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Abstract. Conjunctive partial deduction is a well-known technique for
the partial evaluation of logic programs. The original formulation follows
the so called online approach where all termination decisions are taken
on-the-fly. In contrast, offline partial evaluators first analyze the source
program and produce an annotated version so that the partial evaluation
phase should only follow these annotations to ensure the termination
of the process. In this work, we introduce a lightweight approach to
conjunctive partial deduction that combines some of the advantages of
both online and offline styles of partial evaluation.

1 Introduction

Partial evaluation [7] is a well-known technique for program specialization. From
a broader perspective, some partial evaluators are also able to optimize programs
further by, e.g., shortening computations, removing unnecessary data structures
and composing several procedures or functions into a comprehensive definition.
Within this broader approach, given a program and a partial (incomplete) call,
the essential components of partial evaluation are: the construction of a finite
representation—generally a graph—of the possible executions of (any instance
of) the partial call, followed by the systematic extraction of a residual program
(i.e., the partially evaluated program) from this graph. Intuitively, optimization
can be achieved by compressing paths in the graph, by deleting unfeasible paths,
and by renaming expressions while removing unnecessary function symbols.

Partial deduction. The theoretical foundations of partial evaluation for (nor-
mal) logic programs was first put on a solid basis by Lloyd and Shepherdson
in [12]. When pure logic programs are considered, the term partial deduction is
often used. Roughly speaking, in order to compute the partial deduction of a
logic program P w.r.t. a set of atoms A = {A1, . . . , An}, one should construct
finite—possibly incomplete—SLD trees for the atomic goals ← A1, . . . , ← An,
such that every leaf is either successful, a failure, or only contains atoms that
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are instances of {A1, . . . , An}; this is the so-called closedness condition [12]. The
residual program then includes a resultant of the form Aiσ ← Q for every non-
failing root-to-leaf derivation ← Ai ;

∗
σ← Q in the SLD trees. Similarly, we say

that a residual program P ′ is closed when every atom in the body of the clauses
of P ′ is an instance of a partially evaluated atom (i.e., an appropriate specialized
definition exists).

From an algorithmic perspective, in order to partially evaluate a program P
w.r.t. an atom A, one starts with the initial set A1 = {A} and builds a finite
(possibly incomplete) SLD tree for← A. Then, all atoms in the leaves of this SLD
tree which are not instances of A are added to the set, thus obtaining A2, and
so forth. In order to keep the sequence A1,A2, . . . finite, some generalization is
often required, e.g., by replacing some predicate arguments with fresh variables.
Some variant of the homeomorphic embedding ordering [8] is often used to detect
potential sources of non-termination (see Def. 6).

A sketch of this algorithm is shown in Fig. 1 (a), where unf (Ai) builds finite
SLD trees for the atoms in Ai and returns the associated resultants, function
atoms returns the atoms in the bodies of these resultants, and abs(Ai,A′) returns
an approximation of Ai ∪ A′ so that the sequence A1,A2, . . . is kept finite.

Initialization: i := 1; Ai := {A};
Repeat
Ai+1 := abs(Ai, atoms(unf (Ai)));
i := i+ 1

Until Ai ≈ Ai−1 (variants)
Return unf (Ai)

Initialization: i := 1; Ci := {C};
Repeat
Ci+1 := abs(Ci, unf (Ci));
i := i+ 1

Until Ci ≈ Ci−1 (variants)
Return unf (Ci)

(a) Partial deduction (b) Conjunctive partial deduction

Fig. 1. Basic algorithms

Conjunctive partial deduction. One of the main drawbacks of partial de-
duction is the fact that the atoms in the leaves of every SLD tree are partially
evaluated independently. Usually, this implies a significant loss of accuracy. To
overcome this drawback, a new framework called conjunctive partial deduction
(CPD) was introduced [5].

Loosely speaking, the main difference with standard partial deduction is that
it considers the partial evaluation of non-atomic goals. Here, in order to partially
evaluate a program P w.r.t. a conjunction C, one starts with the initial set
C1 = {C}, and builds a finite SLD tree for ← C; then, every leaf in the SLD
tree is added to the set and so forth. Trivially, this process is usually infinite.
Now, in order to keep the sequence C1, C2, . . . finite, generalization of predicate
arguments does not suffice and the conjunctions in the leaves of the SLD trees
should often be split up to avoid conjunctions that keep growing infinitely.



The process is sketched in Fig. 1 (b), where unf now returns the conjunctions
in the bodies of resultants and abs also includes some algorithm for splitting
conjunctions so that the sequence C1, C2, . . . is still kept finite.

Online versus offline. Depending on when control issues—like deciding which
atoms should or should not be unfolded or how conjunctions should be split
up—are addressed, two main approaches to partial evaluation can be distin-
guished. In offline approaches to partial evaluation, these decisions are taken
beforehand by means of a static analysis (where we know which parameters are
known but not their values). In contrast, online partial evaluators take decisions
on the way (so that actual values of static data are available).

While offline partial evaluators are usually faster, online ones produce more
accurate results (though, from a theoretical point of view, they are equally pow-
erful [3]). Partial evaluators based on the CPD scheme have traditionally followed
the online approach.

Motivation. Some of the weaknesses of current online partial evaluators based
on the CPD scheme (like ECCE [10]) are the following. First, partial evaluation
algorithms are conceptually rather complex, which makes it difficult to predict
the outcome of the process. Moreover, they are often computationally expensive
to implement (e.g., the online partial evaluator ECCE runs almost three orders
of magnitude slower than offline systems like LOGEN [10]).

Furthermore, current CPD algorithms do not consider run-time informa-
tion. However, some run-time information, like groundness information, could
be useful for improving existing strategies for splitting conjunctions so that no
relevant run-time variable sharing is lost. Unfortunately, run-time information
is rather difficult to preserve through partial evaluation. Consider, e.g., that an
atom q(X,Y ) is partially evaluated. Then, if we follow the usual approach, an
instance like q(W,W ) will be considered closed w.r.t. q(X,Y ). However, this im-
plies a serious loss of run-time groundness information since we cannot ensure
that X and Y are independent anymore. Of course, generalizing predicate ar-
guments or splitting conjunctions arbitrarily are other ways of losing run-time
information.

In this work, we try to overcome some of these drawbacks by introducing a
hybrid approach to CPD of definite logic programs as follows:

Pre-processing stage: First, we apply a simple call and success pattern analysis
that identifies which predicate arguments will be ground at run-time. A
termination analysis is then applied to identify possibly non-terminating
calls (for the computed call patterns). This information will become useful
to decide when non-leftmost unfolding is admissible. Finally, we introduce a
syntactic characterization to identify non-regular predicates whose unfolding
might give rise to infinitely growing conjunctions during partial evaluation.

Partial evaluation: Roughly speaking, this stage can be seen as an instance of
traditional CPD algorithms, though it also includes some significant dif-
ferences: firstly, splitting of conjunctions is statically determined from the



information gathered by the call and success pattern analysis and from the
computed set of non-regular predicates (rather than inspecting the history of
partially evaluated queries, which is much more computationally expensive);
secondly, a conjunction is only considered closed when it is a variant of an
already partially evaluated conjunction (thus avoiding the loss of run-time
information); also, our procedure includes no generalization but simply gives
up when termination cannot be ensured (thus returning calls to the original,
not renamed predicates instead); finally, non-leftmost unfolding is allowed
as long as the selected atoms are terminating (at run-time) according to the
termination analysis performed in the pre-processing stage.1

Post-processing stage: Finally, we extract the residual clauses from the com-
puted partial evaluations using the standard notion of resultant. In princi-
ple, we only compute one-step resultants (which increases the opportunities
for folding back the calls of the SLD trees). Moreover, and in contrast to
what is usually done, resultants are produced during the construction of
SLD trees: every unfolding (or splitting) generates an associated resultant.
In traditional approaches, resultants are computed a posteriori when the
partial evaluation process is finished. As in the original CPD framework,
all conjunctions are renamed (except for those where termination could not
be ensured and we gave up). Finally, we apply a standard post-unfolding
transformation where calls to intermediate predicates are unfolded.

To summarize, our technique can be seen as a lightweight approach to CPD
that combines some of the advantages of both online and offline styles of partial
evaluation. Moreover, it represents a first step towards a technique that keeps
run-time information during partial evaluation as much as possible (though the
splitting of conjunctions still implies a loss of information).

Our scheme is potentially faster than existing approaches since some of the
most expensive operations, generalization and splitting, do not exist anymore
(generalization) or are much simpler (splitting) thanks to the use of informa-
tion gathered by the static analyses. A prototype implementation of the hybrid
partial evaluator is available at http://german.dsic.upv.es/lite.html. De-
spite its simplicity (a few hundred lines of Prolog code), the results for definite
logic programs (including built-in’s) are not far from those obtained with ma-
ture CPD systems like ECCE [10] when the residual program is closed (i.e., it
contains no calls to the original predicates). Otherwise, we still get some modest
improvements; in general, no significant slowdown was produced.

The paper is organized as follows. Section 2 presents the static analyses that
are performed before partial evaluation starts. The main algorithm for CPD is
then described in Sect. 3, while the extraction of residual programs is presented

1 Observe that we do not require the selected atoms to terminate at partial evaluation
time (actually, since they are less instantiated than usual run-time calls, partial com-
putations are often non-terminating). The unfolding of non-leftmost non-terminating
(at run-time) atoms is avoided because it can break the equivalence w.r.t. finite fail-
ures. This is often ensured by requiring the construction of weakly fair SLD trees
[5], which is sometimes a too restrictive condition.



in Sect. 4. Section 5 summarizes our findings from an experimental evaluation of
the new technique and, finally, Sect. 6 concludes and discusses some possibilities
for future work.

2 Pre-Processing Stage

Our pre-processing stage consists of three different analyses. The first two anal-
yses are well-known in the literature. The first one is a simple call and success
pattern analysis like that introduced in [11]. Basically, given an initial query
and the call patterns for the atoms in this query, the analysis infers for every
predicate p/n a number of call/success patterns of the form p/n : πin 7→ πout
such that πin and πout are subsets of {1, . . . , n} denoting the arguments πout of
p/n which are definitely ground after a successful derivation, assuming that it is
called with ground arguments πin. This information could also be provided by
the user (as in Mercury [13]).

The second analysis is a standard left-termination analysis (i.e., an analysis
for universal termination under Prolog’s left-to-right computation rule) like those
based on the abstract binary unfoldings [4], size-change analysis [1], etc. This
information, together with the call and success pattern analysis, will be essential
to determine when non-leftmost unfolding is admissible at specialization time.

Finally, we introduce a syntactic characterization that allows us to identify
which predicate calls might give rise to infinitely growing conjunctions at partial
evaluation time. Our formulation can be seen as a generalization of the notion
of B-stratifiable programs in [6] to the context of partial evaluation. The main
difference is that we consider a flexible computation rule, while [6] considers a
fixed left-to-right rule (and thus their notion is more restrictive).

In the following, we say that the call graph of a program P is a directed
graph that contains the predicate symbols of P as vertices and an edge from
predicate p/n to predicate q/m for each clause p(t1, . . . , tn) ← body and atom
q(s1, . . . , sm) of body.

Definition 1 (strongly regular logic programs). Let P be a logic program
and let CG1, . . . , CGn be the strongly connected components (SCC) in the call
graph of P . We say that P is strongly regular if there is no clause p(t1, . . . , tn)←
body such that body contains two atoms q(s1, . . . , sm) and r(l1, . . . , lk) such that
q/m and r/k belong to the same SCC of p/n.

Intuitively speaking, strongly regular programs cannot produce infinitely grow-
ing conjunctions at partial evaluation time when the usual dynamic computation
rules of existing partial evaluators are considered (like that of Def. 6 below).

When a program P is not strongly regular, we identify the predicates that are
responsible for violating the strongly regular condition: we say that a predicate
p/n is non-regular if there is a clause p(t1, . . . , tn)← body and body contains two
atoms with predicates q/m and r/k that belong to the same SCC of p/n.

Identifying non-regular predicates will become useful to (statically) decide
how to split queries at partial evaluation time.



Example 1. Consider the following Prolog program from the DPPD library [9]:

applast(L,X,Last) :- append(L,[X],LX), last(Last,LX).

last(X,[X]).

last(X,[H|T]) :- last(X,T).

append([],L,L).

append([H|L1],L2,[H|L3]) :- append(L1,L2,L3).

Here, there are three SCCs, {applast/3}, {append/3} and {last/2}, but no
clause violates the strongly regular condition. In contrast, the following program
(also from the DPPD library [9]):

flipflip(XT,YT) :- flip(XT,TT), flip(TT,YT).

flip(leaf(X),leaf(X)).

flip(tree(L,I,R),tree(FR,I,FL)) :- flip(L,FL), flip(R,FR).

is not strongly regular. Here, we have two SCCs, {flipflip/2} and {flip/2},
and the second clause of flip/2 violates the strongly regular condition. As a
consequence, we say that flip/2 is a non-regular predicate.

3 Partial Evaluation Stage

In this section, we present the main stage of our CPD procedure. As it is common
practice, we avoid infinite unfolding by means of a well-known strategy based on
the use of the homeomorphic embedding ordering [8]. The embedding relation �

is defined as the least relation satisfying (here f denotes a function symbol and
p a predicate symbol):

– x� y for all variables x, y;
– f(t1, . . . , tn) � s if ti � s for some i ∈ {1, . . . , n};
– f(t1, . . . , tn) � f(s1, . . . , sn) if ti � si for all i = 1, . . . , n.
– p(t1, . . . , tn) � p(s1, . . . , sn) if ti � si for all i = 1, . . . , n and p(s1, . . . , sn) is

not a strict instance of p(t1, . . . , tn).2

When Ai � Aj holds, we say that atom Ai embeds atom Aj . The embedding
relation is extended to queries as follows: Q � Q′ if Q = A1, . . . , An, Q′ =
A′1, . . . , A

′
n and Ai �A′i for all i = 1, . . . , n.

Definition 2 (covering ancestors [2]). Given an SLD resolution step

← A1, . . . Ai, . . . , An ↪→σ ← (A1, . . . Ai−1, A
′
1, . . . , A

′
m, Ai+1, . . . , An)σ

with selected atom Ai using clause A ← A′1, . . . , A
′
m, σ = mgu(Ai, A), we say

that Ai is the parent of atoms A′1σ, . . . , A
′
mσ in this step. The ancestor relation

is just the transitive closure of the parent relation.
Finally, the “covering” ancestors of a query atom in an SLD derivation is

the subset of its ancestors with the same predicate symbol.

2 This last condition is required to have p(X,X)�p(A,B) but not p(A,B)�p(X,X),
see [8] for more details.



Basically, we will ensure termination by avoiding the unfolding of those calls
that embed some of their covering ancestors (see Def. 6 below).

In contrast to previous approaches, we do not explicitly distinguish between
the so-called local and global levels and construct a single partial evaluation tree
that comprises both levels. Our CPD procedure deals with extended queries:

Definition 3 (extended query). We consider extended queries (and goals) of
the form (A1, anc1, π1), . . . , (An, ancn, πn), where Ai is an atom, anci is a set
of atoms (the—standardized apart—covering ancestors of Ai), and πi is the call
pattern of Ai, i = 1, . . . , n. We denote the empty extended query by true.

Given an extended query Q, we introduce the following auxiliary function:
query(Q) = A1, . . . , An, if Q = (A1, anc1, π1), . . . , (An, ancn, πn).

Before introducing the notion of SLD resolution over extended queries, we need
the following preparatory definition:

Definition 4. Let A = p(s1, . . . , sn) and B = p(t1, . . . , tn) be atoms and π be
a call pattern. We define the function “propagate” in order to propagate the
groundness information to the body atoms of a clause as follows:

propagate(A, π,B) = {i | Var(ti) ∩ Var(π(A)) = ∅}

where π(A) returns the ground arguments of A according to π, i.e.,

π(p(s1, . . . , sn)) = {sj | j ∈ π}

(so Var(π(A)) are ground variables of A according to π).3

We are now ready to introduce the extended notion of SLD resolution:

Definition 5 (extended SLD resolution). Extended SLD resolution, denoted
by ;, is a natural extension of SLD resolution over extended queries. Formally,
given a program P , an extended query Q = (A1, anc1, π1), . . . , (An, ancn, πn),
and a computation rule R, we say that ← Q ;P,R,σ ← Q′ is an extended
SLD resolution step for Q with P and R if the following conditions hold:4

– R(Q) = (Ai, anci, πi), 1 ≤ i ≤ n, is the selected extended atom,
– H ← B1, . . . , Bm is a renamed apart clause of P ,
– σ = mgu(Ai, H) is the computed most general unifier, and
– Q′ = (← (A1, anc1, π1), . . . , (Ai−1, anci−1, πi−1),

(B1, anc
′
1, π
′
1), . . . , (Bm, anc

′
m, π

′
m),

(Ai+1, anci+1, πi+1), . . . , (An, ancn, πn))σ
where anc′j = anci ∪ {Aiσi}, σi is a renaming substitution, and
π′j = propagate(Aiσ, πi, Bjσ), j = 1, . . . ,m.

3 Let us note that propagate does not take variable sharing into account, thus it returns
just an approximation of the ground variables.

4 We often omit P , R and/or σ in the notation of an extended SLD resolution step
when they are clear from the context.



Trivially, extended SLD resolution is a conservative extension of SLD reso-
lution: given extended queries Q,Q′, we have that ← Q ;σ ← Q′ implies
← query(Q) ↪→σ← query(Q′).

In the following, we say that two (extended) queries Q and Q′ are variants,
denoted by Q ≈ Q′, if there is a renaming substitution σ such that Qσ = Q′.

Now, we introduce our unfolding strategy based on the notions of embedding
ordering and covering ancestors (analogously to, e.g., [2]):

Definition 6 (unfolding strategy,
.
;). Given extended queries Q,Q′, we

have ← Q
.
;σ← Q′ if the following conditions hold:

– the extended SLD resolution step ← Q ;σ ← Q′ holds, where the selected
extended atom (A, anc, π) is the leftmost extended atom such that there is no
atom B ∈ anc with A�B (if any);

– either (A, anc, π) is the leftmost extended atom of Q or A is left-terminating
for π (according to the left-termination analysis done in the pre-processing
stage).

It is not difficult to prove (e.g., from the results in [2]) that our unfolding strategy
guarantees that derivations are always terminating.

In the following, we will distinguish the following kinds of non-unfoldable
extended queries:

– failing extended queries, in which no selected atom matches the head of a
clause;

– stalled extended queries, in which every selected atom embeds one of its
covering ancestors. In this case, we say that stalled(Q) holds.

For instance, the extended query (head([ ], H), { }, { }) is failing w.r.t. the usual
definition of predicate head:

head([H| ], H).

On the other hand, the extended query (head(X), {head(Y)}, {}) is stalled since
head(X) � head(Y).

As mentioned in the introduction, in the context of CPD, avoiding the unfold-
ing of atoms that embed some ancestor is not enough to ensure the termination
of the process. In general, some form of splitting of queries is also needed. In
our calculus, we consider two different forms of splitting. The first one is based
on the notion of independence and allows us to split up a query when it in-
cludes two subsequences that do not share variables and, thus, can be evaluated
independently (at run time) without any serious loss of accuracy.

In the following, given an extended query Q = (A1, , π1), . . . , (An, , πn)
where “ ” denotes an irrelevant argument, the set fvars(Q) of free variables of
Q is defined as follows: fvars(Q) = Var(Q) \ {X ∈ Var(πi(Ai)) | i = 1, . . . , n}.

Now, we introduce our splitting operations. We note that both of them only
perform a partitioning of the considered query in such a way that only consec-
utive atoms are considered and the order is not changed. More flexible splitting
operations where atoms are mixed or duplicated are also possible (see [5]).



Definition 7 (independent splitting, i-split). Let Q be an extended query.
We say that the set of extended queries {Q1, Q2, Q3} is an independent splitting
of Q, denoted by {Q1, Q2, Q3} ∈ i-split(Q), if the following conditions hold:

– Q = Q1, Q2, Q3;

– both Q1 and Q2 contain at least one extended atom (but Q3 might be empty);

– there are no free variables (at run time) in common between Q1 and Q2, i.e.,
fvars(Q1) ∩ fvars(Q2) = ∅.

In general, there might be more than one independent splitting for a given ex-
tended query. In our approach, we try to minimize the length of Q3 (i.e., so that
Q3 is empty in the optimal case).5

E.g., given the extended query

Q = (append(X, Y, L1), , [1, 2]), (append(X, Z, L2), , [1, 2]), (append(L1, L2, R), , [ ])

we have {Q1, Q2, Q3} ∈ i-split(Q) with

Q1 = (append(X,Y, L1), , [1, 2])
Q2 = (append(X,Z,L2), , [1, 2])
Q3 = (append(L1, L2, R), , [ ])

since fvars(Q1) = {L1}, fvars(Q2) = {L2} and their intersection is empty (more-
over, since fvars(Q3) = {L1, L2, R} this is the only possible independent split-
ting). Observe that variable independence is only guaranteed at run time (e.g.,
Q1 and Q2 share variable X at partial evaluation time).

Our second form of splitting often involves a more serious loss of accuracy
and is only used when termination cannot be guaranteed otherwise.

Definition 8 (regular splitting, r-split). Let Q be an extended query. We say
that the set of extended queries {Q1, . . . , Qn}, n ≥ 1, is a regular splitting of Q,
denoted by {Q1, . . . , Qn} ∈ r-split(Q), if the following conditions hold:

– Q = Q1, . . . , Qn;

– every query Qi contain at least one extended atom;

– every query Qi contains at most one call to a non-regular predicate (according
to the analysis performed in the pre-processing stage).

In general, there might be more than one regular splitting for a given query. Here,
we let r-split(Q) return any of them.6

5 In [5], the notion of maximally connected subconjunction is introduced for a similar
purpose. However, while the purpose of [5] is keep the longest possible conjunctions,
our aim is to minimize the loss of run-time variable sharing.

6 In the implemented partial evaluator, we just traverse Q from left to right and start
a new subsequence every time a call to a non-regular predicate is found.



(success)
Q = true

〈Q,memo〉 −→ 〈 〉

(variant)
∃Q′ ∈ memo. query(Q) ≈ query(Q′)

〈Q,memo〉 −→ 〈 〉

(failure)
¬stalled(Q) ∧ 6 ∃Q′. ← Q

.
;σ← Q′

〈Q,memo〉 −→ 〈 〉

(embedding)
stalled(Q) ∧ ∃Q′ ∈ memo. query(Q) � query(Q′)

〈Q,memo〉 emb−→ 〈 〉

(unfold)
∃Q′. ← Q

.
;σ← Q′

〈Q,memo〉 unf−→σ 〈Q′,memo ∪ {Q}〉

(i-split)
stalled(Q) ∧ 6 ∃Q′ ∈ memo. query(Q) � query(Q′) ∧ Q′′ ∈ i-split(Q)

〈Q,memo〉 is−→ 〈Q′′,memo ∪ {Q}〉

(r-split)
stalled(Q) ∧ 6 ∃Q′ ∈ memo. query(Q) � query(Q′) ∧ Q′′ ∈ r-split(Q)

〈Q,memo〉 rs−→ 〈Q′′,memo ∪ {Q}〉

Fig. 2. Partial evaluation semantics

Let us consider again the programs of Example 1. In this case, it is easy to check
that {Q} ∈ r-split(Q) for

Q = (append(L, [X], LX), , ), (last(Last, LX), , )

(i.e., no regular splitting is necessary), but {Q1, Q2} ∈ r-split(Q) for

Q = (flip(L, FL), , ), (flip(R, FR), , )

with Q1 = (flip(L, FL), , ) and Q2 = (flip(R, FR), , ), since flip/2 is non-
regular.

We formalize our CPD algorithm by means of a (labelled) state transition
system. In our context, states are pairs of the form 〈q,memo〉 where q is an
extended query and memo is a set of extended queries (the queries already
partially evaluated).

The rules of the partial evaluation calculus are shown in Fig. 2. Let us briefly
describe these rules:

– The first two rules, success and variant, should be self-explanatory: both
empty queries and variants of previously partially evaluated queries are just
discarded. Note that, in contrast to traditional partial evaluators, an instance
of a previously partially evaluated query is not discarded (i.e., it is not con-
sidered closed). The reason for this decision is to enforce the preservation



of run-time information—like variable sharing and groundness—as much as
possible.

– The next two rules are similar but consider different cases. Rule failure is used
when a query is not stalled but the selected atom does not match the head of
any clause. Rule embedding is considered when the query is stalled because
all atoms embed some covering ancestor. Although both cases terminate
the current derivation, we need to consider them separately because we will
produce a resultant only in the second case.

– The next rule, unfold, just performs an extended SLD resolution step using
the unfolding strategy of Def. 6. Observe that this rule is non-deterministic
since the underlying extended SLD resolution is also non-deterministic. There-
fore, we construct a tree structure during partial evaluation.

– Finally, the last two rules perform the splitting of stalled queries that do
not embed any partially evaluated query. These rules are tried in the textual
order, so that when the first rule i-split is applicable, we discard the second
rule r-split. We consider that only one (independent or regular) splitting is
applicable. However, these rules are still non-deterministic since they should
initiate subderivations for every subconjunction.

Observe that we only label the relation −→ in those cases in which a resultant
is produced (see next section).

Example 2. Let us consider again the definition of applast/3 in Example 1. Then,
the calculus of Fig. 2 computes (among others) the following derivation for Q0 =
(applast(L,X, Last), { }, {1}) (the unfolded atom is underlined):7

〈Q0, { }〉
unf−→{} 〈(append(L, [X], LX), {applast(L,X, Last)}, {1}),

(last(Last, LX), {applast(L,X, Last)}, {2}),
{applast(L,X, Last)}〉

unf−→{L/[H|T ],LX/[A|S]} 〈(append(T, [X],S), {applast(L,X, Last)}, {1}),
(last(Last, [A|S]), {applast(L,X, Last)}, {2}),
{applast(L,X, Last), append(L, [X], LX)}〉

unf−→{ } 〈(append(T, [X],S), {applast(L,X, Last)}, {1}),
(last(Last,S), {applast(L,X, Last)}, {2}),
{applast(L,X, Last), append(L, [X], LX), last(Last, [A|S])}〉

variant−→ 〈 〉

4 Post-Processing Stage

Once the partial evaluation stage terminates, we produce renamed, residual rules
associated to the transitions of the partial evaluation semantics as follows:

7 Observe that both append/3 and last/2 are terminating when the first argument is
ground, so unfolding non-leftmost atoms is admissible.



– For every unfolding step 〈Q,memo〉 unf−→σ 〈Q′,memo′〉, we produce a binary
clause of the form ren(query(Q))σ ← ren(query(Q′))., where ren(query(Q))
and ren(query(Q′)) are renamings (atoms with fresh predicate symbols) of
queries query(Q) and query(Q′), respectively.
Actually, we observed that our scheme returns binary residual programs
often (in particular, when the source programs are B-stratifiable [6]).

– For every embedding step 〈Q,memo〉 emb−→ 〈 〉, we produce a residual rule of
the form ren(Q) ← Q., i.e., we give up the specialization of this query and
just call the predicates of the original program.

– Finally, for every branching performed with the rules for independent or reg-
ular splitting in which Q is decomposed into the set of queries {Q1, . . . , Qn},
we produce a residual rule of the form ren(Q)← ren(Q1), . . . , ren(Qn).

We do not present the details of the renaming function here since it is a standard
renaming as introduced in, e.g., [5].

For instance, for the derivation of Example 2, we produce the following resid-
ual rules:

applast 1(L, X, Last)← append last 2(L, X, LX, Last).
append last 2([H|T], X, [A|S], Last)← append last 3(T, X, A, S, Last).
append last 3(T, X, A, S, Last)← append last 2(T, X, S, Last).

Besides the extraction of renamed, residual clauses, we also apply a simple post-
unfolding transformation. Basically, we unfold all intermediate predicates, i.e.,
predicates that are only called from one program point. This is very effective
for reducing the size of the residual program and is very easy to implement. For
instance, in the above clauses, append last 3 is just an intermediate predicate
and can be removed:

applast 1(L, X, Last)← append last 2(L, X, LX, Last).
append last 2([H|T], X, [A|S], Last)← append last 2(T, X, S, Last).

5 Experimental Evaluation

A prototype implementation of the partial evaluator described so far has been
developed. It consists of approx. 1000 lines of SWI Prolog code (including the
call and success pattern analysis, comments, etc). The only missing component
is the left-termination analysis (so the preservation of finite failures is not yet
ensured). A web interface to our tool is publicly available at

http://german.dsic.upv.es/lite.html

We have tested it by running the benchmarks of the DPPD library [9] that do not
contain cut nor negation. Basic built-in’s are considered in a simple way: they
are evaluated when enough information is provided at partial evaluation time,
or left untouched otherwise. Nevertheless, the design of the partial evaluator is
not stable yet and some decisions (especially those related with the treatment
of built-in’s) can be reconsidered in the near future.



Table 1 summarizes our experimental results for some selected benchmarks;
for every benchmark, we show the number of inferences8 (using the time/1

utility of SWI Prolog) of some run time queries (columns r1, r2, etc) in the
original (row original) and partially evaluated programs with both the CPD
system ECCE [10] (row ecce) and our prototype implementation (row lite).
All information regarding the source programs, the partial deduction queries,
the partially evaluated programs, the run time queries, etc, can be found in the
DPPD library [9] and in the web page mentioned above. We do not show the
run-times of the partial evaluator since it was really fast: it took less than 0.1
seconds in all but two examples—liftsolve.app and relative, where it took 0.380
and 0.318 seconds, respectively—with an average running time of 0.042 seconds.

Table 1. Experimental evaluation

benchmark advisor applast contains contains.kmp depth doubleapp

r1 r2 r1 r1 r1 r1 r1 r2 r3

original 4 6 58 75 104 24 3 11 50

ecce 0 0 29 18 21 0 2 7 33

lite 0 1 29 18 21 1 3 8 34

benchmark ex depth∗ flip∗ grammar∗ liftsolve.app matchapp match∗

r1 r2 r3 r1 r2 r1 r1 r2 r1 r2 r3 r1

original 24 32 17 6 18 86 16 81 167 206 374 53

ecce 6 9 7 3 9 5 0 1 14 16 23 52

lite 14 0 12 2 24 23 0 1 14 16 23 52

benchmark maxlength∗ regexp.r1 regexp.r2 regexp.r3 relative transpose

r1 r2 r3 r1 r2 r3 r1 r2 r3 r1 r2 r3 r1 r1

original 35 3 72 73 85 14 28 27 24 41 39 63 96 58

ecce 26 1 54 10 11 2 10 10 7 14 14 21 0 0

lite 34 0 71 10 11 2 8 8 5 14 14 21 1 0

A detailed experimental comparison between ECCE and our new approach is
beyond the scope of this paper. Nevertheless, we note that 5 out of 18 benchmarks
in Table 1 produced residual programs which are not closed (i.e., which contained

8 We do not show actual run-times since they do not add significant new information
over the number of inferences. Basically, when the number of inferences coincide, the
programs obtained by ECCE and our approach are almost identical. In the remaining
cases, where non-closed programs are obtained, the partially evaluated programs
obtained by our approach resemble the original non-specialized ones though some
inference steps are saved, but the run-times are not significantly changed.



calls to the predicates of the original program because rule embedding was applied
during the partial evaluation process). These benchmarks are marked with an
asterisk in Table 1. In general, we observed that around 40% of the benchmarks
produced non-closed residual programs.

It is worthwhile to note that, when a closed program is obtained, the im-
provement achieved by our partial evaluator is similar to that obtained by the
state-of-the-art system ECCE. However, when a non-closed residual program
is obtained the efficiency of the partially evaluated program is rather variable
(though no significant slowdown w.r.t. the original programs was produced).

In summary, our technique was only effective in 60% of the considered bench-
marks. Nevertheless, this situation could be improved in a number of ways. First,
one can add more accurate run-time information (e.g., from a sharing and free-
ness analysis) so that regular splitting—which usually involves a significant loss
of accuracy—is avoided as much as possible. Also, one could introduce a limited
form of generalization so that our technique gives up (and thus returns calls
to the original predicates) in fewer cases. These topics are subject on ongoing
research.

6 Concluding Remarks and Future Work

We have developed a lightweight approach to conjunctive partial deduction that
combines features from both online and offline styles of partial evaluation. The
resulting scheme is conceptually simpler than existing approaches (thus making
it more amenable to predicting the result of partial evaluation) and introduces
for the first time the use of run time information to assist the splitting of con-
junctions.

The correctness of our approach would not be difficult to prove. In general,
it can be seen as an instance of the CPD framework [5]. The main difference
comes from the fact that our “one-step” unfoldings do not generally fulfill the
weakly fair condition of [5] (which is required for ensuring correctness w.r.t. finite
failures). This is solved in our approach by requiring non-leftmost unfolding to
be only applicable over terminating calls.

As for future work, our main line of research involves the addition of (run-
time) variable sharing information. Besides improving the accuracy of splitting,
the combination of (run-time) sharing and groundness information can be very
useful at partial evaluation time in order to produce residual programs where
some sequential conjunctions are automatically replaced by concurrent conjunc-
tions. Some preliminary experiments in this direction (using the concurrent/3

predicate of SWI Prolog) have shown promising results.
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