

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1109/TVLSI.2008.2000254

http://hdl.handle.net/10251/37026

Institute of Electrical and Electronics Engineers (IEEE)

Baraza Calvo, JC.; Gracia-Morán, J.; Blanc Clavero, S.; Gil Tomás, DA.; Gil Vicente, PJ.
(2008). Enhancement of fault injection techniques based on the modification of VHDL code.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 16(6):693-706.
doi:10.1109/TVLSI.2008.2000254.

 1

Abstract—Deep submicron devices are expected to be

increasingly sensitive to physical faults. For this reason, fault-
tolerance mechanisms are more and more required in VLSI
circuits. So, validating their dependability is a prior concern in
the design process. Fault injection techniques based on the use of
hardware description languages offer important advantages with
regard to other techniques. Firstly, as this type of techniques can
be applied during the design phase of the system, they permit
reducing the time-to-market. Secondly, they present high
controllability and reachability. Among the different techniques,
those based on the use of saboteurs and mutants are especially
attractive due to their high fault modeling capability. However,
implementing automatically these techniques in a fault injection
tool is difficult. Especially complex are the insertion of saboteurs
and the generation of mutants. In this paper we present new
proposals to implement saboteurs and mutants for models in
VHDL which are easy-to-automate, and whose philosophy can be
generalized to other hardware description languages.

Index Terms—Logic design, very large scale integration,
physical faults, fault tolerance, dependability validation,
hardware description languages, VHDL-based fault injection,
saboteurs, mutants.

I. INTRODUCTION

HE new deep submicron technologies are increasingly
sensitive to physical faults, both to those due to external

phenomena (i.e. transient faults such as SEUs, SETs, etc.) and
to internal defects (i.e. intermittent and permanent faults).
Moreover, this sensitivity implies not only a raise of the fault
rate, but also an increment of the likelihood of appearing
multiple faults [1]–[3]. For this reason, the Dependability of
systems must be analyzed. This analysis can be either the
study of the incidence of faults on the system (called error
syndrome analysis) or checking the design specifications
(called validation). The objective of the error syndrome
analysis is to detect those parts of the system which are most
sensitive to faults, and eventually, to choose the most suitable
fault-tolerance mechanisms, or FTMs. The aim of the

Manuscript received September 1, 2006. This work was supported in part

by the Spanish research projects “Improvement of VHDL-based fault
injection techniques” (TIC2002-02491) and “Study of VHDL-based fault
injection techniques: FPGA fault emulation and use of new distributed
simulation techniques” (TEC2005-05119).

The authors are with the Fault Tolerant Systems Research Group (GSTF)
of the Department of Computer Engineering (DISCA), Technical University
of Valencia (UPV), Camino de Vera s/n, 46022 Valencia, Spain (e-mail:
jcbaraza@disca.upv.es; jgracia@disca.upv.es; dgil@disca.upv.es;
pgil@disca.upv.es).

validation is to verify that the system and/or its built-in FTMs
accomplish the design specifications in presence of faults.

If the Dependability is analyzed at early phases of the
design cycle, both time and money can be saved in the
development process. A common experimental method to
validate the Dependability of a FTS is fault injection, which is
defined in [4] as the deliberate introduction of faults into a
system (the target system).

Fault injection techniques can be classified in three main
categories [5]: physical (also known as Hardware
Implemented Fault Injection, or HWIFI), software
implemented (SWIFI) and simulation-based. HWIFI is
accomplished at physical level, disturbing the hardware with
parameters of the environment (heavy ions radiation,
electromagnetic interferences, etc.) or modifying the logic
value of the pins of the integrated circuits. The objective of
SWIFI consists of reproducing at software level the errors that
would have been produced upon occurring faults in the
hardware or the software. In simulation-based fault injection
the system under test is simulated in another computer system.
The faults are induced altering the logical values during the
simulation.

Simulation-based fault injection is a useful experimental
way to evaluate the dependability of a system during the
design phase, thus reducing the time-to-market [6]–[8].
Another interesting advantage of this group of techniques with
regard to others is that those based on simulation offer both
high observability and controllability of all the modeled
components [9].

Particularly, there exist a group of fault injection techniques
based on the use of a hardware description languages (or
HDL) as modeling language. The most popular high-level
HDLs are VHDL, Verilog, and SystemC. In our case, we
work with VHDL [10].

These techniques are widely applied, due to the advantages
of employing a HDL. The present work is framed in this
group of techniques. Fig. 1 shows a classification of VHDL-
based fault injection techniques. Nevertheless, both this
taxonomy and the description of the injection techniques can
be generalized to any other HDL.

Simulator commands technique is based on the use of
simulator commands to modify the value or timing of the
model signals and variables, without altering the VHDL code
[6]. In the remaining techniques, the original VHDL code of
the model is modified, either inserting saboteurs [6], [11],
[12] or mutating the components of the model [6], [13], [14].

Enhancement of Fault Injection Techniques
Based on the Modification of VHDL Code

J. C. Baraza, J. Gracia, S. Blanc, D. Gil and P. J. Gil, Member, IEEE

T

 2

Fig. 1. VHDL-based fault injection techniques.

The techniques labeled as Other techniques are

implemented by extending the VHDL language, either by
adding new data types and signals, or modifying the VHDL
resolution functions [7], [15]. The new data types and signals
defined include the fault behavior description. However, these
techniques require developing ad-hoc compilers and
simulators, and introducing control algorithms to manage the
language extensions.

There are works related to fault injection with saboteurs
and mutants in other areas like test or FPGA-based fault
emulation, although the objective of the study in each area is
quite different.

In dependability analysis, the objective can be either to
verify the sensitivity to physical faults or validate the
effectiveness of the FTMs of a simulation model (not
necessarily synthesizable) of the system under analysis, by
modifying the operation of the model at simulation time.

In test, the aim of fault injection is to accelerate the test
process by obtaining reduced test pattern lists injecting faults
at higher abstraction levels, like RT or system. For instance,
in [16] a fault simulation tool has been developed for system
models designed in Verilog at RT level. The purpose of this
tool is not only to verify the model, but also to get the test
pattern set that obtains the best correlation in the fault
coverage between RT level and gate level. The RT fault
simulator is based on simulating a modified version of the
system model in which a number of zero-delay buffers
(similar to serial simple saboteurs –see Section IV-A) are
strategically inserted according to two statistical criteria:
optimistic and pessimistic analysis. The modified model is
then simulated with a commercial fault simulation tool called
Verifault. In [17] also a fault simulation tool is developed, but
in this case it accepts VHDL models at system level. Another
important difference with the work in [16] is that the fault
simulator developed performs the fault simulation by itself,
instead of using a commercial fault simulator. And last but not
least, another important dissimilarity is the fact that the
original model is mutated by inserting a special type of
functions able to alter the behavior of the system (see section
II.C for details). Finally, in [18] a technique to obtain the
stratified coverage of a complex (that is, composed of
multiple internal components) Verilog model at RT level is
presented. Like in [16], the authors use a gate-level
commercial fault simulator (in this case Verifault-XL) to
simulate a modified version of the model in which a number
of zero-delay buffers are judiciously inserted.

In FPGA-based fault emulation, the objective of fault
injection by using saboteurs and mutants is to synthesize into
a FPGA a modified version of the original model that can be

managed externally in order to emulate a faulty behavior.
Interesting works in this area are [19], where mutants are
implemented, [20] that applies saboteurs, and [21] that
implements behavioral saboteurs.

On the other hand, our research group has developed VFIT
[22], [23], a VHDL-based fault injection tool that applies
several of the techniques described above. In fact, only the
Other techniques group has not been implemented due to their
excessive complexity.

More information about dependability analysis and fault
injection can be found in [5].

In this work we intend to explain the drawbacks of some
models of saboteurs and mutants existing in the literature [24],
to justify the introduction of new implementations. Some
models of saboteurs and mutants will be discussed and
revised, and new models will be proposed. Also, we will show
how these new designs can be automatically inserted in a
model in order to perform a fault injection campaign,
illustrating the description of every proposal with an
application example. To confirm the effectiveness of the
enhancements introduced, we also include the results of a set
of injection experiments in which we compare aspects such as
the duration of the simulation and analysis phases (i.e., the
temporal cost of injecting the faults and comparing the faulty
simulation trace to the fault-free one), or the model size, and
of course, the overall data extracted from the injection
experiment.

The distribution of the paper is as follows. In Section II we
make a short review of the most common VHDL-based fault
injection techniques. Section III describes the fault injection
environment summarily. In Section IV, the models of
saboteurs developed are discussed, and a new set of models
are proposed. Section V analyses the models of mutants
currently used, and presents a new implementation method.
Results of implementing the new methods proposed are
shown in Section VI. Finally, both a discussion of the results
and a proposal of future work are provided in Section VII.

II. VHDL-BASED FAULT INJECTION TECHNIQUES

A. Fault Injection Using Simulator Commands

This fault injection technique is based on using the
commands of the simulator at simulation time, in order to
modify the value or timing of the signals and variables of the
model [24]. Moreover, as VHDL generic constants are
managed as special variables, it is possible to inject some non-
usual fault models, such as delay faults [8].

Using simulator commands it is possible to inject transient,
permanent and intermittent faults. Though, there exists one
restriction: due to the special nature of variables in VHDL, it
is not possible to inject permanent faults in variables.

This technique is the easiest one to implement, and its
temporal cost (to perform the simulation) is by far the lowest.
However, the number of fault models that can be injected is
smaller than with the other techniques.

Simulator
commands

Signals

Variables

VHDL code
modification

Saboteurs

Mutants
Other techniques

VHDL-based
fault injection

 3

B. Fault Injection with Saboteurs

A saboteur is a special VHDL component added to the
original model [12], [8]. When activated, the mission of this
component is to alter the value, or timing characteristics, of
one or more signals, simulating the occurrence of a fault.
During the normal operation of the system, instead, the
component remains inactive. Saboteurs affect to the ports of
the components in the model. Thus, this technique is
applicable only to structural descriptions.

Attending to how saboteurs are inserted in the model, two
types can be distinguished: serial and parallel [6]. As Fig. 2-a
shows, a serial saboteur interposes between a component
input port (I in the figure) and its source signal (O in the
figure), whereas a parallel saboteur (see Fig. 2-b) is added as
an additional source (S in the figure) of a given signal.

Fig. 2. Types of saboteurs. (a) Serial. (b) Parallel.

Parallel saboteurs have two important drawbacks respect to

serial: first, implementing them is noticeably more complex,
because it is necessary to modify the data type of the signal
affected, as well as the resolution function associated to the
data type (a resolution function defines how values from
multiple sources are resolved into a single value). And
second, they allow injecting fewer fault models. For these
reasons, their implementation has no special interest. So, in
this work, only serial saboteurs will be considered.

C. Fault Injection with Mutants

A mutant is a component that replaces another component.
While inactive, it works like the original component, but
when it is activated, it behaves like the component in presence
of faults. The mutation can be made in three ways:
 By adding saboteurs to structural model descriptions.
 By modifying structural descriptions replacing sub-

components (i.e., a NAND gate can be replaced by a
NOR gate).

 By modifying syntactical structures of behavioral
descriptions.

There can exist lots of possible mutations in a VHDL
model, so representative subsets of faults at logical and RT
levels must be considered [13], [14], [25]: replacing the
values of conditions in if and case statements (called stuck-
then, stuck-else, dead clause, etc.), disturbing assignment

statements (assignment control, global stuck-data, etc.),
disturbing operators in expressions (micro-operation, local
stuck-data), etc.

In our case, we have considered the following fault models
[22]:
 Stuck-then: Replacement of the if condition by true.
 Stuck-else: Replacement of the if condition by false.
 Assignment control: Disturbing an assignment

operation.
 Dead process: Elimination of the sensitivity list of a

process.
 Dead clause: Elimination of a clause in a case.
 Micro-operation: Disturbing an operator.
 Local stuck-data: Disturbing the value of a variable,

constant or signal in an expression.
 Global stuck-data: Elimination of all value

modifications of a variable or signal in an
architecture.

Many of these fault models do not have a direct
correspondence with physical faults, but they can show
somehow an erroneous internal operation.

III. THE FAULT INJECTION ENVIRONMENT

The Fault Tolerant Systems Research Group (GSTF) has
developed a fault injection tool called VFIT (VHDL-based
Fault Injection Tool) [22], [23], that runs on PC computers (or
compatible) under Windows® and is model-independent.
Although it admits models at any abstraction level, it has been
mainly used on models at gate and RT levels.

With VFIT it is possible to inject faults automatically
applying simulator commands technique. It is also feasible to
inject faults using saboteurs and mutants, but in this case the
injection process needs the intervention of the user because
the insertion of the saboteurs and the generation of mutants
are not automatic.

It can inject permanent, transient and intermittent faults.
When applied to models at gate and RT levels, it uses a wide
set of fault models that try to be representative of deep
submicron technologies (see Table I). This set surpasses the
classical stuck-at (for permanent faults) and bit-flip (for
transient faults).

The experiment configuration is carried out through VFIT's
graphic user interface (GUI). Among other functions, this
GUI allows the user (with the help of a built-in VHDL parser)
to select a list of fault targets among all the possible targets in
the model. The class of the fault targets eligible depends
directly on the fault injection technique applied (i.e. model
signals and variables for simulator commands; inputs and
internal connection signals of the model components for
saboteurs; and special VHDL sentences for mutants). Also,
for each fault target (and again depending on the fault
injection technique applied), a number of fault models
suitable to inject into it can be selected.

Later, an injection scheduler “decides” that at a given time
instant (we call it the “injection instant”), the value of one or

Original model

Sabotaged model O S I

O I

Control

(a)

O

O

I

I
n

(b)

O

O

S

I

I

Control

n

 4

several points of the system (the fault targets) must behave in
a wrong way, either only for a short time (simulating the
occurrence of a transient fault) or permanently (until the end
of the simulation). At simulation time, the injection manager
runs the simulator indicating these parameters. What "wrong
behavior" of the fault targets means depends strongly on the
injection technique used.
 In case of simulator commands, the injection consists

on modifying directly the internal value or timing of the
fault target(s) by using the commands of a simulation
language (in our case, Tcl).

 When saboteurs are used, the injection consists on
modifying directly (also by using simulator commands)
the control lines that manage one or several saboteurs
inserted in the original model. In this way, the
saboteur(s) activated will propagate the affected lines
with erroneous values or timing.

 When injecting faults with mutants, the injection is very
similar to the injection with saboteurs. By means of
simulator commands, an erroneous sentence will be
"executed" instead of the correct one.

During the simulation phase, VFIT automatically selects
randomly a fault target from the list, and then, a particular
fault model to inject on it.

The output of an injection experiment can be either an error
syndrome analysis or a validation. In both cases, output data
are a set of tables. In case of an error syndrome analysis,
tables contain among other values: propagation latencies,
percentages of propagated errors, and percentages of failures.
In case of performing a validation, tables show propagation,
detection and recovery latencies, percentages of propagated,
detected, and recovered errors, detection and recovery
coverages and failure percentages.

IV. AUTOMATING THE INSERTION OF SABOTEURS

In this Section, after discussing the main advantages and
drawbacks of other saboteur models existing in the literature
and previously developed, we describe a new set of saboteur
models implemented. Also, we include an example that
explains how to automate the insertion of saboteurs using the
new proposal.

A. Previous Models

So far, VFIT can inject faults using serial saboteurs inserted
manually in the design. The models of saboteurs implemented
are [24]:
 Serial Simple Saboteur, SSS: It interrupts the

connection between an unidirectional local port of a
component and its formal port, modifying either its
value or its timing.

 Serial Simple Bidirectional Saboteur, SSBS: It has two
bidirectional ports, and a read/write signal (R/W) that
determines the direction of the perturbation.

 Serial Complex Saboteur, SCS: It breaks the connection
between two unidirectional local ports and their formal
ports, modifying either their values or their timing.

 Serial Complex Bidirectional Saboteur, SCBS: It has
two couples of bidirectional ports, and a read/write
signal (R/W) that determines the direction of the
perturbation.

 N-bit Unidirectional Simple Saboteur, nUSS: It applies
to n-bit unidirectional buses (for instance, address and
control). It has been implemented by means of a
structural description, using n Serial Simple Saboteurs.

 N-bit Bidirectional Simple Saboteur, nBSS: It is used
with n-bit bidirectional buses (for instance, data and
control), and it is composed by n Serial Simple
Bidirectional Saboteurs.

 N-bit Unidirectional Complex Saboteur, nUCS: It
applies to n-bit unidirectional buses, and it is composed
by n/2 Serial Complex Saboteurs.

 N-bit Bidirectional Complex Saboteur, nBCS: It is used
with n-bit bidirectional buses, and composed by n/2
Serial Complex Bidirectional Saboteurs.

Every saboteur is controlled by means of three inputs:
 Control, whose mission is the timing of the injection: its

activation determines both the injection instant (tinj) and
the fault duration (tinj). It can be seen more clearly in
Fig. 3.

Fig. 3. Timing of fault injection.

 Selection, that allows selecting the fault model to be

injected.

TABLE I
FAULT MODELS INJECTED BY VFIT AT GATE AND RT LEVELS

Injection technique Transient faults Permanent/Intermittent faults

Simulator commands Pulsea, Bit-flipb, Indetermination, Delay Stuck-at (0,1), Indetermination, Open-line, Delay

Saboteurs Pulsea, Bit-flipb, Indetermination, Delay Stuck-at (0,1), Indetermination, Open-line, Delay, Short,
Bridging, Stuck-open

Mutants Stuck-then, Stuck-else, Assignment control, Dead process,
Dead clause, Micro-operation, Local stuck-data,
Global stuck-data

Stuck-then, Stuck-else, Assignment control, Dead process,
Dead clause, Micro-operation, Local stuck-data,
Global stuck-data

aApplied to combinational logic, it represents a Single Event Transient (SET)
bApplied to storage elements (registers and memory), it represents a Single Event Upset (SEU)

Control fault

t

tinj

tinj

 5

 R/W, which indicates, in the bidirectional versions, the
direction of the perturbation.

Although this technique requires an extra complexity due to
the addition of these control signals, saboteurs allow injecting
more fault models than simulator-commands (see Table I).
This makes the technique attractive enough.

However, at the time we intended to incorporate the models
developed to VFIT, some problems were found when we tried
to automate the selection of the most adequate saboteur model
in each case. The main causes were the excessive number of
saboteur models and the way they are implemented (by means
of structural descriptions). We have tried a new set of models
that fix some ambiguity difficulties, reduce the number of
saboteurs, and simplify their complexity, and consequently,
also the complexity of the sabotaged design.

B. Enhanced Models

The new models of saboteurs proposed, shown in Fig. 4,
are four [26]:
 Unidirectional Serial Saboteur, USS: It is the same

model as the SSS in the previous set, although the USS
allows injecting new fault models.

 Bidirectional Serial Saboteur, BSS: It is similar to the
SSBS in the first set, but like in the previous case, the
fault model set that can be injected has been extended.
Also, it eliminates the R/W control signal.

 N-bit Unidirectional Serial Saboteur, nUSS: This model
replaces all the unidirectional multi-bit models in prior
model set.

 N-bit Bidirectional Serial Saboteur, nBSS: It replaces all
bidirectional multi-bit models in the former proposal,
and eliminates the R/W control signal.

As the timing of Control and Selection inputs are identical,
we have implemented an "optimized" version of these models
in which the fault injection is managed only by Selection
input. The idea is simple: when an injection is in progress,
Selection indicates the fault(s) to be injected; but while no
fault is injected, the value of Selection must represent a "no-
fault" injection. However, this reduced version has a negative
aspect: only single faults and multiple faults in the domain of
time can be injected. To inject faults in the domain of space,
the original scheme must be used.

Fig. 4. New set of saboteurs implemented. (a) Unidirectional Serial Saboteur;
(b) Bidirectional Serial Saboteur; (c) N-bit Unidirectional Serial Saboteur;
(d) N-bit Bidirectional Serial Saboteur [26].

As an example, we show next a simplified scheme of the

BSS saboteur, written in VHDL pseudo-code [24].

architecture behavioral of BSS
begin
 process (I, O, R/W, Control)
 begin
 if Control = ‘1’ and not Control’stable then
 fault_type_selection;
 if R/W =’1’ then
 O <= finj(I,Selection);
 else
 I <= finj(O,Selection);
 end if;
 else
 if R/W =’1’ then
 O <= I;
 else
 I <= O;
 end if;
 end if;
 end process;
end architecture;

This new set of saboteur models has important differences
respect to prior ones:
 All models have been implemented using behavioral

descriptions. This simplifies greatly their code and,
what is more important, also the code of the design
including the saboteurs. Moreover, the n-bit versions
can be used for vectors of any length, because their
length is defined by means of a generic parameter.
Every time an n-bit saboteur is added to the model, the
actual value of the generic parameter must be set.

 The number of saboteurs has been reduced to ease their
automatic insertion. Now, depending on both the length
(1 bit or n bits) and the mode (that is, the directionality)
of the port sabotaged, only one model can be chosen.

 The bidirectional versions have the capability of
injecting the fault only in the direction that data flow. In
this way, the R/W input used in the models of prior
version is not anymore needed, thus reducing the
overhead. In the reduced version used to inject single
faults, without the Control input, the spatial overhead is
even more diminished.

 They can inject more fault models: pulse, short, and
bridging.

C. Automatic Insertion of Saboteurs in the Design

The task of modifying automatically a source code seems
apparently very complex. However, if the injection tool
includes a parser, this is not actually so. From a syntactical
tree of the model containing its complete structure, it is
possible to go over the tree and generate a new copy of the
source files, inserting new sentences or modifying other
existing as needed. The insertion of saboteurs involves three
actions:
1) Declaring the signals required to activate the saboteurs

and to select the fault model to be injected.
2) Declaring the components of the saboteurs introduced.
3) Inserting the instances of the saboteurs, interposing

between local and formal ports of the sabotaged
components. This also implies declaring new signals to
connect the saboteurs to local ports, and modifying the
original mapping of ports.

 6

Fig. 5 shows an example of a sabotaged model. Shaded
boxes and dashed lines in lower scheme represent respectively
the saboteurs and the connection signals added to the model.
To simplify the scheme, the control signals (Control and
Selection) have been omitted.

Fig. 5. Example of perturbation of a model. Distribution of saboteurs [26].

Fig. 6 describes how the three actions affect to the VHDL

code of the model. To simplify, only the insertion of two
saboteurs is shown, but the operation is exactly the same for
all of them. In the figure, the original VHDL code is shown at
the left side, and the perturbed code at the right side. Here, the
text in bold types represents the new code.

It is possible to distinguish in the figure the three actions
aforementioned. Remark that in the signal declaration, not
only the control and selection signals are included, but also
those signals required to connect the saboteurs.

With the new set of models proposed, automating the
insertion of saboteurs in a model (in previously selected
locations) will be relatively easy, by using a VHDL parser as
VFIT does. This facility is also used in other tools [18].

V. AUTOMATING THE GENERATION OF MUTANTS

Injecting faults using mutants is quite more difficult than
with the other two techniques described in Section II. The
main problem lies on the spatial overhead introduced due to
the generation of the mutations of the model. Nevertheless, in
modern computers the storage is not actually a problem, so
implementing this technique is nowadays more feasible.

In this Section, after discussing the drawbacks of two
approaches of implementation of mutants, a new method is
presented. Also, an example of automatic generation is
shown.

A. Previous Approaches

VFIT can inject faults using mutants inserted manually in
the design (see Section III). In this subsection, the methods
followed to implement this technique are described.

The first approach to implement mutant-based fault
injection consists on generating multiple replicas of the
architectures of all the components in the model, where every
replica includes one modification (or mutation) in the VHDL
code [24]. Each modification corresponds to the injection of
one fault.

By means of the VHDL configuration mechanism (that is,
the configuration statement), multiple versions
(mutations) of the model can be generated. Also, there exists
another configuration (without faults) that includes the
original versions of all the model components.

The injection consists on selecting and simulating one of
the multiple mutated configurations of the model. Due to the
static nature of the configurations, only permanent faults can
be injected using this approach, and moreover, from the very
beginning of the simulation.

To fix this problem, a dynamic approach has been
developed. It is based on the use of guarded signals
together with the configuration mechanism [24]. In this way,
at simulation time it is possible to stop the simulation of the
original version of the model, and restart it simulating a faulty
configuration. By using a number of simulator commands, the
status of the simulation (that includes the simulation time and
the value of all the signals and variables of the model) of the
original version of the model can be saved on a file, and the
same status is restored in the simulation of the faulty
configuration. With the dynamic approach it is possible to
inject (at any injection time) permanent, transient and
intermittent faults.

However, this implementation has a serious drawback: the
synchronization (that is, saving and restoring the simulation
status) between the simulation of the fault-free architecture
and the faulty architecture involves an enormous temporal
cost. In [24], a comparison of the temporal cost of the three
fault injection techniques implemented in VFIT was
presented. The results showed that the average simulation
time (that is, the duration of simulation phase) was more than
100 times longer when using mutants than when using
simulator commands, evidently due to the synchronization
between the simulations.

B. A New Proposal to Implement Mutants

To avoid synchronizing simulations, we suggest a “brute
force” implementation. What we propose is quite simple: to
generate a unique mutated version of every architecture used
in the model that includes all the possibilities of mutation
considered previously in the set-up phase [26]. Obviously, if
no statement is selected to be mutated in a particular
architecture, it is not necessary to mutate the component.

In most cases, the modifications in the code are included by
using if and case statements, although there are other
possibilities, as shown in the example in Fig. 7 and Fig. 8. The
aim of this type of modifications is to allow choosing among
the correct statement and multiple wrong versions. For this
purpose, a new input port (called Selection) must be inserted
in the interface of the entity. The mission of Selection port is
to specify the particular mutation to be activated, by asking its
value in every “branch” of the mutated code. We call
“branch” to every statement inserted to select between the
correct operation and the wrong ones. The condition to
activate one of the options is that the value of Selection
coincides with the value specified in the selection statement.

Another modification required is to declare a

44

i1
i2

o1
o2

nUSS
44

i1
i2

o1
o2

44
nUSS

USS

 7

Fault_Selection signal in the upper level of the model, which
will be associated (mapped) to every local Selection port of
the mutated components inserted, replacing the original ones.
With this approach, also injecting faults becomes very easy.
By using simulator commands, the value of Fault_Selection
signal can be modified at simulation time. In this way, it is
possible to inject faults of the same time characteristics than
with simulator-commands technique: transient, permanent and
intermittent.

Remark that, respect to prior approaches, the new method
reduces not only the temporal overhead, but also the spatial,
as multiple entire replicas of each architecture are replaced by
only one that includes all the modifications. However, some
temporal overhead could be expected in the simulation time
due to the higher complexity of the mutated model.

Fig. 6. Example of perturbation of a model. Modification of the VHDL code.

Insertion of additional signals (control + connection)

Insertion of saboteur declarations

Interposition of saboteurs

 8

C. Automatic Generation of Mutants

This new proposal to implement mutants is so simple that
automating the generation of mutants of a given model is not
complicated at all. Assuming that an injection tool has a
parser, locating in the code the target statements to be mutated
and replacing them with new ones is very easy. Next we show
a practical example.

Fig. 7 represents the mutation of a component inserted in a
given model. At the left side we can see the original VHDL
code of the component, and at the right side, the mutated
code. Here, the text in bold types represents the modifications
introduced. The arrows labeled with (1) correspond to
modifications in the interface, and those labeled with (2) to
the statements’ mutation. In the example, a signal assignment
and an if statement have been mutated. The signal
assignment has been replaced with a conditional signal
assignment, and to mutate the if, a case statement has been
inserted. Both operations are relatively easy to perform
automatically.

Fig. 8 shows the modifications required in the top level of
the design. As commented in previous section, the changes
introduced are of two types. On the one hand, to declare the
signal that selects the mutation to activate at injection time.
On the other hand, to replace the original components with the
mutated ones; this affects to both the component declaration
and instantiation.

VI. COMPARISON OF THE INJECTION TECHNIQUES USING THE

NEW MODELS OF SABOTEURS AND MUTANTS

A. Notation

The following notation is used in the remaining of this
paper:

tinj Injection instant;
tp Time when the error is activated;
td Time when the activated error is

detected by detection mechanisms;
tr Time when the detected error is

recovered by recovery mechanisms;
NInjected Number of faults injected;
NActivated Number of activated errors;
NDetected Number of errors detected by detection

mechanisms;
NDetected_recovered Number of errors detected by detection

mechanisms, and recovered by recovery
mechanisms;

Lp Propagation latency;
Ld Detection latency;
Lr Recovery latency;
PA Percentage of activated faults;
Cd Error detection coverage;
Cr Error recovery coverage;

B. Experiment set-up

In [24] we compared the three injection techniques

applying the former models of saboteurs and mutants. In this
section, we intend to repeat the experiments carried out then,
and compare the results obtained to the ones in [24]. The most
relevant injection parameters are the following:
1) System model: A 16-bit academic fault-tolerant micro-

computer system, duplex with cold stand-by sparing,
parity detection and watchdog timer [22].

2) Injection technique: Simulator commands, saboteurs and
mutants.

3) Number of faults: 3000 single faults per experiment.
4) Fault types and duration: Permanent, and transient with a

duration defined according to a Uniform distribution
function in the range [0.1Tcycle, 10.0Tcycle], where Tcycle is
the CPU clock cycle.

5) Fault models: See Table I.
6) Workload: Calculus of an arithmetic series of n integer

numbers and Bubblesort.
We have inserted the equivalent new models of saboteurs in

the same places as in the original experiments. Also, we have
introduced in the model all the same mutations as in the
original experiments. Finally, we have performed an
experiment using simulator commands technique to be used as
reference in the comparisons.

In order to make a complete comparison of the injection
techniques (and of the different versions), we have measured
two types of data in all cases.

On the one hand, performance parameters, like:
 The size of the source code. This gives an idea of the

spatial overhead introduced by every technique and
version.

 The average simulation time (of one 3000-fault
injection experiment).

 The average analysis time (of one experiment). It is the
duration of the analysis phase.

 The size of the simulation traces, distinguishing
between the golden run and the average size of the
faulty traces. We have included it to see if the new
methods provoke a significant growth in the number of
simulation events.

Also, we have compared the outcomes of the proper
injection experiment. In this way, we have measured:
 The percentage of activated errors:

100
N

N
P

Injected

Activated
A

 Propagation, detection and recovery latencies:

injpp ttL

pdd ttL

drr ttL

 The error detection and recovery coverages:

100
N

N
C

Activated

Detected
d

100
N

N
C

Activated

ecoveredDetected_r
r

 9

Respect to the original experiments, we have changed the
computer where the simulations have been run. In the original
experiments, the computer had a Pentium® II microprocessor
at 350 MHz and 192 MB of RAM. In the experiments
described here, the computer used has a Pentium® 4
microprocessor at 2.80 GHz and 1 GB of RAM. Also, current
release of the injection tool uses enhanced injection and
analysis algorithms. For these reasons, we have repeated all
the original experiments in order to get a coherent comparison
of the results.

Due to the number of experiments performed (up to twenty,
divided in four campaigns per injection technique and version,
varying both the fault duration and workload run), and the
high amount of data collected, it is useful to classify these
injection campaigns:

 Campaign 1: Injection of transient faults when the
model runs the arithmetic series.

 Campaign 2: Injection of permanent faults when the
model runs the arithmetic series.

 Campaign 3: Injection of transient faults when the
model runs the Bubblesort algorithm.

 Campaign 4: Injection of permanent faults when the
model runs the Bubblesort algorithm.

The results will be presented in a tabular way
distinguishing the four injection campaigns carried out, and
with two separate groups of tables: one for the performance
parameters, and the other one for the analysis outcomes.

The comparison of performance parameters is indicated in
Table II, Table III, Table IV, Table V and Table VI. Table II
shows only the source code size, because this parameter is
independent of the fault duration and the workload run,
whereas the other tables show the remaining parameters.

In Table VII, Table VIII, Table IX and Table X we
illustrate the comparison of the analysis results.

Fig. 7. Example of mutation of a model. Modification of the VHDL code of a component.

(1)

(1)

(1)

(2)

(2)

(2)

 10

Fig. 8. Example of mutation of a model. Modification of the VHDL code of the top level.

C. Performance Comparison of Saboteur Approaches

Looking at Table II, the size of the source code of the
sabotaged model when using the new saboteur models is
slightly greater than when using the former ones, although the
difference is not very important.

TABLE II

COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS: SOURCE CODE

SIZE

 Parameter

Injection technique (version) Source code sizea (code lines)

Simulator commands 1141

Saboteurs (old) 1754

Saboteurs (new) 2016

Mutants (dynamic) 251821

Mutants (new) 2283
aThe code corresponding to common libraries is not included.

With regard to the simulation time, we can observe that
there is a variation in this parameter depending on the
workload. When the workload is the arithmetic series, the
simulation time is lower in the new saboteur models, whereas
it is lower in the old models when the Bubblesort algorithm is
run. Anyway, the overall temporal cost (that is, the sum of the

simulation time plus the analysis time) is lower with the new
models regardless the workload run, although slightly greater
than with simulator commands technique. The reason is the
higher complexity of the sabotaged model.

In relation to the size of simulation traces, two aspects
should be taken into consideration. First, the size of the
golden run is smaller when injecting with the new saboteurs
(in fact, it has the same size as with simulator commands)
than with the former ones. However, the average size of
injection traces is bigger with the new saboteurs, although it is
smaller than with simulator commands. The size of a faulty
simulation trace depends on the final effect of the fault(s)
injected.

On the one hand, it can happen that no error is propagated
to the system. In this case, the simulation trace will have
approximately the same size as the golden run.

If any errors are propagated to the system, the activation of
the FTMs implies more simulation events, and hence, the
simulation trace is bigger.

Finally, if a crash occurs in the system due to the
propagation of the fault(s) injected, the simulation trace is
smaller than the golden run.

So, if the average size of injection traces is bigger in the
new saboteurs, we can infer that the new saboteur models
provoke a higher number of propagated errors, and hence,

Insertion of addtional signals (fault selection)

Instantiation of mutated components

Modification of the declarationsof mutated components

 11

they activate more times the FTMs of the model.
Considering that the new saboteur models allow injecting a

wider fault model set (as indicated in Section IV.B), and that
they can be integrated more easily, we can conclude that the
new set of saboteurs has improved the performance of the
technique in relation to the former models.

D. Performance Comparison of Mutant Approaches

When comparing the performance of both mutant
approaches, enormous differences can be found in both the
system model size and the simulation time.

In effect, the size of the mutated model with the dynamic
mutants is more than 100 times bigger than with the new
approach. As we pointed out in Section V.B, this is because in
an n-fault injection experiment, a total of n replicas of
different architectures as well as n model configurations are
generated. Although these components are small, when n is
big enough (say 3000, like in the experiments described here)
make the code to grow considerably.

With regard to the simulation time, it is between 183 and
805 times lower with the new mutants than with the dynamic
approach. In fact, the cost of the new mutants is similar to the
cost of the new saboteur approach.

On the other hand, no important differences have been
found in the analysis phase duration.

Finally, in relation to the size of simulation traces, two
details can be considered. Firstly, in the new approach there is
a reduction of the average injection trace size respect to the
golden run, whereas in the dynamic approach the average
injection trace size is very similar to the golden run. Notice
that when running the Bubblesort algorithm, all the simulation
traces are bigger with the dynamic mutants than with both the
new mutants and simulator commands. The reason is that in
this workload there are much more simulation events.

Secondly, there is a generalized increment in the average
injection trace size in new mutants respect to simulator
commands. As explained in Section VI.C, this may imply that
the system FTMs are activated more times; that is, it might
indicate a greater error propagation rate.

E. Overall Comparison of Performance of Injection
Techniques

Comparing only the injection techniques, and considering
exclusively the new methods proposed, one could assert that
injecting faults with saboteurs has a higher temporal cost than
with simulator commands.

In fact, the advantages of the new saboteurs are not evident
because their improvements are not quantitative but
qualitative: they can be automatically inserted in the model
quite easily and they allow inject a wider fault model set.

It is evident that saboteur-based technique introduces a
strong overhead in the model, due to the insertion of new
components (the saboteurs) and signals to connect and
manage them. However, this overhead does not result in an
important spatial overcost, and the temporal cost is absolutely
affordable by current computers, so the technique still remains
interesting.

Concerning mutants, with the new approach they have now
the same complexity (both temporal and spatial) as saboteurs.
The reduction of the spatial overhead can be because of two
motives. On the one hand, the model under analysis is quite
simple; on the other hand, not many mutations have been
introduced in the model (about 60). For these reasons, when
either applying this technique to more complex models, or
simply inserting more mutations, an increment in the temporal
cost (both in simulation and analysis times) could be
expected.

TABLE III

COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 1): PERFORMANCE

 Parameter

Injection technique (version) Simulation Time (min) Analysis Time (min)

Simulation Trace Size (kB)

Golden run Injections

Simulator commands 21 5 327 310

Saboteurs (old) 24 8 336 252

Saboteurs (new) 20 6 327 252

Mutants (dynamic) 16923a 6 327 323

Mutants (new) 21 5 327 294
ai.e. 11 days, 18 hours, and 3 minutes.

TABLE IV

COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 2): PERFORMANCE

 Parameter

Injection technique (version) Simulation Time (min) Analysis Time (min)

Simulation Trace Size (kB)

Golden run Injections

Simulator commands 23 6 327 284

Saboteurs (old) 24 7 336 251

Saboteurs (new) 22 5 327 262

Mutants (dynamic) 10474a 5 327 327

Mutants (new) 23 5 327 292
ai.e. 7 days, 6 hours, and 34 minutes.

 12

TABLE V
COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 3): PERFORMANCE

 Parameter

Injection technique (version) Simulation Time (min) Analysis Time (min)

Simulation Trace Size (kB)

Golden run Injections

Simulator commands 68 30 1780 1761

Saboteurs (old) 76 66 1816 1344

Saboteurs (new) 89 32 1780 1456

Mutants (dynamic) 16690a 26 2313 2329

Mutants (new) 86 29 1780 1628
ai.e. 11 days, 14 hours, and 10 minutes.

TABLE VI
COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 4): PERFORMANCE

 Parameter

Injection technique (version) Simulation Time (min) Analysis Time (min)

Simulation Trace Size (kB)

Golden run Injections

Simulator commands 64 29 1780 1617

Saboteurs (old) 76 62 1817 1347

Saboteurs (new) 86 30 1780 1514

Mutants (dynamic) 15388a 22 2313 2342

Mutants (new) 84 29 1780 1630
ai.e. 10 days, 16 hours, and 28 minutes.

F. Comparison of the Analysis Results

Table VII, Table VIII, Table IX and Table X contain the
analysis results calculated in the four injection campaigns.

It is difficult to compare the outcomes obtained with the
three injection techniques, because both their nature and the
fault models that can be injected with each technique are very
different. However, it is possible to compare the results got
with the old and new proposals of both saboteurs and mutants
injection techniques.

In relation to saboteurs, we can conclude that the increment
in the number of fault models injectable with the new
approach has provoked a raise in the number (and thereby,
also in the percentage) of activated faults. These new faults
affect the system making the FTMs to work harder, as the
higher values in the detection and recovery coverages reflect.
This allows a better checking of the FTMs.

The trend in new mutants is, to a certain extent, similar to
saboteurs. Although the percentage of activated errors is
lower, the propagated errors are more harmful than with
dynamic mutants (notice again the increase of detection and
recovery coverages). Obviously, the 100% of activated errors
in dynamic mutants is not realistic at all. So, any incorrect
operation of the synchronization mechanism used there must
have occurred. A reason for the increment in the detection and
recovery coverages can be that the automation of new mutants
has allowed injecting faults in more targets than with the old
approach.

VII. CONCLUSION

In this paper, new methods to implement and use saboteurs
and mutants into VHDL models in an automatic way have
been proposed.

The new models of saboteurs fix some problems of
ambiguity that the previous approach had. These problems
prevented their automatic insertion. Moreover, the new
models have been implemented in such a way that they
diminish the overhead, by reducing the number of signals
required to manage bidirectional saboteurs. Another
enhancement respect to prior models is that they allow
injecting more fault models. The numeric results of
comparing both proposals do not reflect these improvements.
Instead, a slight temporal overhead has been introduced.
Anyway, the overall temporal cost (the sum of simulation and
analysis times) of this technique is affordable with modern
computers.

The advantages of the new proposal to implement mutants
are especially relevant: it is easy to automate and reduces
notably the spatial overhead. But its main success is to shrink
considerably the temporal overhead. In the experiments
carried out, the overall temporal cost is equivalent to the
obtained with the new saboteurs.

 13

TABLE VII
COMPARISON OF THE FAULT INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 1): ANALYSIS RESULTS

 Parameter

Injection technique (version) PA (%) lp (ns) ld (ns) lr (ns) Cd (%) Cr (%)

Simulator commands 63.63 900 34491 103600 41.70 31.64

Saboteurs (old) 53.73 4661 13348 50965 74.01 0.93

Saboteurs (new) 74.27 5070 24539 90937 53.32 15.31

Mutants (dynamic) 100.00 108 22608 52961 30.80 22.13

Mutants (new) 46.93 17925 37089 96053 53.69 23.30

TABLE VIII

COMPARISON OF THE FAULT INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 2): ANALYSIS RESULTS

 Parameter

Injection technique (version) PA (%) lp (ns) ld (ns) lr (ns) Cd (%) Cr (%)

Simulator commands 72.83 5546 39992 119563 50.43 21.37

Saboteurs (old) 54.07 4415 12076 80010 74.60 1.11

Saboteurs (new) 67.40 5843 31477 94693 50.79 14.64

Mutants (dynamic) 100.00 132 29691 0 7.40 0.00

Mutants (new) 47.30 18978 35399 93715 55.95 23.40

TABLE IX

COMPARISON OF THE FAULT INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 3): ANALYSIS RESULTS

 Parameter

Injection technique (version) PA (%) lp (ns) ld (ns) lr (ns) Cd (%) Cr (%)

Simulator commands 64.93 1210 36194 111563 42.15 39.17

Saboteurs (old) 54.37 4904 14525 3940 77.07 0.49

Saboteurs (new) 75.83 6138 27657 89372 59.38 24.66

Mutants (dynamic) 100.00 108 729 39332 95.47 86.13

Mutants (new) 48.03 20506 51594 104862 72.73 42.12

TABLE X

COMPARISON OF THE FAULT INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 4): ANALYSIS RESULTS

 Parameter

Injection technique (version) PA (%) lp (ns) ld (ns) lr (ns) Cd (%) Cr (%)

Simulator commands 74.83 6659 39589 131567 55.41 34.65

Saboteurs (old) 54.53 5077 13442 3636 76.77 0.37

Saboteurs (new) 69.13 6991 33177 93038 59.11 28.88

Mutants (dynamic) 99.47 199 16795 131030 9.92 1.41

Mutants (new) 48.37 21435 51073 103326 72.02 42.32

REFERENCES
[1] C. Constantinescu, “Impact of deep submicron technology on

dependability of VLSI circuits”,. in Proc. DSN, 2002, pp. 205–209.
[2] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger and L. Alvisi,

“Modeling the effect of technology trends on Soft Error rate of
combinational logic”, in Proc. DSN, 2002, pp. 389–398.

[3] C. Constantinescu, “Neutron SER characterization of microprocessors”,.
in Proc. DSN, 2005, pp. 754–759.

[4] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie, E.
Martins, and D. Powell, “Fault injection for Dependability validation: A
methodology and some applications”, IEEE Trans. Softw. Eng., vol. 16,
no. 2, pp. 166–182, Feb. 1990.

[5] A. Benso and P. Prinetto, eds., “Fault Injection Techniques and Tools
for VLSI reliability evaluation”, Kluwer Academic Publishers, 2003.

[6] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and J. Karlsson, “Fault injection
into VHDL models: the MEFISTO tool”, in Proc. FTCS, 1994, pp. 356–
363.

[7] V. Sieh, O. Tschäche, and F. Balbach, “VERIFY: Evaluation of
Reliability using VHDL-models with embedded fault descriptions”, in
Proc. FTCS, 1997, pp. 32–36.

[8] D. Gil, J. Gracia, J. C. Baraza, and P. J. Gil, “A study of the effects of
transient fault injection into the VHDL model of a Fault-Tolerant
microcomputer system”, in Proc. IOLTW, 2000, pp. 73–79.

[9] D. Gil, J. Gracia, J. C. Baraza, and P. J. Gil, “Impact of faults in
combinational logic of commercial microcontrollers”, Lect. Notes
Comp. Sc., no. 3463, pp. 379–390, Springer-Verlag, 2005.

[10] Institute of Electric and Electronic Engineers (IEEE), “IEEE Standard
VHDL Language Reference Manual”, IEEE Std 1076–1993, 1994.

[11] A. M. Amendola, A. Benso, F. Corno, L. Impagliazzo, P. Marmo, P.
Prinetto, M. Rebaudengo, and M. Sonza Reorda, “Fault behavior
observation of a microprocessor system through a VHDL simulation-
based fault injection experiment”, in Proc. EURO-DAC/EURO-VHDL,
1996, pp. 536–541.

[12] J. Boué, P. Pétillon, and Y. Crouzet, “MEFISTO-L: A VHDL-based
fault injection tool for the experimental assessment of Fault Tolerance”,
in Proc. FTCS, 1998, pp. 168–173.

[13] S. Ghosh and T. J. Chakraborty, “On behavior fault modeling for digital
design”, J. Electron. Test., vol. 2, no. 2, pp. 135–151, Kluwer Academic
Press, June 1991.

[14] J. R. Armstrong, F.-S. Lam, and P. C. Ward, “Test generation and fault
simulation for behavioural models”, in Performance and Fault
Modelling with VHDL (J. M: Schoen ed.), Englewood Cliffs, Prentice
Hall, 1992, pp. 240–303.

 14

[15] T. A. DeLong, B. W. Johnson, and J. A. Profeta III, “A fault injection
technique for VHDL behavioral-level models”, IEEE Des. Test
Comput., vol. 13, no. 4, pp. 24–33, Winter 1996.

[16] W. Mao and R.K. Gulati, “Improving gate level fault coverage by RTL
fault grading”, in Proc. ITC, 1996, pp. 150–159.

[17] P. Sanchez and I. Hidalgo, “System level fault simulation”, in Proc.
ITC, 1996, pp. 732–740.

[18] P.A. Thaker, V.D. Agrawal and M.E. Zaghloul, “A test evaluation
technique for VLSI circuits using register-transfer level fault modeling”,
in Proc. ITC, 1996, pp. 732–740.

[19] R. Leveugle, “A new approach for early dependability evaluation based
on formal property checking and controlled mutations” in Proc. DATE,
2005, pp. 260–265.

[20] H.R. Zarandi and S.G. Miremadi, “Dependability evaluation of Altera
FPGA-based embedded systems subjected to SEUs”, Microelectron.
Reliab., vol. 47, no. 2–3, pp. 461–470, February–March 2007.

[21] G.C. Cardarilli, F. Kaddour, A. Leandri, M. Ottavi, S. Pontarelli and R.
Velazco, “Bit flip injection in processor-based architectures: a case
study”, in Proc. IOLTW, 2002, pp. 117–127.

[22] J. C. Baraza, J. Gracia, D. Gil, and P. J. Gil, “A prototype of a VHDL-
based fault injection tool: Description and application”, J. Syst.
Architect., vol. 47, no. 10, pp. 847–867, April 2002.

[23] D. Gil, J. C. Baraza, J. Gracia, and P. J. Gil, “VHDL simulation-based
fault injection techniques”, Chapter 4.1 in [5] 2003, pp. 159–176.

[24] D. Gil, J. Gracia, J. C. Baraza, and P. J. Gil, “Study, comparison and
application of different VHDL-based fault injection techniques for the
experimental validation of a Fault-Tolerant System”, Microelectron. J.,
vol. 34, no. 1, pp. 41–51, Jan. 2003.

[25] T. Riesgo and J. Uceda, “A Fault Model for VHDL Descriptions at the
Register Transfer Level”, in Proc. EURO-DAC/EURO-VHDL, 1996, pp.
462–5467..

[26] J. C. Baraza, J. Gracia, D. Gil, and P. J. Gil, “Improvement of fault
injection techniques based on VHDL code modification”, in Proc.
HLDVT, 2005, pp. 19–26.

Juan-Carlos Baraza received the M.S. and
Ph.D. degrees in computer engineering from the
Technical University of Valencia, Spain, in 1993
and 2003, respectively.
He joined the Department of Computer
Engineering (DISCA) of the Technical
University of Valencia in 1994, where he is
currently an associate professor. He is also a
member with the Fault-Tolerant Systems
Research Group (GSTF) of the DISCA since
1994. His research interests include design and
implementation of digital systems, design and
validation of Fault-Tolerant Systems and Fault

Injection.

Joaquín Gracia received the B.S. degree in
computer science, and the M.S. and Ph.D.
degrees in computer engineering from the
Technical University of Valencia, Spain in
1995, 1997, and 2004 respectively.
He is now an assistant professor at the Technical
University of Valencia in the Department of
Computer Engineering (DISCA). He is member
with the Fault-Tolerant Systems Research
Group (GSTF). His research interests include
design and implementation of digital systems,
design and validation of Fault-Tolerant Systems
and VHDL-based Fault Injection.

Sara Blanc received the B.S. degree in
computer science, and the M.S. and Ph.D.
degrees in computer engineering from the
Technical University of Valencia, Spain in
1995, 1998, and 2004 respectively.
She is now an assistant professor at the
Technical University of Valencia in the
Department of Computer Engineering (DISCA).
She is member with the Fault-Tolerant Systems
Research Group (GSTF). Her research interests
include design and implementation of digital
distributed systems, design and validation of
Real-Time Fault-Tolerant Systems and Fault

Injection.

Daniel Gil received the B.S. degree in electrical
and electronic physics from the University of
Valencia, Spain, in 1985, and the Ph.D. degree
on computer engineering from the Technical
University of Valencia in 1999.
He is an associate professor at the Technical
University of Valencia in the Department of
Computer Engineering (DISCA). His research
interests include design and validation of Fault-
Tolerant Systems, fault injection, Dependability
in VLSI and Reliability physics.

Pedro-J. Gil (M’92) received the B.S. degree in
electrical and electronic engineering and the
Ph.D. degree in computer engineering from the
Technical University of Valencia in 1985 and
1992 respectively.
He is a Professor at the Technical University of
Valencia and head of the Department of
Computer Engineering (DISCA). His research
interests include the design and implementation
of Real-Time Fault-Tolerant Systems, the
validation of Fault-Tolerant Systems by Fault
Injection and the design and implementation of
digital systems (including hardware-software co-

design). He teaches courses in Digital Design, Computer Networks and Fault-
Tolerant Systems. He has authored or co-authored more than 80 research
papers in these areas.

