
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1109/TC.2011.146

http://hdl.handle.net/10251/36998

Institute of Electrical and Electronics Engineers (IEEE)

Ferrer Pérez, JL.; Baydal Cardona, ME.; Robles Martínez, A.; López Rodríguez, PJ.; Duato
Marín, JF. (2012). Progressive congestion management based on packet marking and
validation techniques. IEEE Transactions on Computers. 61(9):1296-1309.
doi:10.1109/TC.2011.146.



Progressive Congestion Management
Based on Packet Marking
and Validation Techniques

Joan-Lluı́s Ferrer, Elvira Baydal, Antonio Robles, Member, IEEE Computer Society,
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Abstract—Congestion management in multistage interconnection networks is a serious problem, which is not solved completely. In

order to avoid the degradation of network performance when congestion appears, several congestion management mechanisms have

been proposed. Most of these mechanisms are based on explicit congestion notification. For this purpose, switches detect congestion

and depending on the applied strategy, packets are marked to warn the source hosts. In response, source hosts apply some corrective

actions to adjust their packet injection rate. Although these proposals seem quite effective, they either exhibit some drawbacks or are

partial solutions. Some of them introduce some penalties over the flows not responsible for congestion, whereas others can cope only

with congestion situations that last for a short time. In this paper, we present an overview of the different strategies to detect and

correct congestion in multistage interconnection networks, and propose a new mechanism referred to as Marking and Validation

Congestion Management (MVCM), targeted to this kind of lossless networks, and based on a more refined packet marking strategy

combined with a fair set of corrective actions, that makes the mechanism able to effectively manage congestion regardless of the

congestion degree. Evaluation results show the effectiveness and robustness of the proposed mechanism.

Index Terms—Interconnection networks, congestion management, message throttling.

Ç

1 INTRODUCTION

COMPUTING systems have experimented a dramatic
growth due to the needs of new communication-

intensive applications and the increasing demand of new
services. Clusters of PC offer nowadays the best cost-
performance ratio to build either low-cost supercomputers
or high-performance servers. In these systems, computing
nodes are interconnected with a high-performance inter-
connection network that uses point-to-point links and high
speed switches. Among all the feasible interconnection
topologies, Multistage Interconnection Networks (MINs)
have become very popular because they are the recom-
mended choice of several standard (InfiniBand, RapidIO)
and nonstandard (Myrinet, Quadrics) interconnect technol-
ogies. Moreover, MINs are able to provide a high network
throughput and take advantage of the availability of high-
radix commercial switches.

As interconnects are expensive compared to processors,
an easy solution to cut down costs is to reduce the number
of components, increasing their usage (i.e., switches and
links). On the other hand, to reduce power consumption
some frequency/voltage scaling techniques [2], [17] are
usually applied. Both factors, cost reduction and power
saving, lead to a higher network utilization. In this

situation, network congestion may arise strongly degrading
network performance.

Network congestion appears when there is contention
between several packets trying to use the same output link.
If this situation remains for long, packets start to accumu-
late at the queues of the affected switches. As a consequence
of the back pressure caused by the flow control mechanism,
the packet advance in the previous switches is also delayed,
generating the Head-Of-Line (HOL) blocking phenomenon,
which prevents the advance of packets addressed to
noncongested links. Note that in high-performance inter-
connects for clusters, the communication model assumes a
lossless network, so packets cannot be dropped to deal with
congestion, as happens in other interconnect environments.

If this situation spreads along the network, forming what
it is known as a saturation tree, traffic in the switches will
be blocked, causing the degradation of the overall network
performance. Notice that, to avoid spreading the saturation
tree along the network, it would be enough to stop at their
origin hosts those packets responsible for the congestion
situation. This fact would contribute to improve the overall
network throughput. Therefore, it is mandatory to use an
effective Congestion Management Mechanism (CMM) able
to detect congestion early, and to apply efficient corrective
actions to avoid HOL blocking and performance degrada-
tion. Notice that as MINs are lossless networks, packet loss
cannot be used as an index to detect congestion. Therefore,
CMMs, as the one used in TCP, cannot be applied in this
kind of environments.

Recently, some CMMs have been proposed to detect and
manage congestion. Unfortunately, these approaches do not
guarantee, for all traffic distributions, that corrective actions
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are only carried out on those packet flows1 causing
congestion and with the appropriate intensity. As a con-
sequence, they can penalize unnecessarily the network traffic
and, therefore, degrade the overall network performance.

In this paper, we propose and evaluate in depth, a new
cost-effective congestion management strategy for lossless
MINs. Fig. 1 shows an example of a MIN (k-ary n-fly).
Parameters k (radix) and n (number of stages) define the
network structure and its depth. In particular, Fig. 1 shows
a 2-ary 3-fly network with bidirectional links and butterfly
interconnection pattern. This network is built with three
stages of switches with a radix value of 2.

The proposed mechanism is able to accurately identify
the flows responsible for congestion and to warn the
corresponding origin hosts in different ways depending on
the congestion level detected in the network, in order to stop
or delay injecting packets. As a consequence, the resulting
CMM is able to give a quick response in accordance to the
congestion degree.

The rest of the paper is organized as follows: Section 2
presents a background of the general strategies applied to
manage congestion. In Section 3, the proposed CMMs for
MINs are described and analyzed. The new mechanism
referred to as Marking and Validation Congestion Manage-
ment (MVCM) is described in Section 4. The simulation
scenario and the evaluation results are presented in Section 5.
Finally, in Section 6 some conclusions are drawn.

2 BACKGROUND

Congestion management in lossless networks has been
widely studied over the years [14], generating a lot of
research and proposals.

There are mainly two strategies to solve the problem:
congestion prevention and congestion recovery. Congestion
prevention requires to know in advance the network
resources needed, reserving them before starting packet
transmission. This strategy implies some overhead and is
commonly used in protocols aimed at providing Quality of
Service (QoS). On the other hand, mechanisms based on
congestion recovery are able to detect and to solve the
congestion on the fly, at the moment it arises. This strategy
is usually based on three steps: detection, notification, and
correction.

The congestion detection is frequently carried out by
measuring the switch buffer occupancy [5], [7], [11], [15], [16],
[19]. In some of them [7], [11], [15], [16], [19], if the occupancy
at any buffer exceeds a predefined threshold, then packets
crossing the switch will be marked. In this way, switches are

able to detect and mark packets which are contributing to
congestion. On the contrary, QCN [5] uses a more complex
mechanism at the switches to detect congestion (the
derivative of queue occupancy), but it does not use any
packet marking strategy to warn the origin hosts.

After detecting congestion, the source hosts that are
injecting too much traffic have to be warned in order to
reduce evenly their injection rate. For this purpose, two
techniques can be applied. The first one can be carried out by
means of broadcast messages [19], [20]. This solution does
not guarantee that notified sources are only those that are
injecting traffic to the congested links. Therefore, hosts
nonresponsible for congestion could reduce their injection
rate and cause a decrement in network performance. More-
over, broadcasting control packets wastes network band-
width, thus penalizing network throughput even more. On
the other hand, the second technique, commonly known as
Explicit Congestion Notification (ECN), has two basic
strategies. The first one takes advantage of the acknowl-
edgment (ACK packets) sent back to the source when a
packet has reached its destination. In this technique [15], [16],
ACK packets carry out the congestion information to the
origins. In the second one [5], switches send specific control
packets to warn the origin hosts. In any case, once the origin
hosts are warned (with ACK or specific packets), they will
apply message throttling to adjust its packet injection rate.

Other mechanisms try to solve the problem by tempora-
rily separating the flows responsible for congestion from the
flows that are not responsible of it in order to remove
the HOL blocking effect [6]. To do so, it is necessary to
incorporate a set of additional buffers. When the mechanism
detects packets stopping the normal advance of packets into
the network, the additional buffers will harbor those packets
causing the HOL blocking phenomenon. Later, these
packets may continue their trip to their destinations through
some “slow roads” or, on the contrary, be reinstated again if
congestion disappears.

Moreover, there are some proposals that try to reduce
HOL blocking either at the switch level [3], [13], [18] or at
the network level [4], [12], but do not actually solve it.

Next, for the sake of a more comprehensible insight into
the different techniques, we expose the process of creating a
congestion tree and how it spreads along the network from
the root to the leaves.

Fig. 2 shows the process of creating a congestion tree. In
Fig. 2a, an initial situation for three different flows (x, y,

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. X, XXXXXXX 2012

Fig. 1. A butterfly 2-ary 3-fly network.

Fig. 2. Evolution of the congestion process.

1. A flow identifies the traffic generated between an origin-destination
pair of hosts.



and z) crossing the switch C is shown. Packets belonging to
the x flow, cross the switch from the input channel C0 to the
output channel C

0

0. The y flow also advances from Ck�1

toward C
0

0 , and, finally, the z flow from Ck�1 toward C
0

k�1.
Notice that, in order to prevent switches from becoming a
bottleneck, the internal bandwidth of the switch crossbar is
usually higher than the channel bandwidth. As this
bandwidth speedup increases switch complexity, often a
maximum speedup of two is used [8].

Now, let us assume that the overall input traffic rate for
xþ y flows is greater than the bandwidth of the output
channel C

0

0. In this situation, packets belonging to x and y
flows will have to compete for the output channel C

0

0 and,
as a result of that, the output buffer will start to accumulate
packets as Fig. 2b shows. Notice that, with a speedup equal
to 1, packets would start to accumulate at their input buffers
instead of at their output buffers. If this situation remains
for long, and x, y, and z flows continue to inject traffic into
the switch, packets may begin to accumulate at the input
buffers, spreading the congestion along them. Fig. 2c shows
a possible congestion situation, and due to the fact that
incoming packets are stopped at the input buffer of the
channel Ck�1, the HOL blocking phenomenon appears.
Then, the advance of packets belonging to the z flow and
addressed toward the noncongested channel C

0

k�1 could be
delayed, causing the degradation of the switch perfor-
mance. If this situation persists, congestion will be spread
along the previous switches, stopping and accumulating
packets at the output buffers of those switches. This
situation provokes a new congested output channel at the
previous switch. Fig. 2d shows how the congestion has been
spread along the congestion tree toward its leaves, affecting
several switches.

Notice that, when a congestion situation is created
because of a set of origin hosts inject packets toward a
hot-spot, as shown in Fig. 1, these flows do not only
compete for the output channel at the last stage, but also at
intermediate stages if some flows have to cross the same
output channel. So, congestion may start at any stage.

3 RELATED WORK

In this paper, we focus on CMMs proposed for MINs and
based on ECN. Basically, current proposals define a
packet marking technique combined with a packet
injection limitation scheme that try to detect and palliate
the effects of a congestion situation. In this section, first
we show a brief analysis of the different packet marking
techniques and the injection limitation strategies proposed
until now, and second, we describe the current mechan-
isms already proposed.

3.1 Basic Strategies Applied by Current CMMs

1. The Packet Marking Techniques vary depending on the
place where packets are marked. Basically, packets in transit
are marked by setting 1 bit in the packet header. To this end, a
threshold at input or output buffer is predefined in order to
detect and mark packets provoking congestion.

If the applied strategy is based on marking packets at
input buffers, we will refer to it as Input Packet Marking
strategy (IPM). For this strategy, in the congestion process
analyzed in Fig. 2, the congestion tree has to grow at least

until reaching the input buffers placed at the same switch
where congestion starts (as it is shown in Fig. 2c) before the
packets stopped are detected and marked. This strategy
produces a delay, because an output buffer has to be
completely filled before any input buffer can detect conges-
tion. When the congestion situation shown in Fig. 2c is
reached, any incoming packet belonging to flows y and zwill
be marked regardless of its destination, that is, without
considering if their output is the congested link C

0
0 or the

noncongested link C
0
k�1.

Therefore, when applying the IPM strategy, two draw-
backs appear. First, a delay in detecting congestion, and
second an incorrect identification of the flows truly
responsible for congestion.

The other packet marking strategy is based on marking
packets at output buffers. We will refer to it as Output
Packet Marking strategy (OPM). In this case, following the
same example shown in Fig. 2b, all the packets belonging to
the flows x and y, and addressed to the congested link C

0

0,
will be marked when the output buffer occupancy exceeds
the threshold. Notice that the contention in this switch has
been provoked by the flows trying to cross the same output
link toward the next switch (x and y flows), so all the
packets belonging to the flows sharing the congested output
link are responsible for this congestion regardless of their
final destination. Hence, they will be marked in order to
evenly reduce the injection rate at origins.

Due to the fact that this strategy only pay attention to the
status of the output buffers, it also has a problem. On one
hand, if contention has not been spread to the input buffers
yet, as shown in Fig. 2b, the corrective actions that could be
applied to the flows x and y because of marking their packets
may not be necessary yet. So, although the OPM strategy
detects contention sooner than IPM does, it is not able to
detect whether the congestion is affecting other flows
nonresponsible for the initial congestion or not. Therefore,
marking packets and applying corrective actions prema-
turely could cause the reduction of the network perfor-
mance. On the contrary, if contention is not reduced at this
output link in time, and congestion spreads along the input
buffers affecting other nonresponsible flows, as happens
with z flow in Fig. 2c, the OPM strategy will not be able to
mark packets belonging to those flows till the congestion
reaches the output buffer at the previous switch, as shown in
Fig. 2d. So, that delay in marking packets could affect in its
turn other flows or even other switches not involved in the
initial congestion. Additionally, given that both IPM and
OPM strategies dedicate only 1 bit to mark packets in transit,
they are not able to handle different levels of congestion and,
as a consequence, to apply different corrective actions
depending on the severity of the congestion.

2. The Corrective Actions will be applied when origin
hosts receive an ACK packet warning about congestion. If
this situation occurs, CMMs can apply a combination of the
following basic techniques to evenly reduce the injection
rate. Among the techniques commonly applied by the
current corrective action schemes, we can refer to window-
based techniques and waiting interval insertion techniques.

The window-based technique can be based either on a
dynamic or static window. In particular, this strategy is
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mainly used by TCP, which applies a dynamic window, but
other techniques use a static one. Basically, this technique
defines a window size to limit the maximum number of
outstanding packets2 per flow. The value of the window
size depends on vendor criteria and it is kept fixed or can
vary depending on network behavior.

The waiting interval insertion technique allows to reduce
the injection rate in a progressive way by injecting Waiting
Slots (WS) between two consecutive packets. Depending on
the severity of congestion, the elapsed time between the
injections of two consecutive packets will be increased or
decreased. As long as the congestion vanishes, the waiting
interval will be decreased until disappearing.

Basically, the technique works as follows: when an origin
host receives a marked ACK packet, it waits a WS before
injecting a new packet into the network. If more marked
ACK packets are received, then more WS will be inserted
enlarging the waiting interval. Notice that the injection of
new packets for the same flow is forbidden along the
waiting interval. Later, when unmarked ACK packets are
received, the number of WS between packet injections will
be progressively decreased.

Additionally, a timer can be defined to timeout if no
more ACK packets arrive, and then, the waiting interval
will be reduced or even reset.

3.2 Current Proposals for MINs

Recently, some CMMs based on ECN have been proposed
to solve the congestion problem by using some of the basic
strategies described in Section 3.1. Unfortunately, these
approaches do not guarantee that either both packet
marking and corrective actions are only carried out on
flows responsible for congestion or they are not properly
tuned. In this section, we describe the current CMMs based
on the packet marking and the injection limitation techni-
ques shown in the previous section. In particular, the
Renato’s proposal and the Pfister’s implementation, both of
them intended for InfiniBand [11].

3.2.1 Renato’s Proposal

This CMM [16] applies an IPM strategy for packet marking
and therefore to warn about a congestion situation.
Switches need to have buffers at the input links in order
to apply this strategy. In particular, the proposed IPM
strategy operates in three steps. First, a switch input buffer
triggers packet marking each time it becomes full. Second,
any output link that is requested for at least one packet in
such a full buffer, is classified as a congested link. Third, all
packets stored at any input buffer at the switch that are
destined to a congested output link will be marked.

In response to the reception of a marked packet, the
origin hosts apply injection limitation based on a window-
based technique combined with a waiting interval inser-
tion technique. They proposed a static window size of one
packet at any situation because a larger value completely
saturates the network. In addition, an injection rate
control based on inserting WSs is used. For rate control,
they evaluate different functions to adjust the injection
rate: Additive Increase Multiplicative Decrease (AIMD),

Fast Increase Multiplicative Decrease (FIMD), and Linear
Inter-Packet Delay (LIPD). As a result of their study, they
propose two novel source response functions FIMD and
LIPD for dynamic and static scenarios, respectively. In
particular, the FIMD reduction function divides the
injection rate by a constant of value (m ¼ 2) also using
this value to increase the injection rate by using an
exponential function. On the other hand, the LIPD
response function applies a reduction based on the
Inter-Packet Delay (IPD) design feature available in
InfiniBand. Basically, it increases the IPD by one packet
transmission time3 each time a marked ACK arrive to
origin hosts.

3.2.2 Pfister’s Implementation

InfiniBand specs v1.2.1 [11] define a quite general proposal
for congestion management where values for thresholds
and other variables are left free to the vendor criteria.
Pfister’s implementation [15] is targeted to this scenario.

This CMM applies an OPM strategy for packet marking.
Switches need to have output queues in order to apply this
strategy. In particular, the defined threshold at output
queues can be initialized with different values depending
on the maximum level of congestion that can be tolerated in
the network. In particular, a value between 0 and 15 could
be programmed; 0 indicates that the switch is not going to
mark any packet on this port, 1 indicates a high value of the
threshold, so there is a high probability that congestion
spreads, 15 indicates a low value of the threshold, so high
probability that packets are marked, and values between 2
and 14 indicate a uniform distribution of decreasing
threshold values. The exact meaning of a particular thresh-
old setting is left to the switch manufacturer.

This proposal does not use any window-based technique
to manage congestion. However, after receiving marked
packets at origins host, sources reduce its injection rate by
inserting WSs. In particular, the WS size applied is based on
the Inter-Packet Delay (IPD) value. The amount of reduction
is controlled using a table called Congestion Control Table
(CCT). Each time a marked packet is received, an index into
the table is incremented by a constant value depending on
the Hotspot Degree (HSD) that indicates the number of
sources contributing to the hotspot traffic. Additionally,
each Host Channel Adapter (HCA) contains a timer that
timeouts if no more marked packets arrive during a defined
interval, in whose case, the index into the CCT is reduced.

4 MARKING AND VALIDATION CONGESTION

MANAGEMENT MECHANISM

The Marking and Validation Congestion Management
(MVCM) mechanism proposed in this paper consists of an
end-to-end CMM based on the use of ECN. Unlike other
approaches [15], [16], this new mechanism is not proposed
for any standard interconnect in particular, but for MINs in
general. However, the proposed mechanism could easily be
applied to current standard interconnects, such as InfiniBand
[11]. The main goal of this new CMM is to properly identify
the flows responsible for congestion, in order to apply packet
injection limitation only at the source nodes that are actually
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causing congestion. Further, packet injection limitation is
applied with the proper intensity in accordance with the
congestion degree detected in the network, thus minimizing
the negative effects over the flows nonresponsible for
congestion. As a consequence, the available network
resources are evenly distributed among the devices that
demand them, improving network throughput.

In what follows, we describe the new proposal, paying
attention to the strategies applied to detect congestion and
the corrective actions involved.

4.1 Congestion Detection

As it was analyzed in Section 3.1, both IPM and OPM
strategies, when applied separately, have some drawbacks
to detect in time the flows that are provoking congestion. As
a consequence, a new packet marking strategy based on a
combination of both IPM and OPM can be proposed and
analyzed in order to remove the detected weaknesses and to
join the benefits of both marking strategies.

We propose a new packet marking strategy referred to as
Marking and Validation Packet Marking (MVPM), that
combines packet marking at input and output buffers, in
such a way that packets are marked at input buffers and
validated at output buffers. To this end, 2 bits are dedicated
in the packet header. To implement the mechanism in a
standard interconnect, we can use any of the header bits
usually reserved by the specs for vendor applications.
Notice that by dedicating 2 bits in the packet header to warn
the origin hosts about congestion, a more effective four-
level scheme of corrective actions can be carried out at the
source nodes.

The MVPM strategy works as follows: first, packets
arriving to an input buffer are marked if the number of
stored packets in the buffer exceeds a threshold. This is
performed by activating the Marking Bit (MB) in the packet
header. In the same way, when a marked packet is
forwarded through a saturated output link, even in a
different switch, we proceed to validate it by activating a
second bit in the packet header, the Validation Bit (VB). We
assume that an output link is saturated when the number of
packets stored in its buffer exceeds certain threshold. Notice
that a packet can be marked or validated several times, but
never unmarked. Moreover, a packet cannot be validated if
it has not been previously marked.

The advantage of applying MVPM consists of its cap-
ability to detect different levels of congestion by classifying
the network flows in three types: Hot-Flows (flows truly
responsible for congestion), Cold-Flows (flows nonresponsi-
ble for congestion), and Warm-Flows (flows that were cold-
flows at the beginning, but as congestion has spread along
the network, they are becoming hot-flows). Fig. 3 shows all the
possible situations where these three types of flows can be
identified when applying the MVPM strategy.

The w flow is crossing the switch without contention at
any buffer. Therefore, no marking actions will be carried
out on its packets. So, this flow will be classified as a cold-
flow. Flow x is also identified as a cold-flow, as it is crossing a
congested output buffer but not a congested input one. So,
although this flow is contributing with some packets to the
congestion at the output link, congestion has not yet
reached the input buffer, and then it does not affect other
flows that could share the input buffer, such as flow w.
Therefore, there is no risk yet of spreading congestion to the
previous switch. This situation can be identified when the
total injection rate of x and y flows surpasses the accepted
traffic at the output link P

0

1, but the injection rate of x flow is
not high enough to accumulate packets at the input buffer,
thus affecting the flow w. Therefore, those packets belong-
ing to flow x will not be marked, avoiding premature
corrective actions on that flows that are not necessary yet.
Notice that marking packets belonging to flow x could
cause gaps in throughput, while still network is actually
able to accept this traffic.

Next, y flow is crossing both input and output congested
buffers. Therefore, both MV and VB bits will be set, as an
indication that this flow is a hot-flow. Finally, flow z is
crossing the congested input buffer but it is not traversing
any congested output buffer. This situation indicates that
congestion has spread into the input buffer and packets
belonging to z flow are suffering HOL blocking at input
buffer due to the high injection rate of the hot-flow y.
Although the flow z is not directly responsible for the initial
congestion at the output buffer, in order to stop the
spreading of congestion tree to the previous switch, this
flow will be classified as a warm-flow. So, packets will set
only the MB bit. As a result of this flow classification, source
hosts can apply different levels of corrective actions over
their respective flows (see below).

The most important key in this new packet marking
mechanism is to correctly detect congestion at the switch
where the saturation starts in order to prevent the
spreading of congestion along the previous switches, which
would create a new root of congestion, and to avoid
applying premature corrective actions that could penalize
performance.

4.2 Congestion Correction

One of the most effective procedures to avoid congestion
consists of reducing the injection rate of the responsible
flows. To this end, we propose two phases of corrective
actions at the origin hosts.

The first phase is based on adjusting the packet injection
rate by using a Dynamic Window (DW). It is based on the
idea of limiting, for each flow, the number of outstanding
packets into the network by using a window-based mechan-
ism. In this case, the window size is dynamic, allowing to
fluctuate between the maximum value (DWmax) and the
minimum value of 1.

If congestion persists after the window size is fixed to one,
a second phase of actions will reduce even more the injection
rate by introducing a waiting interval between the injections
of two consecutive packets. Notice that the corrective actions
are not indiscriminately applied over all the flows issued by a
host, but only over those responsible for congestion. In order
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to carry out the different corrective actions, we rely on the
reception of ACK packets, which allow us to identify
the flows and to warn about the detected congestion degree.
Table 1 shows the defined corrective actions according to the
congestion level identified by the values of the MB and VB
bits received on ACK packets. We will refer to as “imminent”
the actions performed on those flows whose ACK packets
have both bits set. On flows whose packets have only the
MB set, we take only “moderate” actions to prevent that
congestion expands to the previous switch.

Note that the combination of bits MB ¼ 0 and VB ¼ 1 is
not possible in this packet marking strategy.

4.2.1 Reducing the Injection Rate

Next, we explain the different types of actions applied.
1. Moderate actions are applied to warm-flows. Only the

DW size is modified, by reducing its current value by
subtracting one per each marked (MB ¼ 1, VB ¼ 0) ACK
packet received. If window size reaches its minimum value
(one) and more marked (MB ¼ 1, VB ¼ 0) ACK packets
arrive, the mechanism will keep the window size equal to
one and no additional actions will be taken. This situation
will remain till a nonmarked ACK packet arrives (MB ¼ 0,
VB ¼ 0). Then, window size will be increased by adding
one per each nonmarked ACK packet received until the
DWmax is reached. This way, the injection rate for warm-
flows will be decreased during the strictly necessary period
of time, thus stopping the spreading of congestion tree. So,
DW size will be adjusted into the interval ½1::DWmax�.

2. Imminent actions will be applied when validated
packets (MB ¼ 1, VB ¼ 1) are received. That is, packets
belonging to hot-flows. At the beginning, the mechanism
reacts by reducing the DW size as moderate actions do, but if
the DW size reduction is not enough to stop congestion, and
more validated packets (MB ¼ 1, VB ¼ 1) continue being
received, harder actions will be applied intended to reduce
even more the injection rate. This second phase of actions
starts when the DW size becomes equal to one. Then, WS
will be inserted between consecutive injected packets in
such a way that every received ACK packet with both MB
and VB set will increase the number of WS, whereas
received ACK packets with MB ¼ 0 and VB ¼ 0 will reduce
the number of WS. The duration of each WS is assumed as
the minimum time needed to send a packet plus to receive
its ACK, that is, the minimum Round-Trip Time delay
(RTT). The waiting interval calculation mechanism is shown
in detail in Section 4.3. Notice that both situations can occur
at the same time. That is, warm-packets or hot-packets can
arrive during a congestion process indistinctly. In that
situation, the mechanism will combine the actions pre-
viously described. Anyway, the injection rate has to be

reduced till a minimum value depending on the network
topology. When this value is reached, injection rate is not
reduced anymore, regardless of continuing to receive more
marked packets. Keeping this minimum injection rate is
important to prevent an undue message throttling. The
minimum injection rate will be theoretically analyzed in
Section 4.3.

4.2.2 Recovering the Injection Rate

The strategy to recover the injection rate must meet the
tradeoff between achieving a fast response time when
congestion has finished and avoiding injecting too much
traffic when the network is still congested.

Unlike other mechanisms such as QCN, which does not
explicitly warn about a noncongestion situation, the MVCM
uses the reception of nonmarked ACK packets at the origin
host (MB ¼ 0, VB ¼ 0) to allow the progressive recovery of
the initial values of the parameters for the congestion
control mechanism (i.e., full injection rate). In this case,
recovery period will depend on the value the DW has
reached and the WS applied. When the first nonmarked
ACK packet is received, the waiting interval applied to that
flow will be immediately eliminated, thus allowing for a
fast recovering but keeping the window size equal to one. If
more nonmarked ACK packets arrive, DW will recover the
initial value by adding one for each nonmarked ACK packet
received. As a result, after receiving DWmax packets with
MB ¼ 0 and VB ¼ 0, the full injection rate will be available
(one packet for removing WS and DWmax-1 packets for
restoring the DW size at its maximum value). Notice that
the elimination of waiting slots causes a fast recovery by
setting the WS parameter to zero, but keeping the dynamic
window equal to 1. So, although it may seem that this first
phase of recovery could introduce oscillations, it does not
actually happen due to the fact that the dynamic window
provides a proportional and slow recovery based on an
additive increase, thus avoiding suddenly flooding the
network above the injection rate it can assimilate.

In order to speed up even more the removal of the
corrective actions when congestion is no longer detected, all
parameters (DW and WS) will be immediately set to their
initial values if an origin host injects a packet into an empty
injection queue. Notice that if a host temporarily stops
injection because it does not have any packet to inject, it
does not longer contribute to congestion. Moreover, if no
data packets are injected, then no ACK packets will be
received. Hence, although this host is not generating traffic,
it would not be able to recover the initial values of the
parameters as no ACK packets will be received, which may
penalize the network throughput. Consequently, when this
situation occurs, the parameters controlling the corrective
actions applied for this flow will be reset. That is, DW ¼
DWmax and WS ¼ 0. With this action, we get an immediate
recovery. Therefore, as can be seen, the proposed mechan-
ism takes corrective actions immediately against serious
situations that could cause congestion in the network, but,
as commented before, the mechanism does not introduce
oscillations. However, if congestion takes place only during
a brief period of time, recovery is also very fast. As a
consequence, the mechanism does not penalize the network
performance in the absence of congestion.
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4.3 Parameter Initialization

The correct initialization of the parameters in a CMM is key
to achieve good results. In order to make the parameters
adjustment easy, simple, and robust, the initial values of the
parameters in MVCM will depend on the network config-
uration. In what follows, we explain the strategy followed
to define the initial values for the MVCM mechanism. The
set of parameters to initialize includes: the Buffer Threshold,
that defines the threshold to mark and validate packets; the
Window Size, that limits the maximum number of out-
standing packets per flow, and finally the Waiting Interval
Calculation that defines the duration of the waiting interval
and the method to calculate it. The value of some of these
parameters depends on the network traffic conditions near
the saturation point. Therefore, in order to carry out an
estimation, we propose to run some simulations of the
network under such traffic conditions.

1. Buffer Threshold. The input and output buffer
thresholds should be chosen with those values such that,
for a uniform traffic pattern,4 packets are allowed to cross
the switch without being marked, regardless of the network
load. To define the buffer thresholds, we have calculated
the average buffer occupancy for a uniform traffic pattern
with an injection rate near the saturation point. The
occupation at both input and output buffers were traced
separately. In particular, we have obtained an occupation,
on average, about 66 and 33 percent of the input and output
buffer capacity, respectively, for all network configurations,
regardless of the buffer sizes. Therefore, we have assumed
those values for the input and output thresholds, respec-
tively. Notice that, as we are analyzing the network near
saturation, a traffic burstiness will not affect the results due
to two reasons. First, in a MIN, the accepted traffic is
maintained when network enters saturation. Second, the
own flow control would limit packet injection. A more
detailed analysis can be seen in the Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TC.2011.146.

2. Window Size. There is a proposal with a static
window fixed to the value of one [15]. While this choice
seems appropriate to palliate the congestion in a general
scenario, it may negatively impact network throughput
(this would be the case, for example, when only one host
sends packets toward a single destination host). Moreover,
if a severe congestion appears and packets are stopped at
origin hosts, network could not be able to consume all the
waiting packets at origins when congestions disappear due
to the fact that the static window has a fixed value smaller
than the optimum, as it will be shown later. Therefore, it is
necessary to identify the optimum value for the window, let
us call it !, regardless of what window-based technique is
applied: static or dynamic window.

In order to maximize network throughput, the window
size can be calculated as the number of packets from a flow
that can be injected into the network until receiving the first
ACK at the origin host in the absence of contention in the
network. So, it can be established according to the minimum
RTT of the packets, which depends on the network depth or

number of stages. Hence, the minimum RTT can be
calculated as the sum of the time required by the data
packet to reach its destination (tdata) plus the time required
to receive the ACK packet (tack) at the origin host:

RTTmin ¼ tdata þ tack:

Let us assume a simple approach to calculate the

network base latency in networks under cut-through

switching as follows:

tvct ¼ h � thop þ
L

B

� �
;

where h defines the number of network hops, thop includes

routing, switching, and link delays, L is the packet length,

and B represents the channel bandwidth. Thus, the tdata and

tack can be calculated as

tdata ¼ h � thop þ
Ldata
B

� �
and tack ¼ h � thop þ

Lack
B

� �
;

where Ldata and Lack defines the data and ACK packet

lengths, respectively. Therefore the minimum RTT can be

obtained as:

RTTmin ¼ 2 � h � thop þ
Ldata þ Lack

B

� �
:

The optimum value ! will be imposed by the maximum

number of packets that can be sent by the source during the

time interval defined by the RTTmin. Therefore,

! ¼ RTTmin
Ldata
B

:

Now replacing RTTmin by its computed value,

! ¼ 2 � h � thop �Bþ Ldata þ Lack
Ldata

:

Analyzing this formula, it can be observed that the value

of ð2 � h � thop �Bþ LackÞ results in a constant K. As a result

of that, the value of ! will be bounded by the maximum and

minimum allowed data packet sizes

K þMinðLdataÞ
MinðLdataÞ

� ! � K þMaxðLdataÞ
MaxðLdataÞ

;

where Ldata ¼ Lhead5 þLpayload and K ¼ ð2 � h � thop �B þ
LackÞ.

As an example, given a bidirectional network topology

4-ary 5-fly (512 hosts and 640 switches) where the number

of stages is five (h ¼ 9 ), and assuming the following fixed

values: thop ¼ 3 cycles, B ¼ 1 byte/cycle, Lack ¼ 22 bytes,

and Lhead ¼ 22 bytes, then ! will vary between two limits

depending on Lpayload. That is, if Lpayload tends toward 1 ,

then ! � 1, but if Lpayload tends toward zero then

! � 98
22 ¼ 4; 45.

So, the optimal ! value will be bounded by the interval

[1, 4.45]. Now, in particular, assuming a fixed data payload

equal to 256 bytes, we obtain that the optimum ! value is:
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! ¼ K þ ðLhead þ LpayloadÞðLhead þ LpayloadÞ
¼ 76þ ð22þ 256Þ

22þ 256
¼ 354

278
� 1:28:

Therefore, a fixed value of one, as Renato’s strategy
defines, would restrict too much the injection rate as the
given network configuration may accept the injection of
more packets.

In order to confirm by simulation this theoretical result,
let us assume a uniform traffic destination distribution and
an injection rate near the saturation point. In this scenario,
we have obtained a window size for the network load
parameters assumed above of ! � 1:4 packets. This value
has been obtained by measuring the average number of
outstanding packets per flow during all the simulation time.
As the calculated value is 1.28 packets, and the one
achieved by simulation is 1.4 packets (larger than 1.28
because a slighter congestion appears into the network), the
window size to be chosen will be ! ¼ 2, which is the nearest
integer value which does not penalize network throughput
as a smaller value would do. Larger values for the window
size will produce a delay on reducing the injection rate
when congestion appears.

In order to check by simulation the initial value selected
for the window size, we show network performance results
when applying a static window mechanism to palliate the
effects of a congestion situation. No other corrective
strategy has been used, only a fixed window size with
different values during all the simulation. Fig. 4 shows the
influence of the window size for a 4-ary 5-fly network
configuration when applying synthetic traffic (Pattern I, see
Section 5) with a high injection rate.

The shaded area in Fig. 4 indicates the period during
which the origin hosts are injecting hot-spot traffic to create
a congestion situation. We can observe that using a window
size equal to 1, lowest latency is obtained when congestion
appears. However, once the hot-spot disappears, latency
would never recover its initial values because a window
size of 1 does not allow to drain all the packets accumulated
at origin hosts during the congestion period. As we can see,
a window size of 2 provides the best behavior. Notice that
when the network is not saturated, a larger window size
does not provide advantages, since the ACKs arrive to
the origin before more than two packets can be injected into
the network. However, as the network is getting saturated,
packet contention arises and packets stay longer at the
switch queues, increasing the RTT and delaying ACKs. In
this situation, a larger window size allows to have more
packets in transit through the network, thus leading to a
even more congested situation, as can be observed for a
window size equal to 5.

Finally, in environments with large line speeds, wide
data paths, or short data packets, a greater window value
must be used, but the mechanism continues to work
correctly. For example, in a 4-ary 5-fly network with data
packets ¼ 256 bytes and a link rate of 16 bytes/cycle, a
value of ! � 4:18 is obtained, so ! ¼ 5 is used.

Results showed that MVCM also correctly reacted
against congestion by reducing the DW until the minimum
value of 1. However in this situation, this window strategy
was almost enough to stop congestion. Only a few flows
needed to additionally insert WS. The conclusion is that
when a network configuration has a high DW value, the
correction mechanism continues to function properly.

3. Waiting Interval Calculation. Additionally to the
dynamic window technique, the injection rate reduction is
carried out by adding WS between consecutive injected
packets. A wrong election of both the duration of a Waiting
Slot (WS) and the total number of WS (number_WS) inserted
between consecutive packets, could cause undesirable
effects, as oscillations, unstable performance, etc. Previous
proposals define both parameters depending on either the
Hotspot Degree as Pfister’s implementation does or a
constant value that is used to regulate the injection rate as
Renato’s proposal does. However, both procedures could
not be useful under other network configurations or traffic
loads. So, in order to define a general strategy able to be
applied in every network and traffic conditions, it is
recommended to define both parameters according to the
network configuration parameters. Therefore, it is interest-
ing to find a relationship with those parameters.

In particular, the switch radix value ðkÞ could be used to
calculate the number_WS value because it defines the
maximum number of hosts connected to a switch. So, in a
congested situation this value could be used to evenly
reduce the injection rate in a fair proportion. Additionally,
the duration of the WS could be related to the RTTmin as it
is the minimum time needed to send a packet plus to
receive its corresponding ACK.

As a result, the waiting interval is calculated as follows:
in absence of congestion, the number_WS value is equal to 0.
When the first ACK packet with its MB and VB set is
received, and DW is equal to one, then number_WS is set to
the value of one. If more validated ACK packets are
received, then the number_WS value will be increased by a
constant factor equal to the switch radix (k). Thus, the
number_WS value will be multiplied by k each time a new
ACK packet is received as it is shown in (1). Assuming that
WS is equal to RTTmin, the waiting interval is calculated as
the product of the number of WS by RTTmin (2)

number WScurrent :¼ k � number WSprevious; ð1Þ

WaitingInterval :¼ number WScurrent �RTTmin: ð2Þ

Combining both functions (1) and (2) with the reception
of some validated packets produces the results shown in
Table 2.

On the other hand, the maximum number of WS inserted
between consecutive packets has to be bounded in order to
prevent packets from being stopped too much at origin
hosts while network throughput is being reduced. To this
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Fig. 4. Latency with different window sizes for a 4-ary 5-fly network
configuration.



end, the network parameter n, that identifies the number of
stages of the network, could be used to limit the maximum
number of times the number_WS value can be increased.

To justify the use of both k and n as parameters for
calculating the waiting interval, a theoretical analysis is
presented in Appendix B, available in the online supple-
mental material.

5 PERFORMANCE EVALUATION

5.1 Network Configurations

The MVCM mechanism has been evaluated and compared
with other CMM proposals in the same scenario by using an
interconnection network simulator. A generic switch-based
cut-through network with point-to-point links and buffered
credit-based flow control with a transmission link rate of
1 byte/cycle was assumed. Packets will be transmitted over
the link if there is enough buffer space (measured in credits
of 64 bytes) to store the entire packet. Switches requires
buffers associated at both their input and output ports
(CIOQ switches). Following the results presented in [8], a
switch speedup of two has been assumed for all the
simulations in this study.

A deterministic routing algorithm is used to forward
packets in the network. We have evaluated several network
configurations with different values of switch radix (k) and
number of network stages (n): perfect Shuffle with bidirec-
tional links (4-ary 3-fly, 4-ary 4-fly, 4-ary 5-fly, 8-ary 3-fly)
and some configurations for Butterfly MINs with unidirec-
tional links (2-ary 5-fly, 2-ary 6-fly, 2-ary 7-fly, 4-ary 3-fly, 4-
ary 4-fly). These scenarios have been simulated with low,
intermediate, and high injection rates. In order to eliminate
the HOL blocking phenomenon at origins, we assume a Full
Virtual Output Queuing (VOQ) at the NICs of the source
hosts. This implementation defines a number of queues
equal to the number of destination hosts. Each origin host
generates packets, classifying and storing them in a queue
depending on their destination host. The number of packets
that can be stored in a queue is equal to the DW size,
because it limits the outstanding packets per flow. Each
time an ACK packet arrives at the origin host, the first
buffer in the corresponding queue is released allowing to
inject another data packet into the network. Notice that the
queues are under the FIFO policy.

For simulation purposes, in order to know the time when
packets have been generated and therefore, to calculate the
latency from generation time, the origin hosts do not stop
generating packets although the queues at NICs are full. In
an actual implementation, origins would stop generating
packets till a buffer is released at the corresponding queue.

Simulations have been carried out with different data
packet sizes. We have considered both fixed payloads of 256,

512, and 1,024 bytes and variable payloads of 256 up to
1,024 bytes. In all the configurations, 22 bytes of header have
been assumed. Moreover, the ACK packet size is 22 bytes for
all cases. The sizes of the buffers used in the simulations are
1, 2, and 4 Kb for the 256, 512, and 1,024 bytes of fixed
payload, respectively, and 3 Kb for the variable payload. In
addition, different traffic patterns based on traces and
synthetic traffic have been also evaluated. These patterns
provoke network congestion with different intensity levels
and are intended to check the analyzed proposals under
diverse traffic conditions. Although in all simulation
scenarios we have obtained very good results, we only
show some results for some bidirectional network config-
urations (4-ary 5-fly, 4-ary 4-fly, 4-ary 3-fly, and 8-ary 3-fly)
with a fixed packet size of 256 bytes (payload) plus 22 bytes
(header), and with two different traffic patterns, that is,
synthetic traffic and traces.

For synthetic traffic, two types of flows have been
applied, that is, flows injecting uniform traffic and flows
injecting hot-spot traffic. Table 3 shows the traffic pattern
applied to all network configurations. We first generate
packets according to a uniform distribution of destinations.
Then, we create a hot-spot in the network and analyze what
happens with both cold and hot-flows. Hosts that send
uniform traffic remain injecting packets during the whole
simulation, and hosts that generate hot-spot traffic remain
inactive until the first 50,000 packets have been received.
Then, they start injecting 1,000 packets from each origin
host with the same injection rate as that of the other hosts,
but addressed to a single destination host (the hot-spot).
Later, when each one has completed the injection of the
packets, they stop generating packets.

A medium network load has been applied for all the
configurations whose simulation results are displayed in the
next section. In particular, for the 4-ary 5-fly network, an
injection rate of 0.45 bytes/cycle/sw6 has been applied. That
is, a total amount of 58 bytes/cycle due to the fact that this
configuration network has 128 switches at the first stage.
Qualitatively, similar results are obtained for other injection
rates (0.26 and 0.62 bytes/cycle/sw for the low and high
injection rate, respectively) and for the rest of configuration
scenarios. Additionally, a traffic load based on traces has
been also applied. In particular, the traces used in our
evaluations were provided by the applications DL POLY
[10] and CPMD [9], and they have been also run simulta-
neously in order to stress even more the traffic network.

5.2 Evaluation Results

First, we show an analysis of the MVCM proposal when it is
applied in different network configurations and with two
types of traffic load, synthetic, and traces. The aim of this
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Synthetic Traffic Pattern

(HS stands for hot-spot).

TABLE 2
Reduction Procedure for the k-Ary n-Fly Network

6. sw refers to the switches with source hosts connected to them (i.e., the
switches of the first stage).



analysis is to verify if the proposed mechanism is able to
reduce congestion regardless of the network configuration
and the traffic conditions.

Next, a comparison study between the current CMMs
and the proposed MVCM, under the same network
configurations and traffic loads, is presented in order to
determine if MVCM outperforms previous proposals.
Notice that, in all the graphs, the latencies shown are
computed since generation time.7

5.2.1 Evaluating the MVCM Proposal

In order to check if the MVCM proposal is able to reduce
the undesirable effects caused by a congestion situation,
first, we analyze how the mechanism reacts against the
congestion created in a 4-ary 5-fly network when applying
the synthetic traffic shown in Table 3 and with a medium
traffic load. Fig. 5 shows how the performance of the cold-
flows are affected when the corrective actions are applied to
the flows responsible for the congestion. In this figure, the
latency and throughput are represented when applying no
CMM and the proposed MVCM.

In particular, Fig. 5a shows latency while Fig. 5b shows
throughput. Notice that the shaded area in graphs indicates
the period during which the origin hosts are injecting hot-
spot traffic to create the congestion situation. Additionally,
the small graph inside Fig. 5a represents a zoomed version
of the MVCM graph from the main figure around the point
where the hot-spot traffic begins. Along it, latency increases
up to more than 140,000 cycles when no CMM is applied as
it can be seen. However, when applying the MVCM
proposal, the maximum value for latency is reduced till
3,000 cycles, approximately. In the same way, a throughput
drop is produced during the congestion situation, as it is
shown in Fig. 5b. Again, MVCM reacts avoiding this sharp
drop and providing a sustained performance level thanks to
minimize the throughput degradation.

Next, in order to validate the fairness of the strategy
applied to reduce the congestion, it is mandatory to verify
that MVCM does not excessively reduce the injection rate
of flows injecting packets toward the hot-spot. To this end,
Fig. 6 shows the percentage of utilization of the link
connected to the hot-spot for the analyzed 4-ary 5-fly
network under the synthetic traffic pattern.

Figs. 6a and 6b present results when no actions are
taken and when the corrective actions are applied over the

hot-flows, respectively. Notice that during the congestion
period, the performance of the analyzed link shows that it
is busy at 100 percent when the MVCM proposal is
applied, graph 6b. Moreover, when congestion disappears,
the utilization values present less oscillations than when
no congestion management is applied. So, although
corrective actions are stopping packets belonging to hot-
flows at origins to provide enough bandwidth to the cold-
flows, those hot-flows continue to inject enough packets
into the network to keep busy the link connected to the
host-spot. Therefore, the MVCM proposal also benefits the
hot-flows. This improvement is due to the application of a
DW strategy in the first phase of the set of corrective
actions. A higher injection of packets belonging to hot-
flows would create HOL blocking into the network and,
therefore, the latency for cold-flows would increase.

In order to confirm that the MVCM mechanism achieves
good performance regardless of the network size, Fig. 7
presents the results of latency for cold-flows with different
network configurations. In particular, Figs. 7a, 7b, and 7c
show results when No CMM and MVCM are applied in a 4-
ary 4-fly, 4-ary 3-fly, and 8-ary 3-fly, respectively. For these
network configurations, the traffic pattern applied is the one
shown in Table 3. The shaded area also indicates the period
the origin hosts are injecting hot-spot traffic to create a
congestion situation. Again, the small graphs inside the main
figure are zoomed versions of the main figure. As can be
observed, in all the network configurations, the MVCM
mechanism reduces the negative effects on cold-flows during
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Fig. 5. Latency and throughput for cold-flows in a 4-ary 5-fly network with
No CMM, and MVCM with DWmax ¼ 2.

Fig. 6. Utilization of the link connected to the hot-spot for a 4-ary 5-fly
network.

7. Time required to deliver a packet including the time spent waiting at
the origin host.

Fig. 7. (a), (b), and (c) latency for cold-flows with DWmax ¼ 2, and
(d) latency for traffic based on traces.



the congestion situation. For the three network configura-
tions, the maximum values of latency are significantly
reduced when the corrective actions have been applied.

Finally, it is interesting to check the behavior of the MVCM
proposal when a real traffic load based on traces is applied.
The used traces are the ones mentioned in Section 5.1. For the
analysis, they have been applied in a 4-ary 3-fly network.
Fig. 7d shows the latency when no corrective actions are taken
and when the MVCM proposal is applied. As it can be seen,
different congestion points appear and disappear during the
simulation time, increasing the value of the latency. As a
result of applying the MVCM proposal, the mechanism reacts
palliating the congestion effects. Again, the MVCM mechan-
ism significantly reduces the negative effects of the conges-
tion by reducing the latency for cold-flows.

To better illustrate that our mechanism also works in
specific situations, next we show results where a couple of
flows congest one link. Fig. 8a presents a 2-ary, 3-fly network
where two flows, (000-111 and 011-111), create congestion in
a switch at the second stage. To evaluate how the MVCM
mechanism is able to palliate the negative effects of
congestion over the cold-flows crossing this switch, we have
traced the flows from hosts 001 and 010, and destined to any
node different from the hot-spot (111). In particular, only the
flows targeted to the destination host 101 has been traced.
Fig. 8b shows the performance evaluation results for cold-
flows when no congestion management mechanism and
MVCM are applied. As can be seen, although only two hot-
flows create congestion, they affect a few cold-flows and
MVCM can correctly detect the beginning of the congestion
in time, also applying corrective actions.

5.2.2 Comparing MVCM with Other CMMs

A comparison between the proposed mechanism (MVCM)
and the current CMMs (Renato and Pfister), is shown in
Fig. 9a. Graphs in this figure represent latency versus
accepted traffic for the three analyzed mechanisms in a
4-ary 5-fly network when applying the traffic pattern shown
in Table 3. In particular, each represented value in the graphs
identifies the average packet latency for all the generated
packets during the simulation, that is, packets belonging to
either cold or hot-flows. Graphs RP, PI, and MVCM in Fig. 9a,
represent the Renato’s Proposal, the Pfister’s Implementation
and the Marking and Validation Congestion Management
mechanisms, respectively. Notice that to simulate the
Renato’s proposal, the LIPD response function has been
applied in all cases to make a fair comparison.

As it can be observed, Renato’s proposal shows the worst
results. The achieved results are mainly due to the
application of the static window technique with a fixed
size equal to one at any situation. In absence of congestion,
the mechanism cannot take advantage of the available
bandwidth because this strategy restricts too much the
injection rate due to the packet limitation imposed by the
static window. Moreover, its IPM strategy is not enough to
correctly identify the flows truly responsible for congestion.

In the same way, although the Pfister’s implementation
achieves better results than Renato’s proposal, it suffers
from several weaknesses, as described below. First, since it
applies a OPM strategy, it does not guarantee that
corrective actions will be timely applied. Second, as this
proposal does not use any window control, it is unable to
limit the number of outstanding packets. This technique
works well with a low injection rate, but when traffic load
approaches to medium or high injection rates, it cannot
react quick enough. Moreover, when marked ACK packets
begin to arrive to the origin hosts, it directly inserts WSs
that could limit the injected traffic rate in excess. Third, it
does not introduce any limitation in the application of the
WS insertion technique, as MVCM does. Finally, not
applying an immediate recovery action, as MVCM does,
could produce a delay in recovering the injection rate if
congestion vanishes suddenly.

On the contrary, the MVCM mechanism obtains the best
results as a consequence of combining a more thorough and
refined packet marking strategy with a fairer and effective
corrective action scheme. Later on, when congestion is
reduced, the applied strategy allows to recover the initial
injection rate in a progressive way, as long as nonmarked
ACK packets are received, or quickly, setting all the
parameters in the origin host to their initial values if the
host finds an empty injection queue when it goes to inject a
new packet into the network.

In order to analyze the impact of the more efficient
packet marking strategy applied by MVCM, Fig. 10 shows
the percentages of marked packets carried out by the
three compared mechanisms, separately analyzing cold
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Fig. 8. Congestion situation created by two flows.

Fig. 9. Analysis of CMMs in a 4-ary 5-fly network.

Fig. 10. Percentage of marked packets.



and hot-flows. Values represent the percentage of marked
packets of each type. As can be seen, although the values
of marked hot-packets show small differences among
them, Pfister’s marking strategy reaches the highest value,
whereas Renato’s strategy achieves the lowest one. The
MVCM strategy achieves a value slightly lower than the
Pfister’s one because MVCM defines a dependency
between marking and validation actions. In contrast,
marking values for cold-packets show important differ-
ences. Renato’s and Pfister’s strategies mark about 11 and
5 percent of the packets belonging to flows nonrespon-
sible for congestion, respectively, whereas MVCM strategy
reaches the minimum value (i.e., about 0.1 percent). This
low value is due to the application of a packet marking
strategy based on 2 bits, which is able to correctly identify
the responsible flows for congestion.

Notice that as the number of cold-packets is greater than
that of hot-packets, a small difference in the percentage of
marked cold-packets represents a great amount of wrongly
marked packets, which could penalize the applications that
are sending or waiting for those packets.

Although the aim of a well-structured packet marking
strategy is to detect and mark packets belonging to flows
responsible for congestion, the key to reach good results is
to avoid marking packets belonging to nonresponsible
flows. The consequence of this negative effect is that, hosts
could be wrongly warned about congestion not created by
them, and therefore apply some corrective actions that are
not necessary.

Next, it is interesting to compare and analyze the
behavior of cold-flows when the current CMMs (Renato
and Pfister) are applied, comparing their results to the ones
achieved by the MVCM proposal. Fig. 11 shows latency

and throughput for a 4-ary 5-fly network with the traffic
pattern shown in Table 3. The following mechanisms have
been applied, ðaiÞ the Renato’s proposal, ðbiÞ the Pfister’s
implementation, and ðciÞ the MVCM mechanism. In
particular Figs. 11a1, 11b1, and 11c1 represent latency
while Figs. 11a2, 11b2, and 11c2 represent throughput.
Comparing these results, we can observe that both
Renato’s proposal and Pfister’s implementation improves
cold-flows performance over the results obtained with no
CMM (see Figs. 5a and 5b). In graph No CMM in Fig. 5a,
latency reaches values greater than 140,000 cycles while
Renato’s proposal reduces latency up to 10,000 cycles and
Pfister’s implementation up to more than 8,000 cycles, as
shown in Figs. 11a1 and 11b1, respectively. However,
comparing their results with the ones achieved by the
MVCM proposal in Fig. 11c1, it can be observed that
MVCM achieves the best latency values, because latency is
reduced till 3,000 cycles. In the same way, as shown in
graphs 11a2 and 11b2, both proposals react palliating the
throughput drop with regard to the absence of CMM (see
graph 5b). However, again, MVCM achieves the best
performance by reducing even more the throughput drop,
and the undesirable oscillations, as it is shown in Fig. 11c2 .

Following, we illustrate the effectiveness of the marking
and validating packets with respect to pure OPM and IPM
marking. As described in Section 4.1, the MVCM packet
marking strategy does not validate packets if they have not
been previously marked at input buffers. In order to verify
the positive effects of this strategy, let us analyze what would
happen if the Pfister’s packet marking strategy (pure OPM
mechanism) marked only packets truly responsible for
congestion (i.e, packets marked and validated as MVCM).

Figs. 12a and 12b show latency and throughput,
respectively, when applying the Pfister’s corrective actions
only over the packets truly responsible for congestion
(validated packets). As can be seen, both the latency and
most of the oscillation in throughput appeared in Figs. 11b1
and 11b2, have been reduced in Fig. 12. This is because
marking only packets validated at output buffers does not
penalize other flows nonresponsible for congestion, thus
increasing network performance.

Figs. 13a and 13b show latency and throughput, respec-
tively, when applying the MVCM corrective actions only over
the marked packets at input buffers (pure IPM mechanism).
These results can be compared to the ones in Figs. 11c1 and
11c2. As can be seen, the IPM strategy causes an increase in
latency and slightly introduces oscillations in throughput.
These effects are caused by marking cold-packets crossing a
congested input buffer, which are wrongly identified as hot-
packets.
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Fig. 11. Latency and throughput for cold-flows in a 4-ary 5-fly network.

Fig. 12. Latency and throughput for cold-flows in a 4-ary 5-fly network
when applying the Pfister’s corrective strategy only to validated packets.



Finally, we analyze the benefits of identifying warm-
packets as MVCM does. Fig. 14b shows latency for cold-
flows for the MVCM congestion management mechanism
but assuming that warm-packets are not marked. In its turn,
Fig. 14a presents the same results as Fig. 11c1, but with
different scales in both axes. As can be seen in Fig. 14b,
latency of cold-packets is penalized when warm-packets are
not marked. This is because not applying corrective actions
on them causes congestion to quickly spread to previous
switches, thus affecting other cold-flows that were not
involved in the initial congestion. Notice that, although this
increment in latency does not seem very relevant, the
affected packets could belong to a critical application, for
which small delays could negatively impact its performance.

Next, Figs. 15b, 15c, and 15d show the evaluation results
of MVCM, Renato’s proposal, and Pfister’s implementa-
tion, respectively, for the traffic pattern based on traces
(Section 5.1). As it can be observed, the achieved results are
better than the ones shown in Fig. 15a where no CMM is
applied. But again, MVCM achieves the best performance,
as it is observed in Fig. 15b, due to the fact that MVCM
reduces the maximum values of latency below those
obtained by the other two proposals during all the
simulation. In particular, MVCM reaches a maximum
value of latency lower than 5,000 cycles and a value of
1,300 cycles, on average, during the simulation time. On the
other hand, Renato’s and Pfister’s ones reach a maximum
value about 12,000 and 10,000 cycles, respectively, and an
average value of 4,500 cycles during all the simulation.

5.2.3 Analyzing the Effect of WS Insertion Limitation

In this section, we show how the WS insertion limitation
imposed by MVCM contributes to improve performance of
hot-flows. To this end, we analyze what happens if there is not
limitation on inserting WSs. As it was shown in Section 4.2.3,
MVCM limits the number of inserted WSs according to the
number of network stages. Applying the waiting interval

calculation without any limit will reduce too much the
injection rate of packets, stopping them at origins while
network is getting idle. To justify this, let us analyze what
happens when there is not any limitation in WS insertion.

Fig. 16a represents the average latency of packets belong-

ing to the hot-flows when the MVCM proposal is applied in a

4-ary 5-fly. For the MVCM mechanism, we assume its native

strategy based on limiting the times the number of WSs can be

incremented on ACK arrivals. Fig. 16b shows the perfor-

mance when MVCM is applied without any limitation on the

number of WSs. As can be observed, some gaps appear as a

consequence of increasing more than n-times the number of

WSs. This is because, despite the fact that there is available

network bandwidth, several packets are stopped at the origin

hosts because the waiting interval applied is too long. Also, as

it can be seen in Fig. 16c, Pfister’s implementation also suffers

from the same problem, because, unlike MVCM, this CMM

applies the waiting interval calculation strategy without

imposing any limitation as MVCM does. Moreover, the
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Fig. 13. Latency and throughput for cold-flows in a 4-ary 5-fly network
when applying the MVCM corrective strategy only to marked packets
(not validated).

Fig. 14. Latency for cold-flows in a 4-ary 5-fly network for MVCM with/
without warm-packets marking.

Fig. 15. Latency with traffic based on traces for a 4-ary 3-fly.

Fig. 16. Latency for hot-flows in a 4-ary 5-fly.



Pfister’s implementation presents a worse performance
due to the fact that, it does not apply any window-based
mechanism, which reduces oscillations.

6 CONCLUSION

In this paper, we have proposed a new congestion manage-
ment mechanism for MINs, based on Explicit Congestion
Notification and referred to as Marking and Validation
Congestion Management (MVCM). This new mechanism
contributes with both a new packet marking strategy, that
efficiently detects the root of congestion and correctly
classifies flows belonging to the tree congestion, and a fair
set of corrective actions, that makes packets belonging to the
flows responsible of congestion wait at their source hosts,
instead of remaining blocked into the network.

As the adjustment of the parameters of the proposed
mechanism only depends on the network configuration, the
mechanism is simple, robust, and easy to implement.

The MVCM proposal has been globally evaluated,
showing that it provides good performance for congestion
management regardless of the traffic load. Moreover, the
MVCM performance not only reduces latency for cold-
flows with regard the current proposals, but also improves
the performance of hot-flows by avoiding oscillations in
network throughput and keeping their packet injection at
the maximum rate.

To conclude, performance evaluation results shows that
the MVCM proposal is able to effectively manage conges-
tion in MINs regardless of network configuration, traffic
load, and congestion degree.
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