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Abstract

The aim of this paper is to explore whether the generalized polynomial chaos (gPC) and random Fröbenius methods
preserve the first three statistical moments of random differential equations. There exist exact solutions only for a few
cases, so there is a need to use other techniques for validating the aforementioned methods in regards to their accuracy
and convergence. Here we present a technique for indirectly study both methods. In order to highlight similarities
and possible differences between both approaches, the study is performed by means of a simple but still illustrative
test-example involving a random differential equation whose solution is highly oscillatory. This comparative study
shows that the solutions of both methods agree very well when the gPC method is developed in terms of the optimal
orthogonal polynomial basis selected according to the statistical distribution of the random input. Otherwise, we show
that results provided by the gPC method deteriorate severely. A study of the convergence rates of both methods is also
included.

Keywords: Random Fröbenius method, Generalized polynomial chaos, Statistical moments, Random differential
equations
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1. Motivation1

The representation of stochastic processes (s.p.’s) and random variables (r.v.’s) plays an important role in many2

scientific areas. In particular, such representations are very useful in obtaining their main statistical functions (such3

as average and variance) as well as in simulating them. These issues are of prime importance in dealing with math-4

ematical models involving uncertainty in their formulation. Although it is desirable that these representations be5

exact, often, in practice, only approximate expressions are attainable. For instance, when solving random differential6

equations (r.d.e.’s), one obtains a representation of its solution, which only exceptionally, can be computed exactly.7

The generalized polynomial chaos (gPC) and random Fröbenius constitute powerful methods to solve r.d.e.’s but,8

in general, just in an approximate manner. Indeed, both methods represent the solution s.p. through infinite series,9

say xPC
Q (t) and xF

M(t), that need to be truncated at orders Q and M, respectively, to be computationally feasible. It is10

important to establish the convergence and accuracy of both methods. In this paper, we devise a simple and reliable11

way to explore, indirectly, the ability of both techniques to preserve accurately the first statistical moments associated12

not with the solution s.p. but with the r.d.e. itself. To conduct our study, we have chosen the Airy r.d.e. [1]13

ẍ(t) + tξx(t) = 0, (1)

because exact expressions for its first statistical moments are not available except by infinite series, therefore the14

previous observations are completely applicable. In addition, it is well-known that the solutions of the deterministic15
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Airy differential equation are highly oscillatory, hence it is expected that in dealing with its stochastic counterpart,16

numerical solutions need to be calculated accurately so that differences, if any, between the gPC and Fröbenius17

methods are highlighted. To carry out the current study a key idea is to rewrite the r.d.e. (1) in the equivalent form18

−tξ =
ẍ(t)
x(t)

. (2)

The quality of the numerical approximations of the gPC and Fröbenius methods can be better assessed using r.d.e.19

(2) rather than (1). In fact, we will compare the statistical moments of order n of the left-hand side, which are exact,20

against the corresponding values of the right-hand side, which will be approximated:21

(−1)ntnE
[
ξn] ≈


E

 ẍPC
Q (t)

xPC
Q (t)

n ,
E

 ẍF
M(t)

xF
M(t)

n ,
n ≥ 0, (3)

where E [·] denotes the expectation operator and xPC
Q (t) and xF

M(t) are the approximations to the solution x(t) using22

the gPC method of order Q and the Fröbenius method of order M, respectively. This study will be performed by23

comparing the time intervals over which the approximations given by the right-hand side of (3) are acceptable for24

n = 1, 2, 3. Notice that the approach previously proposed draws a strong similarity with the so-called method of the25

moments which is widely used in statistics [2]. Indeed, for each t, we can interpret the statistical moments of order26

n that appear in the right-hand side of expression (3) as approximations of the corresponding ones to the r.v.’s −t ξ,27

which are known exactly. If these values are close enough for every n ≥ 0 and t, then, based on the equivalence28

between r.d.e. (1)–(2), the method of the moments shows that the approximations xPC
Q (t) and xF

M(t) are reliable.29

This paper is organized as follows. In Section 2, we summarize the gPC and Fröbenius techniques focusing on30

r.d.e.’s with only one single input r.v. as is the case of (1). Section 3 is devoted to show the comparative study31

previously described through two illustrative examples. These examples show good convergent rates of both methods32

which also are fairly easy to implement. This section also includes our main conclusions.33

2. Preliminaries34

The gPC method is a technique that allows the representation of second-order r.v.’s and s.p.’s defined on a prob-35

ability space (Ω,F, P), by orthogonal polynomial expansions {Φi}. These polynomials come from the Wiener-Askey36

scheme and, in general, depend on a number of r.v.’s, ζ1(ω), ζ2(ω), . . ., ω ∈ Ω, [3]. As is shown in references [4, 5],37

the gPC method has been shown to be a useful technique to solve r.d.e.’s of the form38

D(t, ξ(ω); x) = f (t, ξ(ω)), (4)

where D denotes a differential operator; ξ(ω) = ξ = (ξ1, ξ2, . . .) is a vector of r.v.’s ξi = ξi(ω), which dimension39

determines the so-called order of the chaos; f (t, ξ(ω)) is a forcing term and x = x(t, ξ(ω)) is the solution s.p. to be40

determined. For the sake of clarity in the presentation and, in accordance with model (1), throughout this paper we41

will focus on the simplest case where the order of the chaos is one, i.e., we will assume that there only is one single42

input r.v., say ξ = ξ(ω), involved in the r.d.e. (4). As a consequence the orthogonal polynomial expansions {Φi} will43

only depend on one single r.v. ζ = ζ(ω) as well, [3]. In order to solve the r.d.e. (4) and, based on the gPC method,44

one represents both, the input r.v. ξ and the unknown x = x(t, ξ), as follows45

ξ =

∞∑
i=0

ξiΦi(ζ), xPC(t, ζ) =

∞∑
i=0

xi(t)Φi(ζ). (5)

Notice that in accordance with (4), the solution s.p. of this r.d.e. formally depends on the input r.v. ξ, however using46

the gPC method it is represented in terms of the auxiliary r.v. ζ, which could be different from ξ. Bearing in mind this47
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fact, in the sequel we will denote the solution s.p. by xPC(t, ζ) or x(t, ξ) depending on the context. At this point, we48

note that, if {Φi} are the Hermite polynomials, then according to the Cameron-Martin theorem [6], for a fixed value of49

t, these expansions converge in the mean square (m.s.) sense in the Hilbert space (L2(Ω), 〈·〉). That is, they converge50

to any L2(Ω) functional with respect to the norm inferred from the inner product 〈X,Y〉 = E [XY]. Notice that when51

Y = 1, 〈·〉 represents the expectation operator as well. In (5) coefficients ξi are computed as follows52

ξi =
〈ξ,Φi(ζ)〉
〈Φi(ζ),Φi(ζ)〉

, i = 0, 1, 2, . . .

In order to compute the solution s.p. x(t) of r.d.e. (4), the coefficients xi(t), usually referred to as the modes of the53

solution, need to be calculated. To carry out this in practice, three main steps are followed. First, to be computationally54

feasible, one considers a truncation of order, say Q, of the infinite series (5)55

ξ =

Q∑
i=0

ξiΦi(ζ), xPC
Q (t, ζ) =

Q∑
i=0

xi(t)Φi(ζ). (6)

The total number of expansion terms, i.e., Q + 1 is determined by Q = P being P the highest degree of the56

orthogonal polynomials {Φi} (see [3] for further details). Once a truncation order Q is fixed, to construct the best57

approximation xPC
Q (t, ζ), a selection of the optimal basis {Φi(ζ)} has to be made according to the type of random input58

ξ (see [3]). In the second step one substitutes representations (6) into (4)59

D

t, Q∑
i=0

ξiΦi(ζ);
Q∑

i=0

xi(t)Φi(ζ)

 = f

t, Q∑
i=0

ξiΦi(ζ)

 ,
then one multiplies successively this equation by the different orthogonal polynomials

{
Φ j

}
and one takes the statistical60

average operator in order to simplify computations by taking advantage of orthogonality61 〈
D

t, Q∑
i=0

ξiΦi(ζ);
Q∑

i=0

xi(t)Φi(ζ)

 ,Φ j(ζ)
〉

=

〈
f

t, Q∑
i=0

ξiΦi(ζ)

 ,Φ j(ζ)
〉
, 0 ≤ j ≤ Q.

In this manner a set of Q+1 coupled (deterministic) ordinary differential equations (o.d.e.’s) preserving the linearity/non-62

linearity of the original operator D is set.63

The last step consists of solving this system whose unknowns are xi(t). Therefore the method relies on the ability64

of analytic and/or numerical techniques to solve systems of o.d.e.’s. The computation of modes xi(t) is important not65

only because it permits to obtain an approximate representation of the solution s.p. according to (6) but also its main66

statistical functions such as the average and variance67

µx(t) = E
[
x(t, ξ)

]
= x0(t), σ2

x(t) = Var
[
x(t, ξ)

]
≈

Q∑
i=1

(xi(t))2 E
[
(Φi(ζ))2

]
.

Besides the gPC method, other useful techniques have been developed to solve r.d.e.’s. Here we are also specif-68

ically interested in the random Fröbenius method which is based on an extension to the random scenario of its de-69

terministic counterpart. By assuming that time-dependent data are second-order m.s. analytic s.p.’s (notice that it70

includes the source term f (t, ξ)) and that every random input is of second-order too, this method seeks the solution71

s.p. to (4) as an infinite power series. This yields the following representation for the solution s.p. and the forcing72

term (as well as every involved s.p. coefficient, if any)73

xF(t, ξ) =

∞∑
i=0

xi(ξ)ti, f (t, ξ) =

∞∑
i=0

fi(ξ)ti.

In contrast with the gPC method, we notice that these representations depend directly on the input r.v. ξ rather than74

an auxiliary r.v. ζ. Next, these representations are substituted into the r.d.e. (4)75

D

t, ξ; ∞∑
i=0

xi(ξ)ti

 =

∞∑
i=0

fi(ξ)ti,
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in order to obtain some sort of recurrence relationship between coefficients xi(ξ). Such recurrence permits to determine76

these coefficients, and then a formal solution s.p. can be defined. When applying this method, the point lies in the77

determination of the domain where the series is m.s. convergent as well as in the justification of the steps followed78

to built the formal power series solution. This usually requires the application of both, mean square and mean fourth79

operational calculus [7, 8, 9]. Once the infinite power series solution xF(t, ξ) has been rigorously constructed, for80

the same reasons previously given for the gPC method, in practice it has to be truncated. Approximations for the81

expectation and the variance functions can be computed as follows82

E
[
xF

M(t, ξ)
]

=

M∑
i=0

E
[
xi(ξ)

]
ti, Var

[
xF

M(t, ξ)
]

= E
[(

xF
M(t, ξ)

)2
]
−

(
E

[
xF

M(t, ξ)
])2

, (7)

where83

E
[(

xF
M(t, ξ)

)2
]

=

M∑
i=0

E
[
(xi(ξ))2

]
t2i + 2

M∑
i=1

i−1∑
j=0

E
[
xi(ξ)x j(ξ)

]
ti+ j. (8)

Every average appearing in (7)–(8) is calculated taking the expectation operator on the recurrence relationship previ-84

ously established for the coefficients xi(ξ) together with the operational properties of expectation.85

3. Comparing the gPC and Fröbenius methods. Conclusions86

As it was pointed out in Section 2, both the gPC and random Fröbenius methods have demonstrated to be, in87

general, powerful techniques to solve many types of r.d.e.’s, although, as some authors have already highlighted, they88

also have some shortcomings [10, 11]. In this section we deal with this issue by comparing both techniques following89

the approach described in Section 1. By the reasons previously mentioned, to conduct the study we have selected90

the r.d.e. (1) with deterministic initial conditions x(0) = 1, ẋ(0) = 1. To assess better this comparative study, we91

will consider two different distributions for the random input ξ = ξ(ω): first, it is assumed to be a uniform r.v. on92

the interval [0, 1], i.e., ξ ∼ Un([0, 1]); second, a Gaussian distribution with the same mean and variance is assumed:93

ξ ∼ N(1/2; 1/12). Since the treatment of both cases is similar, we just detail the first case, where (3) can be written as94

h(t; n) = (−1)n tn

n + 1
= tnE

[
ξn] ≈


E

 ẍPC
Q (t, ζ)

xPC
Q (t, ζ)

n = gPC(t,Q; n),

E
 ẍF

M(t, ξ)

xF
M(t, ξ)

n = gF(t,M; n),

n ≥ 0. (9)

On one hand, since ξ ∼ Un([0, 1]), then, in accordance with the gPC method, in the following computations of95

gPC(t,Q; n), we will take as the (optimal) trial basis {Φi(ζ)} the Legendre polynomials where ζ ∼ Un([−1, 1]) (see96

[3]). It will also be shown that if some other basis is chosen, the numerical results deteriorate. This will be illustrated97

by taking {Φi(ζ)} the Hermite polynomials where ζ ∼ N(0; 1), i.e., ζ is a standard Gaussian r.v. In the following, we98

introduce the notation gPC−L(t,Q; n) and gPC−H(t,Q; n) to distinguish in (9) between both computations. On the other99

hand, notice that in this case100

gF(t,M; n) =

∫ 1

0



M∑
i=1

(−1)iξi(3i − 2)!!!
(3i − 2)!

t3i−2 +

M∑
i=1

(−1)iξi(3i − 1)!!!
(3i − 1)!

t3i−1

M∑
i=0

(−1)iξi(3i − 2)!!!
(3i)!

t3i +

M∑
i=0

(−1)iξi(3i − 1)!!!
(3i + 1)!

t3i+1



n

dξ.

In order to carry out this comparative study and, taking into account (9), we define the following relative errors101

(with respect to the exact moment of order n given by h(t; n)) that correspond to the gPC method (using Legendre102

polynomials) and Fröbenius methods, respectively103

ePC−L(t,Q; n) =

∣∣∣gPC−L(t,Q; n) − h(t; n)
∣∣∣

|h(t; n)|
, eF(t,M; n) =

∣∣∣gF(t,M; n) − h(t; n)
∣∣∣

|h(t; n)|
.
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Similarly, we will denote by ePC−H(t,Q; n) the corresponding relative error of the gPC method using Hermite polyno-104

mials.105

Table 1 shows the numerical results when using the gPC and Fröbenius methods in the sense previously detailed106

corresponding to n = 1, 2, 3 in (9). To be more specific, for each n, in the case of the gPC technique, we set the107

order P of the orthogonal polynomial basis {Φi(ζ)} (which, as we said, in this case coincides with the total number108

of expansion terms Q of xPC
Q (t, ζ) in (6)) and, for both, Legendre and Hermite polynomials, we have collected the109

numerical values t = T ∗ such that the errors ePC−L(t,Q; n) and ePC−H(t,Q; n) are, respectively, less than 5% over the110

corresponding whole intervals [0,T ∗]. With respect to the Fröbenius approach we have proceeded as follows: given n111

and M, in Table 1 we have collected the values of T ∗ such that the error eF(t,M; n) is less than 5% for each t ∈ [0,T ∗].112

As can be seen, the numerical values show that both, the gPC and Fröbenius methods, provide similar results only113

when the gPC method is expanded with respect to Legendre polynomials, which corresponds to the optimal basis.114

Otherwise, they deteriorate severely. Notice that the values shown in Table 1 are congruent: fixed n, the value of T ∗115

increases as Q (or M) does, whereas, fixed Q (or M), the value of T ∗ decreases as n increases from n = 1 to n = 3.

T ∗: ePC−L(T ∗,Q; n) < 0.05 ePC−H(T ∗,Q; n) < 0.05 eF(T ∗,M; n) < 0.05

n = 1
Q = 4 → T ∗ = 4.1
Q = 6 → T ∗ = 6.3
Q = 8 → T ∗ = 7.0

Q = 4 → T ∗ = 2.3
Q = 6 → T ∗ = 3.7
Q = 8 → T ∗ = 4.8

M = 20 → T ∗ = 3.6
M = 30 → T ∗ = 5.0
M = 40 → T ∗ = 6.1

n = 2
Q = 4 → T ∗ = 3.2
Q = 6 → T ∗ = 5.3
Q = 8 → T ∗ = 6.4

Q = 4 → T ∗ = 1.6
Q = 6 → T ∗ = 1.6
Q = 8 → T ∗ = 2.3

M = 20 → T ∗ = 3.5
M = 30 → T ∗ = 4.7
M = 40 → T ∗ = 5.5

n = 3
Q = 4 → T ∗ = 3.1
Q = 6 → T ∗ = 4.7
Q = 8 → T ∗ = 6.0

Q = 4 → T ∗ = 1.6
Q = 5 → T ∗ = 1.6
Q = 6 → T ∗ = 2.3

M = 20 → T ∗ = 3.4
M = 30 → T ∗ = 4.3
M = 40 → T ∗ = 5.5

Table 1: Comparative study of statistical moments preservation by the gPC and Fröbenius methods to r.d.e. (1) with initial conditions x(0) = 1,
ẋ(0) = 1 and ξ ∼ Un([0, 1]). Legendre (column ePC−L) and Hermite (column ePC−H) bases have been employed when applying the gPC method.

116

Below, we analyse the convergence of both methods PC-L (gPC with the adequate basis, Legendre) and Fröbenius117

through the relative errors ePC−L(T ∗,Q; n) and eF(T ∗,M; n), respectively. The analysis is made for each moment of118

order n = 1, 2, 3 and, the values Q = 4, 6, 8 for PC-L, and M = 20, 30, 40 for Fröbenius. In Table 2, for each n we119

have fixed T ∗ in such a way that for all Q, ePC−L(T ∗,Q; n) < 0.05 holds. Notice that it is fulfilled whether Q = 4. In120

Table 3, an analogous analysis has been performed for Fröbenius method: for each n, T ∗ has been chosen so that for121

all M, the condition eF(T ∗,M; n) < 0.05 is satisfied. In this case, it is true for M = 20. The results collected in Tables122

2 and 3 show, through the errors ePC−L(T ∗,Q; n) and eF(T ∗,M; n), the convergence of PC-L and Fröbenius methods,123

respectively. From Table 2, we see that the convergence rate is at least linear in Q. Whereas in Table 3, it is roughly124

quadratic.125

ePC−L(T ∗,Q; n) Q = 4 Q = 6 Q = 8
n = 1,T ∗ = 4.1 0.000674996 3.93968 × 10−6 1.06343 × 10−7

n = 2,T ∗ = 3.2 0.0102613 2.07488 × 10−6 7.34544 × 10−10

n = 3,T ∗ = 3.1 0.0016891 9.58077 × 10−7 2.80641 × 10−10

Table 2: Relative errors, ePC−L(T ∗,Q; n), with a fixed T ∗ for each moment of order n and different values of Q.

eF(T ∗,M; n) M = 20 M = 30 M = 40
n = 1,T ∗ = 3.6 0.0299544 3.90632 × 10−6 2.3783 × 10−11

n = 2,T ∗ = 3.5 0.0171511 1.69584 × 10−6 7.39231 × 10−12

n = 3,T ∗ = 3.4 0.0100965 7.44309 × 10−7 2.30691 × 10−12

Table 3: Relative errors, eF(T ∗,M; n), with a fixed T ∗ for each moment of order n and different values of M.

As was stated, to strengthen the conclusions drawn in the previous study, we present in Table 4 the corresponding126

results for the case when ξ ∼ N(1/2; 1/12). Now, the results provided by the gPC method agree with those ones127

computed by the Fröbenius method when the orthogonal polynomial basis {Φi(ζ)} is constructed in terms of the128

Hermite polynomials since ζ ∼ N(0; 1) (see column ePC−H(T ∗,Q; n) in Table 4). Otherwise, they deteriorate.129
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T ∗: ePC−L(T ∗,Q; n) < 0.05 ePC−H(T ∗,Q; n) < 0.05 eF(T ∗,M; n) < 0.05

n = 1
Q = 4 → T ∗ = 2.6
Q = 6 → T ∗ = 2.9
Q = 8 → T ∗ = 3.5

Q = 4 → T ∗ = 4.1
Q = 6 → T ∗ = 4.9
Q = 8 → T ∗ = 5.6

M = 20 → T ∗ = 3.5
M = 30 → T ∗ = 4.9
M = 40 → T ∗ = 5.9

n = 2
Q = 4 → T ∗ = 2.3
Q = 6 → T ∗ = 2.3
Q = 8 → T ∗ = 2.5

Q = 4 → T ∗ = 3.0
Q = 6 → T ∗ = 3.9
Q = 8 → T ∗ = 4.6

M = 20 → T ∗ = 3.3
M = 30 → T ∗ = 4.2
M = 40 → T ∗ = 5.0

n = 3
Q = 4 → T ∗ = 2.2
Q = 6 → T ∗ = 2.2
Q = 8 → T ∗ = 2.2

Q = 4 → T ∗ = 2.5
Q = 5 → T ∗ = 3.4
Q = 6 → T ∗ = 4.2

M = 20 → T ∗ = 3.2
M = 30 → T ∗ = 3.6
M = 40 → T ∗ = 4.9

Table 4: Comparative study of statistical moments preservation by the gPC and Fröbenius methods to r.d.e. (1) with initial conditions x(0) = 1,
ẋ(0) = 1 and ξ ∼ N(1/2; 1/12). Legendre (column ePC−L) and Hermite (column ePC−H) bases have been employed when applying the gPC method.

In this paper we have compared the ability of the generalized polynomial chaos (gPC) and Fröbenius methods130

to preserve accurately the first statistical moments of right/left-hand sides of a random differential equation. To131

show similarities and highlight differences between both approaches, we have chosen the random Airy differential132

equation for two main reasons. First, it has a highly oscillatory solution that permits to contrast better the numerical133

results provided by both methods. Second, we can isolate the random input in one hand-side of the Airy differential134

equation and, therefore compare the exact computations with the approximations obtained by the gPC and Fröbenius135

methods. So we have established exactly the accuracy of the approximations and we have also studied their rate of136

convergence. Our study shows that both approaches agree very well whenever the gPC method is developed in terms137

of a suitable polynomial orthogonal basis in accordance with the type of statistical distribution of the random input.138

This contribution also reveals the great importance of developing the gPC method using the adequate orthogonal139

polynomial basis according to the type of probability distribution of the input r.v. ξ in order to obtain reliable results.140

Finally, we emphasize that the gPC (using the suitable basis) and the Fröbenius techniques validate each other141

since they provide similar approximations. Although the nature of our approach has been empirical, the variety and142

representativeness of the situations analyzed together with highly oscillatory behaviour of the r.d.e. under considera-143

tion permits expect that the conclusions reached remain true in other cases. Based on previous comments, we think144

that both techniques are useful methods when dealing with r.d.e.’s.145
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