

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/article/10.1007%2Fs10586-010-0150-7

http://hdl.handle.net/10251/36069

Springer Verlag (Germany)

Montaner Más, H.; Silla Jiménez, F.; Fröning, H.; Duato Marín, JF. (2012). A new degree of
freedom for memory allocation in clusters. Cluster Computing. 15(2):101-123.
doi:10.1007/s10586-010-0150-7.

Noname manuscript No.
(will be inserted by the editor)

A New Degree of Freedom for Memory Allocation in Clusters

Héctor Montaner · Federico Silla · Holger Fröning · José Duato

Received: date / Accepted: date

Abstract Improvements in parallel computing hard-

ware usually involve increments in the number of avail-
able resources for a given application such as the num-

ber of computing cores and the amount of memory. In
the case of shared-memory computers, the increase in

computing resources and available memory is usually

constrained by the coherency protocol, whose overhead
rises with system size, limiting the scalability of the fi-

nal system. In this paper we propose an efficient and
cost-effective way to increase the memory available for

a given application by leveraging free memory in other
computers in the cluster.

Our proposal is based on the observation that many
applications benefit from having more memory resources

but do not require more computing cores, thus reduc-
ing the requirements for cache coherency and allowing

a simpler implementation and better scalability.

Simulation results show that, when additional mech-
anisms intended to hide remote memory latency are

used, execution time of applications that use our pro-

posal is similar to the time required to execute them in

H. Montaner
Universitat Politècnica de València
Departament d’Informàtica de Sistemes i Computadors
E-mail: hmontaner@gap.upv.es

F. Silla
Universitat Politècnica de València
Departament d’Informàtica de Sistemes i Computadors
E-mail: fsilla@disca.upv.es

H. Fröning
University of Heidelberg
Computer Architecture Group
E-mail: froening@uni-hd.de

J. Duato
Universitat Politècnica de València
Departament d’Informàtica de Sistemes i Computadors
E-mail: jduato@disca.upv.es

a computer populated with enough local memory, thus

validating the feasibility of our proposal. We are cur-
rently building a prototype that implements our ideas.

The first results from real executions in this prototype
demonstrate not only that our proposal works but also

that it can efficiently execute applications that make

use of remote memory resources.

Keywords Cluster · Memory aggregation · Hyper-
Transport

1 Introduction

High performance computing (HPC) has been tradi-
tionally addressed by parallelizing applications into a

number of concurrent flows as large as possible and by
providing them with the required hardware that sup-

ports such level of concurrency. In many cases, that

parallel hardware is designed to have as many com-
puting engines as possible as far as its scalability is

ensured. The IBM Blue Gene/P supercomputer [25]
is a good example of this approach. These large sys-

tems are always message-passing platforms, as it is well
known that large scale shared-memory systems have

never been feasible due to the overhead introduced by
the coherency protocol. Nevertheless, it is easier to make

the most of a coherent shared-memory computer than

of a message-passing one (load balancing, resource shar-
ing, ease of programming, etc). This characteristic is

the reason why shared-memory machines are the pre-
ferred choice for small to medium computational re-

quirements. Current implementations of this architec-
ture can be found in the IBM z series [4] mainframe,

which provides applications with a relatively large num-
ber of computing engines and with an amount of mem-

ory that can be as large as two Terabytes. Unfortu-

2 Héctor Montaner et al.

nately, these large shared-memory machines are extremely
expensive, and therefore their use is limited to the cases

where the features they provide are mandatory for a

given computational need.
On the opposite end of the technology market we

find computers based on the x86 architecture. They
are relatively inexpensive coherent shared-memory ma-

chines that are able to scale up to 64 computing cores
by using the last developments by AMD [18] or Intel

[27]. Additionally, their memory capacity may be as
high as a few hundred Gigabytes1, actually becoming

small versions of the expensive mainframes mentioned

above. These x86-based machines are currently used as
the building block for clusters, which are a cheap and

powerful choice for HPC. However, these clusters do not
provide a global shared-memory system. On the oppo-

site, they are a composition of small coherency domains,
each of them constrained to the boundaries of a given

motherboard.
In order to provide a single distributed shared-memory

system from a cluster, several solutions have been de-

vised, like the NumaChip by Numascale [7], that pro-
vides a coherent distributed shared-memory system across

the cluster glueing together all the computing cores and
memory resources. The new SGI Altix UV architecture

[37] is another example of such resource aggregation.
However, these architectures pay the penalty of a lack

of scalability and a larger memory access latency due to
the limitations and overhead imposed by the protocol

that keeps coherency among the nodes of the cluster.

Note that this inter-node coherency protocol is different
from the one implemented by processor manufacturers

in their designs and it could be seen as an additional
level of coherency running on top of the intra-node co-

herency protocol.
Solutions like the NumaChip or the SGI Altix may

allow applications to span to as many cores as required
and to use as much memory as needed, with the obvi-

ous limitation that the amount of required resources

must not exceed the amount of resources present in
the cluster, which might be quite large. However, many

applications may not require such a large amount of
computing cores because they may not efficiently scale

up to such number of concurrent flows. Actually, the
scalability of many applications may be lower than the

number of cores located in a single motherboard [3][24]
although, they may still benefit from the large amount

of memory present in that coherent distributed shared-

memory cluster. Therefore, in a cluster executing ap-
plications that do not require more cores than available

in a single motherboard, there is no real need to pro-
vide coherency among processors located in different

1 This limitation is imposed by mainboard manufacturers.

nodes if every thread from a given application is con-
fined to the processors in the same motherboard. The

key reason is that there is no memory sharing among

applications, that is, their memory maps do not ever
overlap and, therefore, the set of caches that can hold

a memory block is restricted to the caches contained in
a motherboard. Thus, in this scenario where the mem-

ory available to the processors in a given motherboard
will probably span to other nodes in the cluster, but

all the caches involved in the execution of a given ap-
plication will remain in the same motherboard, there is

no need to propagate coherency operations (e.g. probes

and invalidations) to caches out of the node where the
coherency operation is started. Nevertheless, coherency

among the caches inside a motherboard is still guaran-
teed by the original protocol implemented by the cores.

It can be seen that, in this context, aggregation tech-
niques like the NumaChip or the SGI Altix where every

cluster resource (memory and cores) is lumped together
may be counterproductive because of the overhead of

the inter-node coherency protocol. Thus, there is a need

for decoupling processor aggregation from memory ag-
gregation.

In this paper we propose a practical way to pro-
vide non-coherent distributed shared-memory in clus-

ters, thus avoiding the penalty due to the inter-node
coherency protocol. In summary, our proposal dynami-

cally partitions the cluster into non-overlapping coher-
ent domains, each of them containing the cores and

caches of a single motherboard and perhaps spanning

to memory located in other motherboards. In this way,
applications that do not scale beyond the number of

cores present in a node could still benefit from large
amounts of memory by borrowing it from the other

nodes of the cluster. Note that in our proposal there
is still one independent operating system at each node.

Our proposal has been devised keeping in mind that

the final system should be noticeably cheaper than cur-
rent solutions for large-scale shared-memory and that

neither modifications to the application code nor re-
compiling them should be required. However, this new

approach needs two problems to be addressed in order
to be efficient. First, the latency of accessing remote

memory should be kept as low as possible. Second, as
current processors are not designed to access memory

with relatively large access time, their performance may

noticeably decrease. In this paper we analyze the via-
bility of this new approach regarding these two con-

cerns. Nevertheless, note that other solutions, like the
NumaChip or the SGI Altix, are also affected by these

two problems.

Before continuing, it is important to emphasize the

differences between our proposal and the remote swap

A New Degree of Freedom for Memory Allocation in Clusters 3

technique, that will be deeply discussed later. The re-
mote swap technique is based on page fault interrup-

tions that are handled by the operating system, and

this software overhead makes the difference. As we will
explain later, our system is not interruption-driven as it

does not operate at the page-level, this is, no software is
involved. The cornerstone of our system is the fact that

we enhance the behavior of the hardware so that there
is no conceptual difference between accessing local or

remote memory, except for a larger access time.
The remainder of this paper is organized as follows:

in the next section there is a discussion about the use-

fulness of a non-coherent shared-memory system like
the one we are proposing. In Section 3 we present a sum-

mary of related work. The insights of the proposed ar-
chitecture are described in Section 4. Section 5 presents

simulation results showing an estimation of the perfor-
mance of our proposal. Section 6 describes the proto-

type we are currently building to demonstrate this new
architecture. Performance results from this prototype

are shown in Section 7. In Section 8 some future work

is described. Finally, in Section 9 some brief conclusions
are presented.

2 On the Usefulness of Non-Coherent Shared

Memory Systems

In this paper we propose a novel approach that is only

valid for a particular type of applications: those that
do not require more cores than available in a single

motherboard but may benefit from a large amount of
memory. Satisfying only this particular type of appli-

cations would usually mean that the usefulness of our
proposal is quite limited. However, given the current

(and also near to mid-term) trends in processor de-

velopment, motherboard implementations, and paral-
lel programming, our proposal for non-coherent dis-

tributed shared-memory in clusters is very promising.
The key for our proposal to succeed is that, on one

hand, shared-memory parallel applications do not usu-
ally scale beyond a few tens of concurrent flows and, on

the other hand, current motherboards can allocate up
to 64 cores, while in the future this number may proba-

bly increase, making our proposal even more appealing

because it will satisfy a larger number of applications.
The system we are proposing provides several addi-

tional advantages. It not only will allow to run applica-
tions that require large amounts of memory at low cost,

but it will also reduce the cost of acquisition of clusters
by reducing the amount of RAM installed in the nodes

of the cluster. Effectively, nowadays the memory capac-
ity at each node is overscaled, just in case a process may

need a big amount of memory sometime. The rest of the

time that memory remains unused [11]. By leveraging
our proposal, memory resources at each of the nodes

do not need to be oversized, because in case an appli-

cation (parallel or sequential) requires more memory
than the physically available at that node, it can bor-

row additional memory from other nodes. Nevertheless,
note that the objective of our proposal is not making

the most of idle memory in a cluster. We simply pro-
pose a novel way to allow an application that presents a

large memory footprint to be efficiently executed with
a low-cost infrastructure. Therefore, in case there is no

free memory available in the cluster and an application

requires some additional memory, our proposal is still
valid. In this case, the cluster administrator would be

responsible for freeing memory somewhere in the clus-
ter according to the priority of applications.

Another area where our proposal could be useful is
data centers where we can find a heterogeneous range

of memory-hungry applications. On one hand, there are
some applications that can be sped up by providing

more memory, for example in-memory databases [23][5]

and datamining [39]. The idea behind these databases
is storing some or all of the tables of the database in

main memory. In this way, the access to those tables
would be much faster than when using traditional hard-

drives. It would also be much faster than using SSDs
(solid-state disks) for storing the database. However, in

order to leverage this approach for large databases, the
database server should be configured with hundreds of

GB of memory (or even several TB). This amount of

memory is not feasible in a single mainstream x86-based
server.

Other memory-hungry applications found in data
centers are those whose execution is prohibitive with-

out enough available memory, like some kind of simula-
tions [3], scientific applications [24], etc. For example,

in the chemistry domain, the gaussian application re-

quires huge amounts of memory, despite it only scales
up to a few parallel threads.

A third memory consumption paradigm is virtual-
ization: servers are often partitioned so that they can si-

multaneously execute several operating systems (OSes)
and thus provide service to several customers in such a

way that they believe that they own an entire computer.

Moreover, virtualization usually achieves a higher pro-
ductivity rate (number of used cores). Typically, the

memory granted to a given virtualized OS is not always
completely in use; this fact makes possible to execute

these virtualized OSes in a computer with a physical
memory size smaller than the sum of the memories seen

by each OS. But if several of the virtualized OSes re-
quire all their granted memory at the same time, then

they would outgrow the node’s physical memory. In this

4 Héctor Montaner et al.

case it would be helpful to provide additional memory
resources from other nodes in order to avoid swapping

to disk, what would noticeably slow down the virtual-

ized machines. Note that as coherency is only required
inside each of the virtualized OSes but not among them,

memory borrowed from a remote node and used by a
given virtual OS will not require to be coherent with the

memory used by a virtual OS executing in that remote
node. This is just the model our proposal is intended

for.
Although the primary idea of our proposal is to pro-

vide a cost-effective way of extending the memory used

by a process to remote memory located in other nodes
of the cluster, it could also be used for communica-

tion among processes running at different nodes. Effec-
tively, our proposal can be easily adapted to a commu-

nication paradigm like PGAS (Partitioned Global Ad-

dress Space) [15]. The performance of this programming

model can equal that of MPI codes and, for most hu-
mans, it is much easier to learn [41]. Also, PGAS is not

less scalable than MPI and permits sharing, whereas

MPI rules it out [42]. On the other hand, PGAS imple-
ments a one-sided communication model (faster than

two-sided), where caching is not required and the pro-
grammer makes local copies and manages their consis-

tency. Therefore, no cache coherence protocol is needed,
except between the network interface and the processes

in a node. Thus, PGAS perfectly matches the system
architecture we are proposing in this paper.

As can be seen, although the scope and usefulness

of our proposal seemed to be quite limited at the be-
ginning, there are many different application domains

that could take advantage of it.

3 Related Work

Disk swapping is the traditional approach for execut-

ing applications with a memory footprint that exceeds
the available physical memory. This technique turns

the hard disk into another level of the memory hier-
archy so that not recently used data is moved up to

disk to free space in main memory. However, when the
working set of an application is bigger than the avail-

able main memory, the thrashing problem easily arises.

Once this state is reached, execution time increases to
a prohibitive level and system performance plummets.

The most extended technique in the academic scene
for getting additional memory is remote swap [28][34][35].

This technique moves pages from main memory in the
local computer to memory in other computers of the

cluster, aiming that retrieving those remote pages will
be faster than retrieving them from hard disk. Previ-

ous studies have proved that, even on a regular Eth-

ernet network, a remote memory access made across
the network is slightly faster than a local disk access

[12]. However, remote swap presents the same draw-

back as traditional swap, which is not only affected by
disk latency, but it also suffers from software latency,

that is, the time required by the operating system to
swap memory pages. Thus, although remote swap is

free from disk latency, it also suffers from the operating
system overhead and therefore, it does not overcome

the thrashing problem.

A different approach is followed by Violin Memo-

ries, that offers a memory server that can hold up to

504 GB of RAM [9]. This server is attached to the com-
puter by means of a PCI-E adapter. Unfortunately, this

solution not only lacks from scalability (no more mem-
ory than 504 GB) but it also presents a large access

time (3 microseconds) because the OS is required in or-
der to access that extra memory. Additionally, it is an

expensive approach (a server populated with only 120
GB costs more than $20.000).

Other companies are working on providing more

resources to applications from a different perspective,
which is based on aggregating all the resources in a

cluster into a single computer. 3Leaf [1], ScaleMP [8],
Numascale [7], and SGI [37] are examples of these com-

panies that not only provide global access to the cluster
memory, but also to the processors and other resources.

In the case of ScaleMP, a virtualizing software layer

is provided so that multiple x86 systems are aggregated
into a single virtual x86 system, delivering a virtual

symmetric multiprocessor system where coherency is
maintained among the integrating x86 computers. Al-

though this approach provides a chip solution for co-
herent shared memory, its main drawback is that it is

software based, thus reducing performance. Actually,
a single memory reference going through the vSMP

ScaleMP layer takes 25 microseconds. Another exam-

ple of software aggregation is vNUMA [14], although it
presents similar latency problems.

3Leaf, Numascale, and SGI follow a similar approach
but from a hardware-based perspective. 3Leaf provides

systems leveraging their Aqua chip, which provides a
coherent shared-memory system that is the aggrega-

tion of multiple x86 systems. Numascale makes lever-

ages the NumaChip to provide similar features. SGI
makes use of its proprietary UV HUB in order to pro-

vide resource aggregation. Nevertheless, as they provide
access to processors in other motherboards, coherency

must be maintained throughout a large number of com-
puters, limiting the scalability and performance of these

proposals in practice. This is, actually, the main differ-
ence between these approaches and our proposal, where

coherency among nodes is not kept.

A New Degree of Freedom for Memory Allocation in Clusters 5

A different proposal from industry is IBM’s Dy-
namic Logical Partition (DLPAR) [2], which reassigns

memory inside a coherency domain. Basically, it moves

memory from one process to another, both of them be-
ing executed in the same coherent shared-memory com-

puter. Our proposal is quite different because it borrows
memory from a coherency domain and logically moves

it to a different coherency domain.

Finally, other studies show the interest in aggregat-
ing somehow the memory in a cluster [20]. However,

these studies differ from our system in that their im-
plementations operate at page level, and this implies

the use of software layers (OS kernel or hypervisors),
while in our proposal no software is involved in access-

ing remote memory, as it relies only on hardware.

3.1 The SGI Altix UV Architecture

As a recent commercial example of resource aggrega-
tion in clusters providing a single global shared mem-

ory system, in this section we review the SGI Altix UV
architecture.

The SGI Altix UV is the fifth generation of SGI’s

scalable global shared memory architecture, which scales
up to 2048 cores and up to 16 TB of memory. These sys-

tems are built using the SGI NUMAlink interconnect,
that provides the high-bandwidth and low-latency re-

quired by these global shared-memory systems.

The building block of the SGI Altix UV system is
a compute blade containing one or two processor sock-

ets, each of them capable of supporting either 4-, 6-, or
8-core Nehalem EX processors. Each socket is attached

four DDR3 memory channels and four Intel QuickPath

Interconenct (QPI) connections, that allow processors
to communicate with each other and with the UV HUB

ASIC developed by SGI, whose main purpose is glueing
all the different computing blades into a single coherent

system. As can be seen, a SGI Altix system is basically
a cluster of standard Nehalem-based nodes intercon-

nected by means of an ASIC chip designed by SGI and
incorporated into each of the motherboards.

The two initial products of the family are the Al-

tix UV 100 and the Altix UV 1000. The Altix UV 100

is aimed at the mid-range market, scaling from a single
unit containing two dual-socket blades up to a 96-socket

machine that fits into a couple of racks. The maximum
memory capacity in this product is 6 TB, while it pro-

vides a maximum 96-socket configuration (768 cores are
available). The Altix UV 1000 is a cabinet solution that

scales up to 256 sockets, yielding 2048 cores and 16
TB of memory. Both the Altix UV 100 and the Altix

UV 1000 provide a single system image, that may be

leveraged by means of either SUSE Linux Enterprise
Server or Red Hat Enterprise Linux. However, the Al-

tix UV 1000 system also allows larger scalability if the

global system is partitioned into several independent
system images. The maximum size is 16384 nodes with

32768 sockets and 262144 cores. In this configuration,
the maximum amount of memory is 8 PB.

One of the key components of an Altix system is the

UV HUB chip, an ASIC developed at SGI that links the
cache-coherent Intel QPI interconnect with the larger

cache-coherent NUMAlink environment that extends
across the full Altix UV system. The NUMAlink in-

terconnect is proprietary from SGI. The UV HUB chip
additionally provides efficient support for some MPI op-

erations.

The Altix UV platform can be interconnected us-
ing different topologies depending on system size. The

smallest platform size is interconnected by a switched
dual-plane topology with a maximum of three NUMA-

link hops between any node. Medium-size systems with
up to 16 blade chassis in 8 racks (512 blades, 1024 sock-

ets, 8192 core) are interconnected in a fat-tree topol-

ogy using the required number of 16-port NUMAlink
routers. Larger configurations are achieved using 256-

socket fat-tree groups connected in a 2D torus. As can
be seen, the NUMAlink interconnect developed by SGI

provides external routers where the UV HUB chips are
connected to. In any case, remote memory access la-

tency is lower than 1 microsecond inside a single system
image. It increases up to 2 microseconds for traversing

the largest configuration.

Unfortunately, we cannot make a price comparison
of the SGI Altix UV platform because SGI provides

prices only under NDA.

4 A New Shared-Memory Architecture

Our aim is to provide additional memory to processes

requiring it by logically assigning them memory that is
physically attached to other computers in the cluster.

As mentioned before, it is common to reach a situa-
tion where processes in a node require more memory

than available in that node. In this case, memory from

other nodes may be used to expand the available mem-
ory resources of those processes at almost no additional

economic cost. It is important to remark that there is
one independent operating system at each node, and

that a process is confined to the processors and caches
located in the node where it is being executed. However,

the system we are proposing breaks the inter-node bor-
der and allows a process to dynamically use memory

initially owned by other operating systems.

6 Héctor Montaner et al.

Fig. 1 An example of memory sharing among the nodes of a cluster

In this section we present in detail the key compo-

nent of our proposal: how to efficiently access memory

located at other motherboards. Note that deploying the
full system we are proposing requires additional com-

ponents, not described in this paper due to space limi-
tations, such as:

– modifications in the OS in order to augment the

system calls that reserve and dispose memory, so

that they can do so with remote memory,
– augmenting the OS services so that knowledge of

the location of free memory across the cluster is
achieved,

– a communication protocol among nodes suitable for
reserving and disposing remote memory and also for

accessing that memory,
– concerns related to communication reliability and

security,

– a network fabric that interconnects all the nodes
with low latency and high throughput,

– other OS related topics like the use of remote mem-
ory as OS buffer cache, memory migration, fragmen-

tation prevention, etc.

4.1 System Overview

To understand what our system does (and what it does

not), let us introduce a helpful term: memory region.
A memory region is an amount of memory made up

of one or more logical portions of main memory that

could be located at different nodes of the cluster, and
that conform altogether a single coherency domain. A

process can freely use the entire memory in the region it
belongs to but it has no access to the memory in other

regions in the cluster. Similarly, a processor can address
any location of its memory region, but cannot address

memory locations outside it. Figure 1 shows five nodes
of a cluster and five memory regions. Region number 1

is confined to node A and represents the default config-

uration for a node, that is, processes in that node can

access the entire node’s memory. On the other hand,

region number 3 has been extended to the neighbors of
node C, so processes in this node now have direct access

to part of the memory located in nodes B and D. In this
way, regions 2 and 4 have been shrunk and they occupy

only a portion of the main memory in nodes B and D,
respectively. Finally, region 5 has been also extended

to its neighbor node D, where three memory regions
coexist. Moreover, although enlarged memory regions

in Figure 1 have spanned to their neighbor nodes, this

is not a requirement in our system. Actually, a node
may extend its memory resources by borrowing mem-

ory from any node in the cluster. Finally, note that in
our proposal there will be as many memory regions as

nodes in the cluster because processors in a given node
will always create a memory region, independently from

processors in the other nodes. What can be dynamically
adjusted is the amount of memory for a given region.

It is important to emphasize that as memory regions

are independent, processes in node A can only access

region 1, processes in node B can only access region 2,
processes in node C can only access region 3, etc. In the

same way, as all processors in a node can only access
one (the same) memory region, all caches in a node will

only cache data from one (the same) memory region.
This is the reason for the good scalability of our pro-

posal. Effectively, in our system, the size of a memory
region has no impact on the performance of the co-

herency protocol because the number of caches sharing

data in that region is limited to the caches in a node.
In other words, as each memory region is an indepen-

dent coherency domain, a processor bound to a certain
memory region does not need to know what happens

in other regions, and thus changes in a memory region
are only notified to the caches of that memory region.

No matter how large the region is, only the caches con-
tained in one node will be informed. As can be seen, our

system decouples memory from processors, and there-

A New Degree of Freedom for Memory Allocation in Clusters 7

fore there is no coherency overhead when aggregating
huge amounts of memory.

Finally, our system does not rely on any kind of

run time or communication library. The core of our
system is a quite simple piece of hardware, as will be

shown next. Additionally, the process of accessing re-
mote memory completely relies on hardware and is there-

fore free of any software overhead. This is a key feature
over other solutions where a software layer penalizes

every access to remote memory. In our proposal, a reg-
ular load or store operation issued by an application will

trigger the hardware mechanism to access data from re-

mote memory. Because of this characteristic, the time
required by a remote access can be very low. The way

we accomplish this is by means of HyperTransport.

4.2 System Architecture

HyperTransport technology [10] is currently the low-

est latency, highest bandwidth openly licensed standard
communication technology for chip-to-chip and board-

to-board interconnects. We can find its flagship im-
plementation inside the AMD Opteron processor [26],

where HyperTransport is used to interconnect the pro-
cessors in a motherboard. In these systems, each pro-

cessor is attached to part of the physical memory by

means of its own memory controller, as shown in Figure
2(a). Therefore, as there are several memory controllers

in the system to access memory, processors require to
know where to forward a given memory request. This is

achieved by including at each processor a set of base and
address registers (BAR) configured at the initialization

phase that reflect the system physical memory distri-
bution. In this way, when a processor issues a load or

store operation related to a given memory location, the

processor compares the requested address with those
registers, and then forwards the memory operation to

the memory controller responsible for that memory ad-
dress, provided by the previous comparison. Forward-

ing the memory operation involves the generation of a
HyperTransport message.

The system described above is the basis upon which
we will design the technology that enables the access to

remote memory. Our proposal involves creating a new

hardware component that will implement the required
functionality. Hereafter, we will refer to this component

as Remote Memory Controller (RMC). This new com-
ponent will be presented to the processors in the moth-

erboard as a new memory controller as shown in Figure
2(b). However, the RMC will not be a regular memory

controller as it has no memory banks directly connected
to it, otherwise it relies on the memory banks installed

in other nodes in the cluster. In order to enable the

(a) (b)

Fig. 2 (a) Motherboard diagram showing four processors
interconnected by means of HyperTransport. (b) A Remote
Memory Controller has been attached to the motherboard.

Fig. 3 Example of the memory map of a node in a 255-node
cluster. Node identifiers range from 1 to 255

RMC functionality, the BAR registers mentioned be-
fore must be reconfigured so that some of the memory

accesses are forwarded to the RMC, that will convert

those accesses into remote accesses. Note that this sys-
tem model does not imply modifications in the node

architecture. On the contrary, it only requires a new
card containing the RMC to be added to the existing

nodes, as we will explain later.
Figure 3 is a representation of the shared memory

distribution seen by a node in a 255-node example clus-

ter (having 255 nodes instead of 256 will simplify the
RMC design, as it will be shown later). In this exam-

ple, each node has 4 sockets, each of them attached to
4 GB of main memory. Nevertheless, the node can see a

memory space of 4 TB of main memory. This is because
above 16 GB, the memory is mapped to the RMC, as

shown in the right column. As can been seen, the 14
most significant bits of the memory address determine

whether a memory operation must be forwarded to a lo-

cal memory controller or to the RMC2. If those 14 bits
are all set to zero, then some local controller will own

2 Depending on the amount of nodes in the cluster and on
the memory each node has, the number of most significant
bits that determine whether a memory location is local or
remote will change.

8 Héctor Montaner et al.

the required address. Otherwise, the RMC will manage
the operation by forwarding the memory request to the

corresponding node pointed by the 14 most significant

bits. When the memory operation arrives at the desti-
nation RMC, that RMC sets to zero those 14 bits and

forwards the operation to its local system by gener-
ating the appropriate HyperTransport message. Once

the RMC in the remote node gets the response mes-
sage from a memory controller in its motherboard, it

forwards the response to the source RMC. As can be
seen, the Opterons in the local motherboard are not

aware about the remote memory and they see the RMC

as another memory controller (with a huge quantity of
memory behind it).

There is an important detail that requires further
explanation. As pointed out before, in order to simplify

the design of the RMC, our example cluster is composed
of 255 nodes. Node identifiers start at node number 1

and finish at node number 255. Our system will never

have a node identified as node 0. By doing so, every
node has an identical physical memory map concep-

tion, that is, local memory at each node always starts
at address 0x000000000000, as it is represented in the

left side of Figure 3. On the other hand, remote mem-
ory will always be denoted by the 14 most significant

bits being different from 0. In this way, programming
the set of registers used to forward memory accesses is

simplified as well as the design of the RMC, which will

not require any kind of translation table. Unfortunately,
there will be an overlapped segment in the memory map

for each node. For example, if node 2 addresses memory
between 0x000800000000 and 0x000bffffffff, it will

be referring to its own local memory. However, this will
never happen thanks to the way memory is reserved, as

explained next.

It has been described in the previous paragraphs
how a processor automatically forwards memory ac-

cesses to a remote node. Nevertheless, before access-
ing memory (local or remote) it is always necessary

to reserve it for the process that will make use of it.
The way memory is reserved in our system is crucial

because if that reservation is properly done, then fol-
lowing accesses can be very fast. Software layers are

involved in the reservation process, contrary to the pro-

cess of accessing remote memory where only hardware
mechanisms are used. Thus, although the reservation

process is not time-critical, it should pave the way for
future load and store operations. Next we will expose

the reservation mechanism in a naive way for better un-
derstanding. Some secondary aspects have been ignored

in order to focus on the main process. Additionally, be-
fore presenting the reservation mechanism, we should

review the basics of virtual memory.

Fig. 4 Node 1 reserves remote memory in node 3

When a current processor issues a load or store op-

eration to access some data in a given memory address,
that address is, likely, a virtual address. To carry on

the operation, that virtual address has to be translated
into a physical one, that is, an address directly refer-

ring to a location in a certain memory bank. This is
automatically done by the processor by looking up at

the Translation Lookaside Buffer (TLB). If the virtual

page containing the virtual address has a correspond-
ing translation in the TLB, the load or store operation

continues immediately. If the processor does not find
a valid entry for that page in the TLB, then it raises

a page fault exception that is caught by the operat-
ing system. The OS looks up the page table and writes

down the translation into the TLB, so that the opera-
tion can continue. In case there is not an appropriate

mapping in the page table, the OS has to allocate space

in the physical memory to the requested page and write
down the address in the page table before updating the

TLB. In any case, after the translation the load or store
operation will be directed to whatever address the op-

erating system wrote into the TLB. This fact, together
with the forwarding process based on the memory dis-

tribution mentioned before, makes possible that load
and store operations can access remote memory in a

fast and simple way.

Once the basics of virtual memory have been re-

viewed, let us introduce the remote memory reservation
mechanism, which is carried out by the OSes without

any interaction with the RMC. Nevertheless, it will be
necessary to add some functionalities to the OS to man-

age the page table, as shown in Figure 4. This figure

presents an example of remote memory reservation. A
node in the cluster, for instance node number 1, has a

virtual memory area that requires to be mapped into a
physical one but does not have a physical address yet.

Let us assume that the OS realizes that it is running out
of local memory and therefore node 1 needs more mem-

ory. Then, somehow it discovers that node 3 has some
idle memory available and a message is sent to node 3,

asking for some memory to be reserved. After arrival

A New Degree of Freedom for Memory Allocation in Clusters 9

of the request message, node 3 reserves the requested
amount of memory. Unlike the traditional reservation

process where physical memory is only assigned when a

memory page is accessed, this reservation process actu-
ally reserves a zone in the remote physical memory. Let

us assume that the reservation is done over a contigu-
ous physical memory area, for example, in the mem-

ory area that starts at 0x000041000000 and finishes at
0x000141000000, this is, 4 GB. The starting physical

address is sent back to the requester node in an ac-
knowledgment message. However, one modification is

done to that physical address before sending it back:

the 14 most significant bits are changed to reflect the
identifier of node 3 (note that in a local system those 14

bits are always zero). When node 1 receives the response
message, it writes down the translation from virtual to

physical memory in the page table. The prefix added
by node 3 will be used by the load and store operations

to address node 3.

From this point, remote memory accesses will be

automatically performed by hardware. After reserving
remote memory, a processor in node 1 may issue a mem-

ory operation related to virtual address 0x0000A0000B00,
for example. As usual, the CPU will translate this vir-

tual address into a physical one. As the operating sys-
tem has previously written the corresponding transla-

tion into the page table, now the TLB can be immedi-

ately updated and the memory operation goes on now
with the corresponding physical address: 0x000C41000B00.

The CPU knows that this address is managed by the
RMC (Figure 3) and therefore the memory access is

forwarded to the RMC, which examines the 14 most
significant bits and sends the memory access request to

node number 3. When the request arrives at node 3,
the RMC in that node will set those 14 bits to zero and

transmit the operation to its local system with physical

address 0x000041000B00. In case of a read access, then
a response containing data will be sent back to node 1.

As can be seen, this mechanism does not need any

kind of translation table in the RMC (thanks to the fact
that there is no node 0, as explained before). This al-

lows that very little functionality has to be implemented

in the RMC, and thus small overhead due to message
processing is generated. Once the remote memory is re-

served, that memory will never be accessed by processes
being executed in the remote node because the remote

OS will never assign that memory to them because it is
already reserved. Therefore, there is no need for keep-

ing coherency between the caches in the remote node
and the caches in the node that is using that remote

memory, as explained before.

4.3 System Implementation

AMD uses HyperTransport to interconnect the different

memory controllers in a motherboard. As the RMC is
presented to the rest of the processors as an additional

memory controller, its design requires providing it with

a HyperTransport interface so that it can communicate
with the rest of the devices in the motherboard by ex-

changing HyperTransport messages.

Additionally, the memory accesses that the RMC

will receive from the local processors will be forwarded

to remote nodes and responses to those remote mem-
ory accesses will be received from other nodes and for-

warded to the local processors. The RMC will also re-
ceive memory accesses requests from other RMCs in

the cluster. Thus, in order to allow communication be-
tween RMCs, the natural way would be to leverage Hy-

perTransport for inter-node communication. However,
this protocol is not able to address more than 32 de-

vices, which would be the general case when deploying

our proposal in a cluster. Therefore, for communica-
tion among nodes, we will make use of the High Node

Count HyperTransport Specification 1.0 recently pub-
lished [19], which extends HyperTransport’s addressing

capabilities to address a much higher number of de-
vices. In this way, the RMC will have a regular Hyper-

Transport interface to the local node and a High Node
Count HyperTransport interface to the rest of the clus-

ter, bridging from one standard to another. The reader

could refer to Section 7.2 in [19] to know how to perform
the translation between both standards.

On the other hand, the circuit that implements the

RMC needs to be physically connected to the moth-
erboard of the nodes in the cluster. In order to do so

two options are feasible. The first one is using an ASIC
bridge chip included in the chipset of the motherboard

in a very similar way to the bridge implementation pro-
posed in Section 7.2 of [19] to implement the High Node

Count HyperTransport specification. The main differ-
ence with that proposal is that the new chip should be

augmented with the RMC functionality. As this option

requires motherboard manufacturers to make a deci-
sion for this new technology and this is quite unlikely

nowadays, the second option is to make use of HTX
compatible cards, able to directly connect to the Hy-

perTransport link. These cards would include the same
functionality as in the previous option.

It is worth to mention that as the system size in-

creases (more elements are involved) it is more exposed
to failure. In order to deal with these failures, RMCs

should track pending transactions, so that a non-satisfied
remote memory operation could trigger an interruption

in the local system after a given timeout. This interrup-

10 Héctor Montaner et al.

tion should be caught by the OS and properly handled
(typically by killing the affected process).

5 Feasibility Analysis

In this section we analyze the feasibility of our proposal.

The characteristic that could most negatively influence
the performance of this system is the larger latency

of accessing remote memory. We will study its impact
on performance by comparing it to the best and worst

alternatives. Some refinements intended to hide remote
memory access time are also evaluated by simulation.

5.1 Methodology

Here we present a simulated system as a first step to-
wards the implementation of the proposed architecture.

Prior to embarking on the hardware particular imple-

mentation, we aim in this paper to check the feasibil-
ity of our idea and test different configurations in a

quick and flexible environment, this is, simulation. In
order to analyze how applications are affected by re-

mote memory access latency, a node of the cluster that
uses remote memory has been modeled with SIMICS

[31]. Moreover, GEMS [32] has been used to model an
accurate memory hierarchy. In order to model a sys-

tem as similar to the Opteron system as possible, the

AMD Hammer coherency protocol has been used. The
simulated system configuration is a 4-socket mother-

board with 256 MB of local memory and 256 MB of
remote memory. At this point, the exact location in

the cluster of these 256 MB of remote memory is not
modeled. We assume that access time to remote mem-

ory will be the same regardless of the exact node that
owns it. Note that in a real cluster, the total amount

of available memory would be much larger than 512

MB. However, the whole system has been scaled down
to achieve a reasonable simulation time. On the other

hand, Open Solaris 10 has been loaded into SIMICS.
We have observed that a cooled down Solaris has a 130

MB resident memory footprint, leaving 126 MB of lo-
cal memory for applications. Finally, notice that the

operating system is not aware of the different memory
latencies, so no NUMA support is in use. Note that the

lack of NUMA policies will allow us to analyze the lower

bound of our system performance. When NUMA is in
use, better performance numbers would be achieved.

The latencies used in our model [17][30] are shown

in Table 1. A 1-hop memory access takes place when
a processor accesses a memory position in the memory

banks directly attached to it. 2-hop memory accesses

occur when a processor accesses a memory bank at-
tached to another processor in the motherboard. The

hit or miss remote memory latencies refer to a private

memory cache attached to the RMC as we will explain
later. If the requested data is present in the RMC pri-

vate cache, then no data has to be fetched from a remote
node. This cache memory located in the RMC is not

part of the memory map of the system and is indepen-
dent of the coherency system of the processors in the

motherboard. It is intended for internal RMC use only
as a private cache meant to store last accessed cache

lines. On the other hand, latencies in Table 1 labeled

as ASIC refer to an implementation of our system in
an ASIC chip attached to the motherboard as part of

the chipset. Finally, latencies labeled as FPGA denote
the latencies achieved by the HTX card containing the

FPGA mentioned before.

Parameter Latency

L1 cache 1
L2 cache 6
Local memory latency (1 hop) 100
Local memory latency (2 hops) 140
Remote memory latency (FPGA) hit 450
Remote memory latency (FPGA) miss 2720
Remote memory latency (ASIC) hit 170
Remote memory latency (ASIC) miss 1520

Table 1 Latencies used in the modeled system (cycles in a
2GHz clock system)

SIMICS also allows to model hard disks. According

to main vendors [6], we have modeled a high perfor-
mance disk with an access time of 3.2 milliseconds and

a data transfer rate of 320 MB/s. This will be useful to
simulate the traditional disk swap technique. Note that

SIMICS is a full system simulator, and therefore it will
allow us to take into account the overhead due to the

operating system. This overhead will also be considered

in the case for remote swap.

Furthermore, we have slightly modified GEMS in

order to study the effects of an out-of-order proces-
sor that implements the Miss Handling Architecture

(MHA). The Miss Handling Architecture [40] is a hard-

ware structure coupled to the processor cache in order
to exploit the memory parallelism. A MHA consists of

a set of Miss Status Holding Registers (MSHR, also
known as TBE) and the number of MSHRs determines

the amount of outstanding misses a cache can experi-
ence before it blocks. Thus, the more MSHRs a cache

has the more a processor can go ahead before stalling.
If a cache has few MSHRs, then the processor will prob-

ably stall just because no more memory operations can

A New Degree of Freedom for Memory Allocation in Clusters 11

be issued by the cache before responses for outstand-
ing requests arrive. If the cache has many MSHRs, it

will not be a bottleneck and the processor will be able

to make progress as long as it could find more non-
dependent memory instructions. Nowadays, processors

implement a number of MSHRs that matches current
memory latencies. Therefore, if memory latency is in-

creased, the amount of MSHRs needs to be also incre-
mented in order to avoid losing performance. Current

Opterons, for example, implement 8 MSHRs [17].

The reason for the slight modification we have intro-
duced in GEMS is that simulations take a prohibitive

execution time when using an accurate out-of-order sim-
ulator. Our simplified out-of-order processor does not

take into account the dependencies between memory
operations, so it is able to issue a new memory opera-

tion even if the previous dependent operation has not
finished. This introduces some inaccuracy in the sim-

ulation results. However, this relaxed model perfectly

fits the objective of our study because the only bottle-
neck in the instruction flow we are analyzing will be the

memory. Additionally, our simplified out-of-order pro-
cessor makes possible the study of the impact of large

MHAs.

Finally, regarding the applications to be used in

our simulations, we have chosen the STREAM [33] and

PARSEC [13] benchmarks. Additionally, a modified ver-
sion of STREAM that performs random accesses to

the vectors will also be used. Note that the regular
STREAM benchmark presents a very high degree of

locality, while the random STREAM presents a very
low amount of locality. PARSEC applications would be

in between both STREAM ends.

5.2 Results

In this section we present the results for the simulated
system. First, we carry out a comparison between the

performance achieved by our proposal and the perfor-

mance achieved by a system with enough local memory
on one hand, and a system that makes use of remote

swap on the other hand. Later, we will study the impact
of the Miss Handling Architecture in our non-uniform

memory access context.

5.2.1 Remote Swap vs Direct Access

As a first step, our aim is to analyze whether our di-
rect access technique to remote memory is better than

remote swap. In order to accomplish this, two scenar-
ios have been modeled: one for the direct access mecha-

nism and one for remote swapping. Both scenarios have

di
sk

 s
w
ap

re
m

ot
e

sw
ap

D
AR

M

D
AR

M
 2

56
B p

f

D
AR

M
 1

KB p
f

D
AR

M
 4

KB p
f

D
AR

M
 A

SIC

lo
ca

l m
em

or
y

0

1e+10

2e+10

3e+10
 > 1e+12

c
y
c
le

s

(a) out-of-order, 8 MSHRs

di
sk

 s
w
ap

re
m

ot
e

sw
ap

D
AR

M

D
AR

M
 2

56
B p

f

D
AR

M
 1

KB p
f

D
AR

M
 4

KB p
f

D
AR

M
 A

SIC

lo
ca

l m
em

or
y

0

1e+10

2e+10

3e+10
 > 1e+12

c
y
c
le

s

(b) in-order, 8 MSHRs

Fig. 6 Execution time of random-flavoured STREAM
benchmark

256 MB of local memory and 256 MB of remote mem-
ory which is used in two different ways: for the remote

swap scenario the remote memory is used for page stor-

ing, and for our system the remote memory is used just
like the local memory (but with higher access latency).

Moreover, two additional scenarios have been evaluated
to draw the upper and lower performance limits: tra-

ditional disk swap (256 MB of local memory and no
remote memory) and local memory (512 MB of local

memory and no remote memory).

To model our system, latencies in Table 1 have been
used. In order to model the remote swap technique in

an optimistic way, retrieving 4 KB pages from remote
memory has the same latency as a remote memory ac-

cess (2720 cycles). Note that in this latency it is not
included the software overhead which will be automati-

cally added by SIMICS when dealing with the OS code
that carries out the swap operation.

Figure 5 presents the results for the execution of the

STREAM benchmark for several case studies. Let us
focus on the bars labeled “disk swap”, “remote swap”,

“DARM”, and “local memory”. DARM stands for Di-
rect Access to Remote Memory, that is, our proposal,

when it is implemented in an FPGA. As can be seen,
disk swap is inadvisable in any case, as it takes a pro-

hibitive time to finish the execution. In the other hand,

12 Héctor Montaner et al.

di
sk

 s
w
ap

re
m

ot
e

sw
ap

D
AR

M

D
AR

M
 2

56
B p

f

D
AR

M
 1

KB p
f

D
AR

M
 4

KB p
f

D
AR

M
 A

SIC

lo
ca

l m
em

or
y

0

2e+09

4e+09

6e+09

8e+09
 > 1e+12

c
y
c
le

s

(a) out-of-order, 8 MSHRs

di
sk

 s
w
ap

re
m

ot
e

sw
ap

D
AR

M

D
AR

M
 2

56
B p

f

D
AR

M
 1

KB p
f

D
AR

M
 4

KB p
f

D
AR

M
 A

SIC

lo
ca

l m
em

or
y

0

2e+09

4e+09

6e+09

8e+09
 > 1e+12

c
y
c
le

s

(b) out-of-order, 32 MSHRs

di
sk

 s
w
ap

re
m

ot
e

sw
ap

D
AR

M

D
AR

M
 2

56
B p

f

D
AR

M
 1

KB p
f

D
AR

M
 4

KB p
f

D
AR

M
 A

SIC

lo
ca

l m
em

or
y

0

5e+09

1e+10

1.5e+10

2e+10

2.5e+10
 > 1e+12

c
y
c
le

s

(c) in-order, 8 MSHRs

di
sk

 s
w
ap

re
m

ot
e

sw
ap

D
AR

M

D
AR

M
 2

56
B p

f

D
AR

M
 1

KB p
f

D
AR

M
 4

KB p
f

D
AR

M
 A

SIC

lo
ca

l m
em

or
y

0

5e+09

1e+10

1.5e+10

2e+10

2.5e+10
 > 1e+12

c
y
c
le

s

(d) in-order, 32 MSHRs

Fig. 5 Execution time of STREAM in multiple scenarios

the 512 MB local memory scenario makes possible a

very fast execution. By comparing Figures 5(a) and 5(b)
we can see the effect of our simplified out-of-order pro-

cessor, because an increase in the number of MSHRs
reduces the execution time of the benchmark. On the

contrary, comparing Figures 5(c) and 5(d) we can see
that the number of MSHRs has no impact in an in-order

processor, as expected.

Regarding our main comparison, the difference be-

tween remote swap and DARM varies from Figure 5(a)
and 5(c) due to the out-of-order processor. The out-

of-order processor accelerates the DARM execution in
a factor of 8, but it only accelerates the remote swap

execution by a factor of 3. This means that our sys-
tem is 3 times faster than the remote swap technique

in an out-of-order context, and only slightly faster in an
in-order context. The reason why the out-of-order pro-

cessor has little impact in the remote swap execution is

that the swap latency cannot be hidden by the MHA,
because the page fault handler has to finish, this is, the

data has to be retrieved from hard disk, before resum-
ing the execution flow. In the case of DARM, there is

no handlers involved, so an access to remote memory
does not break the continuity of the execution flow, but

it only has higher latency that can be disguised by the
MHA. This fact, coupled with the software overhead

itself (we have measured an overhead of 2 ms per page

fault), makes our proposal an alternative much faster

than remote swap.

The main disadvantage of our system is that there
is no memory level between the processor cache and

the remote memory. This implies that data is fetched

with very fine granularity (cache line), while the remote
swap technique fetches an entire memory page. One so-

lution to this issue is to provide the RMC with a private
memory so that more than one cache line could be re-

trieved at a time from remote memory. In this way, the
RMC would have required data by the processors closer

to them in advance. Figure 5 shows results for a linear
prefetching improvement for three prefetching sizes: 256

B, 1 KB and 4 KB, that is, every time a cache line is

accessed, 256 contiguous bytes (or 1 KB or 4 KB) are
retrieved and stored in the private RMC cache. The

size of the RMC cache is four times the size of the
prefetching in each case. Simulations results in Figure

5 show that, in the case of the STREAM benchmark,
the prefetching technique works really well, getting per-

formance quite closer to that of the local memory. The
reason why Figure 5(b) presents such flat results is ex-

plained in the next section.

Implementing the RMC in an ASIC instead of in

an FPGA will reduce the latency of accesses to remote
memory. Simulation numbers predict that the perfor-

mance of our system has the chance to be close to

A New Degree of Freedom for Memory Allocation in Clusters 13

fe
rre

t

st
re

am
cl
us

te
r

sw
ap

tio
ns

bl
ac

ks
ch

ol
es

ra
yt
ra

ce

ca
nn

ea
l

flu
id
an

im
at

e

bo
dy

tra
ck

fre
qm

in
e

vi
ps

x2
64

0

0.2

0.4

0.6

0.8

1

1.2

DARM

DARM 256B pf

DARM 1KB pf

DARM 4KB pf

ASIC

ASIC 256B pf

ASIC 1KB pf

ASIC 4KB pf

local memory

Fig. 7 Normalized execution time of the PARSEC benchmarks

fe
rre

t

st
re

am
cl
us

te
r

sw
ap

tio
ns

bl
ac

ks
ch

ol
es

ra
yt
ra

ce

ca
nn

ea
l

flu
id
an

im
at

e

bo
dy

tra
ck

fre
qm

in
e

vi
ps

x2
64

0

2

4

6

8

s
lo

w
d

o
w

n

Fig. 8 Undergone slowdown when using remote memory in-
stead of local memory

the performance achieved by a system populated with

enough local memory for running the application. Note

that no prefetching has been used in the ASIC simu-
lations. Leveraging some kind of prefetching would im-

prove performance as in the case for the FPGA.
Figure 6 presents the simulation results for the ran-

dom access benchmark. In this case, memory accesses
present much lower locality. Therefore, the remote swap

technique needs to swap more pages and the execution

time increases in a higher proportion when compared
to the DARM technique.

Finally, Figure 7 presents some initial results for the
PARSEC benchmarks in an out-of-order context with

8 MSHRs. It can be seen that the prefetching tech-
nique comes in useful to the majority of the bench-

marks. More sophisticated prefetching policies may re-

duce even more the execution time by capturing com-
plex memory access patterns. On the other hand, the

ASIC simulations of our proposal foretell that it is fea-
sible to achieve an execution time using our proposal

in the same order of magnitude than in the local mem-
ory scenario. Figure 8 shows the performance loss when

remote memory is accessed through the ASIC with a
prefetching size of 4 KB compared to the local mem-

ory scenario. As can be seen, most of the benchmarks

have an execution time that approximately doubles the
time required in the local memory case. Nevertheless,

it is noteworthy to mention that this slowdown allows
to execute these memory-hungry applications in a clus-

ter, which is much cheaper than the initially required
mainframe.

5.2.2 The Importance of the MHA

As mentioned before, the AMD Opteron has 8 MSHRs

[17]. The reason is that 8 MSHRs are enough to hide
the latency of accessing local memory: before the MHA

gets full, the first used MSHR will be released because

the memory operation held by it will complete. In this
way, the processor will never have to wait due to the

MHA. However, when the Opteron is used in a different
memory context, the initial size of the MHA may not be

enough. In our system, there is some memory accessible
by the Opteron that presents much higher latency than

expected by the Opteron designers. Therefore, as this is
not the scenario initially intended by AMD, the number

of required MSHRs may be different.

Figure 9 shows some simulation results. As can be
seen, when no prefetching mechanism is used, it is re-

quired to increase the amount of MSHRs in order to
avoid increasing execution time. Additionally, when no

prefetching is used, there is a notorious change in per-

formance between MHA sizes 8 and 10 (STREAM bench-
mark) and 8 and 14 (random benchmark). This means

that we may need up to 14 MSHRs in the worst case sce-
nario in order to effectively mitigate the remote memory

latency (if we can get enough memory parallelism out
of the code we are executing). However, with the use

of prefetching techniques, current Opterons are valid to
be used in this new scenario. Nevertheless, it would be

worthwhile to have processors with more than 8 MSHRs

14 Héctor Montaner et al.

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 9e+09

 0 5 10 15 20 25

E
x
e

c
u

ti
o

n
 t

im
e

 (
c
y
c
le

s
)

Number of MSHRs

Remote memory
Remote memory + prefetching (4KB)

Local memory

(a) STREAM benchmark

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 0 5 10 15 20 25

E
x
e
c
u
ti
o
n
 t
im

e
 (

c
y
c
le

s
)

Number of MSHRs

Remote memory
Remote memory + prefetching (4KB)

Local memory

(b) Random-STREAM benchmark

Fig. 9 The impact of the MHA

in a remote memory context. However, we cannot ex-
pect processor manufacturers to include this change in

their designs in the near future due to the fact that
a bigger MHA implies higher look up latencies. Thus,

mechanisms like prefetching intended to hide remote
memory latency are mandatory.

6 Prototyping the New Architecture

We are currently building a 64-node prototype that

implements our proposal for non-coherent distributed

shared memory. In order to implement the RMC, we
are leveraging the HTX card designed by University

of Heidelberg [29][21][22]. This card, shown in Figure
10, contains an FPGA where we load several IP blocks

also developed by the mentioned university, comprising
the Open-Source HyperTransport Core [38], a router

for communication among nodes, and the RMC func-
tionality. This prototype will serve as a demonstrator

for our proposal.

Fig. 10 HTX card used to implement the RMC

Our prototype is based on the Supermicro H8QM8-
2+ motherboard containing four 2.1GHz quad-core Opteron

processors. Each processor is attached 4GB of 800MHz
DDR2 memory. Thus, each node features 16 cores and

16GB of main memory. Additionally, this motherboard
includes an HTX connector, where we have attached

the FPGA previously described.

Regarding the fabric that interconnects all the nodes
in the prototype, either an 8x8 2D-mesh or a 4x4x4

3D-mesh can be leveraged. For doing so, we have in-

cluded a switch at each FPGA that will route the Hy-
perTransport messages exchanged by the RMCs in the

cluster. Switching from one topology to the other will
be done at boot time just by changing the routing ta-

bles and renaming the nodes. Obviously, the fiber cables
interconnecting the nodes are not rearranged as this

would be extremely costly. Nevertheless, note that a
direct network is only one of the feasible interconnects,

as the HyperTransport Consortium is currently stan-

dardizing other options very interesting, such as Hy-
perTransport over Ethernet and HyperTransport over

Infiniband, that will allow the use of standard Ethernet
and Infiniband switches.

On the other hand, the design of the RMC we have

developed presents this new component to the rest of
the elements in the motherboard as a new HyperTrans-

port memory mapped I/O unit (in the future we aim
to implement the RMC as a regular memory controller).

The consequences of this implementation is that Opteron
processors in our prototype will only have one out-

standing memory request targeted to the memory re-

gion mapped to the RMC. Therefore, when an applica-
tion intensively accesses remote memory, a new remote

memory request cannot be issued before the previous
one has been completed. This will reduce overall perfor-

mance with respect to executing the application using
local memory because in this latter case Opteron pro-

cessors can have eight outstanding requests [26]. Never-
theless, in order to improve the performance of our pro-

totype, we have configured the remote memory ranges

A New Degree of Freedom for Memory Allocation in Clusters 15

(a) (b)

(c)

Fig. 11 Female and male cable connectors3

as write-back, this is, remote memory blocks can be

cached in the processor (just like local memory).

6.1 Making the Idea Low-Cost

In the next sections we will introduce some implementa-

tion alternatives aimed at reducing the overall system
cost of likely commercial systems based on our pro-

posal. Note that these alternatives are not leverages

in our design, as it is a prototype whose design be-
gan much before the elements described in this section

where standardized.

6.1.1 Motherboard Alternatives

In our prototype cluster the RMC functionality is im-

plemented in an FPGA. This allows fast prototyping
and the FPGA reconfigurability enables incremental

designs. However, in a commercial implementation it
is advisable to migrate to ASIC technology due to eco-

nomic and performance reasons.

We have three possibilities to connect the RMC to
the motherboard. The first one is to develop an ASIC

so that it could be placed on the motherboard. The
second option is to incorporate the RMC functional-

ity natively into the motherboard chipset, so the cost

3 Figures 11, 12 and 13 are copyrighted material of the
HyperTransport Technology Consortium.

Fig. 12 Vertical HT connectors3

of the RMC part would noticeably decrease. Unfortu-
nately, these both solutions require the customization

of either the motherboard or the chipset. As such cus-
tomizations come with high non-recurring engineering

costs, it is not likely to happen. Nevertheless, Super-

micro has developed a motherboard equipped with a
special socket for hosting 3Leaf’s Aqua chip. Therefore,

a proposal like ours could also be interesting for some
motherboard manufacturers.

The third option presented here makes use of an
FPGA (or ASIC) equipped add-on card connected to

the motherboard via a standard slot connector. The

card could be based on the standard HTX slot con-
nector for direct connection to the processor. However,

using the HTX connector is not the only choice. For
example we could leverage the ubiquitous PCI Express

slot connector. Interestingly, the card would use the
PCI Express slot purely for power feed and mechani-

cal retention. Instead, for direct CPU connection, the
card would leverage some of the new-generation, com-

pact, high-performance HT connectors and cables stan-

dardized by the HyperTransport Technology Consor-
tium and productized by Samtec Inc., shown in Figure

11.

These HyperTransport interconnect components are

stock components; either in volume production or fully

productized, and available from leading interconnect
technology vendors. The connector shown in Figure 11(a)

enables direct HT link connectivity to processors any-
where on the motherboard, so manufacturers can easily

integrate this connector and simplify their motherboard
design. Figure 12 shows an example of how flexibly the

connector can be positioned on the motherboard, re-
gardless of where the add-on card is physically located.

Indeed, the connector can be installed on a CPU Socket

16 Héctor Montaner et al.

Fig. 13 Right angle HT connectors3

module and, in this case, no special motherboard is
needed (although one CPU is sacrificed). This new con-

nector decouples the connection to the HT link from the
device that is being connected, that is, there is a cable

between the motherboard connector and the device. In
this way, motherboard manufacturers do not have to

allocate space for the device connected to the HT link.
It is to be expected that this new versatile connector

will be quite appealing to motherboard manufacturers.

Finally, Figure 13 shows the right angle connectors
that are used for inter-node connection. This particu-

lar connector may be useful for an RMC implementa-
tion embedded in the motherboard. In next section we

present some alternative inter-node interconnects.

6.1.2 Network Alternatives

According to the HyperTransport Consortium High Node

Count specifications [19], HyperTransport messages ex-
changed between nodes are supposed to use a dedicated

network. This means that two independent networks

are used in the cluster, the first one for general purposes
(common network traffic), and the second one dedicated

to the RMCs. In order to comply with the HNC specifi-
cations, the add-in cards used in our prototype have six

optical fiber connectors that are used to build the dedi-
cated network. This high number of connectors together

with the switching and routing functionality included
in the FPGA device support direct network topologies

like 3D meshes, 6D hypercubes, etc. This makes ex-

ternal and expensive centralized switching components
unnecessary. There are commercial systems that lever-

age this kind of topologies. An example is SGI’s Altix
Ultraviolet line, based on Intel Nehalem EX processors

which either deploys a fat-tree or a 2D torus topology
[37].

The first design optimization for our prototype could
be the replacement of the optical fiber cables with stan-

dard cables, like the ones shown in Figure 11(c). These

cables can also be used for inter-node communication.
The length limitation of these cables operating at the

highest frequency is 2 meters, so the connection scheme

of the cluster should take this into account. However,
the use of these cables would reduce the interconnection

costs.

This system architecture guarantees complete isola-
tion between general traffic and remote memory traffic,

and each network can be tailored to the needs of each
traffic type. However, for those cases in which the per-

formance of an HT-native network is not mandatory,
the HyperTransport Consortium is in the process of

standardizing HyperTransport over Ethernet (HToE)
and HyperTransport over Infiniband (HToIB) capabil-

ities, so that the RMC could use this new standards to

encapsulate the native HT packets in Ethernet or In-
finiband frames [16]. By using one of these techniques,

one network is sufficient for both the remote memory
and general traffic. However, compared to the perfor-

mance of a dedicated network, the performance of re-
mote memory accesses will decrease in this case, both

due to contention and due to the additional protocol
overhead. Also, note that although standard Ethernet

or Infiniband switches would be used in these cases,

the Ethernet or Infiniband adapters would be different
from commodity ones as they should additionally in-

clude the RMC functionality (regular adapters should
not be used because this would mean generating the

HT packets by software, thus noticeably increasing la-
tency and wasting the hardware-only perspective of our

approach).

6.1.3 Cluster Configuration

Up to this point we have discussed the interconnect
architecture; in this section we will describe the clus-

ter configuration. Our design supports a heterogeneous
cluster configuration, with typically different amount

of memory and different number of processors for each
node. This characteristic allows us to build a cluster

with several kinds of nodes, like the example shown
in Figure 14. In this case, we use three kinds of pro-

cessors: we have processing nodes (Magny-Cours pro-

cessors) that support a higher level of parallelism and
that use a larger amount of memory (fast-core proces-

sors in Figure 14). This memory may be borrowed from
their direct neighbors, that could be nodes containing

slower processors and that would mainly act like mem-
ory servers (slow-core processors in Figure 14). More-

over, other processors with performance in between the
previous two types can be added to the cluster (Shang-

hai or Barcelona Opterons).

A New Degree of Freedom for Memory Allocation in Clusters 17

16 fast-core node 16 medium-core node 32 slow-core node

Fig. 14 Example of cluster configuration

This cluster configuration takes into account that
two applications with high processing demand will not

execute next to each other. This is due to the fact that

high processing demand may imply high memory de-
mand, so these applications will expand their memory

regions to their neighbors. This way, it is advisable to
distribute the high-performance processors across the

cluster in some way similar to the one depicted in Fig-
ure 14, so that direct access to memory servers can be

achieved from computing nodes.

Additionally, this specialization of nodes improves
the electric power consumption: there are some nodes

whose role in the cluster is memory server, and therefore

their processors will only serve as memory controllers.
Thus, the processing power can be reduced and there-

fore the power consumption decreased.

7 Preliminary Prototype Performance

After analyzing the potential of our proposal by simula-

tion, in this section we present some basic performance

results from real hardware tests. As described in Section
6, the RMC functionality is currently performed by an

FPGA attached to the host through an HTX connector.
This kind of implementation allows a quick prototyping

of our system but, on the other hand, adds extra latency
(and also limits the bandwidth) compared to an ASIC

implementation. Thus, the operating frequency of this
FPGA also determines the performance of our system.

In order to study the potential of our system and

predict the performance trend when improving its im-

plementation, some tests have been carried out and
are gathered in Figure 15. The tests mainly consist on

changing the speed of the HyperTransport interface.

In this way, we can choose between a 400MHz inter-
face (HT400) where the HyperTransport link works at

800MT/s, or we can slow down the FPGA so that it
uses a 200MHz interface (HT200) where the Hyper-

Transport link works at 400MT/s. In both cases, the
core logic of the FPGA (RMC) is running at 156MHz.

Moreover, to study the scalability of our system, in
Figure 15 we have also included results for different

distances between the node that executes the analytic

benchmark and the node that hosts the memory for
that benchmark. Case labeled 0 hops stands for the

loopback mode, that is, the target memory controller
for every remote load request is located in the local

node, so this message does not cross the external fiber
optic link. However, remote load requests use the RMC

indeed, but the RMC forwards back the request to a
memory controller in the local node. This scenario is

useful for studying the overhead related to the link

propagation. The analytic benchmark used consists of
performing 20 million consecutive accesses to an 8-byte

integer array. Data presented in Figure 15 is the aver-
aged time for those accesses.

The first conclusion we can draw from Figure 15 is

that the remote load latency increases as the distance
between a node and its remote memory increases, as

expected. Equation 1 summarizes this behavior.

latency = hops ∗ lhop + lloopback (1)

where hops is the number of nodes between the lo-
cal node and its remote memory, lhop is the latency

added at each hop (it comprises the propagation time
through the fiber optic link and also the routing time

at the FPGA), and lloopback is a constant time indepen-
dent of the distance. For example, in the case of HT400

cachable, this constant time is 1300ns and lhop is equal

to 600ns. As we can see, distance plays an important
role in this system, this is, the network topology is a

critic characteristic of our proposal. This is especially
true when a memory region has been expanded to a big

number of nodes, so if we aim to decrease the latency
of a remote load we must decrease the average number

of hops of the topology, for example, increasing the di-
mensions of the mesh, moving to a torus topology or

even using a indirect topology like a fat-tree.

A second observation according to Figure 15 is that

when increasing the HT interface frequency from HT200
to HT400 the latency is reduced only a 20%. This is due

to the fact that the HT interface only constitutes a part
of the FPGA, and the RMC core functionality keeps

its frequency constant as it was previously introduced

18 Héctor Montaner et al.

Fig. 15 Analysis on latency and bandwidth scalability

(deeper explanation in next section). One big speedup

comes together with the cachable memory attribute:

when remote memory is configured as cachable, a re-
mote memory load consists of a 64B packet (one cache

line), instead of an 8B packet (size of a CPU register)
as in the case of uncachable memory. This means that

when accessing consecutive 8B words, only the first one
in each cache line will undergo the remote memory la-

tency (naturally, cache reutilization helps to hide re-
mote memory latency).

All the stated behaviors also apply to the bandwidth
metric (in inverse proportion). However, there is one

fact that may look strange to the reader: although the
described system has a very low latency, its bandwidth

is not that good. For example, in the 400HT uncachable
scenario, the latency is about 1.9ns for one hop distance,

but the available bandwidth is 4MB/s, a derisory capac-

ity compared to commercial technologies like Infiband
or Ethernet. This low bandwidth is explained by the

number of outstanding requests available in the proces-
sor. The more outstanding request available the more

remote memory operations that can be started in par-
allel and make the most of the out-of-order execution

(as explained in Section 5.2.2). Currently, our design
allows only one outstanding request per processor, so

each four cores inside a CPU will only be able to launch

one remote request at a time. However, this is a system
constraint that will be solved in the future. The rea-

son why there is only one outstanding request (instead
of eight as an Opteron has at normal work) is because

the RMC is currently configured as an I/O unit. The
design of the Opteron allows only one outstanding re-

quest directed to the I/O space, but we aim to modify
the configuration of the RMC so that Opterons could

use up to eight outstanding requests.

On the other hand, in Figures 16 and 17 we study

the scalability of the STREAM benchmark when us-

ing our system compared to the local memory scenario.
Figure 16 presents execution times for three scenarios:

common local memory (not using the RMC) and re-
mote memory both cachable and uncachable for one

hop distance. The graphs for each scenario present sep-
arately each of the four STREAM operations, as well

as the average theoretical execution time. As can be
seen, the cachable remote memory presents the worst

scalability (the worst time executions obviously corre-

spond to the uncachable remote memory). Regarding
the speed-up numbers in Figure 17 we can see how lo-

cal memory has a maximum speed-up of 7 when us-
ing 9 or more threads (the abrupt lines are due to the

core/thread affinity OS policy). However, in the remote
memory scenario, the maximum speed-up is achieved

when using 6 or more cores for the cachable config-
uration and 5 or more cores for the uncachable one.

This time, the speed-ups are 3.2 and 4.5 respectively.

In the cachable configuration the different operations in
STREAM have more disperse speed-ups because each

operation reuses cache lines with a different ratio. Ad-
ditionally, it is worth explaining that the speed-up for

the cachable option is lower because the starting point
(execution time with one thread) provided much better

results. To sum up, these experiments highlight the im-
portance of having more available outstanding requests,

especially when the application uses a high number of

cores and intensively accesses memory.

7.1 Performance Trend Prediction

In this section we analyze how the performance of the

RMC would benefit from improved implementations.

A New Degree of Freedom for Memory Allocation in Clusters 19

(a) Local memory

(b) Remote memory, 1 hop (cachable)

(c) Remote memory, 1 hop (uncachable)

Fig. 16 Execution time for the STREAM benchmark with different number of threads

20 Héctor Montaner et al.

(a) Local memory

(b) Remote memory, 1 hop (cachable)

(c) Remote memory, 1 hop (uncachable)

Fig. 17 Speed-up for the STREAM benchmark with different number of threads

A New Degree of Freedom for Memory Allocation in Clusters 21

(a) (b)

Fig. 18 Latency prediction for remote load operations

The most crucial metric for a performance poten-

tial analysis is the remote load latency, as these trans-
actions are typically in the critical loop of execution.

The predictions here are based on measurements with

HT200/HT400 and a core frequency of 156MHz. The
total load latency has been measured, and the frac-

tion of time spent in core logic is determined using re-
sults from our simulations with FPGA design software.

Counters in the design allow to measure the fraction of
time spent on the target side for the memory controller

(MC) access. The remaining fraction is the time spent
within the source CPU (i.e. software overhead like in-

struction issue, load/store queue and HyperTransport

routing). It is expected that both the MC and the CPU
fraction consist of a variable and fixed part: here, the

variable part will scale with HT frequency, but the fixed
part not (to be more concrete, the fixed part scales with

CPU/MC core frequency, which is not varied here). Op-
posed to this, the complete core logic of the RMC scales

linearly with the frequency. With the results from the
two experiments, the fixed and variable part of both

CPU and MC time can be derived by modeling the
variable part in clock cycles, and the fixed part in abso-

lute time. A solution is found if the following equation

is valid for both experiments (either for CPU or MC
fraction):

time =
fixed cycles

HT freq + absolute time
(2)

Now, all fractions of the transaction are modeled: the

fixed time spent in the CPU, in the MC, the fraction of
time spent on the HT interface and the fraction of time

spent in the core logic. Using this, predictions for higher
HT frequencies and core frequencies are possible, like

it will be the case for possible ASIC implementations:
such an implementation is currently expected to reach a

core frequency of 800MHz and to implement an HT2000

interface. Then, the full round trip latency of a load

transaction decreases down to 534ns.

This reasoning is shown in Figure 18. On the left
side of the figure it is shown how remote memory ac-

cess time noticeably decreases as the implementation
of the RMC is gradually improved. On the right side,

the relative contribution of each of the components to
that latency is depicted. As can be seen, as the im-

plementation of the RMC improves, the contribution

of the Opteron itself to the total access time becomes
more and more noticeable. Also, note that reducing the

contribution of the RMC core to the total latency may
be achieved by using wider data paths (this option has

not been considered in Figure 18, which has been car-
ried out by considering a 32-bit wide data path, but

wider paths may be feasible, like using 64 bits).

8 Future Work

Results presented in Section 5 have shown the feasibility
of our proposal for non-coherent shared-memory clus-

ters. These results have been later supported by Section

7. However, they are the first step in fully evaluating
this new approach to shared memory. Further work is

required to better assess the benefits of our proposal.
To do so, we are planning to analyze it by using real

applications in the simulations. Also, as our proposal
creates a very non-uniform memory architecture, more

work is required to develop and/or adapt techniques like
prefetching or other mechanisms, in order to alleviate

the high latencies when accessing remote memory. Ad-

ditionally, further research is required on how to com-
bine improved prefetching mechanisms with a private

RMC cache.

As mentioned before, we are currently building a

64-node prototype that will implement all the features

22 Héctor Montaner et al.

described in this paper. For this prototype to be fin-
ished, there are many secondary concerns to deal with:

memory allocation policies, operating system capabil-

ities, virtualization issues, security, etc. Initial perfor-
mance numbers from real executions in this prototype

show that it properly works and that remote memory
access latency is affordable.

Moreover, the prototype can be tested with other

applications. We are willing to do so with two main ap-
plication domains: virtualization layers and databases.

On one hand, we aim to integrate our proposal in a
virtualized environment and analyze the service that

a virtualization layer can offer to the upper operat-
ing systems. On the other hand, databases constitute

an extraordinary opportunity where new usages of re-
mote memory become interesting. A part or the entire

database can be loaded into the cluster memory so that

each node allocates a piece of the data in its local mem-
ory. Unlike MySQL Cluster [36], each node can access

local or remote data indistinctively. Therefore, a query
that requires concurrent access to data spread across

several nodes can be executed at a very high speed. As
no coherency is provided by our proposal among the

nodes of the cluster, read-only mode must be set for
the shared memory. Nevertheless, this is still very use-

ful for static or non-frequently updated databases like

the ones present in many servers in the Internet.

Finally, a natural step forward is to provide inter-

process inter-node communication mechanisms so that

processes in different nodes (and different OSes) could
synchronize or exchange data. As no coherency is main-

tained among nodes, explicit software coherency oper-
ations should be used. This communication paradigm

allows the coherency protocol to be tailored to the ap-
plication needs and not to maintain coherency where it

is not required.

9 Conclusions

In this paper we have presented a low-cost approach

to efficiently implement shared memory across a clus-
ter. Our proposal splits the cluster into non-overlapping

coherence domains that may span to several comput-

ers. Nevertheless, as coherency domains are limited to
the processors in a single motherboard, the memory

granted to a given process in the cluster can be in-
creased without expecting a performance overhead due

to the coherency protocol. The straight-forward use of
such system is to speed up the execution of applications

with a memory footprint larger than the memory avail-
able in a single computer, although our proposal can be

used in other contexts.

Both simulation and real results have shown the fea-
sibility of the proposed system, which completely re-

lies on hardware to access remote memory. This is ac-

complished by leveraging the HyperTransport protocol.
Further research is required to minimize the impact on

performance of the larger access time to remote mem-
ory. These optimizations will deliver interesting results

in the 64-node prototype we are currently building to
demonstrate this technology.

Acknowledgements This work has been supported by
PROMETEO from Generalitat Valenciana (GVA) under Grant
PROMETEO/2008/060.

References

1. 3leaf Systems. http://www.3leafsystems.com

2. Dynamic Logical Partitioning. White Paper. http:

//www.ibm.com/systems/p/hardware/whitepapers/

dlpar.html

3. Gaussian 03. http://www.gaussian.com

4. IBM z Series. http://www.ibm.com/systems/z

5. In-Memory Database Systems (IMDSs) Beyond the Ter-
abyte Size Boudary. http://www.mcobject.com/130/

EmbeddedDatabaseWhitePapers.htm

6. MBA3 NC Series Catalog. http://www.fujitsu.

com/global/services/computing/storage/hdd/ehdd/

mba3073nc-mba3300nc.html

7. NUMAChip. http://www.numachip.com/

8. ScaleMP. http://www.scalemp.com

9. Violin Memory. http://violin-memory.com

10. HyperTransport Technology Consortium. HyperTrans-
port I/O Link Specification Revision 3.10 (2008). Avail-
able at http://www.hypertransport.org

11. Acharya, A., Setia, S.: Availability and Utility of Idle
Memory in Workstation Clusters. SIGMETRICS Per-
form. Eval. Rev. 27(1), 35–46 (1999). DOI http://doi.
acm.org/10.1145/301464.301478

12. Anderson, T., Culler, D., Patterson, D.: A case for NOW
(Networks of Workstations). Micro, IEEE 15(1), 54–64
(1995). DOI 10.1109/40.342018

13. Bienia, C., Kumar, S., et al.: The parsec benchmark suite:
Characterization and architectural implications. In: Pro-
ceedings of the 17th PACT (2008)

14. Chapman, M., Heiser, G.: vNUMA: A virtual shared-
memory multiprocessor. In: Proceedings of the 2009
USENIX Annual Technical Conference, pp. 349–362. San
Diego, CA, USA (2009)

15. Charles, P., Grothoff, C., Saraswat, V., et al.: X10:
an Object-Oriented Approach to Non-Uniform Cluster
Computing. SIGPLAN Not. 40(10), 519–538 (2005).
DOI http://doi.acm.org/10.1145/1103845.1094852

16. Consortium, H.: HyperTransport High Node Count,
Slides. http://www.hypertransport.org/default.cfm?

page=HighNodeCountSpecification

17. Conway, P., Hughes, B.: The AMD Opteron Northbridge
Architecture. IEEE Micro 27(2), 10–21 (2007). DOI
http://dx.doi.org/10.1109/MM.2007.43

18. Conway, P., Kalyanasundharam, N., Donley, G., et al.:
Blade Computing with the AMD Opteron Processor
(Magny-Cours). Hot chips 21 (2009)

A New Degree of Freedom for Memory Allocation in Clusters 23

19. Duato, J., Silla, F., Yalamanchili, S., et al.: Extend-
ing HyperTransport Protocol for Improved Scalability.
First International Workshop on HyperTransport Re-
search and Applications (2009)

20. Feeley, M.J., Morgan, W.E., Pighin, E.P., Karlin, A.R.,
Levy, H.M., Thekkath, C.A.: Implementing global mem-
ory management in a workstation cluster. In: SOSP ’95:
Proceedings of the fifteenth ACM symposium on Oper-
ating systems principles, pp. 201–212. ACM, NY, USA
(1995). DOI http://doi.acm.org/10.1145/224056.224072

21. Fröening, H., Litz, H.: Efficient Hardware Support for the
Partitioned Global Address Space. In: 10th Workshop on
Communication Architecture for Clusters (2010)

22. Fröening, H., Nuessle, M., Slogsnat, D., Litz, H.,
Brüening, U.: The HTX-Board: A Rapid Prototyping
Station. In: 3rd annual FPGAworld Conference (2006)

23. Garcia-Molina, H., Salem, K.: Main Memory Database
Systems: an Overview. Knowledge and Data Engineering,
IEEE Transactions on 4(6), 509–516 (1992). DOI 10.
1109/69.180602

24. Gray, J., Liu, D.T., Nieto-Santisteban, M., et al.: Scien-
tific Data Management in the Coming Decade. SIGMOD
Rec. 34(4), 34–41 (2005). DOI http://doi.acm.org/10.
1145/1107499.1107503

25. IBM journal of Research and Development staff:
Overview of the IBM Blue Gene/P project. IBM J. Res.
Dev. 52(1/2), 199–220 (2008)

26. Keltcher, C., McGrath, K., Ahmed, A., Conway, P.: The
AMD Opteron Processor for Multiprocessor Servers. Mi-
cro, IEEE 23(2), 66–76 (2003). DOI 10.1109/MM.2003.
1196116

27. Kottapalli, S., Baxter, J.: Nehalem-EX CPU Architec-
ture. Hot chips 21 (2009)

28. Liang, S., Noronha, R., Panda, D.: Swapping to Remote
Memory over InfiniBand: An Approach using a High Per-
formance Network Block Device. In: Cluster Comput-
ing, 2005. IEEE International, pp. 1–10 (2005). DOI
10.1109/CLUSTR.2005.347050

29. Litz, H., Fröening, H., Nuessle, M., Brüening, U.: A Hy-
perTransport Network Interface Controller for Ultra-low
Latency Message Transfers. HyperTransport Consortium
White Paper (2007)

30. Litz, H., Fröening, H., Nuessle, M., Brüening, U.: VELO:
A Novel Communication Engine for Ultra-Low La-
tency Message Transfers. In: Parallel Processing, 2008.
ICPP ’08. 37th International Conference on, pp. 238–245
(2008). DOI 10.1109/ICPP.2008.85

31. Magnusson, P., Christensson, M., Eskilson, J., et al.: Sim-
ics: A Full System Simulation Platform. Computer 35(2),
50–58 (2002). DOI 10.1109/2.982916

32. Martin, M., Sorin, D., Beckmann, B., et al.: Multi-
facet’s general execution-driven multiprocessor simula-
tor (GEMS) toolset. SIGARCH Comput. Archit. News
33(4), 92–99 (2005). DOI http://doi.acm.org/10.1145/
1105734.1105747

33. McCalpin, J.D.: Memory Bandwidth and Machine Bal-
ance in Current High Performance Computers. IEEE
Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter pp. 19–25 (1995)

34. Oguchi, M., Kitsuregawa, M.: Using Available Remote
Memory Dynamically for Parallel Data Mining Applica-
tion on ATM-connected PC Cluster. In: IPDPS 2000.
Proceedings. 14th International, pp. 411–420 (2000).
DOI 10.1109/IPDPS.2000.846014

35. Oleszkiewicz, J., Xiao, L., Liu, Y.: Parallel Network
RAM: Effectively Utilizing Global Cluster Memory for
Large Data-Intensive Parallel Programs. In: Parallel

Processing, 2004. ICPP 2004. International Conference
on, pp. 353–360 vol.1 (2004). DOI 10.1109/ICPP.2004.
1327942

36. Ronstrom, M., Thalmann, L.: MySQL Cluster Architec-
ture Overview. Technical White Paper. MySQL (2004)

37. SGI: Technical Advances in the SGI Altix UV Archi-
tecture, White Paper. http://www.sgi.com/products/

servers/altix/uv/

38. Slogsnat, D., Giese, A., Nüssle, M., Brüning, U.: An
Open-source HyperTransport Core. ACM Trans. Re-
configurable Technol. Syst. 1(3), 1–21 (2008). DOI
http://doi.acm.org/10.1145/1391732.1391734

39. Szalay, A.S., Gray, J., vandenBerg, J.: Petabyte Scale
Data Mining: Dream or Reality? CoRR cs.DB/0208013
(2002)

40. Tuck, J., Ceze, L., Torrellas, J.: Scalable Cache Miss Han-
dling for High Memory-Level Parallelism. Microarchitec-
ture, 2006. MICRO-39. 39th Annual IEEE/ACM Inter-
national Symposium on (2006)

41. Yelick, K.: Computer architecture: Opportunities and
challenges for scalable applications. Sandia CSRI Work-
shop on Next-generation scalable applications: When
MPI-only is not enough (2008)

42. Yelick, K.: Programming models: Opportunities and chal-
lenges for scalable applications. Sandia CSRI Workshop
on Next-generation scalable applications: When MPI-
only is not enough (2008)

