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Abstract

The deployment of mobile ad-hoc networks involves several configura-
tion steps, which complicate research efforts and hinder user interest. This
problem prompts for new approaches offering full autoconfiguration of ter-
minals at the different network layers involved. In this paper we propose
a novel solution for the autoconfiguration of IEEE 802.11 based MANETS
that relies on SSID parameter embedding. Our solution allows users to
join an existing MANET without resorting to any additional technology,
and even in the presence of encrypted communications. Experimental
testbed results using a real implementation of the proposed solution show
that it introduces significant improvements compared to other existing
solutions, allowing nearby stations to be configured in about two seconds,
and also enabling multi-hop dissemination of configuration data to take
place quickly and efficiently.

Keywords: IEEE 802.11; MANET autoconfiguration; SSID; bootstrap
problem.

1 Introduction

Mobile Ad Hoc Networks (MANETS) [7] are a networking paradigm where ter-
minals communicate wirelessly and in a multi-hop fashion, not requiring any
infrastructure of support. Their characteristics in terms of flexibility and cost
have made them the candidate technology for different applications such as res-
cue and military scenarios [18], information dissemination in vehicular networks
[9], multimedia databases [24], or even video communication between peers [11].



However, even after a decade of research efforts, their ease-of-use is still quite
low, making it a technology only accessible for experts.

One of the main reasons hindering a large scale deployment of these networks
is the initial configuration phase [16]. For a MANET to be fully operational all
stations must be configured using compatible layer-2 and layer-3 parameters. In
particular, if the IEEE 802.11 technology [6] is adopted for the physical (PHY)
and medium access control (MAC) layers, there are some basic parameters that
all terminals must share. The common PHY parameters are mainly the modu-
lation type, the frequency, and the synchronization timestamp; notice that these
parameters are typically set automatically by the wireless interface without user
intervention. Concerning MAC parameters, stations must share: (i) the service
set, identifier (SSID), (ii) the power-saving mode, (iii) the encryption mode, and
(iv) the encryption key. Notice that the power-saving mode and the encryption
mode are usually detected automatically, while the other two parameters must
be set manually by the user. At layer-3 several parameters must also be set:
(i) the IP version used - IPv4 or IPv6 -, (ii) the station’s IP address, (iii) the
network mask, (iv) the routing protocol used, and (v) the gateway to the In-
ternet. Concerning the latter two parameters, notice that routing protocols are
essential in MANETS to make multi-hop communication possible [12, 8]; addi-
tionally, these protocols usually offer gateway information either automatically
or upon user request.

The aforementioned list of parameters evidence the complexity in configuring
MANET stations. Also, since MANETS lack any sort of centralized server to
handle configuration, all terminals involved must share this task in a distributed
manner. Overall, we consider that there are mainly two barriers preventing
distributed node configuration to be effective: on one hand, a wireless link must
be established to share all the configuration parameters required to configure
the wireless link itself; on the other hand, the fact that wireless communications
are easy to intercept typically requires encryption to be adopted, which further
complicates the configuration process if the encryption key itself is one of the
configuration parameters required. Notice that in both cases we have a variant
of the bootstrapping problem, which is typically complex to solve. Up to now
this problem has remained mostly untackled by the research community, and
no real alternative to manual setup has been found.

In this paper we propose a solution that is able to solve the MANET au-
toconfiguration problem described above in a very efficient and straightforward
manner, setting up all the different parameters associated with the network lay-
ers involved in the process (i.e., PHY, MAC and network layers). Our solution
assumes that the IEEE 802.11 technology is used, and thus relies on the only
unencrypted piece of information that a user can modify at layer-2, the SSID,
to accomplish the goals set. Since the SSID is embedded into beacon frames,
periodically broadcasted by all MANET participants, high efficiency is achieved
with no cost in terms of additional network traffic.

The paper is organized as follows: in the next section we refer to some related
works in this research field. Section 3 briefly introduces BlueWi [16], one of the
few autoconfiguration approaches available in the literature addressing both



layer-2 and layer-3 requirements. An overview of the proposed solution is then
presented in section 4. Section 5 offers details about an actual implementation of
our proposal on a GNU /Linux platform. In section 6 we offer some performance
results obtained in a real-life testbed. A comparison between our solution and
BlueWi is then performed in section 7. Finally, in section 8, we present our
conclusions along with some guidelines for future work.

2 Related works

In the literature we can find several proposals that focus on the IP address as-
signment problem in MANETSs. Mohsin and Prakash [10] propose a proactive
scheme for dynamic allocation of IP addresses in MANETS. Their solution uses
the concept of binary split, and takes into consideration issues like network par-
titioning and merging, as well as abrupt departure of nodes from the system.
Weniger [21] presents PACMAN, a novel approach for efficient and distributed
address autoconfiguration of mobile ad hoc networks. Special features of PAC-
MAN are the support for frequent network partitioning and merging, and very
low protocol overhead. This is accomplished by using cross-layer information
derived from ongoing routing protocol traffic, e.g., address conflicts are detected
in a passive manner based on anomalies in routing protocol traffic. Sheu et al.
[17] propose a scheme to assign IP addresses to newly-joined nodes. In their
proposal some nodes are selected as coordinators, which are organized in a tree
topology by exchanging hello messages. New nodes are able to obtain an IP
address by listening to the exchanged hello messages and contacting the closest
coordinator.

More proposals on this topic are addressed in the survey by Weniger and
Zitterbart [22], which illustrates the different approaches for solving the IP ad-
dress autoconfiguration problem in MANETS, highlighting the major challenges
involved.

The main drawback of all the aforementioned proposals is that, for a fully
functional MANET to be created, IP address assignment is not the only problem
to solve. Thus, a solution offering full configuration of the different network
protocols involved, both layer-2 and layer-3, is required.

One of the few works in the literature offering full MANET configuration is
the solution proposed by Reyes et al. [16], which relies on Bluetooth to deliver
the different configuration parameters required to setup an IEEE 802.11 based
MANET. We describe this solution in more detail in the next section, since it
will be used for comparison against our own.

In this work we propose a solution offering full MANET configuration that is
decentralized, does not require any additional technology besides IEEE 802.11
itself, and does not introduce any extra traffic overhead into the network. Our
solution is novel since it addresses both layer-2 and layer-3 configuration (which
very few do), while avoiding the limitations of other related works in this field.



3 The BlueWi approach

BlueWi [16] is a solution that relies on Bluetooth [1] wireless interfaces to au-
tomate the MANET autoconfiguration process. This solution assumes that all
nodes attempting to join the MANET are endowed with both a Wi-Fi and a
Bluetooth interface to perform all the required tasks.

Initially, one of the nodes must act as a BlueWi server. This server will
register the autoconfiguration service to make it available to all nodes. The
rest, of Bluetooth devices will function as clients, searching for that service so as
to retrieve the MANET configuration parameters, and automatically applying
that configuration afterwards. Figure 1 describes this process in more detail.

Every station that wants to join the MANET must first connect to the
configuration server via Bluetooth, possibly competing with other stations also
waiting to be configured. To do that, stations must perform an inquiry action
to discover nearby Bluetooth devices. Afterwards they must check the different
devices found sequentially until the server offering the desired service (i.e., the
MANET _Autoconf service) is found. Stations can then establish an L2CAP or
RFCOMM connection with the server and download the desired configuration
parameters.

The configuration server must make sure it is visible by other devices, and
listen to the appropriate L2CAP or RFCOMM port for incoming connections.
When a client successfully establishes a connection with the server and requests
the configuration data, the server must generate an XML file with all the re-
quired information and send it to the client. This XML file will contain all
the necessary information for that station to successfully join the MANET. The
configuration parameters include the station’s IP address and mask, the rout-
ing protocol used (e.g. DSR, AODV, OLSR) and all the information required
to configure the Wi-Fi interface (SSID, channel, etc.). By allowing the server
to determine the IP address of each client we are able to avoid duplicated IP
addresses.

Notice that, in the BlueWi solution, the Bluetooth interface is merely used
to retrieve the configuration parameters required to join the MANET, while
the Wi-Fi interface will allow the station to participate actively in the MANET
immediately after the parameters have been received. Thus, after a client sta-
tion receives its configuration data, it must switch automatically to the Wi-Fi
mode. This means that the Bluetooth interface is disconnected and the Wi-Fi
interface is activated, allowing to reduce to a minimum the interference between
Bluetooth and Wi-Fi technologies.

When the Wi-Fi card is enabled the client station can then proceed to ap-
ply the new configuration settings. By doing so it will automatically join the
MANET, being able to communicate with other mobile stations that have also
configured themselves previously.

Overall, we consider that, despite this solution is able to address both layer-2
and layer-3 configuration requirements, it suffers from some limitations such as
requiring all nodes to be endowed with a Bluetooth wireless card, and being
centralized, thus suffering from scalability limitations.



4 Overview of the proposed solution

In the field of Wireless Local Area Networks (WLANSs), the IEEE 802.11 stan-
dard has gained much popularity over the past few years. In fact, its presence
is now nearly ubiquitous, although most of the networks are access protected.

The deployment of mobile ad-hoc networks (MANETS) also relies mostly on
the IEEE 802.11 standard for the physical and MAC layers. However, differ-
ently from WLANS, the lack of access points or any sort of centralized manage-
ment entity complicates the configuration process for terminals attempting to
join the network. In particular, the users must be able to achieve a successful
configuration in terms of both layer-2 and layer-3 parameters to enable commu-
nication. The characteristics of MANETS - i.e. variable topology, short-lived,
decentralized - further complicate the configuration process since the network
participants and the different layer-2 parameters may change frequently. Addi-
tionally, the support for multi-hop communications requires the same MANET
routing protocol to be running on all network nodes.

Due to all the aforementioned issues, the startup of a MANET involves a
complex and time-consuming configuration process that may even hinder scal-
ability. Hence, we seek a solution that makes the configuration of MANET
stations as simple as possible, so that even those users that are not experts in
wireless networking may join and participate in the MANET in a quick, trans-
parent and satisfactory manner.

The envisioned decentralized configuration solution takes into consideration
that 802.11 is the technology of choice for most of the MANETs created and
that, even when communications are encrypted, beacon frames are not. Thus,
our proposal relies on beacon frames as potential carriers of the vital information
that allows a station to gain awareness of critical configuration parameters.

By analysing the structure of an IEEE 802.11 beacon frame (see figure 2) we
may observe that all the frame fields are automatically set by the 802.11 MAC
layer without user intervention, except for the SSID field. This field is set by
the user and carries the network’s name, having a maximum size of 32 bytes
according to the 802.11 standard.

In our proposed autoconfiguration system the SSID will be used not only
to include the network’s name, but also to inform stations about configuration
details which will allow them to be transparently configured. Such duality is
not expected to cause any drawback since most SSIDs in use are characterized
by a low byte count. To justify this statement we have taken a large database
including about 8 million samples corresponding to the top 1000 SSIDs used
worldwide [23], and then plotted the cumulative distribution function for this
1000 SSID sizes. The result of this analysis is presented in figure 3. We can
see that 92% of the SSIDs in use have a length between 4 and 9 characters,
being very large sizes (>16) quite scarce and lacking any additional benefits.
Thus, we consider that limiting the SSID to a smaller size would not represent
any significant limitation, especially when targeting ad-hoc networks where the
SSID must be defined every time a new network is created.

Taking the previous analysis into consideration, we propose a strategy to
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partition the SSID into four different blocks as shown in figure 4. The name
of the network, that is, the legacy SSID, will be in the first block. The second
block includes basic network properties: whether it is an IPv4 or IPv6 network,
which encryption mode is used, and also which MANET routing protocol should
be running. The third block identifies the subnetwork prefix (also including the
network mask when IPv4 is used). Finally, the fourth block holds a random
value to be used as seed when attempting to derive the session key used for
802.11 MAC encryption.

The proposed solution requires that users attempting to connect to an auto-
configurable MANET parse the SSID to extract all the information required to
be connected to the MANET. All data is retrieved automatically through client
software, allowing to fully and transparently configure the network connection
in terms of both layer 2 and layer 3 parameters.

In terms of advantages offered, our configuration strategy is: (i) scalable, (ii)
decentralized, (iii) robust, (iv) efficient, and (v) fully automatic. The arguments
that support this statement are the following:

i) Since beacons are periodically generated at a controlled rate by all MANET
stations according to a randomization algorithm, the configuration information
is made available to the whole MANET independently of its size, which makes
the solution scalable.

ii) Any station attempting to join the MANET is able to obtain configuration
data just by listening to the beacons from any nearby MANET member, avoiding
the need for a central coordinator.

iii) As long as a single MANET member remains active, the proposed con-
figuration strategy remains immune to the loss of participating stations, which
makes the process robust to failures.

iv) The proposed strategy does not generate additional network traffic, and
allows achieving full node configuration in a short period of time (see section
6), thus offering high efficiency.

v) Since the entire setup process is automatic and transparent, it does not
require any technical skills from the user, and even inexpert users are able to
take full advantage of MANETS in a seamless manner.

5 Implementation details

In this section we describe how the different parameters required for configu-
ration are embedded into the SSID string and later parsed. We will also offer
details of an actual implementation of our approach in a Linux-based testbed.
The support for 802.11 wireless cards in the Linux operating system has been
available since the late nineties through the Wireless Extensions APT [19] de-
veloped by Jean Tourrilhes, along with a set of wireless tools [20] accessible
through the command line that were developed by the same author.

For our endeavour, we also developed command line applications that allow
a user to join an existing MANET with autoconfiguration support, as well as
starting such a MANET. The latter option requires the user to define the value



of the different parameters required to fully configure a network interface card,
which includes both layer-2 and layer-3 setup.

Concerning layer-2 parameters, deploying an IEEE 802.11 based MANET
basically requires defining the operation mode (ad-hoc), the SSID, the channel
used, and some security details. The latter include the security protocol used
(WEP, WPA, or WPA2) and the shared key used for authentication and/or
encryption.

At layer-3 we must define which version of the TP protocol is used and,
for that IP version, the subnetwork used through a network ID and a network
mask. To support multi-hop communication, the routing protocol used (e.g.,
AODV]J12], OLSR [2], DYMO [5]) must also be defined.

5.1 Proposed SSID partitioning strategy

Figure 5 illustrates the proposed SSID partitioning strategy, which has been
implemented and validated in a real-life testbed. Notice that, in order to dis-
tinguish regular beacons from our formatted beacons, a special (non-printable)
character has been inserted just at the beginning of the SSID block, thus al-
lowing to quickly identify SSIDs formatted according to our proposal. The
network name, that is, the SSID according to its original definition, appears
next, followed by another non-printable character that ends block 1. Block 2 is
composed by a single byte where the first bit indicates which IP version is in
use (IPv4 or IPv6), followed by 3 bits that indicate which 802.11 security mode
is active (0=open access, 1=WEP-64, 2=WEP-128, 3=WPA-PSK, 4=WPA2-
PSK, 5-7=reserved for future extensions); concerning the last 4 bits in block
2, they are used to identify the MANET routing protocol used (0=forbidden
value, 1=OLSR, 2=A0DV, 3=DYMO, 4=DSR, 5-15—reserved for future ex-
tensions). Notice that value 0 is forbidden to avoid a situation where this single
byte block is set to the NULL value, which would be considered as an end of
string character by the operating system, thus causing and error.

Depending on which IP version was defined in block 2, block 3 will contain
an IPv6 network address field (8 bytes) or an IPv4 network address field. In
case IPv6 is used, these 8 bytes represent the first half of the address within the
Unique Local Unicast [13] range of addresses (FC00::/7); the latter 8 bytes (In-
terface ID) are derived from the MAC address of the wireless network interface
according to the strategy defined in RFC 4291 [14]. If IPv4 is used instead, we
identify the network using 4 bytes plus an extra byte to set the network mask.
To avoid those situations where one or more bytes are zero (NULL character),
we use the first byte (STD/INV) to invert possible NULL values in any of the
four bytes that define the IP address, thus converting any 0x00 value into 0xFF.
Stations attempting to configure themselves must reverse the inverted bytes to
recover the original values. Notice that this strategy was not required for IPv6
since we rely on the Unique Local Unicast range of addresses, which allows
picking any value for the 7 bytes following the first, which means we can easily
discard any 0x00 values appearing and pick other values instead.



Concerning the last block, it includes the session key seed, which is used to
derive the actual session key that will be used to perform MAC layer encryption.

5.2 Deriving the session key

When a new MANET is generated, the value for the session key seed is picked
randomly. This seed allows deriving the session key by supposing that all users
are aware of a fixed pre-shared key (PSK). When relying on standard 802.11 this
shared key is used directly for MAC layer encryption; however, with our solution,
this shared key is replaced by a variable session key. This strategy complicates
the discovery of the MAC layer encryption key by a potential attacker by making
it different every time a new ad hoc network is created.

The size of the seed itself is variable, and depends on the number of bytes
used to identify the network (z). In our solution we will restrict the size of this
network identifier to a maximum of 10 characters, which is not considered a
restriction since 10 characters are enough to uniquely identify an ad-hoc network
in any plausible scenario. Once the network identifier is defined, the size of
the session key seed is picked so as to fill up the SSID size, thus reaching the
maximum length for the SSID field. Although in theory there are 32 bytes
available for the SSID, the fact that the operating systems handle it as a string
ending with the NULL character reduces it to 31 bytes. This way the size of the
session key seed will be either 20-z or 22-z bytes (10 bytes in the worst case),
depending on whether IPv6 or IPv4 is used, respectively.

One of the limitations of having the seed embedded into the SSID has to
do with the handling of NULL values, as mentioned above. This means that
the number of possible combinations will be slightly reduced by this restriction.
Thus, the original space of 256(20=%) combinations (256(22~%) for IPv4) is re-
duced to 255(9=*) (255(22=%) for TPv4). In the worst case conditions (if the
network name uses all 10 characters) there are still about 1024 possible seeds
(~ 7 x 10?8 for IPv4); this means that the chances that the same seed repeats
for a same group of users becomes negligible.

Figure 6 offers more details about the process of session key generation.
Initially, the key shared by all MANET users is combined with the seed made
available in the SSID (block 4) by using a hash mechanism such as MD5 [15],
SHA-1 [3], or RIPMED-160 [4]. Since the number of bits in the hash may be
shorter than the one required by the selected security mode, the hash output is
fed back to generate a new hash until the key generator module gathers enough
bits. Depending on the security mode selected, the key generator module may
have to chop part of the input in order to obtain the correct number of bits for
encryption. For example, if MD5 is used for hashing and WEP-64 is used for
encrypting, a single hashing round suffices since the 128 bit output is enough to
obtain the 40 bits required for a valid session key. On the contrary, if WPA-PSK
is used, we need two MDJ5 hashing rounds to generate a session key of 256 bits,
as required.
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Table 1: Average time overhead associated with autoconfiguration tasks.

Autoconguration tasks No security

WEP (64 € 128 bits)

WPA (256 bits)

Obtain configuration 4 /20 ps 4 /20 ps 4 /20 ps
Generate key - 23 ps 46 ps
Establish SSID 4,400 ps 4,400 ps 4,400 ps

Apply security key - 200 ps 17,500 ps
Set IP address 4,000 ps 4,000 ps 4,000 ps
Start routing protocol 5,600 ps 5,600 ps 5,600 ps

Total time “14 ms ~14.2 ms ~31.5 ms

B L)

Station 1 Station 2 Station 3 Station 4

Station 5

Station &

Figure 7: Chain topology used to measure the propagation time for autoconfig-

uration beacons.
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5.3 Methodology of use

In our scheme, we suppose that there is a group of users that regularly creates
and joins an ad-hoc network with a specific goal. An example can be a firefight-
ing unit, where on every mission a same group of firemen creates a MANET for
communicating among themselves. All users use a same key for accessing the
network, referred to as shared key in the previous section.

When these users intend to join the same ad-hoc network using our proposed
solution, one of them (e.g., the head of the fire squad) creates the ad-hoc net-
work, defining all the parameters required; among them we have the network
name, the security mode, the routing protocol used, the IP addressing infor-
mation and the seed used for session key generation. When the terminals used
by the other users listen to the beacons generated, they will immediately parse
the SSID field to retrieve the configuration details and successfully attach them-
selves to the MANET. This means that first there will be a layer-2 connection
establishment in order to become a member of the Independent Basic Service
Set (IBSS) created, followed by IP parameter definitions and the launching of
the appropriate MANET routing daemon.

From that point on, any subsequent MANET generated would be quite sim-
ilar, except that the seed used will always differ, and thus also the session key.
This requires a potential attacker to find the session key used, and to launch the
attack within the lifetime of a specific ad-hoc network (i.e., for a specific seed).
Compared to the default solution, where the session key would be used over and
over again, this strategy significantly reduces the effectiveness and interest at
performing malicious activities.

6 Validation and performance analysis

In the previous section we described the implementation details of the proposed
autoconfiguration system, which includes two components: one that allows cre-
ating the ad-hoc network, executed only by the first station, and another that
allows joining an existing autoconfigurable MANET. In this section we present
some performance results obtained when validating our solution in our ad-hoc
network testbed.

Performance measurements were made using five middle-range laptops with
similar hardware, running at 1.6 GHz with a single CPU and with 1 GB of
RAM. The wireless cards used were Intel embedded devices supporting the
IEEE 802.11g standard, and all terminals are within transmission range of the
terminal that initially creates the ad-hoc network, unless stated otherwise.

6.1 Assessing the overhead introduced per task

Table 1 shows the average time overhead results obtained for the different secu-
rity strategies. We do not include WPA2 encryption since it is not yet supported
by the Linux OS in ad-hoc mode.
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With respect to the first task, the MANET creation component requires
parsing the user’s input and generating an SSID string with autoconfiguration
information (according to the strategy shown in figure 5), while the autoconfig-
uration component must merely parse the beacon received to extract configura-
tion information. Thus, while the latter task is achieved in just 4 ps, the former
(SSID generation) requires 20 ps.

The remaining tasks are similar for both components developed. In particu-
lar, the second task is related to key generation, which is achieved according to
the strategy shown in figure 6; obviously, this step is skipped if security is dis-
abled. The third and fourth tasks consist in setting the layer-2 parameters, such
as the SSID and the encryption key. In case WPA is used, a configuration file
must be created before launching the wpa_ supplicant tool, which is responsible
for WPA /WPA2 configuration tasks in Linux. This causes the time associated
to that task to account for more than half of the total configuration time.

The last two tasks - IP definition and launching the MANET routing daemon
- are related to network layer configuration, being common in all cases.

Overall, the autoconfiguration times can be considered quite low, although
we have to take into account that the measurements presented in this section
refer to the tasks taking place at the application layer. Since the dissemination
of configuration information requires beacons to be received, and autoconfigu-
ration tasks to be completed, prior to start generating new beacons, the total
autoconfiguration time is usually higher. In the next section we will focus on
these issues.

6.2 Autoconfiguration times in a multi-hop environment

When attempting to autoconfigure different stations in a wireless multi-hop
environment, two different issues must be taken into account: (i) there is a delay
from the time the first station creates the MANET to the time nearby stations
are able to receive the first beacon with autoconfiguration data embedded into
the SSID; and (ii) when a new station wants to join the MANET. it must scan
the different channels for beacons containing autoconfiguration data. Since in
the ad-hoc mode the beacon generation process is distributed and follows a
random algorithm, the actual time required to detect the beacons may vary.

To study the multi-hop propagation behaviour of autoconfiguration data,
we devised a scenario (see Figure 7) where nodes are arranged according to a
chain topology. Distances between nodes are high enough to assure that radio
communications are only possible with one-hop neighbours.

In our setting, Station 1 is responsible for starting the MANET. So, at the
beginning of our experiment, Station 1 uses the autoconfiguration application
to create a new ad-hoc network, while Stations 2 to 6 attempt to connect to
the existing network by starting the autoconfiguration application in the join
mode.

Figure 8 shows how the autoconfiguration information propagates at multiple
hops. We can see that Station 2 gets configured in about 2 seconds since it is
very close to the station that initiates the ad-hoc network. In particular, most of
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this time is associated with detecting the beacon, being configuration parameters
applied in just a few milliseconds, as shown earlier (see table 1).

As we increase the number of hops, it would be desirable to experience a
linear increase of this autoconfiguration time, being such linear increase repre-
sented as best case in figure 8. However, experimental results show that the av-
erage propagation times are associated with a more than proportional increase,
which is explained by the random beacon generation process. Remember that
the IEEE 802.11 standard establishes that, in the ad-hoc network operation
mode, beacons are generated by all stations involved in a distributed fashion
by following a randomization algorithm. Thus, in our example, Station 2 would
only generate a beacon about half the times, while Station 1 would generate bea-
cons in the other half of the cases. As more stations get involved, the chances
that a particular station generates a beacon become smaller, which slows down
beacon dissemination. In our scenario, we find that the station at 5 hops from
the first one (Station 6) must wait on average 14.8 seconds to detect the first
autoconfiguration beacon. As a final remark, we should emphasize that such
beacon propagation times are the typical times for multi-hop ad-hoc network
environments, being that our solution does not impose a significant additional
delay to the process.

In terms of scalability, we consider that our solution is scalable by design
since the configuration information data propagates at the beacon propagation
rate, which becomes highly effective even in large-sized and highly disperse
MANET environments.

Concerning new nodes intending to join the MANET, they can initiate the
configuration process as soon as the ad-hoc network is detected (after any peri-
odic beacon is received), usually waiting for only a few seconds on average. In
this context, we also measure the delays introduced by routing protocols, that
is, the routing topology dissemination time. Notice that, once a station becomes
configured and connected, there will be an additional delay introduced by the
routing protocol to update the network topology. In our testbed, the routing
protocol adopted was OLSR, using the standard parameter values defined in [2].
Thus, we performed a second group of tests where we measured the time elapsed
from the instant when the autoconfiguration application completes its tasks, un-
til a valid route to the first node in the chain topology becomes available. Notice
that, after the beacon is detected, each station will apply the autoconfiguration
parameters, which also includes launching the OLSR protocol daemon.

In the tests that follow, all the previous nodes in the chain are configured
and connected from a routing perspective when the new station arrives.

Figure 9 presents our experimental results assuming that Stations 2 to 6
will gradually join the network, creating the topology shown in Figure 7. The
values represented in the figure 9 show that routing information dissemination
with OLSR imposes a significant time overhead, especially at more than one
hop. This is expected since, in the scope of OLSR, communication with one-
hop neighbours only requires neighbour detection procedures, while higher hop
counts require topology updating procedures to be triggered. Thus, when Sta-
tion 2 attempts to join the network and contact Station 1, OLSR takes between
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Figure 8: Autoconfiguration times for nodes at multiple hop distances from the
initiating node.
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Figure 9: OLSR topology updating time when joining the network at different
hop counts from Station 1.
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3 and 4 seconds to provide a route to this station, while for Station 6 it will
take OLSR between 12 and 19 seconds to provide a valid route.

By combining the results of Figures 8 and 9, we find that the time required
for a MANET to be fully connected and operational can be reduced to less than
one minute if the proposed autoconfiguration strategy is adopted, even with
stations located several hops away from the station starting the MANET, and
even when using a routing protocol with a relatively slow responsiveness (e.g.
OLSR).

7 Comparison between BlueWi and the proposed
solution

In this section we perform a comparison between our solution and the BlueWi
solution introduced in section 3.

As referred before, BlueWi requires clients to establish a Bluetooth channel
with a BlueWi server to retrieve all the configuration parameters required. The
Wi-Fi interface is then configured according to that parameter set. Our proposal
significantly differs from BlueWi since it does not assume any sort of server. In
fact, any station can start the ad-hoc network, and as long as a single station
keeps that network alive, other stations can autoconfigure themselves and join
the network.

Figure 10 shows the total autoconfiguration time when attempting to simul-
taneously configure different numbers of terminals. All terminals are assumed
to be at one hop from either the Bluetooth server (BlueWi) or the station that
starts the MANET (SSID-based proposal) for comparison. In terms of radio
range, the BlueWi solution limits the maximum distance between the Blue-
tooth server and the stations being configured to 10 meters (default Bluetooth
range) or 100 meters, depending on the Bluetooth device class. For our SSID-
based solution, stations at one hop from the station starting the MANET are
able to detect its beacons for distances up to 250 meters although, as shown in
the previous section, multi-hop configuration is possible and does not suppose
any impediment.

From figure 10 we can see that the autoconfiguration time for our SSID-based
solution is independent of the number of stations involved. This is expected
since beacons are broadcasted, being received by all wireless devices within
range. Concerning BlueWi, we find that autoconfiguration tasks require several
seconds more. This additional time is mostly associated with Bluetooth device
discovery procedures (Inquiry), which takes about 5.12 seconds to complete,
and that are a prerequisite before attempting to contact the Bluetooth server.
Also, the number of concurrent stations retrieving configuration parameters will
reduce the channel capacity dedicated to each station, thereby increasing the
total time involved.

To complete our comparison between BlueWi and our proposal, table 2 sum-
marizes the main differences between both solutions. Overall, we find that the

16



BlueWi ——
SSID-based =-—-=

16

Autoconfiguration time (s)

I i

3 4

Number of concurrent stations

Figure 10: Autoconfiguration time when varying the number of terminals being
configured at one hop.

Table 2: Comparison between BlueWi and our SSID-based autoconfiguration

technique.
Characteristic BlueW1i SSID-based
Configuration strategy Centralized Distributed
Autoconfiguration server Required Not required
Multi-hop configuration dissemination Not supported Supported
Wireless technologies Wi-Fi, Bluetooth Wi-Fi
Number of simultaneous users serviced 7 No limit
IPv4 support Yes (DHCP-like)  Yes (MAC address based)
IPv6 support No Yes (MAC address based)
WEP/WPA /WPA2 support Yes Yes

Rotating encryption keys

Yes (manually)

Yes (random seed)

Routing protocol Any Any
User control and logging Yes No
User access control Bluetooth pin Pre-shared Key
Best-case configuration time 7.31s 1.95s
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proposed autoconfiguration system based on SSID parameter embedding offers
significant improvements over a pre-existent solution (BlueWi), representing a
significant step forward in the state-of-the-art within the field of MANET au-
toconfiguration.

8 Conclusions and future work

Despite all on-going efforts, the issue of MANET usability is still an important
research topic since the complexity when attempting to configure MANET ter-
minals remains high. Besides complexity itself, other issues such as the need to
rely on encrypted communications further complicate the configuration prob-
lem.

In this paper we propose a novel solution for terminal autoconfiguration that
is able to fully configure both layer-2 and layer-3 parameters that are critical
to join an 802.11-based MANET. Our solution relies on the SSID field that is
present on the periodic beacons generated by IEEE 802.11 compliant stations
to announce basic configuration data. By listening to beacons and parsing the
SSID field, new stations are able to determine all the information required to
successfully join the MANET.

To validate our proposal we developed two software components, one that
allows creating a new autoconfigurable MANET, and another one that allows
joining an existing autoconfigurable MANET. Experimental results show that
both software components are able to perform all the configuration tasks re-
quired in a very short period of time. In particular, the total time required is
below 15 ms if security is basic (WEP) or disabled, and it is below 32 ms if
WPA is used instead.

By deploying a small scenario using a chain topology we showed that multi-
hop configuration dissemination can be performed in an efficient manner, in-
troducing on average a delay of about 3.2 seconds per hop. Also, experimental
results have showed that, after the configuration process is completed, addi-
tional time may be required to allow the chosen routing protocol to update the
topology. This is particularly true for proactive routing protocols such as OLSR,
which require several seconds to detect new stations and update the network
topology.

To complete our analysis, we compared our proposal against BlueWi, a simi-
lar solution available in the literature, showing that our strategy offers significant
benefits and improvements with respect to the latter.

Overall, we consider that the proposed solution can fill-in the gap between
regular users and ad-hoc network technologies, allowing to accelerate the adop-
tion of distributed communication paradigms to a wider range of application
scenarios.

As future work we plan to develop a similar set of tools to other operat-
ing systems besides GNU/Linux, thus embracing a greater number of potential
users.
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