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Abstract—One cost-effective way to meet the increasing demand for larger high-performance shared-memory servers is to build

clusters with off-the-shelf processors connected with low-latency point-to-point interconnections like HyperTransport. Unfortunately,

HyperTransport addressing limitations prevent building systems with more than eight nodes. While the recent High-Node Count

HyperTransport specification overcomes this limitation, recently launched twelve-core Magny-Cours processors have already inherited

it and provide only 3 bits to encode the pointers used by the directory cache which they include to increase the scalability of their

coherence protocol. In this work, we propose and develop an external device to extend the coherence domain of Magny-Cours

processors beyond the 8-node limit while maintaining the advantages provided by the directory cache. Evaluation results for systems

with up to 32 nodes show that the performance offered by our solution scales with the number of nodes, enhancing the directory cache

effectiveness by filtering additional messages. Particularly, we reduce execution time by 47 percent in a 32-die system with respect to

the 8-die Magny-Cours configuration.

Index Terms—High-performance computing, shared memory, cache coherence, directory protocol, coherence extension, scalability,

traffic filtering.

Ç

1 INTRODUCTION AND MOTIVATION

IN recent years, the market for servers is expanding and
changing. The growing number and variety of devices

connected to the Internet, the proliferation of new online
services and the increasingly demanding user expectations
for server responsiveness and availability require more
computational power than ever. One established trend to
save power, hardware, and administration costs consists in
using very powerful machines to run several services on the
same physical machine, usually by means of virtualization.
An even more recent trend seeks to further reduce costs by
outsourcing IT services to cloud computing providers
which own and manage clusters of servers that are shared
among customers by means of virtualization too. These
trends increase the demand for servers with the largest
possible computational and storage capabilities.

Until recently, many service providers were able to use
clusters of relatively inexpensive PCs to fulfill their task. This
kind of clusters are popular also for scientific computing.
However, they usually rely on message-passing commu-
nications for remote memory accesses. Message-passing
increases not only the communication latencies, but also the
difficulties to develop efficient applications. The increased

programming complexity is undesirable for scientific appli-
cations and is unreasonable in the server field.

At the same time, scalable point-to-point interconnect
technologies are starting to be included in the server oriented
processor offerings of the leading companies. AMD was the
first to include such technologies in their Opteron processors
with Coherent HyperTransport [1], which was followed by
Intel with QuickPath [2] in their Nehalem processors. Unlike
previous high-performance interconnects for clusters like
InfiniBand [3], the network interface for these new inter-
connects is included in the same chip as the processor cores
and the memory controllers, enabling glueless point-to-point
communication between all the processors and memory
interfaces in the system and low latency for remote memory
accesses. In addition, these technologies provide support for
memory coherency.

Recently, AMD has launched six-core versions of its
Opteron processors, codenamed Istanbul, and a twelve-core
package comprising two dies1 with six cores each, code-
named Magny-Cours [4]. Besides the increased number of
cores, the most notable difference with previous genera-
tions of Opteron processors is the inclusion of a directory
cache, called HT Assist Probe Filter (HTA) [5], which reduces
the number of off-chip messages generated by the cache
coherence protocol. The Magny-Cours protocol, which is an
adaptation of the protocol defined by the coherent Hyper-
Transport (cHT) specification [1], allows to build small
cache-coherent shared-memory multiprocessors (up to
eight processor dies) in a single board.

Unfortunately, although the HTA reduces cache miss
latency and coherence traffic, it has inherited the addressing
limitations imposed by the cHT specification, which limits
the coherence domain for Istanbul and Magny-Cours to
eight dies at most [4]. This limitation prevents the
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development of cluster-based HPC systems able to offer
large cache-coherent shared-memory address spaces, such
as the SGI Ultraviolet (Altix UV) [6] machines and the 3Leaf
Systems DDC-server [7].

The addressing limitation of the cHT specification is
solved in the new High Node Count (HNC) HyperTransport
specification [8], which extends the former by encapsulating
standard cHT messages into HNC packets. However,
current Opteron processors do not implement this extension
and have only 3 bits in the HTA to encode the owner of a
block. Thus, the coherence domain remains limited to eight
dies unless additional external hardware is used.

The main advantage of extending the number of nodes in
a coherence domain is that data center servers supporting
virtualization solutions will be able to use system resources
in a more flexible and efficient way, allowing to define
larger virtual domains which better fit the requirements of
some applications. Besides, it will allow to support HPC
applications that currently can only be used in super-
computers and cluster-based computing platforms.

In this work, we present a device, called bridge chip or
EMC2 chip (Extended Magny-Cours Coherence), that
1) provides a way to efficiently extend the coherence domain
provided by the new generation of AMD Opteron processors
beyond the 8-die limit, 2) maintains the advantages
provided by the HTAs, and 3) filters additional coherence
traffic to enhance the HTA effectiveness and scalability [9].

The EMC2 chip sits in a board with up to seven
additional dies. It presents itself as another node to the rest
of dies in the same board, while it manages the commu-
nication between dies in different boards by performing
conversions between cHT and HNC packets. This way, and
unlike other extensions (e.g., Horus [10], which was aimed
to extend the coherence domain for previous-generation
AMD Opteron processors), our proposal agrees with the
new HNC standard specification. Every EMC2 chip
includes a directory cache (extended HTA or simply EHTA)
that extends the functionality of the local HTAs located in
the same board.

We propose three different implementations for the
EMC2 chip that cover a wide set of trade-offs between their
area requirements and the amount of filtered traffic.
Additionally, we also propose a coherence mechanism that
decouples the number of entries of the EHTA from the
number of entries of the local HTAs. Finally, to enhance the
scalability of the protocol, we propose two approaches that
reduce the number of replacements in the HTAs and
increase the maximum number of simultaneous pending
remote messages allowed in a particular board.

Unlike other multiprocessor systems, such as the SGI
Origin [11] or the Cary T3E [12], whose cache coherence
protocol was designed from the beginning to scale up to a
large number of nodes, our proposal is based on the
extension of an existing protocol limited to eight nodes.
Therefore, our proposal does not require any change in the
functionality of the original protocol to overcome its
limitations and widen its scalability.

Simulation results show that our proposal allows to
build large-scale shared-memory servers based on the new-
generation Opteron processors, while being able to exploit

the advantages of the HTA at the overall system level.
Particularly, the bridge chip named as EMC2-OXSX
reduces the average execution time of the evaluated
applications by 47 percent on average for a 32-die system
with respect to the eight-die system allowed by Magny-
Cours, while obtaining an excellent compromise between
area and traffic requirements. Furthermore, thanks to the
EHTA replacement mechanism proposed in the paper that
allows to decouple the EHTA size from the size of local
HTAs, the area of the EMC2 chip can be significantly
reduced (down to eight times) without noticeable effect on
performance. Note that most concepts introduced in this
paper for extending cache coherence could also be applic-
able to other commodity processors.

The remainder of this paper is organized as follows:
Section 2 outlines the Magny-Cours cache coherence proto-
col. We present our proposals for extending AMD Magny-
Cours cache coherence capabilities in Section 3. Section 4
discusses two approaches for improving scalability. We
describe the simulation environment in Section 5. The
evaluation results are presented and analyzed in Section 6.
Finally, we draw conclusions in Section 7.

2 AMD MAGNY-COURS CACHE COHERENCE

SUPPORT

AMD Opteron processors use the cache coherence protocol
defined by the cHT specification [1]. This protocol was
designed to perform efficiently in a system with a small
number of processors connected with tightly coupled point-
to-point HyperTransport links. It can be described as a
hybrid between a snoopy and a directory protocol. It is
similar to snoopy protocols in the sense that all the nodes see
all coherence transactions. However, like directory proto-
cols, it does not rely on a shared bus and can, in fact, be
characterized as a directory-based protocol without direc-
tory information, also known as Dir0B [13]. This lack of
directory information reduces the memory overhead and
avoids the latency of accessing it, but it does not filter
messages.

On a cache miss occurrence, a node initiates a load or a
store transaction by issuing a request for a memory block.
The request is sent to the home node (memory controller),
which serializes them. On a request arrival, the home node
broadcasts messages known as Broadcast Probes (BP) in
order to invalidate or to obtain the data block from the
caches of the other nodes. These nodes reply with Probe
Responses (PR), which are directed to the requester. Once the
requester receives all responses, it sends a Source Done (SD)
message to the home node, which finalizes the request and
proceeds to process the next request for the block (if any).
The required BPs do not entail a serious problem in small
systems. However, as the number of nodes grows, both the
consumed bandwidth and the time required to receive and
process all the PRs increases dramatically.

On a write-back of a dirty block, a node sends the
modified block in a VicBlk request to its home node. This
replies with a Target Done (TD) message to the requester
indicating that the memory has been updated. Like in the
previous case, the transaction ends by sending an SD
message to the home.
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Finally, noncached writes, used for noncoherent transac-
tions, are also implemented in the cHT protocol. In this
case, a WrSized request is initiated and it forces all the
memory blocks belonging to a certain memory region to be
invalidated from cache and copy-backed to main memory.
The requester keeps a clean copy of the data in its cache. A
node sends the WrSized request to the home node, which
initiates the invalidation of the cached blocks by sending a
BP to the other nodes. However, these BPs require that the
corresponding region is invalidated from the other nodes
and also that these nodes acknowledge the invalidations to
the home node instead of to the requester. When the home
node has collected all the PRs, it sends a TD message to the
requester, which finishes the transaction by sending an SD
message back to the home node.

Fig. 1 shows the block diagram of a Magny-Cours die. As
shown, Magny-Cours processors add a small on-chip
directory cache [5] called HT Assist Probe Filter (HTA). The
HTA holds an entry for every block mapped to this node
cached in the system. Each entry has 4 bytes which are used
to store a tag, a state (EM, O, S1, or S),2 and a pointer to the
current owner of the block (3 bits). This information is used
to 1) filter unnecessary BPs when no copy of the data is
cached and 2) to replace some BPs with unicast Directed
Probe (DP) messages. In case of a DP, only one response,
called Directed Response (DR), is generated. Upon a miss on
the HTA, a new entry must be allocated, which may require
to replace an existing one. Before performing the replace-
ment, all the cached copies of the block identified by the
replaced entry must be invalidated either by a DP (if the
replaced entry is in EM or S1 state) or by a BP (if it is in O or
S state). These invalidations come as a consequence of the
lack of a backup memory directory.

As depicted in Fig. 1, a portion (1 MB of 6 MB available) of
the L3 cache is dedicated to HTA entries to avoid adding a
large overhead in uniprocessor systems. This provides
enough space for 256 K entries organized in 64 K four-way
sets, which are enough for tracking 16 MB (256 K entries �
64 bytes=block) of data cached in the system.

Even with the traffic filtering provided by the HTA, the
scalability of Magny-Cours systems is limited to eight dies
due to implementation details. First, the cHT packet format
reserves only 3 bits to identify coherent nodes; and second,
the pointer used in the HTA to encode the current owner of
a cached block has also 3 bits only (which makes sense since
it assumes that cHT will be used).

The HNC HyperTransport specification partially ad-
dresses the first limitation. To this end, it defines the concept
of nest as any addressable entity (which can be anything from
a single processor up to a motherboard containing several
processors) and an extended packet format that can
encapsulate standard cHT messages and uses a nest-based
addressing scheme. However, it does not establish how
packets should be handled when they move between nests.
To fully overcome these two problems we propose the EMC2

chip, which is described in the next section.

3 EXTENDING AMD MAGNY-COURS CACHE

COHERENCE CAPABILITIES

Although each nest in our system can contain up to seven
processor dies, in this paper, we opt for including only four
dies per nest, as illustrated in Fig. 2. This configuration
allows the intranest network to be fully-connected and a
straightforward mapping of memory blocks to home nodes
by checking just a few address bits. Our system comprises
several processor boards (referred to as nests). Each nest
includes an EMC2 bridge chip which acts 1) as a network
interface controller between nests, 2) as a translator between
cHT and HNC packets, and 3) as an extension of the HTAs
located inside the nest. Moreover, each nest includes a
continuous region of the physical memory.

3.1 Extending the Coherence Domain

To maintain coherence between nodes in different nests, we
propose the use of the EMC2 chip, whose block diagram is
shown in Fig. 3. From the point of view of the other nodes, the
EMC2 chip is seen as just another node inside the nest. The
EMC2 chip and all the nodes within a nest are fully connected
through a cHT interconnect. The different nests are con-
nected by an InfiniBand switch fabric and they communicate
using HNC packets encapsulated into InfiniBand packets.
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2. Blocks are stored in caches according to the MOESI states [14].

Fig. 1. Block diagram of Magny-Cours dies [4].

Fig. 2. Overview of the proposed system. Thick arrows inside the nests
represent �16 cHT links while the narrow ones are �8 cHT links.

Fig. 3. Block diagram of the EMC2 chip.



Transactions in cHT are identified by means of three
fields: the id of the node that initiated the transaction
(SrcNode), the unit of the node (SrcUnit), and a tag of 5 bits
generated at the node (SrcTag). Each cHT packet conveys
the information of the transaction that it belongs to.
However, this information is only enough within a nest,
where the coherence domain is limited to eight nodes.
When the coherence domain is extended to several nests,
packets must be unequivocally identified out of their local
nest (i.e., the nest where the node that initiated the
transaction resides). Two new situations can happen: either
the packet is traveling from one nest to another one or the
packet is in a remote nest.

When the packet is traveling from one nest to another
one, it is encapsulated into a HNC packet, which includes
an additional field for its identification. This field is the id of
the nest where the SrcNode of the transaction is located
(SrcNest), and it is included by the EMC2 chip when it
transforms a local cHT packet into a HNC packet. This way,
these packets can be globally identified.

On the other hand, packets in a remote nest use the cHT
standard, so there is no SrcNest field available for
identifying them. Therefore, if a packet is identified by the
SrcNode, SrcUnit, and SrcTag of its corresponding transac-
tion, a conflict with a local transaction may occur. To avoid
this, EMC2 chip changes the SrcNode and the SrcTag of the
packet when it is transformed from a HNC packet into a
cHT packet in a remote nest. In particular, the SrcNode
becomes the id of the EMC2 chip and a new SrcTag is
assigned by the EMC2 chip itself. This way, conflicts
between packets belonging to transactions initiated in
different nests are avoided.

Another task of the EMC2 chip is the recovery of the
original identifiers of the packets. When an EMC2 chip
receives a cHT packet whose SrcNode corresponds to its
node id, it means that the packet is in a remote nest. When it
translates the cHT packet into a HNC packet, it has to
restore its original identifiers, including the SrcNest. To
support this operation, the EMC2 chip needs to keep a
matching between the identifiers used in remote nests and
the original ones. This information is stored in the Matching
Store Table (MST) included in each EMC2 chip. Every packet
that goes into a remote nest must allocate an entry in the
MST. In the MST, there is an entry for each tag available at
the EMC2 chip. Therefore, the number of entries in the MST
is bounded by the maximum number of tags that can be
generated by the cHT specification (i.e., 32 tags), which in
turn limits the number of external transactions that can
be simultaneously in progress inside a nest. Thus, when the
MST is full and new entries cannot be allocated, the
incoming packets are temporally stored in the Pending
Command Queue. Possible deadlock scenarios due to the
limited number of entries of the MST and their solutions are
discussed later in Section 3.4.

While each packet that goes into a remote nest needs to
allocate an MST entry, another structure is necessary for
storing information about the packets that leave their source
nest. This structure is the Extended Tag Table (ETT). One of
the uses of this structure is to store the home nest of the
transactions. This is needed because requests include the
block address in the message, so a straightforward calculation

can be performed to obtain the destination nest, but other
packets, like Source Done, do not convey the block address, so
the destination nest must be obtained from the ETT. In
particular, ETT entries are allocated when a request leaves its
source nest and deallocated when its corresponding Source
Done packet is sent out of this nest. Since the maximum
number of concurrent transactions generated by a nest is
limited to 512 (32 tags=node � 4 units=node � 4 nodes=nest),
this table will have 512 entries. Thus, unlike the MST, it will be
able to store all the transactions requesting an entry.

The EMC2 chip also has to collect all the responses
generated as a consequence of broadcast probes. These
responses can be received both from the cHT interface and
from the HNC one. The counting of these responses and
the data block (if the responses include data), may be
temporally stored by the EMC2 chip in order to be able to
generate a single response. This information is stored either
in the ETT or in the MST, depending on whether the
transaction which these packets belong to was generated in
that nest or in another one, respectively.

3.2 Extending the HTA Functionality

To maintain and extend the functionality of the HTAs
beyond the nest domain, as well as to reduce the generated
coherence traffic, every EMC2 chip includes a directory
cache called Extended HTA (EHTA), as shown in Fig. 3.
Every EHTA tracks the memory blocks whose home is
located in its nest and that may be cached in a remote node
(i.e., a node outside its nest). However, the EHTA is not
aware of the blocks that are only cached inside its nest.

Since a HTA only knows about the existence of the nodes
inside its nest, when a block’s owner is a remote node, the
HTA will think that the block is cached by the EMC2 chip.
To have precise information of the block’s owner, the EHTA
will be in charge of tracking the actual location of the owner
by storing the nest (ownerNest field) and node (ownerNode
field) identifiers.

In addition to the ownership information about the block,
each EHTA entry also includes some information that is used
to perform additional traffic filtering tasks. Depending on
the quantity of information held by each entry, the filtered
traffic and the area requirements will vary. Thus, in order to
cover different trade-offs between area requirements and
amount of filtered traffic, we propose three configurations
for the EHTA entries: EMC2-Base, EMC2-OXSX, and
EMC2-BitV ector.

. The EMC2-Base chip includes an EHTA whose
entries encode the ownership of the block and the
same states as the HTAs: EM, O, S1, and S (2 bits).

. The EMC2-OXSX chip includes an EHTA that
encodes two additional states: OX and SX (3 bits).
These new states are intended to be able to turn
Broadcast Probes into Directed Probes when all the
remote copies of a certain block are located in the same
nest. Notice that on the arrival to the remote nest, these
Directed Probes will be turned again into Broadcast
Probes to be able to invalidate more than one copy.

. The EMC2-BitV ector chip includes an EHTA with
the same states as the EMC2-Base chip, but its entry
also holds a bit-vector. This bit-vector includes one
bit per every remote nest in the system, indicating
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which of the nests may have a cached copy of the
block. This information allows to replace the Broad-
cast Probes with Multicast Probes. Although this is
the most effective configuration in terms of filtered
traffic, it is the most area-demanding approach.

Since there are not huge implementation differences
among the three proposed configurations, from now on
we will just focus on the EMC2-OXSX chip, which
achieves a good traffic-area trade-off (as shown in
Section 6.4). Table 1 shows a detailed description of each
possible state for the EHTA entries assuming this
configuration. Notice that this state only considers copies
of the block cached in a remote nest.

Depending on the state in both the HTA and the EHTA,
different scenarios can come up, such as Table 2 depicts. For
each combination, the table shows a short description of
how and where the block is cached and the actions
performed by the EMC2 chip (if any) under load and store
transactions. The three possible reactions to a transaction
are: 1) no action (the probe is simply forwarded), 2) turning
a Broadcast Probe into a Directed Probe, and 3) filtering a
Broadcast Probe. The actions in bold are those that entail a
reduction in coherence traffic.

The information in the EHTA must be updated when the
caching of the blocks changes. This updating is only
preformed when the EMC2 chip receives a packet
generated as a consequence of an action performed by
some local HTA. The following four sections describe how
this information is updated depending on the packet
received. Since the EHTA is a cache indexed by the block
address and some of the received packets do not carry such
information, the MST must be also in charge of storing the
address of the block involved in the transaction.

3.2.1 Broadcast Probes and Probe Responses

To update the EHTA while avoiding races, the EMC2 chip
uses the last packet received among the Broadcast Probe
and Probe Responses generated as a result of a store or a
WrSized transaction. Upon the receipt of this last message,
the EMC2 chip carries out the actions shown in Fig. 4. As
depicted, if there is no valid entry for that block in the
EHTA (EHTA miss) and a copy is going to be sent outside
the home nest (the requester is a remote node) and the
message belongs to a store transaction, a new entry is
allocated, the state is set to EM, and the block’s owner
(ownerNest and ownerNode) is set to the requester node. If
there is an EHTA miss and the message belongs to a
WrSized transaction, the EHTA is not modified since the
block will not be cached after the WrSized. If the EHTA
already contains an entry for the block and the message
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TABLE 1
EHTA States of the EMC2-OXSX Chip

TABLE 2
Scenarios Depending on the HTA State (Rows) and the EHTA State (Columns)

In/out refers to inside/outside the home nest, and ld/st to load/store. DP � means that the BP turns into a DP, but only while the DP is transmitted
between nests. However, when the DP reaches a nest, the DP is turned into a BP (only inside that nest).

Fig. 4. Updating the EHTA by BPs or PRs for store transactions.



belongs to a store transaction, the EMC2 chip updates the
existing entry accordingly. Finally, when the requester is in
the home nest or the message belongs to a WrSized
transaction, the EHTA entry is set to invalid because all
the external copies will be invalidated.

3.2.2 Directed Probes

Fig. 5 shows how the EHTA is updated on a Directed Probe
(DP) arrival. When an EMC2 chip receives a DP (from inside
its nest) due to a load transaction, the owner node must be
outside the home nest and, therefore, the EHTA state can
only be EM, OX, or O. If the requester is local to the home nest,
the coherence information is not modified. If the requester is
located in the owner nest and the state field is either EM or
OX, all the external copies must be in the same nest and,
consequently, the state field is set to OX. If the requester is
neither in the home nest nor in the owner nest, the state
transitions to O. When the state is O, DPs do not change it.

In case of a store transaction, the EMC2 chip will receive
a DP only when a single external copy of the block exists,
which is at the owner node (EM state). In such a case, if the
requester node is not in the home nest, the state field
transitions to EM and the owner field is set to the requester
node (ownerNest and ownerNode). Otherwise, if the
requester is in the home nest, the EHTA entry is set to
I state because the external copy will be invalidated and
forwarded to the requester. Finally, when a DP is received
due to a WrSized transaction, the EHTA entry is set to
invalid because all copies are going to be invalidated.

3.2.3 Directed Responses

Fig. 6 shows how the EHTA is updated on a Directed
Response (DR) receipt. In this case, the owner is located
inside the home nest while the requester is outside. If the
DR conveys an exclusive copy of a memory block (indicated
by the shared bit conveyed by DRs), the state transitions to

EM and the owner field is set to the requester node. In case
the DR carries a shared copy, several actions can take place
depending on the state in the EHTA. If the state is I or an
EHTA miss occurs, a new entry is allocated setting the state
to S1 and storing the requester information in the ownerNest
and ownerNode fields. On an EHTA hit, if the EHTA state is
S1 or SX and the requester nest matches the ownerNest field,
the state is set to SX. If the state is S1 or SX and the requester
nest does not matches the ownerNest field, the state is
updated to S. Finally, if the state is S, it is not changed.

3.2.4 Target Done Messages

A Target Done (TD) packet can only cause the EHTA to be
updated when it has been generated as a result of a cache
replacement (VicBlk transaction). Notice that only the owner
node can initiate a replacement because the shared copies
are evicted silently. Upon the arrival of a TD message, if the
owner in the EHTA matches the requester of the VicBlk
transaction, the state field is checked. If the state is EM, it
transitions to I because the single external copy has been
invalidated. If the state is OX, it transitions to SX, and if the
state is O, it transitions to S. On the contrary, if the owner in
the EHTA does not coincide with the requester, the EHTA is
not modified because this can only occur if a race condition
happened and the EHTA has already been correctly
updated.3 These operations are depicted in Fig. 7.

3.3 Handling EHTA Replacements

In Magny-Cours, each HTA holds 256 K entries. Therefore, a
maximum of 256 K blocks from the same home memory can
be cached in the system at the same time. Given that we
consider four HTAs per nest, a maximum of 1 M blocks from
the same nest could be simultaneously cached. If all those
blocks were cached outside the home nest, the EHTA would
have to track all of them. To be able to do it without needing
evictions, each EHTA would require 1 M entries and an
associativity equal to the aggregate associativity of the four
local HTAs (i.e., 64 K 16-way sets), assuming it has the same
mapping as the HTAs. In order to reduce the EHTA size,
and therefore, its access latency, we propose a mechanism
for handling EHTA replacements. This mechanism allows
the EMC2 chip to have lower memory requirements.

The eviction of an EHTA entry will entail the invalidation
of all the external copies of the block associated to such an
entry. However, there are two facts that make the eviction of
EHTA entries a bit complicated. First, Magny-Cours dies are
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Fig. 5. Updating the EHTA by DPs.

Fig. 6. Updating the EHTA by DRs.

Fig. 7. Updating the EHTA by local TDs.

3. Alternatively, the EHTA state could be updated upon the recepcion of
the SD message, which includes information about the success of the VicBlk
transaction.



only able to process the coherence messages defined by the
cHT protocol [5] and, consequently, new coherence messages
cannot be introduced. As the cHT protocol does not include
any specific command for performing EHTA evictions, they
should be performed by using some of the commands
already defined by the cHT protocol. Second, EHTA
evictions could introduce complex race conditions if they
are not serialized by the home node.

In order to adjust to these two facts, we employ WrSized
requests to perform EHTA evictions, which are already
supported by the cHT protocol. WrSized requests force all
memory blocks belonging to a certain memory region to be
evicted from cache and copy-backed to main memory.
Additionally, the requester keeps a clean copy of the written
data in its cache. In case of an EHTA eviction, the memory
region indicated by the WrSized request is the block whose
EHTA entry is going to be replaced. Since EMC2 chips send
WrSized requests to the home nodes, this mechanism
resolves the serialization problem.

In particular, EHTA replacements are handled as
follows: When the EMC2 chip receives a packet that
requires the allocation of a new EHTA entry, as described
in the previous section, and the EHTA set for that block is
full, the LRU entry of that set must be replaced. To avoid
delaying the incoming packet, the evicted EHTA entry is
temporally stored in the Miss Status Hold Register (MSHR)
structure located in the EMC2 chip, where the information
regarding the ongoing transactions is stored. This way, the
EMC2 chip can store the required information in the EHTA
and process the incoming packet. If the MSHR is full the
incoming packet is stalled.

Then, the EMC2 chip begins a WrSized transaction. Since
this transaction requires a unique identifier, the EMC2 chip
has to assign a new SrcTag to it. This tag cannot be used by
any packet in this nest belonging to an external transaction,
because in this case two transactions would have the same
identifier. Therefore, this tag must be obtained from the free
tags in the MST. Since both external transactions and WrSized
transaction due to EHTA replacements allocate entries in the
MST, deadlock situations could occur if proper care is not
taken. We discuss this issue in more detail in Section 3.4.

WrSized transactions are sent to the home node, which is
one of the dies within the nest where the EHTA replace-
ment took place. When the home node receives a WrSized
request, it issues Broadcast Probes in case the HTA entry
for that block is valid. These probes are transmitted by the
EMC2 chip to the remote nests and nodes as previously
described. Nodes reply to these probes with the corre-
sponding responses. When the EMC2 chip, first, and the
home memory controller, later, collect all the associated
responses, the home node sends a Target Done message to
the requester of the WrSized request (i.e., the local EMC2

chip). At this moment, the EMC2 chip is allowed to free the
MSHR entry and the corresponding MST entries (i.e., the
tag is freed). Finally, the WrSized transaction completes by
sending a Source Done message to the home node. Now,
the block is not stored in any cache. However, the HTA
state for the evicted entry is S1, since it assumes that a clean
copy is stored in the EMC2 chip. In order to avoid future
broadcast probes as a consequence of the state S1 in the

HTA (e.g., upon a write transaction), the EMC2 chip
initiates a clean VicBlk transaction once the WrSized
transaction completes. The VicBlk transaction will cause
the invalidation of the HTA entry if is found in S1 state.

WrSized transactions force the invalidation of all the
copies of the block from cache, even those copies held by
nodes within the home nest. However, the invalidation of
these internal copies is not strictly necessary, since we only
need to invalidate the external copies. The invalidation of
the internal copies is a side effect of using transactions
already defined by the cHT protocol. Therefore, the
proposed mechanism may unnecessarily increase the cache
miss rate. Fortunately, we have found that most EHTA
evictions correspond to blocks that have no internal copies.
As a result, the collateral damage caused by the use of
WrSized requests for the EHTA evictions is negligible.

3.4 Deadlock avoidance

The MST is used for assigning an internal tag to any external
transaction received by the EMC2 chip. These transactions
can be either a remote request or a remote probe. Like them,
the WrSized requests issued by the EMC2 chip upon an
EHTA replacement also need an internal tag, which is also
taken from the available ones of the EMC2 chip (i.e., from the
available entries in the its MST). Due to the limited number
of MST entries, deadlock situations could arise.

Fig. 8 shows a deadlock scenario where several probes are
locked waiting for a free MST entry. Each probe that arrives
to a remote nest needs a new SrcTag and, since the MST is
full, the probe is stalled. However, the requests that allocated
the MST entries cannot progress because their correspond-
ing probes are also stalled. As a result, each request is stalled
waiting for another request (which is also stalled) to finish.

Fig. 9 depicts another deadlock scenario where some
EHTA replacements are locked because the corresponding
WrSized request cannot be issued due to the lack of free MST
entries. Again, no MST entry will ever be released since they
have been allocated by the requests causing the evictions,
and they cannot progress until the eviction is performed.
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Fig. 8. Probes stalled due to requests stored in the MST. The home
node for P0’s and P2’s requests is placed within Nest 2, whereas the
home node for P1’s and P3’s requests are in Nest 1. Besides, the owner
for P0’s and P2’s requests is in Nest 1, whereas the owner for P1’s and
P3’s requests is in Nest 2.



To solve these deadlock scenarios, we first discuss each
type of transaction that can allocate an entry in the MST and
their mutual dependencies.

. Broadcast and Directed Probes: The MST entries
allocated by them are valid until the associated
responses go back to the EMC2 chip. They do not
depend on the assignation of any tag for a
subsequent message.

. Requests: The entries allocated by them remain in the
MST until the arrival of the corresponding Source
Done message. The requests can issue probes to
other nests, which could require the assignation of a
new SrcTag. Additionally, it can be necessary to
evict an entry from the EHTA, which always
requires the occupation of a new tag in the same
MST as the request.

. EHTA Replacements: The entries created by the
WrSized requests issued as a consequence of EHTA
replacements are released when the corresponding
Target Done message is received. A WrSized request
never incurs in the replacement of another EHTA
entry. However, it may be necessary to send probes
to remote nests, which may require in turn the
occupation of a MST entry.

According to this, probes do not depend on any other
transaction, EHTA replacements only depend on probes,
and requests depend on both probes and EHTA replace-
ments. Therefore, by assigning higher priority to the requests
with less dependencies and by ensuring at least one MST
entry for the requests with higher priority we can avoid the
deadlock. Additionally, for a good utilization of the limited
number of MST entries, we allow a transaction to occupy any
MST entry as long as its priority is higher or equal than the
priority of the MST entry. In our particular implementation,
we assign four entries to probes (priority 2), four entries to
replacements (priority 1), and the remaining entries to
requests (priority 0) from the 32 entries available in the
MST. This way, replacements can occupy any entry assigned
to requests meanwhile probes can occupy any entry.

4 IMPROVING SCALABILITY

In this section, we discuss two possible scalability bottle-
necks that could appear when the Magny-Cours coherence

protocol is extended to a large number of nodes. These two
bottlenecks come as a consequence of constraints present in
Magny-Cours: 1) the limited size of the HTA structure
which affects the HTA coverage ratio, and 2) the limited
number of tags available to identify transactions, which
restricts the number of external transaction that can be
translated into internal transactions at the same time to only
32. Next sections discuss these issues and propose two
alternatives to prevent them from being a bottleneck in
large-scale configurations.

4.1 Lessening Worst-Case HTA Coverage Ratio

Each HTA is comprised of 256 K entries for keeping
coherence information for its local blocks, i.e., the blocks
mapped to its memory controller. On the other hand, the
cache hierarchy of each die has 128 K entries (5 MB L3 and
3 MB L2). This means that if all cached blocks were
uniformly distributed among the home memory controllers,
the coverage ratio of the HTAs would be �2. This coverage
ratio is named as typical in [4].

However, Magny-Cours does not assume that the
memory is interleaved among the different dies. Therefore,
some memory controllers may hold more cached blocks than
others. The worst-case scenario appears when all the cached
blocks map to the same memory controller. Fortunately,
since Magny-Cours systems are comprised of only up to
eight dies, the coverage ratio in this case only decreases
down to �0:25, which could be acceptable. Nevertheless,
when we extend the coherence mechanism to a larger
number of dies, this worst-case coverage ratio falls drasti-
cally (down to �0:062 for a 32-die system), which could
result in a significant number of cache invalidations as a
consequence of replacements in the HTA. These invalida-
tions may impact negatively on the L3 cache miss rate, which
may lead to a significant performance degradation.

A proper interleaving of memory blocks or memory
pages would alleviate this issue. However, if we perform a
full memory interleaving (i.e., considering all the nodes in
the system), sequential applications would have to access
memory controllers belonging to remote nests very fre-
quently. Since the internest communication is much slower
than intranest communication, these applications would be
severely slowed down. A solution for this problem is to
perform a hybrid interleaving, where memory is interleaved
inside each nest (i.e., among the dies belonging to the same
nest), but it is not interleaved among nests. This way, the
intranest interleaving lessens the impact of the worst-case
coverage ratio by homogeneously distributing blocks among
HTAs within the same nest, while the internest contiguous
memory addresses avoids accesses to memory controllers in
remote nests. Therefore, this approach offers a very good
trade-off between coverage ratio and access latency. Note
that currently the address mapping functionality of Magny-
Cours is not sufficiently flexible to support the proposed
hybrid mapping scheme, so it would require an extension of
the mapping functionality.

4.2 Increasing the Number of MST Tags

Magny-Cours uses a five-bit field in order to assign ids
(SrcTag) to transactions, so there are only 32 tags available
per die. Therefore, our MST only has 32 entries, i.e., each
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Fig. 9. EHTA replacements stalled due to requests stored at the MST.
Both B0’s and B1’s requesters are located outside Nest 0. The home of
B0 and B1 is also the owner.



EMC2 chip can support only 32 internal transactions at the
same time. When all the entries of the MST are occupied,
the EMC2 chip cannot issue another message into its nest.
Again, as either the system size grows or the EHTA
becomes smaller more MST entries are needed because of
the larger number of required internal transactions. There-
fore, its limited number may become a bottleneck, and
consequently, may degrade applications’ performance.

We propose to increase the number of available tags by
employing the unused die identifiers in the nest. Note that
our system configuration has four dies per nest plus one
bridge chip, and therefore, there are three die identifiers
that are not used in each nest. The utilization of these
identifiers would allow us to assign up to 96 additional tags
to the MST (128 tag in total). This way, the number of
internal coherence transactions that can be generated by the
EMC2 chip at the same time also increases, thus alleviating
this possible bottleneck. Obviously, the reduction of this
bottleneck comes as consequence of an increase in the size
of the MST. However, we will see in Section 6.4 that the area
required by the MST is marginal compared to the area
required by the EHTA.

5 SIMULATION ENVIRONMENT

We evaluate the proposed extended cache coherence proto-
col with full-system simulation using Virtutech Simics [15]
along with the Wisconsin GEMS toolset [16], which enables
detailed simulation of multiprocessor systems. The inter-
connection network has been modeled using GARNET [17], a
detailed network simulator included in the GEMS toolset.
Additionally, we have also employed the CACTI 5.3 tool [18],
assuming a 45 nm process technology, to measure the area
requirements of the different configurations of our proposal.

In order to carry out the evaluation of our proposal, we
have first implemented the Magny-Cours cache coherence
protocol, which represents the base protocol against which
we compare our proposal. Then we have implemented the
three different EMC2 chips explained in Section 3. We have
also provided the simulator with the functionality of having
several cores per die sharing the same L3 cache. The
intradie coherence (L1 and L2) has not been modeled since
1) it is out of the scope of our work and 2) the simulation
time would increase considerably. We have run simulations
from 8 to 32 dies and with 1 and 2 cores per die. For the
Magny-Cours (MC) system we only simulate one nest with
eight dies, which corresponds to the base case. For the
EMC2 systems, we simulate 4 dies per nest (plus the
EMC2 chip). The parameters assumed for the systems
evaluated in this work are shown in Table 3. Since we do
not model the intra die protocol or the cache hierarchy, we
assume a fixed access latency (representing the average
access time) for the whole hierarchy (L1, L2, and L3 caches).

We have evaluated our proposal by using six scientific
workloads from the SPLASH-2 benchmark suite [19]: Barnes
(16 K particles), Cholesky (tk16), FMM (16 K particles), Ocean
(514� 514 ocean) Raytrace (teapot) and Water-Sp (512 mo-
lecules). All the experimental results reported in this work
correspond to the parallel phase of these benchmarks. We
account for the variability in multithreaded workloads [20]
by doing multiple simulation runs for each benchmark in

each configuration and injecting small random perturba-
tions in the timing of the memory system for each run.

6 EVALUATION RESULTS

In this section, we show how our proposals are able to support
more than eight dies while scaling in terms of execution time.
To this end, we compare the three bridge chips proposed in
t h i s p a p e r ( i . e . , EMC2-Base, EMC2-OXSX, a n d
EMC2-BitV ector) for systems from 8 to 32 dies with a base
Magny-Cours system comprised of eight dies. Particularly,
we evaluate them in terms of network traffic, cache miss
latency, execution time, and area requirements.

Additionally, we study the impact that the hybrid
interleaving scheme has on the HTA coverage ratio. We
also perform a sensitivity study of the size of the EHTA,
demonstrating how it can be significantly reduced without
affecting the execution time seriously. Finally, we evaluate
the advantages of employing the unused die identifiers in
the nest to increase the number of available MST tags.

6.1 Cache Miss Characterization

First of all, it is important to characterize the applications in
order to know the fraction of cache misses that can take
advantage of the EHTA filtering capabilities. Fig. 10 shows
this characterization for a 32-die system that includes the
EMC2-OXSX chip, as a representative example. In this
characterization, we show the percentage of misses that fall
into each one of the possible combinations of states for the
EMC2-OXSX chip (see Table 2).

The EMC2 chip can reduce network traffic only when a
write miss takes place for a block in O or S states in the HTA
(i.e., when a Broadcast Probe is received). This happens for
21.7 percent of cache misses (on average) for the considered
applications and a 32-die configuration. Depending on the
state in the EHTA, the EMC2 chip can either completely
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filter the Broadcast Probe or convert it into a single Directed
Probe. Note that for the remaining misses, the HTA already
filters the unnecessary probes.

6.2 Impact on Network Traffic

In Fig. 11, we show the average number of Broadcast/
Directed Probes that arrive to the dies for each Broadcast
Probe issued by the home memory controller. This number
is plotted for the three EMC2 chips proposed (for systems
with 8, 16, and 32 dies) and the base Magny-Cours system
comprised of eight dies. Note that without any filtering this
number should be 8, 16, and 32 for 8-, 16-, and 32-die
systems, respectively.

Since we only consider Broadcast Probes, the average
number of probes arriving to a die in Magny-Cours is always
eight. However, for the same system size our protocols reduce
this number by filtering some probes. Obviously, when we
consider eight dies (i.e., two nests), there is only one remote
nest, so all EMC2 chips behave in the same way. For larger
systems, we can see that the more coherence information the
HTA stores, the more traffic it filters. Particularly, for a 32-die
system, we can see that the average number of received
probes is reduced by 23.6 percent (24.4/32), 49.7 percent
(16.1/32), and 61.6 percent (12.3/32) for EMC2-Base,
EMC2-OXSX, and EMC2-BitV ector, respectively.

This reduction in the number of probes received by the
dies has two consequences: 1) the number of generated
probe responses is also reduced, and 2) the network

congestion and the coherence controller utilization de-
creases. They lead to less time waiting for Probe Responses,
and therefore, shorter cache miss latency, which will finally
translate into improvements in execution time.

6.3 Impact on Execution Time

As we can see in Fig. 12, average miss latency of EMC2

increases with respect to MC for an 8-die system. This is
because the latency for transmitting messages between
nests is higher than between dies. Remember that in MC we
have the eight dies in the same nest while in EMC2 there are
only four dies per nest.

On the other hand, when we consider a larger system,
the cache miss latency increases due to the growth in the
internest communication. Nevertheless, we reduce the final
execution time because the applications can be distributed
among more dies, which considerably lessens the workload
of each die. Finally, we can appreciate a reduction in
average miss latency for some EMC2 chips and the 32-die
configuration. Compared to EMC2-Base, EMC2-OXSX
reduces the average miss latency by 3.7 percent, and
EMC2-BitV ector by 5.0 percent. The obtained reductions
are expected to increase for larger configurations. These
reductions in cache miss latency in turn lead to improve-
ments in execution time.

Fig. 13 shows the normalized execution time when we
scale up the size of the system. We can see that, although for
the 8-die configuration our proposals behave worse than
MC_8 (due to the larger internest latency), when we extend
the coherence domain through the bridge chip and allow a
higher number of nodes in the system, the execution time of
the applications is significantly reduced. Particularly,
EMC2-OXSX 32 and EMC2-BitV ector 32 improve the
base Magny-Cours system (MC) by 47 percent on average.
Finally, comparing our three proposals for a 32-die system,
EMC2-OXSX, and EMC2-BitV ector obtain similar execu-
tion time and slightly improve EMC2-Base (�4%).

6.4 Area Requirements

The different EMC2 chips cover a wide trade-of between
memory requirements and filtered traffic. This section
studies these tradeoffs for a 32-die configuration.

The three chips differ only in the size of the EHTA
entries. Their sizes and those of the ETT and MST are
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Fig. 10. Characterization of cache misses according to the HTA (vertical)
and EHTA (horizontal) states, read/write misses, and local/remote
misses. Results show the average of all the evaluated benchmarks.
Crossed cells represent impossible combinations of states. The darker
the color of a cell is, the higher the miss percentage is. Multiple cells
represent the case where the EHTA has not been reached, and
therefore, the EHTA state can be any one of those covered by the cell.

Fig. 11. Number of probes received for each broadcast probe sent by
the home die.

Fig. 12. Normalized miss latency.

Fig. 13. Normalized execution time.



shown in Table 4. The EHTA of the EMC2-Base is the one
that less bits needs per entry (the tag plus 8 bits that include
the state, the id of the owner die, and the id of the owner
nest). The EHTA of the EMC2-OXSX needs an extra bit for
codifying the two additional states. Finally, the EHTA of the
EMC2-BitV ector needs seven extra bits for storing the
presence vector for the remote nests.

Fig. 14 plots the trade-off of these three chips in terms of
network traffic and area requirements. The total area of
each chip has been calculated by adding the areas (in mm2)
of the three main data structures presented in the chip. The
normalized network traffic corresponds to the average
number of flits transmitted by each switch in the whole
system for the six benchmarks evaluated in this work, and
normalized to EMC2-Base. We can observe that,
EMC2-OXSX reduces the traffic by 10.6 percent compared
to EMC2-Base, while EMC2-BitV ector reduces the traffic
by 15 percent. Moreover, the area of EMC2-OXSX is very
close to the area of EMC2-Base. Therefore, we can
conclude that EMC2-OXSX achieves a good compromise
between network traffic and area requirements. Note that
reductions in network traffic will lead to reductions in
power consumption.

6.5 HTA Coverage Ratio

As discussed in Section 4, the coverage ratio of the HTA
structure can become an scalability issue for large systems
when the worst-case scenario appears, i.e., when cached
blocks are not uniformly distributed among memory
controllers. In order to emphasize the negative effect of
the worst-case coverage ratio, we use different simulation
parameters for this study. Particularly, we consider system
comprised of two cores per die instead of just one (to stress
the caches more), four dies per nest, and two nests (due to
simulation time constraints). Additionally, since the work-
ing set of the SPLASH-2 benchmarks is very small
compared to the cache sizes, we have halved the size of

the caches (both data and HTA). Since both caches are
halved, both the typical and the worst-case coverage ratio
remain constant.

In order to achieve a better understanding of the impact
that the interleaving policy has on the coverage ratio, we
have split the misses suffered by data caches into a new 5C
classification: the traditional 3C classification (Cold misses,
Capacity misses and Conflict misses), Coherence misses, and
Coverage misses. While coherence misses are caused by
previous invalidations or loss of write permission due to
requests issued by other nodes, coverage misses are caused
by prior invalidations performed as a consequence of
replacements in the HTA.

As we can see in Fig. 15, when no interleaving is
performed, the replacements in the HTA can cause up to
50 percent of cache misses, as happens in Ocean, and
25 percent on average. However, by using the hybrid
interleaving policy described in Section 4, a more uniform
distribution of memory blocks is achieved, thereby redu-
cing the percentage of coverage misses significantly (it
only represents a 3 percent of cache misses). We also can
observe that the total number of cache misses is reduced
by 20 percent, on average, which will impact positively on
execution time.

Fig. 16 plots the reduction in execution time when both
the base interleaving policy and the hybrid interleaving
policy are employed. We can observe that the execution
time can be reduced up to 30 percent (as happens for
Ocean) and by 7.8 percent on average with the hybrid
interleaving policy.

6.6 EHTA Size Analysis

In this section, we analyze the size and associativity of
EHTA structure and its impact in execution time and area
requirements. The smaller the size of the EHTA is, the more
EHTA replacements take place. According to our imple-
mentation, these replacements imply the invalidation of all
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Fig. 14. Traffic-area trade-off for a 32-die system.

TABLE 4
Size of the Different EMC2 Chips
for 32-Die Systems (Eight Nests)

Fig. 15. Classification of cache misses for the no-interleaving policy and
the hybrid interleaving policy.

Fig. 16. Normalized execution time for the no-interleaving policy and the
hybrid interleaving policy.



the cached copies in the system of the block whose EHTA
entry is being evicted. These invalidations can increase the
cache miss rate, and consequently the applications’ execu-
tion time.

For this study, we employ the hybrid interleaving scheme,
which spreads the directory entries among the HTAs within
a nest, thus preventing them from being the bottleneck in the
simulations. Moreover, we employ the simulation para-
meters described in Section 5. Again, we focus on the
EMC2-OXSX chip and on a 32-die configuration.

First, in Fig. 17 we plot the increase in the amount of
cache misses when the number of entries of the EHTA is
reduced from 1,024 K (representing the case where there
are no replacements) to 32 K, and the associativity does not
vary (16 ways). For this study we split again the cache
misses according to a new 6C classification. This classifica-
tion is the same as the one described in the previous
section, but it divides the coverage misses into Cover-
ageHTA misses or CoverageEHTA misses, which represent
the misses that arise as a consequence of replacements
in the HTA or in the EHTA, respectively. We can observe
that the number of EHTA misses increases as the number
of entries of the EHTA becomes smaller. However, for all
the applications except for Ocean, the size of the EHTA can
be reduced up to eight times without significantly
increasing the data cache miss rate.

Fig. 18 shows impact on the execution time of reducing
the EHTA. In Fig. 18a we do not modify the associativity of
the EHTA and therefore shows the consequences in
execution time of Fig. 17. We can see that Ocean is the most
affected by the reduction of the EHTA size while the other
applications are not affected up to reductions about eight
times. Particularly, Cholesky slightly improves its execution
time when we move from a 256K-entry configuration to a
128K-entry configuration. This effect is due to premature

invalidations, i.e., the probes generated as a consequence of
EHTA replacements invalidate cache blocks that are not
going to be used which lessens the load of the caches.

On the other hand, Fig. 18b shows the average execution
time for the six applications considered in this work, varying
both the number of entries of the EHTA and its associativity
(from 16 to 4 ways). We can see that a 4-way or a 8-way
configuration behave similarly to a 16-way configuration
down to 64 K entries. For smaller sizes the impact on
execution time of reducing the associativity is not admissible.

Finally, we show in Table 5 the area requirements of each
EMC2 chip variant containing each EHTA configuration
and assuming 32 dies. To summarize the results we plot a
trade-off between execution time and area requirements for
the EMC2-OXSX chip and considering 32 dies in Fig. 19.
We can see that an EHTA structure comprised by 128 K
entries and four ways obtains a good trade-off between
execution time and area requirements.

6.7 Impact of Providing More MST Tags

Finally, we study the impact of increasing the number of
tags in the MST by employing the identifiers of the three
unused dies in the nest. In particular, Fig. 20 presents the
improvements in terms of execution time when the number
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Fig. 17. Normalized number of cache misses when the EHTA size is
reduced from 1,024 K entries to 32 K entries.

Fig. 18. Execution time when the EHTA size is reduced from 1,024K
entries to 32K entries.

TABLE 5
Size of the Different EMC2 Chips with Different EHTA

Configurations for 32-Die Systems (Eight Nests)

Fig. 19. Execution time-area trade-off varying the EHTA size.



of tags in the MST is multiplied by four (i.e., the EMC2 chip
uses a 128-tag MST instead of a 32-tag MST). Again, we
assume a system with 32 dies, eight nests, and 8 EMC2

chips. Since the occupation of tags depends on the number
of EHTA replacements, several EHTA sizes have been
considered in this study.

Fig. 20a shows the variations for the six benchmarks
evaluated and a 16-way EHTA. For some applications the
execution time is improved by up to nine percent depend-
ing on the configuration. Additionally, in Ocean the higher
improvements are obtained for smaller EHTAs. This
partially compensates the slow downs shown in the
previous section for this application.

On the other hand, Fig. 20b shows the average of the six
applications varying the associativity. As we can observe,
the trend is to obtain better improvements for smaller EHTA
configurations, because they will suffer more evictions.
These improvements can reach up to seven percent for an
EHTA with 32 K entries.

7 CONCLUSIONS

In this paper, we have extended, by means of an external
logic (the EMC2 chip), the coherence domain of the AMD
Magny-Cours processors beyond the 8-die limit imposed by
both the cHT specification and the size of the owner field of
the HTA. The proposed chip not only maintains the HTA
capability to filter the coherence traffic over the entire
system, but also filters additional traffic, providing the
scalability required to build large-scale servers. Evaluation
results for a 32-node system show how the runtime of the
applications scales with the number of nodes, reducing the
application runtime by 47 percent on average when
compared to the 8-die Magny-Cours system.

We have analyzed three EMC2 chip variants which
provide different trade-offs between filtered network traffic
and required silicon area. Particularly in a 32-die system,
EMC2-OXSX achieves a good compromise between net-
work traffic (10.6 percent of traffic reduction compared to
EMC2-Base) and reducing area requirements (22.2 percent
of area reduction compared to EMC2-BitV ector).

In addition, we have also addressed two potential
scalability problems that could degrade the performance
of large systems. First, the HTA coverage ratio problem can
be palliated by using a hybrid interleaving policy, reducing

execution time by 7.8 percent. Second, taking advantage of
the unused die identifiers to allow the EMC2 chip to
manage more external transactions simultaneously can
reduce the execution time by seven percent on average.
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