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Abstract

This paper develops a model to compare geographical differences in
the mortality of related regions, taking into account the interdependence
between them. Additionally, the model allows us to provide an adequate
solution for studying the mortality of a group pertaining to a larger pop-
ulation. It should therefore be possible to improve the mortality analysis
for the regions in a country by taking into account the patterns within
that country. Using official data from the Spanish National Institute of
Statistics (Instituto Nacional de Estad́ıstica, INE), we applied a modifica-
tion of the Lee-Carter model to Spanish regions. The results of this model
were then compared with other similar models such as the logit Brass, Li
and Lee and Russolillo-Giordano-Haberman. One interesting feature of
our model is its simplicity, as the comparison of mortality patterns is
accomplished by means of a simple index.

Keywords : Brass model, Lee-Carter model, Geographical index, Geostatis-
tics.

1 Introduction

The increasing demand for information about the evolution and demographic
characteristics of the population has required a great deal of adaptation by the
state organisms responsible for official statistics, which have been compelled
to offer more and more information and to put new analysis and demographic
projection techniques into practice. Mortality tables are a traditional product
of public statistics that the Spanish National Institute of Statistics (INE) has
included in its ordinary publications for decades, and for which a new calculation
method has recently been introduced which provides greater precision (Spanish
National Institute of Statistics (INE), 2009).
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Figure 1: Administrative structure of Spain (Autonomous regions).

The purpose of our study is to deal with the measurement of the phenomenon
of mortality at the level of individual regions, attempting to provide the most
adequate solution for studying the mortality of a group pertaining to a larger
population. In this case there are problems associated with the incidence of any
demographic phenomenon in a small population, such as the randomness of re-
sults, possible inconsistencies between data about deaths for individual regions
in relation to the total for the whole country, etc.. The methodology of mortality
tables that this article proposes was developed with the aim of establishing an
operating procedure which permits the comparison of mortality tables at a na-
tional level with those at a regional level, in particular the administrative region
s of Spain (called Autonomous Communities). It also permits the construction
of tables for Autonomous Communities from those for the whole country. This
study arises from the growing interest in obtaining ever more exact and inte-
grated measurements of the conditions and expecttaion of life, as well as current
projections of their future trends. Due to the administrative structure of Spain
(see Fig. 1) it is of particular interest to have mortality tables broken down to
these territorial levels.

Considering life tables for Autonomous Communities, a recent study by
Goerlich and Pinilla (2009) uses the methodology described in the protocol
(Wilmoth et al., 2007) of the Human Mortality Database to produce regional
life tables and compares them by means of indicators such as life expectancy,
disability-free life expectancy and the Gini coefficient. All these indicators share
the advantage of summarising information about mortality independent of the
age structure. However, the comparison of Autonomous Communities varies
according to the year in which the indicators were obtained, and is therefore
dynamic.

Our proposal is a model with an age effect, a period effect and a a geograph-
ical effect (Autonomous Community) to which a random error is added. This
model permits the comparison over different years whit just one index.
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This article is structured as follows: Section 2 introduces four models adapted
to measuring the influence of region on mortality: the classical Brass model
(Brass, 1971), models derived from the original Lee-Carter model (Li and Lee,
2005; Russolillo et al., 2010) and our new model, also a derivation of Lee-Carter.
Section 3 presents the results of the application of these four models to the anal-
ysis of mortality data for Spain as a whole and for the Autonomous Communities
for the period 1991-2008. The results which provide the distinct models for the
period 1991-2008 are compared by means of their goodness-of-fit and residuals.
This is of particular interest, as we have not found evidence of any other similar
study on mortality data in Spain. Finally, Section 4 establishes the conclusions
to be drawn from the results in the previous section.

2 A review of models

We consider a set of mortality rates in the form of dynamic life tables for dif-
ferent territories. We wish to produce smoother estimates, q̂xti, of the true but
unknown mortality probabilities qxti from the set of crude mortality rates, q̇xti,
for each age x and year t in each region i. The crude rate at age x is typically
based on the corresponding number of deaths recorded, dxti, relative to those
initially exposed to risk, Exti.

2.1 The Logit method

A classical model proposed by Brass (1971) establishes a functional relationship
between the survival functions lxti, corresponding to regional mortality tables
i, and lxte corresponding to a standard table, e. The initial value of l0ti = 1.
The relationship is given by

logit(lxti) = αti + βtilogit(lxte) i = 1, 2, . . . , r, (1)

where r is the total number of regions and the logit transformation for each age
x, period t and region i is,

logit(lxti) = 0.5 ln

(

1− lxti
lxti

)

, ∀x > 0

From the survival functions estimated by the model,

l̂xti =
1

1 + 2 ̂logit(lxti)
,

the number of deaths is calculated by means of the difference between the sur-
vivors in an age group and the previous one, and the probability of death as the
ratio between the number of deaths and the number of survivors. The forecast
of mortality is carried out by modelling the time series for parameters using
an ARIMA model. Murray et al. (2003) generalize the principle underlying
Brass’s approach, postulating that there is some transformation of the survival
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function such that all transformed survival functions are linear functions of each
other. A detailed discussion on this model can be found in Booth (2006).

Brass’s model is the most classic of those that we are going to present, and
despite having been widely used in demographical and actuarial contexts, it
contains some weaknesses that should be pointed out:

1. It assumes that there is a linear relationship between the logits of the
survival functions.

2. It makes predictions from separately adjusted ARIMA models; the under-
lying assumption being that the two series corresponding to αt and βt are
independent.

2.2 Lee-Carter models

The Lee-Carter model, developed in Lee and Carter (1992), consists of adjusting
the following function to the mortality measurement,

mxt = exp(ax + bxkt + ǫxt), (2)

or its equivalent
ln(mxt) = ax + bxkt + ǫxt, (3)

applied to its logarithm transformation. This is an age-period (AP) model, as
the double subscript refers to the age, x, and to the year or unit of time, t. In (2)
and (3), ax and bx are age-dependent parameters and kt is a specific mortality
index for each year or unit of time. The errors ǫxt, with a zero average and
variance σ2

ǫ , reflect the historical influences of each specific age that are not
captured by the model.

There are many commonly used link functions, and their choice can be some-
what arbitrary as Haberman and Renshaw (2008) point out. Cossette et al.
(2007) using, for example, the complementary log-log (cloglog) link. The ratio-
nale for choosing these links is the fact that as we work with mortality tables
whose contents are raw estimates of qxt, the application of model (3) could
produce estimates greater than 1 (Lee, 2000). Our choice is the logit of death
probability qxt,

log

(

qxt
1− qxt

)

= ax + bxkt + ǫxt. (4)

Debón et al. (2008) show how to obtain the parameter estimation by means
of the SVD method (Lee and Carter, 1992), generalized linear models GLM
(Currie et al., 2004) and maximum-likelihood ML (Brouhns et al., 2002). This
model presents a problem of identifiability, as given a solution of (3), (ax, bx, kt),
any transformation of the type (ax, bx/c, ckt) or (ax + cbx, bx, kt − c), ∀c, is also
a solution. In order to avoid this difficulty and to get a single solution, some
constraints must be imposed on the parameters. Although Lee and Carter
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(1992) propose the normalization
∑

x

bx = 1 and
∑

t

kt = 0, we propose other

constraints.

2.2.1 Li and Lee model

Li and Lee (2005) propose a variant of the original Lee-Carter model for esti-
mating mortality in countries that form part of a group, instead of considering
them individually. Though Li and Lee proposed this model for different coun-
tries, here it is applied to the different Autonomous Communities in Spain.
Their model is expressed by,

log(mxti) = axi + bxkt + bxikti + ǫxti. (5)

The rationale for this model is that to avoid long-term divergence in mean
mortality forecasting for a group, a necessary and sufficient condition is that all
the populations in the group have the same bx and the same drift term for kt (Li
and Lee, 2005). The ax are estimated separately for each individual population
in this group, axi for country i, since they do not cause long-term divergence
and hence do not need to be the same for each population. The authors propose
the adjustment of the model by means of SVD.

We have adapted this model to the logit(qxti),

logit(qxti) = axi + bxkt + bxikti + ǫxti,

whose adjustment by means of SVD is as follows.

• The estimate axi is

âxi =

∑

t

logit(q̂xti)

T
,

with T number of years.

• The values bx and kt, common factors for all populations, are estimated
by singular value decomposition (SVD) applied to the matrix,

∑

i

(logit(q̂xti)− âxi)

r
,

where r is the number of regions. After bx and kt have been incorporated
into the model, if the variance reduction obtained with this reduced model
is small, then the procedure continues to incorporate the specific term for
each region, otherwise the procedure stops.

• The specific factors for the ith population, bxi and kti, are obtained us-
ing the first-order vectors derived from applying the SVD to the residual
matrix of the common factor model,

log

(

qxti
1− qxti

)

− âxi − bxkt, i = 1, . . . , r.
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Then k̂ti and b̂xi are the respective first-right and first-left singular vectors
for i = 1, ...., r.

Finally, the solution is denoted as (âxi, b̂x, k̂t, b̂xi, k̂ti).
Generalized non-linear models can be used as an alternative method for es-

timating the model (5), as Turner and Firth (2006) do for the force of mortality.
Due to the large number of parameters, this approach produces computational
problems.

The last step, prediction beyond the period under observation, is carried
out by adjusting two ARIMA models to the time parameters series. So the
prediction for year tn + s is

logit(q̂x,tn+s,i) = âxi + b̂xk̂tn+s + b̂xik̂(tn+s)i.

As in the case of Brass’s model, this model also has some weaknesses:

1. It cannot be estimated for regions with qx = 0 or qx = 1.

2. It has a large number of parameters and, in particular, the specific factor in
every region, bxikti, can produce excessive divergences between projections
for the different regions.

3. The axi that it provides behave erratically for regions with small popula-
tions.

4. It does not provide any index for the comparison of regions.

In order to avoid the divergences indicated in item 2 and to compare the
estimations obtained with the models that follow, we have used a reduced version
of this model that suppresses the specific term.

That is,
logit(q̂xti) = axi + bxkt + ǫxti, (6)

the problem of identifiability is solved with the following restrictions, kt0 = 0
and b0 = 1. Model (6) is called the common factor model by Li and Lee (2005).
In this model, trends are assumed to be common to all the regions, which is
reasonable given that the focus is on the different regions of the same country.
Moreover, we propose a small improvement to the adjustment of this model that
consists of obtaining the estimations bx and kt for maximum likelihood once the
values of the axi have been fixed with an offset term. These values are easily
obtained with the package gnm, providing the solution for SVD as an initial
point. This considerably improves the adjustment.

The interpretation of the parameters is as follows,

1. axi coefficients describe the average shape of the age profile in the region
i.

2. The evolution of bx gives an idea of how fast the ratios decrease in response
to changes in kt for the country.
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3. The values kt represent the national tendency of mortality during the
period.

The listed weaknesses of Brass’s model, and those for this last one, lead
us to consider two other models that avoid them and, in particular, permit
comparison between different regional units, adding only one new parameter for
each of them.

2.2.2 Russolillo-Giordano-Haberman (RGH) model

By analogy with the Lee-Carter models and in order to obtain a parsimonious
model, Russolillo et al. (2010) propose adding a factor index that specifically
modifies mortality for each member of the group. The proposed model is,

log

(

qxti
1− qxti

)

= ax + bxktIi + ǫxti. (7)

The problem of identifiability is solved by setting kt0=0, for some t0, and b0=1
and I1=1. Then, for t0 we can write (7) in the form,

logit(qxt0i) = ax + bxkt0Ii = ax,

and ax’s are the logit of the probabilities of death for each age and for each
region during the period t0. Consequently,

qxt0i =
exp ax

1 + exp ax
.

Comparing the odds of the probabilities of death in any period t with those
of the reference period t0, for any region i, we have

log(OR) = log
qxti/(1− qxti)

qxt0i/(1− qxt0i)
= ax + bxktIi − ax = bxktIi. (8)

In addition for I1=1, log
(

qxt1

1−qxt1

)

= ax + bxkt.

The following is the interpretation of the parameters,

1. ax coefficients describe the average shape of the age profile for the period
t0.

2. The evolution of bx gives an idea of how fast the ratios decrease in response
to changes in kt for Region 1,

dlogit(qxt1)

dt
= bx

dkt
dt

.

3. The evolution of bxIi gives an idea of how fast the ratios decrease in
response to changes in kt for Region i,

dlogit(qxti)

dt
= bxIi

dkt
dt

.

4. The values kt represent the tendency of mortality during the period.
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2.2.3 A new model

Our proposal, henceforth called the Additive model, seeks a model similar to (7)
but simpler, because we add the region as an additive index. This new model
can easily be compared with (7) as both share the same number of parameters.
Its expression is,

log

(

qxti
1− qxti

)

= ax + bxkt + Ii + ǫxti. (9)

This model, as in (7), is adjusted by Maximum Likelihood (ML).
The problem of identifiability is solved, as in the above model, by putting

kt0=0, b0=1, but I1=0. Then, for t0 we can write (9) in the form,

logit(qxt01) = ax + bxkt0 + I1 = ax, (10)

and ax’s are the logit of the probabilities of death for each age in the period t0
for Region 1 . Consequently,

qxt01 =
exp ax

1 + expax
.

Comparing the odds of the probabilities of death in any period t with those of
the reference period t0 for Region 1, we have

log(OR) = log
qxt1/(1− qxt1)

qxt01/(1− qxt01)
= ax + bxkt − ax = bxkt. (11)

Comparing the odds of the probabilities of death in any region i with those of
the reference Region 1, we have

log(OR) = log
qxti/(1− qxti)

qxt1/(1− qxt1)
= ax + bxkt + Ii − (ax + bxkt) = Ii. (12)

In addition for I1=0, log
(

qxt1

1−qxt1

)

= ax + bxkt.

The following is the interpretation of the parameters:

1. ax coefficients describe the shape of the age profile in Region 1 for the
period t0.

2. The evolution of bx gives an idea of how fast the ratios decrease in response
to changes in kt.

dlogit(qxti)

dt
= bx

dkt
dt

,

3. The values kt represent the trend of mortality in Region 1 during the
period.

4. The succession of values Ii gives an idea of the differences in the pattern
of mortality in any region i with respect to Region 1.
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2.3 Comparing model structures

As far as age parameters are concerned, model (6) differs from (7) and (9)
in the axi, which are specific for each region, while ax is a general term for
the whole population. In the three models, bx is a common parameter for
whole population. With regard to time parameters, they all contain a common
parameter kt which reflects the behaviour of the whole population over the time
period. The errors ǫxti, with a zero mean and variance σ2

ǫ , reflect the historical
influences of each specific age that are not captured by the model.

As regards (7) and (9), both models differ essentially in the meaning of their
Ii indexes. In (7) the index stands for the specific change shown in each region
by the increments, bxkt, taking place with respect to the general behaviour of
the logit of mortality, ax. In (9), taking the whole population of the country as
a reference, and making I1 = 0, the index means the additive change necessary
for transforming the logit(qxt1) = ax + bxkt in Region 1 to that of a region i. In
addition, this model assumes that differences in the mortality of specific regions
are age and time independent.

The results of the application of all of these models to real data are provided
in Section 3.

3 Analysis of mortality data from Spain

All these models will be used to adjust mortality for Autonomous Communities
in Spain. The adjustment is carried out through ML using the R Development
Core Team (2005).

3.1 Description of the data

Figures 2 to 9 show the results obtained for male mortality data. Similar pat-
terns are observed in the logit crude mortality rates for age, model parameters
and deviance residual plots for female data. The findings for women are similar
to those obtained for men, and for the sake of brevity they are not reproduced
here. Data used in this analysis come from the INE (www.ine.es). In partic-
ular, we have worked with micro-mortality data reporting individual dates of
birth and death. The crude estimates of qxti, necessary for the models under
study, were obtained with the new methodology recently proposed by the Span-
ish National Institute of Statistics (INE) (2009), based on Elandt-Johnson and
Johnson (1980), pages 128-146, who explain that given complete, continuous-
time observations on all births and deaths for all people in a population exposed
to the risk of mortality, it is possible to produce direct estimates of the central
mortality rates, mxt, by means of

ṁxt =
dxt

1/2Pxt + 1/2Px(t+1) +
∑

i δxtj
, (13)

where dxt are deaths in the year t at age x, and Pxt and Px(t+1) are the popula-
tions that are x years old on December 31st of year t and year t+1, respectively.
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Figure 2: Behaviour of the logit of the crude mortality rates for age, time and
region.

Finally, δxtj is defined as the difference, in years, between the date of death and
the birthday in year t, of each individual j who dies in year t at age x. We can
obtain q̇xt from (13),

q̇xt =
mxt

1 + (1− axt)mxt

, (14)

where axt is the average number of years that people dying in year t have lived
between the ages x and x + 1. This concept was introduced by Chiang (1960,
1968, 1972) in a reformulation of the classic linear survival function model.
The survivor functions, lxt, and theorical deaths, dxt, in the table are obtained
recursively: l0t = 100000, dxt = lxtq̇xt and l(x+1)t = lxt − dxt.

The life table for an Autonomous Community measures the incidence of
mortality for its resident population. In order to avoid unwanted distortions
of the results provided by a complete life table for simple ages, we abridged a
life table with 5-year age groups as the Spanish National Institute of Statistics
(INE) (2009) do in its publications. This can make interpretations difficult as a
direct consequence of the variability of the information that small populations
exhibit.

We have included 17 of the 19 Spanish Autonomous Communities in the
analysis. Two of them, Ceuta and Melilla, were eliminated due to their very
small population size and because the tables obtained for them by the Spanish
National Institute of Statistics (INE) (2009) have 90 as the final age and not 95
as for the other regions. Equations (13) and (14) were the applied to each region
i to obtain the corresponding qxti grouped into q[x,x+n]ti, from the survivor
function lxt for ages x = 0, 1, 5, . . . , 95 by means of the expression

q[x,x+n]ti =
lx − lx+n

lx
,

for age groups 0, 1, [1, 5), [5, 9) . . . , [95,∞). Figure 2 shows the behaviour of the
logit of the crude mortality rates according to age x, year t and region i.

The four models described in Section 2 have been used to adjust mortality
data in the 17 Autonomous Communities for the period 1991-2008 and a range
of ages from 0 to 90. The adjustments have been made separately for women
and men.
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Figure 3: Estimated values for logit Brass model.

3.2 Model fitting

We have included data for Spain as a region. In the case of models (1) and
(9) it is used as a reference, and in models (5) and (7) to obtain more robust
parameters that permit comparison with the other two.

Figures 3 and 4 show the estimations of the parameters obtained with the
4 models for the 17 regions. Firstly it is necessary to evaluate to what extent
the proposed models are able to obtain mortality tables for the different regions
that do not differ too much from each other, eliminate the irregularities in those
with smaller populations and finally, respect their peculiarities. The first two
conditions are analysed with comparative graphs of the different regions and
the last by means of graphs and measures of goodness-of-fit.

Renshaw and Haberman (2006) suggest carrying out diagnostic checks on
the fitted model by plotting residuals. These are done in Figures 5 to 8 with
Deviance residuals,

rdevxti
= sign(dxti − d̂xti)

√

2

[

dxti log

(

dxti

ˆdxti

)

+ (Exti − dxti) log

(

Exti − dxti

Exti − d̂xti

)]

.

(15)

The model’s performance is evaluated with the Deviance, a measure of the
distance between observed q̇xti and adjusted values q̂xti, whose expression is

D(q̂) = 2 logL(q̇xti)− 2 logL(q̂xti), (16)

where logL() is the Binomial loglikelihood function, as we have assumed that
the number of deaths is distributed as a Binomial. Table 1 shows the Deviance
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Figure 5: Deviance residuals for the logit Brass model for men.

13



0 10 30 50 70 90

−
40

−
30

−
20

−
10

0
10

20
30

1991 1996 2001 2006

−
40

−
30

−
20

−
10

0
10

20
30

0 2 4 6 8 11 14 17

−
40

−
30

−
20

−
10

0
10

20
30

Figure 6: Deviance residuals for the Li and Lee model for men.

values for all models.
Deviance (16) is a global measure of the fit of the model; its evaluation for

each age, period and region is carried out using the graphs of the residuals (15)
which are shown in Figures 5 to 8.

The predictions beyond the last time period are carried out by the projection
of time series previously adjusted to the time parameters. The corresponding
ARIMAmodels are obtained using the functions auto.ARIMA and forecast from
the R package forecast (Hyndman, 2008).

Fitted time series were studied using the function tsdiag, which produces a
diagnostic output containing a plot of the residuals, the autocorrelation of the
residuals and the p-values of the Ljung-Box statistic for the first 10 lags. As an
example, Figure 9 shows the diagnoses of the series of the kt for RGH model
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Figure 7: Deviance residuals for the RGH model for men.

applied to men. It should be highlighted that Brass’s model (1) has 34 = 2× 17
time parameters. A similar problem occurs with the Li and Lee model (5), but
as we said previously, for the purposes of comparison we used expression (6)
which contains one kt and avoids the problem.

Figures 10 and 11 show the geographical distribution of the indexes corre-
sponding to each of the regions. The results seem to be contradictory, as small
index values of the Additive model correspond to large index values in the RGH
model. This is because a negative index in the Additive model indicates that
the region has a mortality rate below the reference one, and therefore a greater
reduction in mortality which corresponds to an increased parameter bx, giving
an index greater than the one in the RGH model.

The maps in Figures 10 and 11 show a north/south trend, mortality being
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Figure 8: Deviance residuals for the Additive model for men.

Deviance
Model number of parameters Men Women
Li-Lee 17*20+18+20 426151 481672
RGH 20+18+20 234820 209829
Additive 20+18+20 187270 171077
Brass 18*17+18*17 212659504 85733193

Table 1: Goodness-of-fit for the different models
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Figure 9: Output from tsdiag for RGH model mortality index for men.

lower in the regions in the north and centre than in the south of Spain.

4 Conclusions

Table 1 shows the goodness-of-fit values for different models. A first conclu-
sion, common to all models, is that fitting performs better for women than for
men. This may be due to the fact that male mortality fluctuations for the
ages in the accident hump are difficult to capture over the period of time under
consideration.

In general, the inclusion of the regional effect improves the models, as can
be seen by comparing the residual graphs in Figure 5 with the graphs in Figures
6 to 8. On the other hand, the Additive model shows the best global result for
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RGH index for men

[0.405,0.663]
(0.663,0.921]
(0.921,1.18]
(1.18,1.44]
(1.44,1.7]

Additive index for men

[−0.186,−0.11]
(−0.11,−0.0337]
(−0.0337,0.0423]
(0.0423,0.118]
(0.118,0.194]

Figure 10: Geographical index for RGH (left) and Additive model (right) for
men.

RGH index for women

[0.405,0.663]
(0.663,0.921]
(0.921,1.18]
(1.18,1.44]
(1.44,1.7]

Additive index for women

[−0.186,−0.11]
(−0.11,−0.0337]
(−0.0337,0.0423]
(0.0423,0.118]
(0.118,0.194]

Figure 11: Geographical index for RGH (left) and Additive model (right) for
women.

both sexes and for the goodness-of-fit measures. The explanation for this can
be found in the introduction of the regional effect as an additive term, which
better adapts the model for the regions involved in the study and for advanced
and intermediate ages. Note that the Additive model has the simplest structure
because it only considers the main effects assuming, as mentioned in Section 2.3,
that differences in the mortality of specific regions are age and time independent.

The greatest residuals are observed in the advanced ages. This fact is ob-
served in Figures 5 to 8, which specify the magnitude of residuals for all ages
and models. These figures also confirm the point in the above paragraph.

One comment must be made with regard to the Additive model. In addition
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to obtaining the best results, it has the advantage that its parameters are easily
interpretable in as much as they describe the evolution of mortality over age,
period and region, its computational cost is very low as it only needs an ARIMA
model for forecasting, the comparison between regions is reduced to a unique
index and it is a robust model considering the outliers. For these reasons, we
think that this type of model must be borne in mind for future development.

We have focused our work on fitting and predicting mortality ratios instead
of using mortality indicators for life expectancy. The reason for this is that to
gain an understanding of forecasting error, the evaluation of error in log death
rates is essential (Booth et al., 2006).

In line with the Goerlich and Pinilla (2009) results, we can confirm the
marked north-south pattern in mortality which they observed more clearly for
2006 than for 1975 at the beginning of the period studied. In our case it is seen
for the whole period 1991-2008.
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