a new analysis request arrives, the 
Analyzer agent retrieves the most similar case stored in the case base. Then, the weights contained 
in that solution are reused to project the new data. To reduce the execution time, the neural 
network is not trained again and as a result, the other parameters of the neural model are not 
reused. 

The Analyzer is clearly the most resource-consuming class of RT-MOVICAB-IDS agents as it 
trains the neural model during the learning behaviour. The amount of computational resources 
needed to analyze the data coming from different network segments is extremely high. To respond 
to this demand, Analyzer agents can be located in high-performance computing clusters or in less 
powerful machines whose computing resources are under-used. In this way, RT-MOVICAB-IDS 
can be adapted to the available resources for ID. Additionally, time-bounding these agents will 
cause a reduction of the response time (especially in the worst case) while reducing the amount of 
considered solutions. As a consequence, less training of the neural model during the learning 
behaviour will ensure that the Analyzer Agent is capable of quickly obtaining a result in a 
deterministic way. 

To do so, the Analyzer agent implements a temporal bounded behaviour in all of its phases. As 
a consequence, the result of the training will be improved when extra time is available to complete 
this phase. 

The different stages of the TB-CBR applied by the Analyzer agent of RT-MOVICAB-IDS can 
be defined as follows: 
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 Retrieve and Reuse phases: when a new analysis is requested, the Analyzer agent tries to find 
the most similar case to the new one in the case base and it is reused to obtain a solution (the 
values of the parameters used to train the CMLHL model). Theses phases are implemented by 
means of the anytime algorithm. This algorithm extracts a solution in a known amount of time, 
smaller than the one available to complete these phases. In the reuse phase, a set of trainings for 
the CMLHL neural model are defined by combining the different parameter values recovered 
from the cases in the case base. As the number of iterations of each one is known, so too is the 
training time. As a result, the Analyzer agent can predict how many neural network models 
could be built in the available time. 

 Revise and Retain phases: the revise and retain phases depend on human experience which 
means that strict temporal control is not applicable to these decisions. For this reason, these 
phases are completed offline. Once the human expert performs a visual analysis of the segment, 
one of the projections is selected and the related parameters are stored in the case-base for 
future executions. The time required by a human expert to perform this action is variable and 
indeterminate. As a consequence, these phases lie outside the RT decision algorithm used by 
the Analyzer agents. 

4   Experiments and Results 

RT-MOVICAB-IDS has been tested on a real-life network by generating several segments. 
Experiments on each segment have been carried out. For the sake of brevity, this section shows 
only some of the results obtained through these experiments.  

Due to its vulnerabilities [14], anomalous situations concerning the Simple Network 
Management Protocol (SNMP) are targeted in the experimental setting of this study. SNMP is 
oriented to manage nodes in the Internet community [88]; it is used to control routers, bridges, and 
some other network elements, reading and writing a wide variety of information (such as 
operating system, version, routing tables, default TTL and so on) on these devices. All this 
information is stored in the Management Information Base (MIB), so it can be defined in broad 
terms as the database used by SNMP to store information about the elements that it controls. In 
addition to the SNMP packets (both "normal" and "anomalous"), the segments contain traffic 
related to other protocols, considered as "normal" traffic. 

4.1   SNMP Anomalous Situations 

This experimental study is focused on the identification of SNMP-related attacks. Thus, three 
main anomalous situations are distributed throughout the different segments in this study, namely: 
scans, SNMP community searches and MIB information transfers. These situations (described in 
the following paragraphs) can be very risky on their own and all together (a network scan 
followed by an SNMP community search and ending with an MIB information transfer) constitute 
a complete SNMP attack in which an intruder obtains SNMP managed information without 
possessing any previous knowledge about the network under attack. 

These three anomalous situations can be defined as: 
 Scans. A port scan may be defined as series of messages sent to different port numbers of a 

host to gain information on its activity status. These messages could be sent by an external 
agent to find out more about the network services a host is providing. On the contrary, in a 
network scan the same port is the target for a number of hosts (usually all the hosts in an IP 
address range). A port scan provides information on where to probe for weaknesses, for which 
reason scanning generally precedes any further intrusive activity. In this experimental study, 
the datasets contain network scans aimed at port numbers 1,434 (registered port assigned to 
Microsoft-SQL-Monitor, the target of the W32.SQLExp.Worm) and 65,788 (as an example of a 
dynamic or private port). 
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 SNMP Community Search. The unencrypted "community string" can be seen as the SNMP 
password for versions 1 and 2. An SNMP community search is characterized by the intruder 
sending SNMP queries to the same port number of different hosts trying to guess the SNMP 
community string by means of different strategies (brute force, dictionary, etc.) [89]. Once the 
community string has been obtained, all the information stored in the MIB is available for the 
intruder. 

 MIB Information Transfer. This situation is a transfer of some (or all the) information 
contained in the SNMP MIB, generally through the get (or get-bulk) command. This kind of 
transfer is potentially a dangerous situation. However, the "normal" behaviour of a network 
may include queries to the MIB. This is a situation in which visualization-based IDSs are 
especially useful; these situations are visualized in a "special" way by the IDS, but it is the 
network administrator’s responsibility to decide whether or not it is a "normal" (i.e. a 
previously scheduled) MIB transfer. 

4.2 RT-MOVICAB-IDS Projections 

In this section, some snapshots are shown. Each one of them depicts all the packets contained in 
the dataset whose projection is shown. RT-MOVICAB-IDS plots the packets in different colours 
and shapes taking into account the protocol information, leading to an intuitive visualization. In 
these snapshots, and in general for projection models, the axes forming the projections are 
combinations of the features contained in the original datasets, as shown in Fig. 2. The horizontal 
and vertical axes of the projections are not associated with a unique original feature. 

Fig. 2 shows the projection of a simple segment containing no anomalous situations. This is the 
way that RT-MOVICAB-IDS depicts "normal" traffic: parallel straight lines. After analysing each 
packet that is depicted, it was noticed that a certain ordering related to the input variables is 
preserved in this and other projections. The original features (timestamp, source port, destination 
port, protocol and size) of the packets are preserved as indicated in Fig. 2. Any sign of non-
parallel evolution or high packet concentration is viewed as an anomaly. It can be seen how in this 
figure all the packets (related to "normal" traffic) evolve in parallel "lines". For some protocols, 
we cannot define a proper "line" because there are not enough packets. We can draw a line 
crossing all these packets (from the same protocol) in the plot. This line will be then parallel to the 
others. 

Additionally, Fig. 2 allows us to identify a disruption in protocol traffic. As can be seen in this 
figure, the normal traffic related to a certain protocol (Group 1 in Fig. 2) is interrupted at a certain 
point. Thus, the network administrator should realise that this protocol stopped working for a 
while. This would require an in-depth investigation to ascertain the reasons for such an 
interruption, as it might not be related to an intrusion. 
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Fig. 2. RT-MOVICAB-IDS sample visualization of “normal” traffic. 

RT-MOVICAB-IDS visualisation of a simple segment containing two network scans is shown in 
Fig. 3. As in the previous segment, most of the traffic (identified as "normal") evolves in parallel 
straight lines. Additionally, there are two "groups" (Groups 1 and 2) of packets that are not 
depicted in the same way. Looking at the source data, it was checked that all these packets 
(visualised in a non-parallel line to normal traffic) formed part of the network scans contained in 
this segment. Packets contained in Group 1 were related to a network scan aimed at port number 
1434, while packets contained in Group 2 made up the scan aimed at port number 65788. 

timestamp 

source port 

destination port / protocol /size 

Group 1 
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Fig. 3. RT-MOVICAB-IDS sample visualization of a simple segment containing two network scans. 

Fig. 4 shows the way in which the system visualizes an accumulated segment containing several 
anomalous situations [12-14]: network scans (Group 1), SNMP community searches (Groups 2, 3, 
and 4), and MIB information transfers (Groups 5 to 8). These anomalous situations are identified 
by their non-parallel evolution and their high packet concentrations. Although these anomalous 
situations are placed in a 106 minute-long accumulated segment containing almost 50,000 
packets, they do not slip by unnoticed. This outcome shows the intrinsic robustness of the applied 
neural model (CMLHL), which is able to respond effectively to a complex dataset. 
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Fig. 4. RT-MOVICAB-IDS sample visualization of an accumulated segment containing several different 
anomalous situations. 

Some other statistical and unsupervised models such as Principal Component Analysis (PCA) 
[17], Curvilinear Component Analysis [90] or Self-Organizing Maps [91] have been applied to 
analyze the internal structure of these traffic datasets. Nevertheless, CMLHL [14] was able to 
identify anomalous situations in the most intuitive way. 

4.3   Results for the Coordinator Agent 

This section shows the results of time-bounding the Coordinator Agent. The main advantages of 
using the TB-CBP, as against  CBP without temporal constraints, are the maximization of CPU 
utilization and minimization of the average execution time of the distribution of the analyses to the 
Analyzer agents. A set of tests was performed to validate this claim, the results of which are 
shown in Table 3. One hundred tests were completed, each consisting of a set of segments that the 
Coordinator agent should distribute to available Analyzer agents. The maximum time for planning 
was two milliseconds and the Coordinator agent therefore had to complete the distribution of 
pending analysis before that time expired. As the Coordinator agent has been implemented using 
the TB-CBP model, it is able to complete this task (providing a plan) while meeting the temporal 
constraints. Additionally, the utilization of the CPU resources is maximized as can be seen in 
Table 3. 

 
 Average CPU utilization Average Execution Time 
TB-CBP 97 % 1.6 ms 
CBP 72 % 3.4 ms 

Table 3. TB-CBP vs. CBP as reasoning mechanism of the Coordinator agent. 
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4.4   Results for the Analyzer Agent 

The percentage of completed CMLHL trainings for different response times were evaluated, in 
order to measure the consequences of applying the TB-CBR model instead of CBR in the 
formulation of the Analyzer Agent. Table 4 shows the results obtained by considering both simple 
and accumulated segments. As can be seen, using the new TB-CBR-based approach, the 
percentage of completed trainings is reduced due to the time limitation. Nevertheless, this 
reduction of trainings does not strongly worsen the quality of the obtained projections of the pre-
processed traffic data, according to the perception of the human experts. It can be said that the 
main outcome of the new temporal-bounded approach is that it works in a faster and, what is more 
important, a more predictable way. 

 
 Segment Type Completed Trainings 
CBR  Simple 100 % 
 Accumulated  100 % 
TB-CBR Simple 58% 
 Accumulated  40% 

Table 4. TB-CBR vs. CBR as reasoning mechanism of the Analyzer agents. 

5   Conclusions and Future Work 

This study has presented RT-MOVICAB-IDS, and IDS incorporating temporal constraints on the 
deliberative agents that employ a CBR architecture, which enables them to respond to events in 
real-time. As a consequence, the Coordinator and Analyzer agents will always give a solution 
within the available time, thereby maximizing CPU utilization. 

The deliberative Coordinator agent, working at a high level with Belief-Desire-Intention (BDI) 
concepts, is temporal-bounded by redefining the four stages of its CBP cycle employing the TB-
CBP model. This means that the deliberative process of the Coordinator agent is predictable, so 
that the Coordinator agent knows how much time is available to provide a solution. The 
Coordinator agent can obtain the best solution in the time allotted for this purpose. Moreover, the 
deliberative process time is reduced and the CPU utilization by the Coordinator agent increases. 

A key step of the ID process is the assignement of each pending analysis to available Analyzer 
agents, which is performed by the Coordinator agent. Accordingly, temporal constraints are 
incorporated in the Coordinator agent without affecting its deliberative capabilities. 

The Analyzer agent also incorporates time restrictions. In this case, the TB-CBR included in 
this kind of agents allows them to provide a faster response. The main drawback is that the 
number of trainings in the learning phases of this agent is reduced. However, the visualisation 
does not significantly deteriorate, so the visual analysis performance is similar but the 
visualization is obtained much earlier. The Analyzer agent is predictable which allows a temporal 
bounded analysis of the pre-processed traffic data.  

With these RT features, the tasks of RT-MOVICAB-IDS that employ intelligent techniques are 
converted into predictable tasks, and therefore, the global response of the system can be assured 
within a maximum amount of time. Moreover, the use of an anytime approximation, as it has been 
described in previous sections, allows an improved response quality if more time is available in 
order to obtain the expected solution. As a consequence, the end result is a trade-off between fast 
detection of intrusions and their accurate identification. 

From a general perspective, it can be concluded that the proposed RT-MOVICAB-DIS 
formulation enables a predictable and intuitive visualization of network traffic, including normal 
and anomalous situations. As a result, security personnel employing this tool will be able to 
monitor the traffic of a given network. 
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Future work will be based on the application of different neural models in order to obtain better 
visualization results within the temporal constraints of RT-MOVICAB-IDS. Additionally, some 
other MAS issues, such as failure and attack tolerance, will be considered. 
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