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Abstract. We address a problem that arises in cryptographic protocol
analysis when the equational properties of the cryptosystem are taken
into account: in many situations it is necessary to guarantee that certain
terms generated during a state exploration are in normal form with re-
spect to the equational theory. We give a tool-independent methodology
for state exploration, based on unification and narrowing, that generates
states that obey these irreducibility constraints, called contextual sym-
bolic reachability analysis, prove its soundness and completeness, and
describe its implementation in the Maude-NPA protocol analysis tool.
Contextual symbolic reachability analysis also introduces a new type of
unification mechanism, which we call asymmetric unification, in which
any solution must leave the right side of the solution irreducible. We also
present experiments showing the effectiveness of our methodology.

1 Introduction

There has been an increasing amount of research in recent years in building
tools for cryptographic protocol analysis where the equational properties of the
cryptosystems are taken into account. This allows one to retain the advantages of
a Dolev-Yao style [14] analyzer, such as ease of reasoning about concurrency and
ability to construct counterexamples, while allowing for greater expressiveness.

With the above in mind, a number of approaches have been explored in
the literature for analyzing protocols when equational theories are involved.
These include equational unification techniques for unification-based tools such



as Maude-NPA [17], equational constraint solving techniques for constraint based
tools, e.g. [12, 11], and equational deducibility procedures for checking whether
one term is deducible from a given set of terms, e.g. [2, 5, 9, 13].

In many cases, equational reasoning is integrated with syntactic reasoning.
There are a number of reasons for doing this, which we describe in more detail
in Section 1.1, but one reason is that optimizations that are done to eliminate
redundant or nonsensical states may need to be done via syntactic checking, as in
Maude-NPA. We illustrate the issues that can arise with the following protocol,
which we will use as a running example. It uses an exclusive-or operator ⊕,
which is associative and commutative (AC) and self-canceling with identity 0,
and a function pk, where pk(A,X) stands for encryption of message X with A′s
(standing for Alice’s) public key; below, B stands for Bob.

Example 1. Upon receiving the final message, Alice verifies that she received
X ⊕NA for some X received in the first message pk(A,X). The protocol is seen
differently by Bob and Alice, as shown in the second and third columns.

Alice and Bob
1. B → A : pk(A,NB)
2. A→ B : pk(B,NA)
3. B → A : NA ⊕NB

Bob
1. B → A : pk(A,NB)
2. A→ B : pk(B,Z)
3. B → A : Z ⊕NB

Alice
1. B → A : pk(A,X)
2. A→ B : pk(B,NA)
3. B → A : NA ⊕X

We find an instance of the protocol from Alice’s perspective by applying the
substitution X 7→ NA⊕Y to achieve the left-hand column of Example 2. Maude-
NPA could identify this instance as infeasible and discard it, since Alice cannot
receive a message NA ⊕ Y before she generates the nonce NA.

Example 2. But further instantiating Y (perhaps as a result of further unifica-
tions elsewhere) to NA ⊕NB causes problems.

Alice after X 7→ NA ⊕ Y
1. B → A : pk(A,NA ⊕ Y )
2. A→ B : pk(B,NA)
3. B → A : NA ⊕NA ⊕ Y

Alice after Y 7→ NA ⊕NB .
1. B → A : pk(A,NA⊕NA⊕NB) = pk(A,NB)
2. A→ B : pk(B,NA)
3. B → A : NA ⊕NA ⊕NA ⊕NB = NA ⊕NB

This makes NA⊕Y reduce to NB and NA⊕NA⊕Y reduce to NA⊕NB , giving
the right-hand side of Example 2: the intended legal execution of the protocol!
Thus, Maude-NPA’s syntactic check inadvertently could have ruled out a legal
execution.

We avoid this problem as follows. We first decompose the ⊕ theory into
(R,E), where E is the AC theory and R is a set of rewrite rules for the prop-
erties {X ⊕ 0 = X,X ⊕ X = 0}. We then divide the possible instantiations of
{pk(A,X), NA ⊕ X} into two cases, each of which are constrained to remain
irreducible under substitution. One is {pk(A,X), NA ⊕ X}, and the other is
{pk(A, Y ⊕ NA), Y } obtained by the substitution X 7→ Y ⊕ NA. Every other
reduced instantiation of NA⊕X is an instance of either one or the other modulo
AC. The case obtained by X 7→ Y ⊕NA can now be safely deleted, because due
to the irreducibility constraint that Y cannot contain NA and 0, the NA will
never vanish from NA ⊕ Y under any substitution.
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This strategy works for several reasons. One is that Maude-NPA syntactic
checks require that irreducibility constraints only be put on received messages.
Another, and more important, is that the exclusive-or theory has the finite vari-
ant property [10] modulo AC. Thus, for every term s there is a finite set s′1, . . . , s

′
k

of reduced instances of s such that any other reduced instance of s is equal mod-
ulo AC to a substitution instance of one of the s′i. These two features mean that
it is possible to integrate syntactic checks that are invariant under AC together
with unification-based reachability modulo a richer theory, allowing us to im-
prove efficiency without sacrificing soundness and completeness. Indeed, this is
vital for Maude-NPA and other tools, because almost all of the checks used for
optimization require the received messages to be in normal form.

Another capability that is needed for our strategy to work opens up a new
area of research, namely, developing a sound and complete, tool-independent
symbolic state exploration algorithm that preserves irreducibility constraints. In
Maude-NPA state exploration is implemented via equational unification of sent
messages with received messages, which means that the equational unification
algorithm used should preserve the irreducibility of the received messages. In-
deed, it was experimentation with a unification algorithm that did not have this
property, the algorithm of [24], that produced the example we described above.
Variant narrowing unification (the algorithm currently used by Maude-NPA) has
the properties that we need, but our search of the literature has produced no
other examples. This has led us to define a class of unification algorithms known
as asymmetric unification algorithms modulo a theory (R,E), which produce a
most general set of unifiers which leave the right hand side irreducible. We are
working on techniques for converting standard equational unification algorithms
into asymmetric algorithms, and have produced an asymmetric version of the
exclusive-or algorithm in [24].

We are not the only ones to use an approach that integrates syntactic and
equational reasoning: this has also been done by other researchers for other
reasons, as we describe in Section 1.1. However, most work in this area has
concentrated on specific applications of this approach, and not on how to imple-
ment the approach itself. This paper is devoted to providing a general procedure
for doing this, called contextual symbolic reachability analysis modulo a the-
ory (R,E), where R is a set of rewrite rules. This employs a technique called
contextual unification in which some subterms of the two terms being unified
are constrained to be irreducible. In Maude-NPA these are input terms, which,
since they are unified with output terms, create the opportunity for exploiting
asymmetric unification. However, this is not the only way contextual symbolic
reachability analysis could be implemented. For example, we could follow the
approach of OFMC [4] which requires that both input and output terms are ir-
reducible. Thus, our tool-independent framework should have many applications
beyond Maude-NPA, allowing for experimentation with different techniques.

The rest of the paper is organized as follows. In Section 2 we give some pre-
liminary definitions used in rewriting and unification. In Section 3 we give a gen-
eral procedure for symbolic reachability via narrowing. In Section 4 we introduce
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contextual symbolic reachability analysis, prove its soundness and completeness,
and illustrate its use in Maude-NPA. In Section 5, we show experiments illus-
trating the benefits, in Maude-NPA, of using contextual symbolic reachability
and asymmetric unification to integrate reachability analysis modulo exclusive-
or with optimizations based on syntactic checks. In Section 6 we discuss some
future directions.

1.1 Related Work

Although our specific approach has not, to the best of our knowledge, been ex-
ploited in cryptographic protocol analysis tools outside of Maude-NPA, there
are a number of similar cases. For example, ProVerif [6] (detail in [8, Sec. 5])
and OFMC [4] (detail in [29, Sec. 10]) both compute the variants of intruder
and/or protocol rules, modulo the free theory for ProVerif, and modulo the
free theory or AC for OFMC. This has the effect of computing the variants of
both sides of the unification problem. More recently, variants have been applied
to expanding the capacity of ProVerif to deal with AC theories. Thus, in [23],
Küsters and Truderung implement a special case of the exclusive-or theory in the
ProVerif tool by expressing it as a rewrite theory with the finite variant property
with respect to the free theory (E = ∅) and computing variants that are uni-
fied syntactically. This requires some restrictions on the syntax of the protocol,
however. Similar approaches have been applied by Küsters and Truderung for
modular exponentiation [22], and Arapinis et al. [3] for commuting encryption
and AC theories.

The main differences between this work and what we propose here are twofold.
First of all, unlike [8, 23, 22, 3] we do not restrict ourselves to the case in which
E is the free theory (E = ∅), but allow it to be AC, or, potentially, any other
theory for which finitary unification algorithms exist. Secondly, unlike ProVerif,
OFMC, and [23, 22, 3] we do not necessarily require that irreducible variants be
computed for both sides of a unification problem, but we allow for example the
possibility that variants are computed for only one side, allowing for potentially
more efficient special-purpose asymmetric unification algorithms.

2 Preliminaries

We follow the classical notation and terminology from [32] for term rewriting, and
from [27] for rewriting logic and order-sorted notions. We assume an order-sorted
signature Σ = (S,≤, Σ) with poset of sorts (S,≤). We also assume an S-sorted
family X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite.
TΣ(X )s is the set of terms of sort s, and TΣ,s is the set of ground terms of sort s.
We write TΣ(X ) and TΣ for the corresponding order-sorted term algebras. For
a term t, Var(t) denotes the set of variables in t.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of X
to TΣ(X ). Substitutions are written as σ = {X1 7→ t1, . . . , Xn 7→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
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terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X ). The application of a substitution σ to
a term t is denoted by tσ or σ(t).

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some sort
s ∈ S. An equational theory (Σ,E) is a pair with Σ an order-sorted signature
and E a set of Σ-equations.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUW

E (t = t′) is said to be
a complete set of unifiers for the equality t = t′ modulo E away from W iff:
(i) each σ ∈ CSUW

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ
of t = t′ there is a σ ∈ CSUW

E (t = t′) such that σ|W wE ρ|W (i.e., there is a
substitution η such that (ση)|W =E ρ|W ); and (iii) for all σ ∈ CSUW

E (t = t′),
Dom(σ) ⊆ (Var(t) ∪Var(t′)) and Ran(σ) ∩W = ∅.

A rewrite rule is an oriented pair l → r, where l 6∈ X and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules. The rewriting relation on TΣ(X ), written t →R t′ or t →p,R t′

holds between t and t′ iff there exist p ∈ PosΣ(t), l→ r ∈ R and a substitution σ,
such that t|p = lσ, and t′ = t[rσ]p. The relation→R/E on TΣ(X ) is =E ;→R; =E .

The transitive (resp. transitive and reflexive) closure of →R/E is denoted →+
R/E

(resp. →∗R/E). A term t is called →R/E-irreducible (or just R/E-irreducible) if

there is no term t′ such that t →R/E t′. For →R/E confluent and terminating,
the irreducible version of a term t is denoted by t↓R/E .

A relation →R,E on TΣ(X ) is defined as: t →p,R,E t′ (or just t →R,E t′) iff
there is a non-variable position p ∈ PosΣ(t), a rule l→ r in R, and a substitution
σ such that t|p =E lσ and t′ = t[rσ]p.→R/E-reducibility is undecidable in general
since E-congruence classes can be arbitrarily large. Therefore, R/E-rewriting is
usually implemented [21] by R,E-rewriting under some conditions on R and E
such as confluence, termination, and coherence (see [21]). We call (Σ,E,R) a
decomposition of an order-sorted equational theory (Σ,G) if G = R ] E and R
and E satisfy the conditions for →R,E to implement →R/E .

Given a decomposition (Σ,E,R) of an equational theory, (t′, θ) is an R,E-
variant [19] (or just a variant) of term t if tθ↓R,E =E t′ and θ↓R,E =E θ. A
complete set of R,E-variants [19] (up to renaming) of a term t is a subset, de-
noted by [[t]]R,E , of the set of all R,E-variants of t such that, for each R,E-variant
(t′, σ) of t, there is an R,E-variant (t′′, θ) ∈ [[t]]R,E such that (t′′, θ) wR,E (t′, σ),
i.e., there is a substitution ρ such that t′ =E t′′ρ and σ|Var(t) =E (θρ)|Var(t). A
decomposition (Σ,E,R) has the finite variant property [19] (also called a finite
variant decomposition) iff for each Σ-term t, a complete set [[t]]R,E of its most
general variants is finite.

3 Symbolic Reachability Analysis by Narrowing

In this section we recall basic facts about narrowing modulo equations of [28]
using topmost rewriting as a tool-independent semantic framework for sym-
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bolic reachability analysis of protocols under algebraic properties. We first define
reachability goals.

Definition 1 (Reachability goal). Given an order-sorted rewrite theory

(Σ,G, T ), a reachability goal is defined as a pair t
?→∗T/G t

′, where t, t′ ∈ TΣ(X )s.

It is abbreviated as t
?→∗ t′ when the theory is clear from the context; t is the

source of the goal and t′ is the target. A substitution σ is a T/G-solution
of the reachability goal (or just a solution for short) iff there is a sequence
σ(t)→T/G σ(u1)→T/G · · · →T/G σ(uk−1)→T/G σ(t′).

A set Γ of substitutions is said to be a complete set of solutions of t
?→∗T/G t

′

iff (i) every substitution σ ∈ Γ is a solution of t
?→∗T/G t

′, and (ii) for any solution

ρ of t
?→∗T/G t

′, there is a substitution σ ∈ Γ more general than ρ modulo G, i.e.,

σ|Var(t)∪Var(t′) wG ρ|Var(t)∪Var(t′).

If in a goal t
?→∗T/G t

′, terms t and t′ are ground, then goal solving becomes a

standard rewriting reachability problem. However, since we allow terms t, t′ with
variables, we need a mechanism more general than standard rewriting to find
solutions of reachability goals. Narrowing generalizes rewriting by performing
unification at non-variable positions instead of the usual matching. Specifically,
narrowing instantiates the variables in a term by a G-unifier that enables a
rewrite modulo G with a given rule and a term position.

Definition 2 (Narrowing modulo G). Given an order-sorted rewrite theory

(Σ,G, T ), the narrowing relation on TΣ(X ) modulo G is defined as t
σ
 T,G t

′ (or
σ
 if T,G is understood) iff there is p ∈ PosΣ(t), a rule l → r in T such that
Var(t) ∩ (Var(l) ∪Var(r)) = ∅, and σ ∈ CSU V

G(t|p = l) for a set V of variables
containing Var(t), Var(l), and Var(r), such that t′ = σ(t[r]p).

The reflexive and transitive closure of narrowing is defined as t
σ
 ∗T,G t

′ iff
either t = t′ and σ = id, or there are terms u1, . . . , un, n ≥ 1, and substitutions

σ1, . . . , σn+1 s.t. t
σ1 T,G u1

σ2 T,G u2 · · ·un
σn+1
 T,G t

′ and σ = σ1 · · ·σn+1.

Soundness and completeness of narrowing for solving reachability goals is
proved in [21, 28] for order-sorted topmost rewrite theories, i.e., rewrite theories
were all the rewrite steps happened at the top of terms.

3.1 Search in Maude-NPA

In this section we give a high-level summary of the general narrowing-based
approach implemented in Maude-NPA. For further information, please see [15,
17]. Note that our treatment of symbolic reachability analysis modulo equations
by narrowing is completely general and tool-independent. We only use Maude-
NPA for illustration purposes to give examples, and also because it supports
the irreducibility conditions discussed in this paper. Multiset rewrite rules, used
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as a model for protocol analysis [30, 7], is another example of topmost rewrite
theories where reachability properties are checked.

Given a protocol P, states are modeled as elements of an initial algebra
TΣP/EP , where ΣP is the signature defining the sorts and function symbols (for
the cryptographic functions and for all the state constructor symbols) and EP
is a set of equations specifying the algebraic properties of the cryptographic
functions and the state constructors. Therefore, a state is an EP -equivalence
class [t] ∈ TΣP/EP with t a ground ΣP -term. However, we explore symbolic state
patterns [t(x1, . . . , xn)] ∈ TΣP/EP (X) on the free (ΣP , EP)-algebra over a set of
sorted variables X.

In Maude-NPA [15, 17], a state pattern in a protocol execution is a term t of
sort State, t ∈ TΣP/EP (X)State, which is a term of the form {S1& · · ·&Sn&{IK}}
where & is an associative-commutative union operator with identity symbol ∅.
Each element in the set is either a strand Si or the intruder knowledge {IK} at
that state.

The intruder knowledge {IK} also belongs to the state and is represented as
a set of facts. There are two kinds of intruder facts: positive knowledge facts
(the intruder knows m, i.e., m∈I), and negative knowledge facts (the intruder
does not yet know m but will know it in a future state, i.e., m/∈I), where m is a
message expression.

A strand [20] represents the sequence of messages sent and received by a
principal executing the protocol and is represented as a sequence of messages
[msg−1 ,msg

+
2 ,msg

−
3 , . . . ,msg

−
k−1,msg

+
k ] such that msgi is a term of sort Msg,

msg− (also written −msg) represents an input message, and msg+ (also writ-
ten +msg) represents an output message. Strands are used to represent both
the actions of honest principals (with a strand specified for each protocol role)
and the actions of an intruder (with a strand specified for each intruder ac-
tion). In Maude-NPA, strands evolve over time; the symbol | is used to divide
past and future. Also, we keep track of all the variables of sort Fresh gener-
ated by a concrete strand. That is, all the variables r1, . . . , rj of sort Fresh

generated by a strand are made explicit right before the strand, as follows:
:: r1, . . . , rj :: [ m1

±, . . . , mi
± | mi+1

±, . . . , mk
± ] where msg±1 , . . . ,msg

±
i are

the past messages, and msg±i+1, . . . ,msg
±
k are the future messages (msg±i+1 is the

immediate future message). The nils are present so that the bar may be placed
at the beginning or end of the strand if necessary, but we often remove them,
except when there is nothing else between the vertical bar and the beginning
or end of a strand. A strand :: r1, . . . , rj :: [msg±1 , . . . ,msg

±
k ] is a shorthand for

:: r1, . . . , rj :: [nil | msg±1 , . . . ,msg
±
k , nil].

Example 3. For the protocol of Example 1, the strand specification of the pro-
tocol is as follows:

(Bob) :: r1 :: [ +(pk(A,n(B, r1))), −(pk(B, Y )), +(Y ⊕ n(B, r1)) ]
(Alice) :: r2 :: [ −(pk(A,X)), +(pk(B,n(A, r2))), −(n(A, r2)⊕X) ]

Intruder strands are also included for each function. For example, application of
exclusive-or by the intruder is described by the strand [(X)−, (Y )−, (X ⊕ Y )+].
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The protocol analysis methodology of Maude-NPA is then based on the idea
of backward reachability analysis, where we begin with one or more state patterns
corresponding to attack states, and want to prove or disprove that they are
unreachable from the set of initial protocol states. In order to perform such a
reachability analysis we must describe how states change as a consequence of
principals performing protocol steps and of the intruder actions. This can be
done by describing such state changes by means of a set TP of rewrite rules, so
that the rewrite theory (ΣP , GP , TP) characterizes the behavior of protocol P
modulo the equations GP .

The following rewrite rules describe the general state transitions, where each
state transition implies moving the vertical bar of one strand:

{SS & [L | M−, L′] & {M∈I, IK}} → {SS & [L,M− | L′] & {IK}} (1)

{SS & [L | M+, L′] & {IK}} → {SS & [L,M+ | L′] & {IK}} (2)

{SS & [L | M+, L′] & {M/∈I, IK}} → {SS & [L,M+ | L′] & {M∈I, IK}} (3)

where variables L,L′ denote lists of input and output messages of the form m+

or m− within a strand, IK denotes a set of intruder facts (m∈I,m/∈I), and SS
denotes a set of strands. In a forward execution of the protocol strands, Rule (1)
synchronizes an input message with a message already learned by the intruder,
Rule (2) accepts output messages but the intruder’s knowledge is not increased,
and Rule (3) accepts output messages and the intruder’s knowledge is positively
increased. For an unbounded number of sessions, we have extra rewrite rules
(one for each positive message in a protocol or intruder strand) that dynamically
introduce additional strands into a state.

The way to analyze backwards reachability is then relatively easy, namely,
to run the protocol “in reverse.” This can be achieved by using the set of rules
T−1P , where v −→ u is in T−1P iff u −→ v is in TP .

Example 4. The protocol of Example 1 can be modeled as a rewrite theory
(Σ,G, T ) where T is the reversed version of the generic rewrite rules (1)–(3)
plus the rewrite rules for introducing new strands. The final pattern used as an
input to the backwards symbolic reachability analysis could, for example, be as
follows:

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))),−(X ⊕ n(A, r2)) | nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B, Y )),+(Y ⊕ n(B, r1)) | nil] &SS & {IK}}

This pattern does not require the intruder to have learnt anything, so it is very
general and could lead to a regular execution and to an attack. Indeed, this
protocol has the following attack reachable from that final pattern, where the
intruder starts a protocol session with B but uses B’s nonce to start a protocol
session with A, so finally the intruder is able to learn both B’s nonce and A’s
nonce:

1. B → I : pk(i,NB)
2. I → A : pk(a,NB)

3. A→ B : pk(B,NA)
4. B → A, I : NA ⊕NB
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4 Contextual Symbolic Reachability Analysis

As we have explained in the Introduction, the symbolic reachability approach
presented in the previous section does not really work in practice, since the par-
ticular way that a representative is chosen for each equivalence class may be cru-
cial for the correct behavior, and in many cases the termination of a tool crucially
depends on state space reduction techniques based on checking such representa-
tives, as we illustrated for the case of nonces that cannot have been generated
yet at a given point. Therefore, we now present a general, tool-independent
framework for symbolic reachability analysis which refines narrowing modulo
equations by imposing irreducibility conditions on representatives of equivalence
classes. First, we give a way of imposing these irreducibility conditions on a
rewrite theory, expressed by the notion of contextual rewrite theory.7

Definition 3 (Contextual Rewrite Theory). A contextual rewrite theory
is a tuple (Σ,E,R, T, φ) where (Σ,E ∪R, T ) is an order-sorted topmost rewrite
theory, (Σ,E,R) is a decomposition of the equational theory (Σ,E ∪R), and φ,
called the irreducibility requirements, is a function mapping each f ∈ Σ to a
set of its arguments, i.e., φ(f) ⊆ {1, . . . , ar(f)}, where ar(f) is the number of
arguments of f . The set of maximal irreducible positions of a term t is denoted
by φ(t).

A term t is called φ,R,E-irreducible (or just φ-irreducible) if for each p ∈
φ(t), t|p↓R,E =E t|p, and strongly φ-irreducible if for any R,E-normalized sub-
stitution σ, tσ is φ-irreducible.

Example 5. For the protocol of Examples 1 and 3, the contextual rewrite theory
(Σ,E,R, T, φ) is formed of T containing the reversed version of the generic
rewrite rules (1)–(3) plus the rewrite rules for introducing new strands, and the
equational theory (Σ,E∪R) for exclusive-or is decomposed into (Σ,E,R) where
E is the associativity and commutativity axioms for ⊕ and R is as follows:8

X ⊕ 0→ X X ⊕X → 0 X ⊕X ⊕ Y → Y

The irreducibility requirements φ are imposed on two operators: −( ) for input
messages in a strand, and ∈I for each positive fact in the intruder knowledge.
That is, φ(−( )) = {1}, φ( ∈I) = {1}, and φ(f) = ∅ otherwise.

We extend the notion of a reachability goal to the contextual case.

7 Our use of “contextual” should be distinguished from : (i) “contextual rewriting,”
e.g., [34], and (ii) “context-sensitive rewriting,” e.g., [26]. Our use is unrelated to
contextual rewriting, which is a form of conditional rewriting with constraints, but
is closely related to context-sensitive rewriting, where the rewritable argument po-
sitions of a function symbol f are specified by a function µ(f) ⊆ {1, . . . , ar(f)}
similar to our irreducibility requirements function φ(f) ⊆ {1, . . . , ar(f)}. However,
φ-irreducibility is a strictly stronger requirement than µ-irreducibility when φ = µ.

8 Note that the two first equations are not AC-coherent, but adding the last equation
is sufficient to recover that property (see [33]).
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Definition 4 (Contextual Reachability goal). Given a contextual rewrite

theory (Σ,E,R, T, φ), we define a contextual reachability goal as t
?→∗T,R,E,φ t′,

where t, t′ ∈ TΣ(X )s. We write t
?→∗φ t′ when the theory is clear. A substitution σ

is a solution of the contextual reachability goal t
?→∗T,R,E,φ t′ iff there is a sequence

σ(t) →T,(E∪R) σ(u1) →T,(E∪R) · · · →T,(E∪R) σ(uk−1) →T,(E∪R) σ(t′) such that
σ(t), σ(u1), . . . , σ(uk−1), σ(t′) are all φ,R,E-irreducible.

As for reachability goals, a contextual version of narrowing provides a mecha-
nism to find solutions to contextual reachability goals. However, we have to first
define a new equational unification mechanism, called contextual unification, as
the basis for contextual narrowing, where the E∪R-unification is extended to the
contextual case, which has some asymmetry due to the irreducibility restrictions
only on the right hand side.

Definition 5 (Contextual Unification). Given a contextual rewrite theory
(Σ,E,R, T, φ), a substitution σ is a contextual R,E-unifier of a set P of contex-
tual equations of the form P = {t1 =↓φ t

′
1, . . . , tn =↓φ t

′
n} iff for every contextual

equation ti =↓φ t
′
i in P , the substitution σ is an (R ∪ E)-unifier of the equation

ti = t′i and, furthermore, σ(t′i) is φ,R,E-irreducible.

A set of substitutions Ω is a complete set of contextual R,E-unifiers of P ,
denoted by CSUR,E,φ(P ), iff: (i) every member of Ω is a contextual R,E-unifier
of P , and (ii) for every contextual R,E-unifier θ of P there exists σ ∈ Ω such
that σ wE θ.

Example 6. Consider the protocol of Example 1. The contextual unification
problem found by Maude-NPA is t=↓φ t

′ where t is {SS & [L,M+ | L′] &
{M∈I, IK}} i.e., the right-hand side of Rule (3), and t′ is the following state,
found by Maude-NPA after one backwards narrowing step from the state pattern
of Example 4:

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))) | − (X ⊕ n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B, Y )),+(Y ⊕ n(B, r1)) | nil] &

SS & {(X ⊕ n(A, r2))∈I, IK}}

The two key terms are Y ⊕n(B, r1) and X⊕n(A, r2). Note that term X⊕n(A, r2)
appears in two positions in t′, under symbols −( ) and ∈I, both required to be
irreducible by φ. The singleton most general contextual unifier is σ1 = {Y 7→ X⊕
n(B, r1)⊕n(A, r2)}, whereas the substitution σ2 = {X 7→ Y⊕n(B, r1)⊕n(A, r2)}
is not a valid contextual unifier: term X⊕n(A, r2) is under the irreducibility con-
dition of symbol −( ) and the substitution σ2 would make it reducible, whereas
term Y ⊕ n(B, r1) is under symbol +( ), which does not have any irreducibility
condition and the substitution σ1 makes it reducible.

Contextual unification can be reduced to the simpler notion of asymmetric
unification.
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Definition 6 (Asymmetric Unification). Given a decomposition (Σ,E,R)
of an equational theory (Σ,E ∪ R), a substitution σ is an asymmetric R,E-
unifier of a set P of asymmetric equations {t1 =↓ t′1, . . . , tn =↓ t′n} iff for every
asymmetric equation ti =↓ t′i in P , σ is an (E ∪R)-unifier of the equation ti = t′i
and (t′i↓R,E)σ is in R,E-normal form.

A set of substitutions Ω is a complete set of asymmetric R,E-unifiers of P
iff: (i) every member of Ω is an asymmetric R,E-unifier of P , and (ii) for every
asymmetric R,E-unifier θ of P there exists a σ ∈ Ω such that σ wE θ (over
V ar(P )).

A special-purpose asymmetric unification algorithm for exclusive-or has been
developed for this paper and is used in the experiments reported in Section 5. A
detailed discussion of this algorithm will be presented elsewhere. The reduction
of contextual unification to the simpler asymmetric unification is provided by
the following lemma.

Lemma 1. Given a contextual rewrite theory (Σ,E,R, T, φ) and a set of con-
textual equations P = {t1 =↓φ t

′
1, . . . , tn =↓φ t

′
n}, σ is a contextual R,E-unifier of

P iff there is a substitution θ such that θ is an asymmetric R,E-unifier of Γ (P )
and σ =E θ|Var(P ), where

Γ (P ) ={ti =↓X, t′i =↓X | ti =↓φ t
′
i ∈ P,X fresh variable}∪

{t′i|p.j =↓ t′i|p.j | ti =↓φ t
′
i ∈ P, f ∈ Σ, p ∈ Posf (t′i), j ∈ φ(f)}

Using a contextual unification algorithm, we can modify the standard notion
of narrowing so that it uses contextual unification to solve symbolic contextual
reachability goals. Note that the following definition differs from Definition 2 only
in using contextual unification CSUR,E,φ(l=↓φ t|p) instead of regular unification
CSUR∪E(l = t|p) and and carrying a set of irreducible terms Π passed to the
contextual unification algorithm, where Π is the set of irreducible terms that
have been computed earlier in the narrowing sequence.

Definition 7 (Contextual Narrowing modulo R,E). Given a contextual
rewrite theory (Σ,E,R, T, φ), the contextual narrowing relation modulo R,E
on pairs 〈t,Π〉 for t a term and Π a set of irreducible terms is defined as

〈t,Π〉 σ T,R,E,φ〈t′, σ(Π)〉 (or
σ
 φ if T,R,E are understood) iff there is p ∈

PosΣ(t), a rule l → r in T such that Var(t) ∩ (Var(l) ∪ Var(r)) = ∅, a substi-
tution σ ∈ CSU V

R,E,φ(P ) for P = {l=↓φ t|p} ∪ {u=↓φ u | u ∈ Π} and a set V of
variables containing Var(t), Var(l), and Var(r), and t′ = σ(t[r]p).

The essential equivalence between contextual reachability analysis and stan-
dard narrowing-based reachability analysis is proved as follows: given a standard

goal t
?→∗T,R∪E t′, any solution to it can be computed by contextual narrowing

 T,R,E,φ under some extra conditions involving variants. Let us motivate the
issues involved by an example.

Example 7. Let us consider the state pattern shown in Example 4 with an extra
requirement that the intruder learns n(A, r2):

11



{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))),−(X ⊕ n(A, r2)) | nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B, Y )),+(Y ⊕ n(B, r1)) | nil] &

SS & {n(A, r2)∈I, IK}}

This attack pattern should be possible in Maude-NPA by just applying the
substitution X 7→ 0, where 0 is the identity symbol of ⊕. However, the term
X ⊕ n(A, r2) becomes reducible under such substitution and the attack would
not be reachable because of our irreducibility condition on X⊕n(A, r2). To solve
this problem, the key idea is that the pattern X⊕n(A, r2) should be replaced by
its variants before each contextual narrowing step, i.e., by the possible instance
patterns of it which are irreducible, namely: (i) the pattern X ⊕ n(A, r2) itself,
(ii) the pattern Y , which is the normal form after applying substitution X 7→ Y ⊕
n(A, r2), (iii) the pattern 0, which is the normal form after applying substitution
X 7→ n(A, r2), and (iv) the pattern n(A, r2), which is the normal form after
applying substitution X 7→ 0. Only after replacement of the original term by
these variants, can we impose the irreducibility conditions for reducing the search
space. That is, for contextual reachability analysis, we need to first compute what
we call the φ,R,E-variants of a term.

Definition 8 (φ,R,E-variants). Given a contextual rewrite theory
(Σ,E,R, T, φ), the set of R,E,φ-variants of a pair 〈t,Π〉 for t a term and Π a

set of irreducible terms is defined as [[〈t,Π〉]]φR,E = {(σ(t)[v1, . . . , vn]p1,...,pn , σ) |
(g(v1, . . . , vn), σ) ∈ [[g(t|p1 , . . . , t|pn)]]R,E ∧ ∀u ∈ Π : σ(u) is φ,R,E-irreducible}
where φ(t) = {p1, . . . , pn} and g is an auxiliary function symbol not appear-
ing in R and E. For readability, we write 〈t,Π〉 �θ

R,E 〈w,Π〉 to denote that

(w, θ) ∈ [[〈t,Π〉]]φR,E and Π = θ(Π) ∪ {w}.
Example 8. Let us consider the state t′ shown in Example 6:

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))) | − (X ⊕ n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B, Y )),+(Y ⊕ n(B, r1)) | nil] &

SS & {(X ⊕ n(A, r2))∈I, IK}}

We generate the four variants associated to X ⊕ n(A, r2) in subterms rooted by
−( ) and ∈I, since these are the symbols with irreducibility constraints: (i) the
original one but with the assumption that X will never contain either n(A, r2) or
0, (ii) the pattern n(A, r2) where X⊕n(A, r2) has been collapsed into the nonce,
(iii) the pattern Z where X ⊕ n(A, r2) has been collapsed into a new variable
Z by assuming X 7→ Z ⊕ n(A, r2), and (iv) the term 0 where X ⊕ n(A, r2) has
been collapsed into 0 by assuming X 7→ n(A, r2):

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))) | − (X ⊕ n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B, Y )),+(Y ⊕ n(B, r1)) | nil] &

SS & {(X ⊕ n(A, r2))∈I, IK}}

{ :: r2 :: [nil,−(pk(A, 0)),+(pk(B,n(A, r2))) | − (n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B, Y )),+(Y ⊕ n(B, r1)) | nil] &

SS & {n(A, r2)∈I, IK}}
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{ :: r2 :: [nil,−(pk(A,Z ⊕ n(A, r2))),+(pk(B,n(A, r2))) | − (Z), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B, Y )),+(Y ⊕ n(B, r1)) | nil] &

SS & {Z∈I, IK}}

{ :: r2 :: [nil,−(pk(A,n(A, r2))),+(pk(B,n(A, r2))) | − (0), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B, Y )),+(Y ⊕ n(B, r1)) | nil] &

SS & {0∈I, IK}}

The reader can check that only the variants of the terms in the intruder knowl-
edge (which are indeed coming from messages of the form −(M)) are generated.

The key idea to achieve the desired semantic equivalence between contextual
narrowing and ordinary narrowing is to precede each contextual narrowing step
by a φ-variant computation step.

Theorem 1 (Contextual Soundness and Completeness). Given a contex-

tual rewrite theory (Σ,E,R, T, φ), a reachability goal t
?→∗ t′, and a solution σ of

it, there are a set of terms u1, . . . , un, w1, . . . , wn+1, t
′′ and a set of substitutions

θ1, . . . , θn+1, θ
′
1, . . . , θ

′
n+1 such that

〈t,Π0〉�θ1
R,E 〈w1, Π1〉

θ′1 T,R,E,φ 〈u1, Π1〉

�θ2
R,E 〈w2, Π2〉

θ′2 T,R,E,φ 〈u2, Π2〉
...

�θn
R,E 〈wn, Πn〉

θ′n T,R,E,φ 〈un, Πn〉

�θn+1

R,E 〈wn+1, Πn+1〉
θ′n+1
 T,R,E,φ 〈t′′, Πn+1〉

and also: (i) Π0 = ∅, Π1 = {w1}, Π1 = θ′1(Π1), Π2 = θ2(Π1) ∪ {w2}, Π2 =
θ′2(Π2), . . ., Πn+1 = Πn∪{wn+1}, Πn+1 = θ′n+1(Πn+1), (ii) for each i ∈ {1, . . . ,
n+ 1}, the term wiθ

′
iθi+1θ

′
i+1 · · · θn+1θ

′
n+1 is φ,R,E-irreducible, (iii) there is a

substitution τ such that σ =E θ1θ
′
1θ2θ

′
2 · · · θn+1θ

′
n+1τ , and (iv) t′ =E t′′τ .

Conversely, any substitution σ for which there is a sequence as above satis-

fying conditions (i)-(iv) is a solution of t
?→∗ t′.

Example 9. Continuing Example 8, we have four state patterns after variant
generation. Contextual narrowing follows from the first variant state pattern as
described in Example 10 below. The second variant state pattern will lead to
an initial state where the intruder provides message pk(A, 0) and the vertical
bar of Bob’s strand is never touched. And the third and the fourth variant state
patterns will be discarded by Maude-NPA, since they do not satisfy the syntactic
check explained in the Introduction discarding states sending a nonce before it is
generated. The state space reduction achieved in Maude-NPA is huge by using
the irreducibility conditions on symbols −( ) and ∈I and other state space
reduction techniques based on such conditions (we further discuss experiments
on this topic in Section 5).
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Condition (ii) in Theorem 1 for terms wi to be (φ-)irreducible after substitu-
tion application ensures that variants are not computed more than once for each
irreducible subterm in term t or irreducible subterms introduced by right-hand
sides of rules. This is very important to further reduce the search space.

Example 10. Let us consider the state t′ shown in Example 6. After several
variant generation and contextual narrowing steps using the reversed form of
rewrite rules (1)–(3), the following state is found

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))) | − (X ⊕ n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))) | −(pk(B,X ⊕ n(A, r2)⊕ n(B, r1))),
+(X ⊕ n(A, r2)⊕ n(B, r1)⊕ n(B, r1), nil] &

SS & { pk(B,X ⊕ n(A, r2)⊕ n(B, r1))∈I, (X ⊕ n(A, r2))/∈I, IK }}

We can check that there is no contextual unifier that allows terms pk(B,n(A, r2))
and pk(B,X⊕n(A, r2)⊕n(B, r1)) to be unifiable according to the reversed form
of rewrite rule (3), since the second term is under a symbol with irreducibility
restrictions and the substitution X 7→ n(B, r1) would make it reducible.

However, another protocol session can be used, since the term pk(B,X ⊕
n(A, r2) ⊕ n(B, r1)) can be unified with term pk(B,n(A′, r′2)) coming from an-
other session, using the contextual unifier X 7→ n(A′, r′2) ⊕ n(A, r2) ⊕ n(B, r1).
The resulting state is as follows

{ :: r′2 :: [nil,−(pk(A′, X ′)) | + (pk(B,n(A′, r′2))),−(X ′ ⊕ n(A′, r′2)), nil] &

:: r2 :: [nil, −(pk(A,n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1))),
+(pk(B,n(A, r2))) |
−(n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2)), nil] &

:: r1 :: [nil, +(pk(A,n(B, r1))) |
−(pk(B,n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2)⊕ n(B, r1))),
+(n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2)⊕ n(B, r1)⊕ n(B, r1), nil] &

SS & { pk(B,n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2)⊕ n(B, r1))/∈I,
(n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2))/∈I, IK }}

However, although the two contextual narrowing steps have computed contex-
tual unifiers, the combination of both unifiers does not satisfy the irreducibility
conditions of the original term −(X ⊕ n(A, r2)), since now it is reducible, i.e.,
the term −(n(A′, r′2) ⊕ n(A, r2) ⊕ n(B, r1) ⊕ n(A, r2)) is reducible. Therefore,
this narrowing sequence is discarded, since it does not fulfill the conditions for
solutions of contextual reachability goals given in Theorem 1, further reducing
search.

5 Experiments

We have performed several experiments to compare the contextual symbolic
reachability approach presented in this paper with other approaches. We have
used three protocols using exclusive-or: (i) the running protocol (RP) of Exam-
ple 1, (ii) the Wired Equivalent Privacy Protocol (WEPP) of [1], and (iii) the
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states/seconds 1 step 2 steps 3 steps 4 steps 5 steps

RP - Standard 2/0.08 5/0.16 13/0.86 49/3.09 267/17.41
RP - Contextual 1/0.03 45/1.08 114/2.26 1175/37.25 13906/4144.30

WEPP - Standard 5/0.09 9/0.42 26/1.27 106/5.80 503/ 34.76
WEPP - Contextual 4/0.05 9/0.12 26/0.64 257/144.65 2454/612.08

TMN - Standard 5/0.11 15/ 0.55 99/3.82 469/ 25.68 timeout
TMN - Contextual 4/0.06 24/0.53 174/3.63 1079/170.29 9737/1372.55

Table 1. Experiments with standard reachability analysis using regular XOR unifica-
tion algorithm vs contextual reachability analysis using asymmetric XOR unification
algorithm. A pair n/t means: n = number of states, and t = time in seconds.

TMN protocol of [31, 25]. For all three protocols, we are able to find the associ-
ated attacks in Table 2 below. We have run the experiments in this Section in
an Intel Xeon machine with 4 cores and 24GB of memory, using Maude 2.7.

In Table 1, we compare the standard reachability analysis of Section 3, which
uses the XOR unification algorithm developed in [24], and the contextual reach-
ability analysis of Section 4, which uses the asymmetric XOR unification algo-
rithm developed for this paper. A detailed discussion of this asymmetric XOR
unification algorithm will be presented elsewhere. We show the number of states
generated from one level to the next one of the backwards reachability tree with
the indicated number of steps as the maximum depth. We also include the exe-
cution time from one level to the next one. We write “timeout” when the tool
did not finish within a time interval of two hours.

As shown in Table 1, contextual reachability analysis is not better than the
standard reachability analysis because of variant generation, which creates many
more states than may be necessary for rule application. However, although typ-
ically many more states are created, the use of variants and irreducibility con-
straints is crucial (as explained in the Introduction) for further optimizations of
the search space, as shown in Table 2, which shows that contextual reachability
analysis enables several Maude-NPA optimizations, including grammars (see [16,
18] for details) and drastically reduces the search space.

Table 2 shows that, although, due to the extra computations needed for the
optimization, the execution time without optimization is sometimes better than
with optimizations, this only happens up to Step 3. The important point is that
from Step 2 on, the total number of states is drastically reduced when optimiza-
tions are added (the only exception at Step 1 is RP, due to some differences
on how variants are generated). In fact, the crucial point is not just the great
reduction in the number of states, but the finiteness of the analysis for all the
examples with optimization, whereas no such finiteness is even theoretically pos-
sible without optimizations. This is particularly important when an attack does
not exist, since then finiteness of the analysis proves that the protocol is secure
against such an attack. Therefore, the above performance results validate exper-
imentally the main thesis of this paper, namely that: (i) support of irreducibility
conditions in symbolic reachability is essential for effective protocol analysis,
since crucial optimizations depend on such conditions; and (ii) contextual reach-
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states/seconds 1 step 2 steps 3 steps 4 steps 5 steps Finite Analysis?

RP - w/o Opt. 1/0.03 45/1.08 114/2.26 1175/37.25 13906/4144.30 No, timeout with 6 steps
RP - with Opt. 4/0.59 7/0.59 7/1.92 7/1.89 7/3.02 Yes, at step 10

WEPP - w/o Opt. 4/0.05 9/0.12 26/0.64 257/144.65 2454/612.08 No, timeout with 7 steps
WEPP - with Opt. 2/0.36 2/0.20 1/0.80 2/1.42 1/0.03 Yes at step 5

TMN - w/o Opt. 4/0.06 24/0.53 174/3.63 1079/170.29 9737/1372.55 No, timeout with 7 steps
TMN - with Opt. 3/0.42 6/9.85 9/1.78 9/4.43 8/3.20 Yes, at step 21

Table 2. Experiments for contextual reachability analysis using asymmetric XOR
unification algorithm with and without optimizations

ability analysis supports irreducibility conditions in a sound and complete way
and makes such optimizations possible.

The integration of this framework into Maude-NPA is still under testing
and optimization, and further work is needed to increase performance. Indeed,
the current experiments have been performed with a version of the contextual
narrowing simpler than the conditions of Theorem 1 (irreducibility constraints
on Π are not enforced), but is still valid for the benchmarked protocols, i.e., in
these protocols, each strand contains only one expression using the xor operator,
and thus Π remains irreducible by default.

6 Conclusions and Future Directions

We are only at the beginning of exploring contextual symbolic reachability anal-
ysis as a general approach, and there are many paths that can be followed. One
is exploring the different types of irreducibility constraints and their effect on ef-
ficiency. It would appear that an approach that requires fewer constraints would
be more efficient than one that applies more; e.g. that modifying a tool such
as OFMC that requires constraints on both sent and received messages to use
constraints only on input messages, as does Maude-NPA, would lead to reduced
state space size and greater efficiency, but this needs to be verified.

Using one-sided constraints also potentially allows us to gain greater effi-
ciency through special-purpose asymmetric unification algorithms. We are now
investigating this with respect to asymmetric exclusive-or unification, and plan
to develop and investigate other such algorithms in the future. Asymmetric uni-
fication is a subject about which currently very little is known; as it is explored
further, we expect to find out a lot more about it and how it can be optimized.

Finally, we believe that cryptographic protocol analysis is not the only poten-
tial application for symbolic contextual reachability analysis. Indeed, it should
be applicable to any state exploration problem in which symbolic states obey
equational theories. Future work in this area should involve an investigation of
these other problems and the ways in which contextual symbolic reachability
analysis could be applied to them;
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