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Abstract—Deep submicron devices are expected to be 

increasingly sensitive to physical faults. For this reason, fault-
tolerance mechanisms are more and more required in VLSI 
circuits. So, validating their dependability is a prior concern in 
the design process. Fault injection techniques based on the use of 
hardware description languages offer important advantages with 
regard to other techniques. Firstly, as this type of techniques can 
be applied during the design phase of the system, they permit 
reducing the time-to-market. Secondly, they present high 
controllability and reachability. Among the different techniques, 
those based on the use of saboteurs and mutants are especially 
attractive due to their high fault modeling capability. However, 
implementing automatically these techniques in a fault injection 
tool is difficult. Especially complex are the insertion of saboteurs 
and the generation of mutants. In this paper we present new 
proposals to implement saboteurs and mutants for models in 
VHDL which are easy-to-automate, and whose philosophy can be 
generalized to other hardware description languages. 
 

Index Terms—Logic design, very large scale integration, 
physical faults, fault tolerance, dependability validation, 
hardware description languages, VHDL-based fault injection, 
saboteurs, mutants. 
 

I. INTRODUCTION 

HE new deep submicron technologies are increasingly 
sensitive to physical faults, both to those due to external 

phenomena (i.e. transient faults such as SEUs, SETs, etc.) and 
to internal defects (i.e. intermittent and permanent faults). 
Moreover, this sensitivity implies not only a raise of the fault 
rate, but also an increment of the likelihood of appearing 
multiple faults [1]–[3]. For this reason, the Dependability of 
systems must be analyzed. This analysis can be either the 
study of the incidence of faults on the system (called error 
syndrome analysis) or checking the design specifications 
(called validation). The objective of the error syndrome 
analysis is to detect those parts of the system which are most 
sensitive to faults, and eventually, to choose the most suitable 
fault-tolerance mechanisms, or FTMs. The aim of the 
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validation is to verify that the system and/or its built-in FTMs 
accomplish the design specifications in presence of faults. 

If the Dependability is analyzed at early phases of the 
design cycle, both time and money can be saved in the 
development process. A common experimental method to 
validate the Dependability of a FTS is fault injection, which is 
defined in [4] as the deliberate introduction of faults into a 
system (the target system). 

Fault injection techniques can be classified in three main 
categories [5]: physical (also known as Hardware 
Implemented Fault Injection, or HWIFI), software 
implemented (SWIFI) and simulation-based. HWIFI is 
accomplished at physical level, disturbing the hardware with 
parameters of the environment (heavy ions radiation, 
electromagnetic interferences, etc.) or modifying the logic 
value of the pins of the integrated circuits. The objective of 
SWIFI consists of reproducing at software level the errors that 
would have been produced upon occurring faults in the 
hardware or the software. In simulation-based fault injection 
the system under test is simulated in another computer system. 
The faults are induced altering the logical values during the 
simulation. 

Simulation-based fault injection is a useful experimental 
way to evaluate the dependability of a system during the 
design phase, thus reducing the time-to-market [6]–[8]. 
Another interesting advantage of this group of techniques with 
regard to others is that those based on simulation offer both 
high observability and controllability of all the modeled 
components [9]. 

Particularly, there exist a group of fault injection techniques 
based on the use of a hardware description languages (or 
HDL) as modeling language. The most popular high-level 
HDLs are VHDL, Verilog, and SystemC. In our case, we 
work with VHDL [10]. 

These techniques are widely applied, due to the advantages 
of employing a HDL. The present work is framed in this 
group of techniques. Fig. 1 shows a classification of VHDL-
based fault injection techniques. Nevertheless, both this 
taxonomy and the description of the injection techniques can 
be generalized to any other HDL. 

Simulator commands technique is based on the use of 
simulator commands to modify the value or timing of the 
model signals and variables, without altering the VHDL code 
[6]. In the remaining techniques, the original VHDL code of 
the model is modified, either inserting saboteurs [6], [11], 
[12] or mutating the components of the model [6], [13], [14]. 
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Fig. 1.  VHDL-based fault injection techniques. 

 
The techniques labeled as Other techniques are 

implemented by extending the VHDL language, either by 
adding new data types and signals, or modifying the VHDL 
resolution functions [7], [15]. The new data types and signals 
defined include the fault behavior description. However, these 
techniques require developing ad-hoc compilers and 
simulators, and introducing control algorithms to manage the 
language extensions. 

There are works related to fault injection with saboteurs 
and mutants in other areas like test or FPGA-based fault 
emulation, although the objective of the study in each area is 
quite different. 

In dependability analysis, the objective can be either to 
verify the sensitivity to physical faults or validate the 
effectiveness of the FTMs of a simulation model (not 
necessarily synthesizable) of the system under analysis, by 
modifying the operation of the model at simulation time. 

In test, the aim of fault injection is to accelerate the test 
process by obtaining reduced test pattern lists injecting faults 
at higher abstraction levels, like RT or system. For instance, 
in [16] a fault simulation tool has been developed for system 
models designed in Verilog at RT level. The purpose of this 
tool is not only to verify the model, but also to get the test 
pattern set that obtains the best correlation in the fault 
coverage between RT level and gate level. The RT fault 
simulator is based on simulating a modified version of the 
system model in which a number of zero-delay buffers 
(similar to serial simple saboteurs –see Section IV-A) are 
strategically inserted according to two statistical criteria: 
optimistic and pessimistic analysis. The modified model is 
then simulated with a commercial fault simulation tool called 
Verifault. In [17] also a fault simulation tool is developed, but 
in this case it accepts VHDL models at system level. Another 
important difference with the work in [16] is that the fault 
simulator developed performs the fault simulation by itself, 
instead of using a commercial fault simulator. And last but not 
least, another important dissimilarity is the fact that the 
original model is mutated by inserting a special type of 
functions able to alter the behavior of the system (see section 
II.C for details). Finally, in [18] a technique to obtain the 
stratified coverage of a complex (that is, composed of 
multiple internal components) Verilog model at RT level is 
presented. Like in [16], the authors use a gate-level 
commercial fault simulator (in this case Verifault-XL) to 
simulate a modified version of the model in which a number 
of zero-delay buffers are judiciously inserted. 

In FPGA-based fault emulation, the objective of fault 
injection by using saboteurs and mutants is to synthesize into 
a FPGA a modified version of the original model that can be 

managed externally in order to emulate a faulty behavior. 
Interesting works in this area are [19], where mutants are 
implemented, [20] that applies saboteurs, and [21] that 
implements behavioral saboteurs. 

On the other hand, our research group has developed VFIT 
[22], [23], a VHDL-based fault injection tool that applies 
several of the techniques described above. In fact, only the 
Other techniques group has not been implemented due to their 
excessive complexity. 

More information about dependability analysis and fault 
injection can be found in [5]. 

In this work we intend to explain the drawbacks of some 
models of saboteurs and mutants existing in the literature [24], 
to justify the introduction of new implementations. Some 
models of saboteurs and mutants will be discussed and 
revised, and new models will be proposed. Also, we will show 
how these new designs can be automatically inserted in a 
model in order to perform a fault injection campaign, 
illustrating the description of every proposal with an 
application example. To confirm the effectiveness of the 
enhancements introduced, we also include the results of a set 
of injection experiments in which we compare aspects such as 
the duration of the simulation and analysis phases (i.e., the 
temporal cost of injecting the faults and comparing the faulty 
simulation trace to the fault-free one), or the model size, and 
of course, the overall data extracted from the injection 
experiment. 

The distribution of the paper is as follows. In Section II we 
make a short review of the most common VHDL-based fault 
injection techniques. Section III describes the fault injection 
environment summarily. In Section IV, the models of 
saboteurs developed are discussed, and a new set of models 
are proposed. Section V analyses the models of mutants 
currently used, and presents a new implementation method. 
Results of implementing the new methods proposed are 
shown in Section VI. Finally, both a discussion of the results 
and a proposal of future work are provided in Section VII. 

 

II. VHDL-BASED FAULT INJECTION TECHNIQUES 

A. Fault Injection Using Simulator Commands 

This fault injection technique is based on using the 
commands of the simulator at simulation time, in order to 
modify the value or timing of the signals and variables of the 
model [24]. Moreover, as VHDL generic constants are 
managed as special variables, it is possible to inject some non-
usual fault models, such as delay faults [8]. 

Using simulator commands it is possible to inject transient, 
permanent and intermittent faults. Though, there exists one 
restriction: due to the special nature of variables in VHDL, it 
is not possible to inject permanent faults in variables. 

This technique is the easiest one to implement, and its 
temporal cost (to perform the simulation) is by far the lowest. 
However, the number of fault models that can be injected is 
smaller than with the other techniques. 

Simulator 
commands

Signals

Variables

VHDL code
modification

Saboteurs

Mutants
Other techniques

VHDL-based
fault injection
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B. Fault Injection with Saboteurs 

A saboteur is a special VHDL component added to the 
original model [12], [8]. When activated, the mission of this 
component is to alter the value, or timing characteristics, of 
one or more signals, simulating the occurrence of a fault. 
During the normal operation of the system, instead, the 
component remains inactive. Saboteurs affect to the ports of 
the components in the model. Thus, this technique is 
applicable only to structural descriptions. 

Attending to how saboteurs are inserted in the model, two 
types can be distinguished: serial and parallel [6]. As Fig. 2-a 
shows, a serial saboteur interposes between a component 
input port (I in the figure) and its source signal (O in the 
figure), whereas a parallel saboteur (see Fig. 2-b) is added as 
an additional source (S in the figure) of a given signal. 

 

 
Fig. 2.  Types of saboteurs. (a) Serial. (b) Parallel. 

 
Parallel saboteurs have two important drawbacks respect to 

serial: first, implementing them is noticeably more complex, 
because it is necessary to modify the data type of the signal 
affected, as well as the resolution function associated to the 
data type (a resolution function defines how values from 
multiple sources are resolved into a single value). And 
second, they allow injecting fewer fault models. For these 
reasons, their implementation has no special interest. So, in 
this work, only serial saboteurs will be considered. 

C. Fault Injection with Mutants 

A mutant is a component that replaces another component. 
While inactive, it works like the original component, but 
when it is activated, it behaves like the component in presence 
of faults. The mutation can be made in three ways: 
 By adding saboteurs to structural model descriptions. 
 By modifying structural descriptions replacing sub-

components (i.e., a NAND gate can be replaced by a 
NOR gate). 

 By modifying syntactical structures of behavioral 
descriptions. 

There can exist lots of possible mutations in a VHDL 
model, so representative subsets of faults at logical and RT 
levels must be considered [13], [14], [25]: replacing the 
values of conditions in if and case statements (called stuck-
then, stuck-else, dead clause, etc.), disturbing assignment 

statements (assignment control, global stuck-data, etc.), 
disturbing operators in expressions (micro-operation, local 
stuck-data), etc. 

In our case, we have considered the following fault models 
[22]: 
 Stuck-then: Replacement of the if condition by true. 
 Stuck-else: Replacement of the if condition by false. 
 Assignment control: Disturbing an assignment 

operation. 
 Dead process: Elimination of the sensitivity list of a 

process. 
 Dead clause: Elimination of a clause in a case. 
 Micro-operation: Disturbing an operator. 
 Local stuck-data: Disturbing the value of a variable, 

constant or signal in an expression. 
 Global stuck-data: Elimination of all value 

modifications of a variable or signal in an 
architecture. 

Many of these fault models do not have a direct 
correspondence with physical faults, but they can show 
somehow an erroneous internal operation. 

 

III. THE FAULT INJECTION ENVIRONMENT 

The Fault Tolerant Systems Research Group (GSTF) has 
developed a fault injection tool called VFIT (VHDL-based 
Fault Injection Tool) [22], [23], that runs on PC computers (or 
compatible) under Windows® and is model-independent. 
Although it admits models at any abstraction level, it has been 
mainly used on models at gate and RT levels. 

With VFIT it is possible to inject faults automatically 
applying simulator commands technique. It is also feasible to 
inject faults using saboteurs and mutants, but in this case the 
injection process needs the intervention of the user because 
the insertion of the saboteurs and the generation of mutants 
are not automatic. 

It can inject permanent, transient and intermittent faults. 
When applied to models at gate and RT levels, it uses a wide 
set of fault models that try to be representative of deep 
submicron technologies (see Table I). This set surpasses the 
classical stuck-at (for permanent faults) and bit-flip (for 
transient faults). 

The experiment configuration is carried out through VFIT's 
graphic user interface (GUI). Among other functions, this 
GUI allows the user (with the help of a built-in VHDL parser) 
to select a list of fault targets among all the possible targets in 
the model. The class of the fault targets eligible depends 
directly on the fault injection technique applied (i.e. model 
signals and variables for simulator commands; inputs and 
internal connection signals of the model components for 
saboteurs; and special VHDL sentences for mutants). Also, 
for each fault target (and again depending on the fault 
injection technique applied), a number of fault models 
suitable to inject into it can be selected. 

Later, an injection scheduler “decides” that at a given time 
instant (we call it the “injection instant”), the value of one or 
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several points of the system (the fault targets) must behave in 
a wrong way, either only for a short time (simulating the 
occurrence of a transient fault) or permanently (until the end 
of the simulation). At simulation time, the injection manager 
runs the simulator indicating these parameters. What "wrong 
behavior" of the fault targets means depends strongly on the 
injection technique used. 
 In case of simulator commands, the injection consists 

on modifying directly the internal value or timing of the 
fault target(s) by using the commands of a simulation 
language (in our case, Tcl). 

 When saboteurs are used, the injection consists on 
modifying directly (also by using simulator commands) 
the control lines that manage one or several saboteurs 
inserted in the original model. In this way, the 
saboteur(s) activated will propagate the affected lines 
with erroneous values or timing. 

 When injecting faults with mutants, the injection is very 
similar to the injection with saboteurs. By means of 
simulator commands, an erroneous sentence will be 
"executed" instead of the correct one. 

During the simulation phase, VFIT automatically selects 
randomly a fault target from the list, and then, a particular 
fault model to inject on it. 

The output of an injection experiment can be either an error 
syndrome analysis or a validation. In both cases, output data 
are a set of tables. In case of an error syndrome analysis, 
tables contain among other values: propagation latencies, 
percentages of propagated errors, and percentages of failures. 
In case of performing a validation, tables show propagation, 
detection and recovery latencies, percentages of propagated, 
detected, and recovered errors, detection and recovery 
coverages and failure percentages. 

 

IV. AUTOMATING THE INSERTION OF SABOTEURS 

In this Section, after discussing the main advantages and 
drawbacks of other saboteur models existing in the literature 
and previously developed, we describe a new set of saboteur 
models implemented. Also, we include an example that 
explains how to automate the insertion of saboteurs using the 
new proposal. 

A. Previous Models 

So far, VFIT can inject faults using serial saboteurs inserted 
manually in the design. The models of saboteurs implemented 
are [24]: 
 Serial Simple Saboteur, SSS: It interrupts the 

connection between an unidirectional local port of a 
component and its formal port, modifying either its 
value or its timing. 

 Serial Simple Bidirectional Saboteur, SSBS: It has two 
bidirectional ports, and a read/write signal (R/W) that 
determines the direction of the perturbation. 

 Serial Complex Saboteur, SCS: It breaks the connection 
between two unidirectional local ports and their formal 
ports, modifying either their values or their timing. 

 Serial Complex Bidirectional Saboteur, SCBS: It has 
two couples of bidirectional ports, and a read/write 
signal (R/W) that determines the direction of the 
perturbation. 

 N-bit Unidirectional Simple Saboteur, nUSS: It applies 
to n-bit unidirectional buses (for instance, address and 
control). It has been implemented by means of a 
structural description, using n Serial Simple Saboteurs. 

 N-bit Bidirectional Simple Saboteur, nBSS: It is used 
with n-bit bidirectional buses (for instance, data and 
control), and it is composed by n Serial Simple 
Bidirectional Saboteurs. 

 N-bit Unidirectional Complex Saboteur, nUCS: It 
applies to n-bit unidirectional buses, and it is composed 
by n/2 Serial Complex Saboteurs. 

 N-bit Bidirectional Complex Saboteur, nBCS: It is used 
with n-bit bidirectional buses, and composed by n/2 
Serial Complex Bidirectional Saboteurs. 

Every saboteur is controlled by means of three inputs: 
 Control, whose mission is the timing of the injection: its 

activation determines both the injection instant (tinj) and 
the fault duration (tinj). It can be seen more clearly in 
Fig. 3. 

 
Fig. 3.  Timing of fault injection. 

 
 Selection, that allows selecting the fault model to be 

injected. 
 

TABLE I 
FAULT MODELS INJECTED BY VFIT AT GATE AND RT LEVELS  

Injection technique Transient faults Permanent/Intermittent faults 

Simulator commands Pulsea, Bit-flipb, Indetermination, Delay Stuck-at (0,1), Indetermination, Open-line, Delay 

Saboteurs Pulsea, Bit-flipb, Indetermination, Delay Stuck-at (0,1), Indetermination, Open-line, Delay, Short, 
Bridging, Stuck-open 

Mutants Stuck-then, Stuck-else, Assignment control, Dead process, 
Dead clause, Micro-operation, Local stuck-data,                
Global stuck-data 

Stuck-then, Stuck-else, Assignment control,  Dead process, 
Dead clause, Micro-operation, Local stuck-data,                
Global stuck-data 

aApplied to combinational logic, it represents a Single Event Transient (SET) 
bApplied to storage elements (registers and memory), it represents a Single Event Upset (SEU) 

Control fault

t

tinj

tinj
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 R/W, which indicates, in the bidirectional versions, the 
direction of the perturbation. 

Although this technique requires an extra complexity due to 
the addition of these control signals, saboteurs allow injecting 
more fault models than simulator-commands (see Table I). 
This makes the technique attractive enough. 

However, at the time we intended to incorporate the models 
developed to VFIT, some problems were found when we tried 
to automate the selection of the most adequate saboteur model 
in each case. The main causes were the excessive number of 
saboteur models and the way they are implemented (by means 
of structural descriptions). We have tried a new set of models 
that fix some ambiguity difficulties, reduce the number of 
saboteurs, and simplify their complexity, and consequently, 
also the complexity of the sabotaged design. 

B. Enhanced Models 

The new models of saboteurs proposed, shown in Fig. 4, 
are four [26]: 
 Unidirectional Serial Saboteur, USS: It is the same 

model as the SSS in the previous set, although the USS 
allows injecting new fault models. 

 Bidirectional Serial Saboteur, BSS: It is similar to the 
SSBS in the first set, but like in the previous case, the 
fault model set that can be injected has been extended. 
Also, it eliminates the R/W control signal. 

 N-bit Unidirectional Serial Saboteur, nUSS: This model 
replaces all the unidirectional multi-bit models in prior 
model set. 

 N-bit Bidirectional Serial Saboteur, nBSS: It replaces all 
bidirectional multi-bit models in the former proposal, 
and eliminates the R/W control signal. 

As the timing of Control and Selection inputs are identical, 
we have implemented an "optimized" version of these models 
in which the fault injection is managed only by Selection 
input. The idea is simple: when an injection is in progress, 
Selection indicates the fault(s) to be injected; but while no 
fault is injected, the value of Selection must represent a "no-
fault" injection. However, this reduced version has a negative 
aspect: only single faults and multiple faults in the domain of 
time can be injected. To inject faults in the domain of space, 
the original scheme must be used. 

 

 
Fig. 4.  New set of saboteurs implemented. (a) Unidirectional Serial Saboteur; 
(b) Bidirectional Serial Saboteur; (c) N-bit Unidirectional Serial Saboteur; 
(d) N-bit Bidirectional Serial Saboteur [26]. 

 
As an example, we show next a simplified scheme of the 

BSS saboteur, written in VHDL pseudo-code [24]. 

architecture behavioral of BSS 
begin 
  process (I, O, R/W, Control) 
  begin 
    if Control = ‘1’ and not Control’stable then 
      fault_type_selection; 
      if R/W =’1’ then 
        O <= finj(I,Selection); 
      else 
        I <= finj(O,Selection); 
      end if; 
    else 
      if R/W =’1’ then 
        O <= I; 
      else 
        I <= O; 
      end if; 
    end if; 
  end process; 
end architecture; 
 

This new set of saboteur models has important differences 
respect to prior ones: 
 All models have been implemented using behavioral 

descriptions. This simplifies greatly their code and, 
what is more important, also the code of the design 
including the saboteurs. Moreover, the n-bit versions 
can be used for vectors of any length, because their 
length is defined by means of a generic parameter. 
Every time an n-bit saboteur is added to the model, the 
actual value of the generic parameter must be set. 

 The number of saboteurs has been reduced to ease their 
automatic insertion. Now, depending on both the length 
(1 bit or n bits) and the mode (that is, the directionality) 
of the port sabotaged, only one model can be chosen. 

 The bidirectional versions have the capability of 
injecting the fault only in the direction that data flow. In 
this way, the R/W input used in the models of prior 
version is not anymore needed, thus reducing the 
overhead. In the reduced version used to inject single 
faults, without the Control input, the spatial overhead is 
even more diminished. 

 They can inject more fault models: pulse, short, and 
bridging. 

C. Automatic Insertion of Saboteurs in the Design 

The task of modifying automatically a source code seems 
apparently very complex. However, if the injection tool 
includes a parser, this is not actually so. From a syntactical 
tree of the model containing its complete structure, it is 
possible to go over the tree and generate a new copy of the 
source files, inserting new sentences or modifying other 
existing as needed. The insertion of saboteurs involves three 
actions: 
1) Declaring the signals required to activate the saboteurs 

and to select the fault model to be injected. 
2) Declaring the components of the saboteurs introduced. 
3) Inserting the instances of the saboteurs, interposing 

between local and formal ports of the sabotaged 
components. This also implies declaring new signals to 
connect the saboteurs to local ports, and modifying the 
original mapping of ports. 
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Fig. 5 shows an example of a sabotaged model. Shaded 
boxes and dashed lines in lower scheme represent respectively 
the saboteurs and the connection signals added to the model. 
To simplify the scheme, the control signals (Control and 
Selection) have been omitted. 

 

 
Fig. 5.  Example of perturbation of a model. Distribution of saboteurs [26]. 

 
Fig. 6 describes how the three actions affect to the VHDL 

code of the model. To simplify, only the insertion of two 
saboteurs is shown, but the operation is exactly the same for 
all of them. In the figure, the original VHDL code is shown at 
the left side, and the perturbed code at the right side. Here, the 
text in bold types represents the new code. 

It is possible to distinguish in the figure the three actions 
aforementioned. Remark that in the signal declaration, not 
only the control and selection signals are included, but also 
those signals required to connect the saboteurs. 

With the new set of models proposed, automating the 
insertion of saboteurs in a model (in previously selected 
locations) will be relatively easy, by using a VHDL parser as 
VFIT does. This facility is also used in other tools [18]. 

 

V. AUTOMATING THE GENERATION OF MUTANTS 

Injecting faults using mutants is quite more difficult than 
with the other two techniques described in Section II. The 
main problem lies on the spatial overhead introduced due to 
the generation of the mutations of the model. Nevertheless, in 
modern computers the storage is not actually a problem, so 
implementing this technique is nowadays more feasible. 

In this Section, after discussing the drawbacks of two 
approaches of implementation of mutants, a new method is 
presented. Also, an example of automatic generation is 
shown. 

A. Previous Approaches 

VFIT can inject faults using mutants inserted manually in 
the design (see Section III). In this subsection, the methods 
followed to implement this technique are described. 

The first approach to implement mutant-based fault 
injection consists on generating multiple replicas of the 
architectures of all the components in the model, where every 
replica includes one modification (or mutation) in the VHDL 
code [24]. Each modification corresponds to the injection of 
one fault. 

By means of the VHDL configuration mechanism (that is, 
the configuration statement), multiple versions 
(mutations) of the model can be generated. Also, there exists 
another configuration (without faults) that includes the 
original versions of all the model components. 

The injection consists on selecting and simulating one of 
the multiple mutated configurations of the model. Due to the 
static nature of the configurations, only permanent faults can 
be injected using this approach, and moreover, from the very 
beginning of the simulation. 

To fix this problem, a dynamic approach has been 
developed. It is based on the use of guarded signals 
together with the configuration mechanism [24]. In this way, 
at simulation time it is possible to stop the simulation of the 
original version of the model, and restart it simulating a faulty 
configuration. By using a number of simulator commands, the 
status of the simulation (that includes the simulation time and 
the value of all the signals and variables of the model) of the 
original version of the model can be saved on a file, and the 
same status is restored in the simulation of the faulty 
configuration. With the dynamic approach it is possible to 
inject (at any injection time) permanent, transient and 
intermittent faults. 

However, this implementation has a serious drawback: the 
synchronization (that is, saving and restoring the simulation 
status) between the simulation of the fault-free architecture 
and the faulty architecture involves an enormous temporal 
cost. In [24], a comparison of the temporal cost of the three 
fault injection techniques implemented in VFIT was 
presented. The results showed that the average simulation 
time (that is, the duration of simulation phase) was more than 
100 times longer when using mutants than when using 
simulator commands, evidently due to the synchronization 
between the simulations. 

B. A New Proposal to Implement Mutants 

To avoid synchronizing simulations, we suggest a “brute 
force” implementation. What we propose is quite simple: to 
generate a unique mutated version of every architecture used 
in the model that includes all the possibilities of mutation 
considered previously in the set-up phase [26]. Obviously, if 
no statement is selected to be mutated in a particular 
architecture, it is not necessary to mutate the component. 

In most cases, the modifications in the code are included by 
using if and case statements, although there are other 
possibilities, as shown in the example in Fig. 7 and Fig. 8. The 
aim of this type of modifications is to allow choosing among 
the correct statement and multiple wrong versions. For this 
purpose, a new input port (called Selection) must be inserted 
in the interface of the entity. The mission of Selection port is 
to specify the particular mutation to be activated, by asking its 
value in every “branch” of the mutated code. We call 
“branch” to every statement inserted to select between the 
correct operation and the wrong ones. The condition to 
activate one of the options is that the value of Selection 
coincides with the value specified in the selection statement. 

Another modification required is to declare a 
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Fault_Selection signal in the upper level of the model, which 
will be associated (mapped) to every local Selection port of 
the mutated components inserted, replacing the original ones. 
With this approach, also injecting faults becomes very easy. 
By using simulator commands, the value of Fault_Selection 
signal can be modified at simulation time. In this way, it is 
possible to inject faults of the same time characteristics than 
with simulator-commands technique: transient, permanent and 
intermittent. 

Remark that, respect to prior approaches, the new method 
reduces not only the temporal overhead, but also the spatial, 
as multiple entire replicas of each architecture are replaced by 
only one that includes all the modifications. However, some 
temporal overhead could be expected in the simulation time 
due to the higher complexity of the mutated model. 

 
Fig. 6.  Example of perturbation of a model. Modification of the VHDL code. 

Insertion of additional signals  (control + connection)

Insertion of saboteur declarations

Interposition of saboteurs
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C. Automatic Generation of Mutants 

This new proposal to implement mutants is so simple that 
automating the generation of mutants of a given model is not 
complicated at all. Assuming that an injection tool has a 
parser, locating in the code the target statements to be mutated 
and replacing them with new ones is very easy. Next we show 
a practical example. 

Fig. 7 represents the mutation of a component inserted in a 
given model. At the left side we can see the original VHDL 
code of the component, and at the right side, the mutated 
code. Here, the text in bold types represents the modifications 
introduced. The arrows labeled with (1) correspond to 
modifications in the interface, and those labeled with (2) to 
the statements’ mutation. In the example, a signal assignment 
and an if statement have been mutated. The signal 
assignment has been replaced with a conditional signal 
assignment, and to mutate the if, a case statement has been 
inserted. Both operations are relatively easy to perform 
automatically. 

Fig. 8 shows the modifications required in the top level of 
the design. As commented in previous section, the changes 
introduced are of two types. On the one hand, to declare the 
signal that selects the mutation to activate at injection time. 
On the other hand, to replace the original components with the 
mutated ones; this affects to both the component declaration 
and instantiation. 

 

VI. COMPARISON OF THE INJECTION TECHNIQUES USING THE 

NEW MODELS OF SABOTEURS AND MUTANTS 

A. Notation 

The following notation is used in the remaining of this 
paper: 

tinj Injection instant; 
tp Time when the error is activated; 
td Time when the activated error is 

detected by detection mechanisms; 
tr Time when the detected error is 

recovered by recovery mechanisms; 
NInjected Number of faults injected; 
NActivated Number of activated errors; 
NDetected Number of errors detected by detection 

mechanisms; 
NDetected_recovered Number of errors detected by detection 

mechanisms, and recovered by recovery 
mechanisms; 

Lp Propagation latency; 
Ld Detection latency; 
Lr Recovery latency; 
PA Percentage of activated faults; 
Cd Error detection coverage; 
Cr Error recovery coverage; 

 

B. Experiment set-up 

In [24] we compared the three injection techniques 

applying the former models of saboteurs and mutants. In this 
section, we intend to repeat the experiments carried out then, 
and compare the results obtained to the ones in [24]. The most 
relevant injection parameters are the following: 
1) System model: A 16-bit academic fault-tolerant micro-

computer system, duplex with cold stand-by sparing, 
parity detection and watchdog timer [22]. 

2) Injection technique: Simulator commands, saboteurs and 
mutants. 

3) Number of faults: 3000 single faults per experiment. 
4) Fault types and duration: Permanent, and transient with a 

duration defined according to a Uniform distribution 
function in the range [0.1Tcycle, 10.0Tcycle], where Tcycle is 
the CPU clock cycle. 

5) Fault models: See Table I. 
6) Workload: Calculus of an arithmetic series of n integer 

numbers and Bubblesort. 
We have inserted the equivalent new models of saboteurs in 

the same places as in the original experiments. Also, we have 
introduced in the model all the same mutations as in the 
original experiments. Finally, we have performed an 
experiment using simulator commands technique to be used as 
reference in the comparisons. 

In order to make a complete comparison of the injection 
techniques (and of the different versions), we have measured 
two types of data in all cases. 

On the one hand, performance parameters, like: 
 The size of the source code. This gives an idea of the 

spatial overhead introduced by every technique and 
version. 

 The average simulation time (of one 3000-fault 
injection experiment). 

 The average analysis time (of one experiment). It is the 
duration of the analysis phase. 

 The size of the simulation traces, distinguishing 
between the golden run and the average size of the 
faulty traces. We have included it to see if the new 
methods provoke a significant growth in the number of 
simulation events. 

Also, we have compared the outcomes of the proper 
injection experiment. In this way, we have measured: 
 The percentage of activated errors: 

100
N

N
P

Injected

Activated
A   

 Propagation, detection and recovery latencies: 

injpp ttL   

pdd ttL   

drr ttL   

 The error detection and recovery coverages: 

100
N

N
C

Activated

Detected
d   

100
N

N
C

Activated

ecoveredDetected_r
r   
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Respect to the original experiments, we have changed the 
computer where the simulations have been run. In the original 
experiments, the computer had a Pentium® II microprocessor 
at 350 MHz and 192 MB of RAM. In the experiments 
described here, the computer used has a Pentium® 4 
microprocessor at 2.80 GHz and 1 GB of RAM. Also, current 
release of the injection tool uses enhanced injection and 
analysis algorithms. For these reasons, we have repeated all 
the original experiments in order to get a coherent comparison 
of the results. 

Due to the number of experiments performed (up to twenty, 
divided in four campaigns per injection technique and version, 
varying both the fault duration and workload run), and the 
high amount of data collected, it is useful to classify these 
injection campaigns: 

 Campaign 1: Injection of transient faults when the 
model runs the arithmetic series. 

 Campaign 2: Injection of permanent faults when the 
model runs the arithmetic series. 

 Campaign 3: Injection of transient faults when the 
model runs the Bubblesort algorithm. 

 Campaign 4: Injection of permanent faults when the 
model runs the Bubblesort algorithm. 

The results will be presented in a tabular way 
distinguishing the four injection campaigns carried out, and 
with two separate groups of tables: one for the performance 
parameters, and the other one for the analysis outcomes. 

The comparison of performance parameters is indicated in 
Table II, Table III, Table IV, Table V and Table VI. Table II 
shows only the source code size, because this parameter is 
independent of the fault duration and the workload run, 
whereas the other tables show the remaining parameters. 

In Table VII, Table VIII, Table IX and Table X we 
illustrate the comparison of the analysis results. 

 

 
Fig. 7.  Example of mutation of a model. Modification of the VHDL code of a component. 

(1)

(1)

(1)

(2)

(2)

(2)
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Fig. 8.  Example of mutation of a model. Modification of the VHDL code of the top level. 
 

C. Performance Comparison of Saboteur Approaches 

Looking at Table II, the size of the source code of the 
sabotaged model when using the new saboteur models is 
slightly greater than when using the former ones, although the 
difference is not very important. 

 
TABLE II 

COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS: SOURCE CODE 

SIZE 

 Parameter 

Injection technique (version) Source code sizea (code lines) 

Simulator commands 1141 

Saboteurs (old) 1754 

Saboteurs (new) 2016 

Mutants (dynamic) 251821 

Mutants (new) 2283 
aThe code corresponding to common libraries is not included. 

 

With regard to the simulation time, we can observe that 
there is a variation in this parameter depending on the 
workload. When the workload is the arithmetic series, the 
simulation time is lower in the new saboteur models, whereas 
it is lower in the old models when the Bubblesort algorithm is 
run. Anyway, the overall temporal cost (that is, the sum of the 

simulation time plus the analysis time) is lower with the new 
models regardless the workload run, although slightly greater 
than with simulator commands technique. The reason is the 
higher complexity of the sabotaged model. 

In relation to the size of simulation traces, two aspects 
should be taken into consideration. First, the size of the 
golden run is smaller when injecting with the new saboteurs 
(in fact, it has the same size as with simulator commands) 
than with the former ones. However, the average size of 
injection traces is bigger with the new saboteurs, although it is 
smaller than with simulator commands. The size of a faulty 
simulation trace depends on the final effect of the fault(s) 
injected. 

On the one hand, it can happen that no error is propagated 
to the system. In this case, the simulation trace will have 
approximately the same size as the golden run. 

If any errors are propagated to the system, the activation of 
the FTMs implies more simulation events, and hence, the 
simulation trace is bigger. 

Finally, if a crash occurs in the system due to the 
propagation of the fault(s) injected, the simulation trace is 
smaller than the golden run. 

So, if the average size of injection traces is bigger in the 
new saboteurs, we can infer that the new saboteur models 
provoke a higher number of propagated errors, and hence, 

Insertion of addtional signals (fault selection)

Instantiation of mutated components

Modification of the declarationsof mutated components
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they activate more times the FTMs of the model. 
Considering that the new saboteur models allow injecting a 

wider fault model set (as indicated in Section IV.B), and that 
they can be integrated more easily, we can conclude that the 
new set of saboteurs has improved the performance of the 
technique in relation to the former models. 

D. Performance Comparison of Mutant Approaches 

When comparing the performance of both mutant 
approaches, enormous differences can be found in both the 
system model size and the simulation time. 

In effect, the size of the mutated model with the dynamic 
mutants is more than 100 times bigger than with the new 
approach. As we pointed out in Section V.B, this is because in 
an n-fault injection experiment, a total of n replicas of 
different architectures as well as n model configurations are 
generated. Although these components are small, when n is 
big enough (say 3000, like in the experiments described here) 
make the code to grow considerably. 

With regard to the simulation time, it is between 183 and 
805 times lower with the new mutants than with the dynamic 
approach. In fact, the cost of the new mutants is similar to the 
cost of the new saboteur approach. 

On the other hand, no important differences have been 
found in the analysis phase duration. 

Finally, in relation to the size of simulation traces, two 
details can be considered. Firstly, in the new approach there is 
a reduction of the average injection trace size respect to the 
golden run, whereas in the dynamic approach the average 
injection trace size is very similar to the golden run. Notice 
that when running the Bubblesort algorithm, all the simulation 
traces are bigger with the dynamic mutants than with both the 
new mutants and simulator commands. The reason is that in 
this workload there are much more simulation events. 

Secondly, there is a generalized increment in the average 
injection trace size in new mutants respect to simulator 
commands. As explained in Section VI.C, this may imply that 
the system FTMs are activated more times; that is, it might 
indicate a greater error propagation rate. 

E. Overall Comparison of Performance of Injection 
Techniques 

Comparing only the injection techniques, and considering 
exclusively the new methods proposed, one could assert that 
injecting faults with saboteurs has a higher temporal cost than 
with simulator commands. 

In fact, the advantages of the new saboteurs are not evident 
because their improvements are not quantitative but 
qualitative: they can be automatically inserted in the model 
quite easily and they allow inject a wider fault model set. 

It is evident that saboteur-based technique introduces a 
strong overhead in the model, due to the insertion of new 
components (the saboteurs) and signals to connect and 
manage them. However, this overhead does not result in an 
important spatial overcost, and the temporal cost is absolutely 
affordable by current computers, so the technique still remains 
interesting. 

Concerning mutants, with the new approach they have now 
the same complexity (both temporal and spatial) as saboteurs. 
The reduction of the spatial overhead can be because of two 
motives. On the one hand, the model under analysis is quite 
simple; on the other hand, not many mutations have been 
introduced in the model (about 60). For these reasons, when 
either applying this technique to more complex models, or 
simply inserting more mutations, an increment in the temporal 
cost (both in simulation and analysis times) could be 
expected. 

 
TABLE III 

COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 1): PERFORMANCE 

 Parameter 

Injection technique (version) Simulation Time (min) Analysis Time (min) 

Simulation Trace Size (kB) 

Golden run Injections 

Simulator commands 21 5 327 310 

Saboteurs (old) 24 8 336 252 

Saboteurs (new) 20 6 327 252 

Mutants (dynamic) 16923a 6 327 323 

Mutants (new) 21 5 327 294 
ai.e. 11 days, 18 hours, and 3 minutes. 

 
TABLE IV 

COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 2): PERFORMANCE 

 Parameter 

Injection technique (version) Simulation Time (min) Analysis Time (min) 

Simulation Trace Size (kB) 

Golden run Injections 

Simulator commands 23 6 327 284 

Saboteurs (old) 24 7 336 251 

Saboteurs (new) 22 5 327 262 

Mutants (dynamic) 10474a 5 327 327 

Mutants (new) 23 5 327 292 
ai.e. 7 days, 6 hours, and 34 minutes. 



 12

TABLE V 
COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 3): PERFORMANCE 

 Parameter 

Injection technique (version) Simulation Time (min) Analysis Time (min) 

Simulation Trace Size (kB) 

Golden run Injections 

Simulator commands 68 30 1780 1761 

Saboteurs (old) 76 66 1816 1344 

Saboteurs (new) 89 32 1780 1456 

Mutants (dynamic) 16690a 26 2313 2329 

Mutants (new) 86 29 1780 1628 
ai.e. 11 days, 14 hours, and 10 minutes. 

 

TABLE VI 
COMPARISON OF THE INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 4): PERFORMANCE 

 Parameter 

Injection technique (version) Simulation Time (min) Analysis Time (min) 

Simulation Trace Size (kB) 

Golden run Injections 

Simulator commands 64 29 1780 1617 

Saboteurs (old) 76 62 1817 1347 

Saboteurs (new) 86 30 1780 1514 

Mutants (dynamic) 15388a 22 2313 2342 

Mutants (new) 84 29 1780 1630 
ai.e. 10 days, 16 hours, and 28 minutes. 

 

F. Comparison of the Analysis Results 

Table VII, Table VIII, Table IX and Table X contain the 
analysis results calculated in the four injection campaigns. 

It is difficult to compare the outcomes obtained with the 
three injection techniques, because both their nature and the 
fault models that can be injected with each technique are very 
different. However, it is possible to compare the results got 
with the old and new proposals of both saboteurs and mutants 
injection techniques. 

In relation to saboteurs, we can conclude that the increment 
in the number of fault models injectable with the new 
approach has provoked a raise in the number (and thereby, 
also in the percentage) of activated faults. These new faults 
affect the system making the FTMs to work harder, as the 
higher values in the detection and recovery coverages reflect. 
This allows a better checking of the FTMs. 

The trend in new mutants is, to a certain extent, similar to 
saboteurs. Although the percentage of activated errors is 
lower, the propagated errors are more harmful than with 
dynamic mutants (notice again the increase of detection and 
recovery coverages). Obviously, the 100% of activated errors 
in dynamic mutants is not realistic at all. So, any incorrect 
operation of the synchronization mechanism used there must 
have occurred. A reason for the increment in the detection and 
recovery coverages can be that the automation of new mutants 
has allowed injecting faults in more targets than with the old 
approach. 

VII. CONCLUSION 

In this paper, new methods to implement and use saboteurs 
and mutants into VHDL models in an automatic way have 
been proposed. 

The new models of saboteurs fix some problems of 
ambiguity that the previous approach had. These problems 
prevented their automatic insertion. Moreover, the new 
models have been implemented in such a way that they 
diminish the overhead, by reducing the number of signals 
required to manage bidirectional saboteurs. Another 
enhancement respect to prior models is that they allow 
injecting more fault models. The numeric results of 
comparing both proposals do not reflect these improvements. 
Instead, a slight temporal overhead has been introduced. 
Anyway, the overall temporal cost (the sum of simulation and 
analysis times) of this technique is affordable with modern 
computers. 

The advantages of the new proposal to implement mutants 
are especially relevant: it is easy to automate and reduces 
notably the spatial overhead. But its main success is to shrink 
considerably the temporal overhead. In the experiments 
carried out, the overall temporal cost is equivalent to the 
obtained with the new saboteurs. 
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TABLE VII 
COMPARISON OF THE FAULT INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 1): ANALYSIS RESULTS 

 Parameter 

Injection technique (version) PA (%) lp (ns) ld (ns) lr (ns) Cd (%) Cr (%) 

Simulator commands 63.63 900 34491 103600 41.70 31.64 

Saboteurs (old) 53.73 4661 13348 50965 74.01 0.93 

Saboteurs (new) 74.27 5070 24539 90937 53.32 15.31 

Mutants (dynamic) 100.00 108 22608 52961 30.80 22.13 

Mutants (new) 46.93 17925 37089 96053 53.69 23.30 

 
TABLE VIII 

COMPARISON OF THE FAULT INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 2): ANALYSIS RESULTS 

 Parameter 

Injection technique (version) PA (%) lp (ns) ld (ns) lr (ns) Cd (%) Cr (%) 

Simulator commands 72.83 5546 39992 119563 50.43 21.37 

Saboteurs (old) 54.07 4415 12076 80010 74.60 1.11 

Saboteurs (new) 67.40 5843 31477 94693 50.79 14.64 

Mutants (dynamic) 100.00 132 29691 0 7.40 0.00 

Mutants (new) 47.30 18978 35399 93715 55.95 23.40 

 
TABLE IX 

COMPARISON OF THE FAULT INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 3): ANALYSIS RESULTS 

 Parameter 

Injection technique (version) PA (%) lp (ns) ld (ns) lr (ns) Cd (%) Cr (%) 

Simulator commands 64.93 1210 36194 111563 42.15 39.17 

Saboteurs (old) 54.37 4904 14525 3940 77.07 0.49 

Saboteurs (new) 75.83 6138 27657 89372 59.38 24.66 

Mutants (dynamic) 100.00 108 729 39332 95.47 86.13 

Mutants (new) 48.03 20506 51594 104862 72.73 42.12 

 
TABLE X 

COMPARISON OF THE FAULT INJECTION TECHNIQUES AND VERSIONS (CAMPAIGN 4): ANALYSIS RESULTS 

 Parameter 

Injection technique (version) PA (%) lp (ns) ld (ns) lr (ns) Cd (%) Cr (%) 

Simulator commands 74.83 6659 39589 131567 55.41 34.65 

Saboteurs (old) 54.53 5077 13442 3636 76.77 0.37 

Saboteurs (new) 69.13 6991 33177 93038 59.11 28.88 

Mutants (dynamic) 99.47 199 16795 131030 9.92 1.41 

Mutants (new) 48.37 21435 51073 103326 72.02 42.32 
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