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Enrique S. Quintana-Ort́ı
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Abstract

This paper introduces a parallel algorithm for the scaled boundary finite element method
(SBFEM). The application code is designed to run on clusters of computers, and it enables the
analysis of large-scale soil-structure-interaction problems, where an unbounded domain has to
fulfill the radiation condition for wave propagation to infinity. The main focus of the paper is
on the mathematical description and numerical implementation of the SBFEM. In particular,
we describe in detail the algorithm to compute the acceleration unit impulse response matrices
used in the SBFEM as well as the solvers for the Riccati and Lyapunov equations. Finally,
two test cases validate the new code, illustrating the numerical accuracy of the results and the
parallel performances.

1 Introduction

Accurate simulations of wave-propagation like aeroacoustic, radar and sonar technology, wireless
communication or soil-structure interaction (SSI) through unbounded domains or infinite half-
spaces, require careful analysis and call for efficient methods in order to model wave-propagation
to infinity. This work focuses on the analysis of SSI. Whenever vibrations or impulses are emitted
to soil, they induce waves traveling through the ground that can provoke structures to vibrate and
even to fail. Traffic, blasting operations and earthquakes are some of the reasons that generate
those kinds of emissions. Basically there are two major motivations: in active seismic areas reliable
earthquake resistant structures are required, and in our urban society a very important and chal-
lenging task is to encapsulate a building from the surrounding emissions to increase its comfort.

∗Jose E. Roman and Enrique S. Quintana-Ort́ı were partially supported by the Spanish Ministerio de Ciencia e
Innovación under grants TIN2009-07519, and TIN2008-06570-C04-01, respectively.
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Figure 1: Problem definition

In both cases it is essential not only to analyze the structure itself but also to take the surrounding
soil into account [2, 25, 28].

Analyzing SSI questions is complex since two very different mechanical problems have to be
solved: the structure itself and the infinite half-space, which surrounds the domain of interest.
Usually the engineers have to deal with complex geometries or materials as well. For those complex
problem types no analytical or even semi-analytical solution is available, which asks for the use
of computational models. The structure can be discretized by using standard methods like finite
differences or finite elements. In contrast, the infinite half-space cannot be analyzed with those
standard methods as they do not fulfill the radiation condition. Because the standard methods are
neither able to discretize infinite domains nor to satisfy the radiation condition, it seems natural
to divide the problem into two separate subproblems.

By using a substructuring method (see Figure 1), the soil-structure system is divided into two
subdomains. The structure and its foundation as well as parts of the surrounding soil represent
the near-field, denoted by Ω. The unbounded soil around the near-field can be represented by a
far-field for which the radiation condition has to be fulfilled. Both fields, near and far, are coupled
at the interface Γ. The near-field can be easily represented by finite elements, and the far-field by
boundary element method (BEM) or a scaled boundary finite element method (SBFEM) [32, 31],
which yields to a direct coupling of structure and the surrounding unbounded domain. The SBFEM
is used in the following because it combines the advantages of both FEM and BEM [22]. Like
the FEM, the SBFEM does not require a fundamental solution and the coefficient matrices are
symmetric and can be added to the FEM matrices without changing their size. On the other hand,
at the boundary the spatial dimension is reduced by one and the radiation conditions are satisfied
exactly, as they are in the BEM [31]. Another major advantage is that the coefficient matrices
can be reused, once they are computed. This allows the user to modify the setup of the near-field,
e.g., buildings, infrastructure and loadings, without computing the coefficient matrices again. The
only limitation is that the material parameters at the interface Γ must not change. The SBFEM
is also applicable to non-linear analysis. In this case, the coefficient matrices have to be computed
during the coupled FEM-SBFEM computation.

Other methods that consider the surrounding unbounded domain by a transmitting boundary,
which approximates the radiation condition, have been developed during the last years. The
viscous boundary condition is one of the simplest transmitting boundary conditions, acting like a
dashpot [24]. Other local, arbitrary order absorbing boundary conditions [15, 23, 3] and several
other types of transmitting boundaries (e.g., infinite elements [11, 4]) have been proposed, but
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none of them is able to fulfill the radiation condition exactly.
When a basic SSI problem consisting of a geometrically simple foundation and the surrounding

space is discretized, the number of degrees of freedom is small. Such problems can generally be
analyzed using a standard desktop PC. As the size of the foundation, the structure itself, and
their complexity grow, the necessary number of degrees of freedom increases as well to yield the
same accuracy in the results. Handling a large number of degrees of freedom on a standard PC
results in over-proportionally increased computation time. More often, this is even impossible due
to the lack of sufficient memory. Hence, the options for analyzing large SSI problems are either
to simplify the model, at the expense of loss in accuracy, or to keep the detailed model and use
parallel computing techniques.

Publications concerning the application of SBFEM to large scale or larger scaled problems
in time-domain, where the far-field is discretized by only one sub-domain, are not known to the
authors. SSI analysis using substructured far-fields have been discussed in the literature [31, 13, 30].
This work presents a way to realize a coupled FEM-SBFEM approach for large scale problems
without sub-structuring the interface Γ, so that no artificial boundaries have to be introduced
which would cause invalid physical behavior.

Parallel computing combines several computational cores, which can potentially lead to a sig-
nificant reduction of computation time, enabling the analysis of complex geometries. As the costs
for so-called PC clusters have dropped considerably in the past years while computing capabilities
have been improved constantly, parallel computation has become more popular and is turning into
a state-of-the-art tool to handle large-scale problems. Developing efficient parallel codes for matrix
computations can be difficult, but much of this programming burden is removed thanks to existing
numerical libraries.

The paper is structured as follows. In section 2 the FEM/SBFEM coupling is introduced briefly
and a more detailed description of the SBFEM part follows in section 2.1. The algorithm to solve
the SBFEM part and its implementation for time domain simulations is discussed in detail in
section 3. This section also includes a summary of the libraries we use to implement the software.
Numerical tests to validate the code and to illustrate its parallel performance are presented in
sections 4 and 5, respectively. We wrap up with a brief discussion in section 6.

2 Coupled FEM/SBFEM approach

In the following, we shortly introduce the FEM and SBFEM used to model the near-field and
far-field, respectively. The displacement-based finite element method at an arbitrary time step can
be written as

M
d2u

dt2
+ C

du

dt
+ Ku = p, (1)

where the vector u represents the nodal displacement, du
dt = u̇ nodal velocity, d2u

dt2 = ü stands for
the nodal acceleration, and p denotes the applied nodal forces. Here, M is the mass matrix, C is the
damping matrix and K denotes the stiffness matrix. The damping matrix is realized as Rayleigh
damping, hence C = cmM + ckK. Consider the time period T divided into n time steps with the
duration ∆t = T

n ; the application of the implicit time integration scheme Hilbert-Hughes-Taylor-α
(HHT-α) then yields [19]

Mütn+1 + (1 + α)Cu̇tn+1 − αCu̇tn + (1 + α)Kutn+1 − αKutn = ptn+1+α∆t, (2)
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utn+1
= utn + ∆tu̇tn + ∆t2

1

2
− βütn + β∆t2ütn+1

, (3)

u̇tn+1
= u̇tn + (1− γ)∆tütn + γ∆tütn+1

. (4)

Thus, for α = 0, the HHT-α scheme equals the Newmark integration method [27].
To couple the FEM with the SBFEM, the entries of the matrices in (1) have to be split into

the near- and far-fields, which results in the FEM equation:[
Mnn Mnf

Mfn Mff

]
ü +

[
Cnn Cnf

Cfn Cff

]
u̇ +

[
Knn Knf

Kfn Kff

]
u =

[
pnn
pff

]
−
[

0
pb

]
. (5)

In this expression, blocks with subscript “nn” contain nodes at the near-field while blocks with
subscript “ff” comprise nodes at the far-field. The coupling of near-field nodes and far-field nodes
is reflected in those blocks marked with the subscripts “nf” and “fn”. Vector pb, which acts
only at the boundary Γ (see Figure 1), denotes the far-field influence on the near-field, so that the
behaviour of the infinite half space can be applied to the FEM subdomain as a load.

The second part of this sub-structuring approach is the far-field represented by the SBFEM.
The forces pb at the near-field/far-field interface are given by the convolution integral

pb(t) =

t∫
0

M∞(t− τ)ü(τ)dτ, (6)

where M∞(t) is the acceleration unit-impulse response matrix, also known as the influence ma-
trix. In order to solve the convolution integral equation (6) in time domain, a piecewise constant
acceleration unit impulse response matrix is assumed, i.e.,

M∞(t) =


M∞0 t ∈ [0; ∆t] ,
M∞1 t ∈ [∆t; 2∆t] ,
...

...
M∞n t ∈ [(n− 1)∆t;n∆t] ,

(7)

so that equation (6) can be rewritten in discrete form as

pb(tn) =

n∑
j=1

M∞n−j

j∆t∫
(j−1)∆t

ü(τ)d(τ). (8)

This equation is then transformed using HHT-α (with γ parameter of HHT-α scheme) into

pb(tn) = γ∆tM∞0 ün +

n−1∑
j=1

M∞n−j (u̇j − u̇j−1). (9)

The coupling of FEM and SBFEM is done at the common interface of both subdomains with the
SBFEM part (9) being simply added to the sorted FEM part (5):[

Mnn Mnf

Mfn Mff + γ∆tM∞0

]
ü +

[
Cnn Cnf

Cfn Cff

]
u̇+[

Knn Knf

Kfn Kff

]
u =

 pnn

pff −
n−1∑
j=1

M∞n−j (u̇j − u̇j−1)

 . (10)
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Figure 2: Scaled boundary transformation for three-dimensional problems: finite element and
coordinate systems.

The discretization is now fully described. The following section is concerned with the formula-
tion of the SBFEM in time domain and the computation of the acceleration unit-impulse response
matrices M∞(t) which is needed in equation (10).

2.1 SBFEM formulation

The scaled boundary finite elements are described by a local coordinate system, η and ζ, on
the boundary and the radial coordinate ξ; see Figure 2. This system (ξ, η, ζ) is linked with the
Cartesian coordinate system xi; in particular, ξ represents the distance between the scaling center
(ξ = 0), boundary (ξ = 1) and infinity.

A finite elements geometry at the boundary is represented by interpolating its nodal coordinates
xi with the shape functionsN(η, ζ) using the local coordinates η and ζ. An arbitrary point x(ξ, η, ζ)
can be described by scaling its corresponding point at the boundary with the radial coordinate
ξ. As the displacements, stresses and strains are defined in Cartesian coordinates, the differential
operator D has to be modified, so that the governing equation of elastodynamics is transformed
to the scaled boundary coordinate system. For details, see [32, 31, 21].

2.1.1 Frequency domain

Although the SBFEM is used in time domain, its derivation initiates in frequency domain. There-
fore, in the following we will briefly describe the latter and postpone the presentation in time
domain to subsection 2.1.2. For full details on the computational approach to the three dimen-
sional wave propagation, see, e.g., [32].

The dynamic equilibrium in frequency domain reads

DT σ̂ + f̂ + ω2ρû = 0, (11)

where D is the operator matrix, and vectors σ̂, f̂ and û represent the amplitudes of stress, body
force and displacement, respectively; the frequency is given by ω and ρ denotes the material density.

The FEM is formulated in a nodal force-displacement relationship. Therefore, the SBFEM has
to be formulated in the same way to obtain an analog expression. At all surfaces Γξ the displace-
ment u(ξ) can be determined by applying the shape function N(η, ζ). The mapping equation

u(ξ, ηζ) = N(η, ζ)u(ξ) (12)

5



allows to derive strains

ε(ξ, η, ζ) = B1u(ξ),ξ +
1

ξ
B2u (13)

as well as stresses
σ(ξ, η, ζ) = Eε(ξ, η, ζ). (14)

Here, E denotes the elasticity matrix, and B1, B2 are operator matrices that contain the evaluated
shape functions and their derivations. Introducing equations (12), (13) and (14) in (11), performing
the integration by parts, and introducing the element coefficient matrices

C1 =

+1∫
−1

+1∫
−1

BT
1 EB1|J|dηdζ, (15)

C2 =

+1∫
−1

+1∫
−1

BT
2 EB1|J|dηdζ, (16)

C3 =

+1∫
−1

+1∫
−1

BT
2 EB2|J|dηdζ, and (17)

M =

+1∫
−1

+1∫
−1

ρNTN|J|dηdζ, (18)

the scaled boundary finite element equation in displacement formulation is given by

C1ξ
2u,ξξ(ξ) +

(
2C1 −C2 + CT

2

)
ξu,ξ(ξ) +

(
C2

2 −C3

)
u(ξ)+

ω2Mξ2u(ξ) + ξ2fb(ξ) = 0
(19)

This is the weak form of differential equation of motion and it is valid for bounded (0 ≤ ξ ≤ 1)
and unbounded (1 ≤ ξ ≤ ∞) domains as well. The next step is to formulate this equation using
the dynamic stiffness matrix S∞ for the unbounded medium at the boundary (ξ = 1), that yields

(S∞(ω) + C2)C−1
1

(
S∞(ω) + CT

2

)
− S∞(ω)− ωS∞(ω),ω −C3 + ω2M = 0. (20)

This is a non-linear first order differential equation, which represents the scaled boundary finite
element equation in frequency domain for three dimensional elastodynamics. S∞(ω) is the unknown
dynamic stiffness matrix for the unbounded medium, with the independent frequency ω [32].

2.1.2 Time domain

In time domain analysis the acceleration unit impulse response matrix M∞(t) is required and
equation (20) has to be transformed into this domain. The Fourier transformation directly relates
M∞(t) and S∞(ω), which is given as

M∞(ω) =
S∞(ω)

(iω)2
. (21)
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Inserting M∞(ω) and applying the Fourier transformation to equation (20) leads to

t∫
0

M̃∞(t− τ)M̃∞(τ)dτ + C̃2

t∫
0

τ∫
0

M̃∞(τ ′)dτ ′dτ +
t∫

0

τ∫
0

M̃∞(τ ′)dτ ′dτC̃T
2 +

t
t∫

0

M̃∞(τ)dτ − t3

6 C̃3H(t)− tM̃H(t) = 0

(22)

with coefficient matrices

C1 = LLT , (23)

C̃2 = L−1C2L
−T , (24)

C̃3 = L−1
(
C3 −C2C

−1
1 CT

2

)
L−T , (25)

M̃ = L−1ML−T , (26)

and the Heaviside step function H(t). Thus, L results from a Cholesky decomposition of C1; the
time dependent matrix M̃∞(t) can be approximated for each time step by equation (22); and the
acceleration unit impulse response matrix M∞(t) can be derived from

M∞(t) = LM̃∞(t)LT . (27)

First time step. Solving the convolution integral of equation (22) leads to a quadratic equation
in the unknown matrix M̃∞ at the first time step:

M̃∞2
0 +

∆t

2

(
C̃2 + I

)
M̃∞0 + M̃∞0

∆t

2

(
C̃T

2 + I
)
− ∆t2

6
C̃3 − M̃ = 0 (28)

This is analogous to an algebraic Riccati equation of the form

FX + XFT −XBBTX + Q = 0, (29)

where F = −∆t
2

(
C̃2 + I

)
, B = I the identity matrix, and Q = ∆t2

6 C̃3 + M̃. The solution is

X = M̃∞0 . This quadratic equation appears in the first time step only, so this time step requires
a specialized procedure.

n-th time step. All subsequent time steps, tn with n ≥ 1, are given by(
M̃∞0 + ∆t

2 C̃2

)
M̃∞n + M̃∞n

(
M̃∞0 + ∆t

2 C̃T
2

)
+ tM̃∞n =

−
n−1∑
k=1

(
M̃∞n−kM̃

∞
k

)
− C̃2

(
Jn−1

∆t + In−1

)
−
(

Jn−1

∆t + In−1

)
C̃T

2 + t3

6∆tC̃3 + t
∆t

(
M̃− In−1

)
(30)

considering the integrals

In =

∫ n∆t

0

M̃∞(τ)dτ = In−1 + ∆tM̃∞n (31)
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and

Jn =

∫ n∆t

0

∫ τ

0

M̃∞(τ ′)dτ ′dτ = Jn−1 + ∆tIn−1 +
∆t2

2
M̃∞n . (32)

In this case, (30) is a Lyapunov equation of the form

ÃX + XÃT = C, (33)

where Ã = A + t
2I with A = M̃∞0 + ∆t

2 C̃2, and C is equal to the expression on the right hand

side of (30). The solution is X = M̃∞n .

3 Algorithm and its implementation

In this section, we survey practical aspects related to the methods and software tools required to
implement them. Specifically, we concentrate on the algorithm to compute the acceleration unit
impulse response matrices M∞n and the solvers that are employed for the Riccati and Lyapunov
matrix equations. We assume that the size of relevant problems ranges from moderate to large,
thus calling for parallel computing capabilities.

3.1 Global algorithm and main building blocks

The flowchart in Figure 3 summarizes the operations required to compute the M∞n matrices. The
first consideration when attempting to implement this algorithm is whether the sparsity of matrices
can be exploited. The short answer is no. The matrices resulting from the SBFEM, (15)–(18), are
sparse and must be assembled and stored in some sparse format. However, sparsity is lost when
the coefficient matrices of the time domain formulation, (23)–(26), are computed. One could think
of maintaining matrices such as C̃2 in implicit form, with a sparse Cholesky factor L. However,
even if this was feasible, it is not possible to compute low-rank approximations to the solution
of the matrix equations (Riccati and Lyapunov). Consequently, most of the algorithm must be
addressed with techniques pertaining to dense linear algebra. Fortunately, the resulting matrices
M∞n are again sparse, enabling their conversion to sparse format. This is crucial for reducing
the complexity of subsequent computations related to the coupling of near-field and far-field, as
described in Section 2.

The consequence is that we need to develop a hybrid sparse-dense code that operates in parallel.
This adds a lot of complexity to programming since it requires the integration of numerical libraries
of different nature, and the use of the appropriate data structures in each case.

We now detail the main steps of the computation in algorithmic form. The complete time
domain analysis is shown in Algorithm 1. From the computational viewpoint, the most expen-
sive operations are the computation of the Schur decomposition, in [1.9], and the solution of the
matrix equations associated with the computation of the first acceleration unit impulse response
matrix M̃∞0 , in [1.5], and subsequent time steps, in [1.11]. The matrix equations solvers will be
described in detail in subsections 3.2, 3.3 and 3.4. Before doing so, we discuss some other important
implementation issues.

The storage requirements of the algorithm are high, because the number of matrices is consid-
erable. As mentioned before, the input matrices C1, C2, C3 and M are sparse. In [1.1]–[1.4] we
shift to dense storage. These operations correspond to equations (23)–(26) (the expression for C̃3

has been simplified). Sparse storage is recovered only in [1.13]. All M̃∞n need to be kept for later
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Time domain analysis

Parse inputfile

Initialize matrices

Compute coefficient matrices
in eqn. (15), (16),

(17) and (18)

Compute coefficient matrices
in eqn. (23), (24),

(25) and (26)

Solve the first time
step in eqn. (28)

n = 0

Compute M̃∞n

Solve the n-
th time step
in eqn. (30)
n = n + 1

Write {M∞k } to file

n ≥ 1

n ≥ N

Figure 3: Flowchart to compute the acceleration unit impulse response matrix M∞.

Algorithm 1 (Time domain analysis)

Input: timestep ∆t, maximum number of iterations N , coefficient matrices C1, C2, C3, M
Output: {M∞n }n=0,...,N

[1.1] Compute the Cholesky factorization C1 = LLT

[1.2] C̃2 = L−1C2L
−T

[1.3] C̃3 = L−1C3L
−T − C̃2C̃

T
2

[1.4] M̃ = L−1ML−T

[1.5] Perform 1st time step (Algorithm 2)

[1.6] I0 = ∆tM̃∞0
[1.7] J0 = ∆t2

2 M̃∞0
[1.8] A = M̃∞0 + ∆t

2 C̃2

[1.9] Compute the Schur decomposition AV = VS
[1.10] for n = 1, 2, . . . , N
[1.11] Perform n-th time step (Algorithm 5) for t = (n+ 1)∆t
[1.12] end for

[1.13] For each computed matrix, M∞n = sparse(LM̃∞n LT )

computations. In contrast, matrices In and Jn can be computed in-place (overwriting the same
memory locations) since they depend only on the previous time step.
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Algorithm 2 (First time step)

Input: timestep ∆t, coefficient matrices C̃2, C̃3, M̃

Output: M̃∞0

[2.1] F = −∆t
2

(
C̃T

2 + I
)

[2.2] B = I

[2.3] Q = ∆t2

6 C̃3 + M̃

[2.4] Solve the Riccati equation (29) for M̃∞0 (Algorithm 3)

3.2 Solution of Riccati matrix equations

In [20], Kleinmann shows that Newton’s root-finding iteration, applied to the (algebraic) Riccati
equation, converges under mild conditions to the desired stabilizing solution. In particular, let

R (X∗) = FX∗ + X∗FT −X∗BBTX∗ + Q. (34)

Then, Newton’s method for the Riccati equation can be formulated as shown in Algorithm 3. The
basic idea is to improve the current approximate solution Xk by a correction X̃ obtained by solving
the Lyapunov equation

AkX̃ + X̃AT
k +R (Xk) = 0, (35)

with Ak = F−BBTXk.

Algorithm 3 (Newton method for the Riccati equation)

Input: coefficient matrices F, B, Q, and a user defined tolerance τr
Output: approximated solution X = Xk of the Riccati equation (29) after k Newton steps

[3.1] Choose some initial starting guess X0 = XT
0

[3.2] k = 0
[3.3] while ‖R (Xk) ‖F > τr · ‖Xk‖F
[3.4] Ak = F−BBTXk

[3.5] Solve for X̃ the Lyapunov equation AkX̃ + X̃AT
k +R (Xk) = 0

[3.6] Xk+1 = Xk + X̃
[3.7] k = k + 1
[3.8] end while

The rate of convergence of Newton’s method strongly depends on the distance between the
initial guess X0 and the exact solution. In our case, as F is stable (i.e., all its eigenvalues have
negative real part), X0 = ‖F‖1 ·I, with I the identity matrix, is a feasible initial guess and Newton’s
method (with line search) becomes a competitive alternative as a solver for the algebraic Riccati
equation; see [7, 8].

In our implementations we set the iteration tolerance threshold τr = cr ·
√
ε, where cr is a

constant depending mildly on n, and ε is the machine precision. Once the stopping criterion is
satisfied, we perform two additional iterations. Due to the quadratic convergence of Newton’s
method this is usually enough to reach the attainable accuracy and avoids possible stagnation of
the method [6, 10].
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Newton’s method for the Riccati equation is composed of highly-parallel matrix-matrix prod-
ucts, as in the computation of R (Xk) in [3.3] and the coefficient matrix Ak in [3.4]. The major
computation, however, is the solution of the Lyapunov equation in [3.5]. Fortunately, Ak is stable
and, therefore, this equation can be efficiently solved via the matrix-sign function on a parallel
architecture, as explained in the next subsection.

3.3 Solution of Lyapunov matrix equations via the matrix sign function

Roberts [29] was the first to use the matrix sign function for solving Lyapunov equations with
stable coefficient matrix A. In particular, Roberts shows that, when applied to the Newton matrix
sign function, this yields the procedure in Algorithm 4 for the solution of the Lyapunov equation.

Algorithm 4 (Newton method for the Lyapunov equation)

Input: coefficient matrix A (stable), right hand side Q = −R (Xk), user-defined tolerance τl
Output: approximated solution X̃ of the Lyapunov equation (35) after k Newton steps

[4.1] A0 = A
[4.2] Q0 = Q
[4.3] k = 0
[4.4] repeat
[4.5] Ak+1 = 1

2

(
Ak + A−1

k

)
[4.6] Qk+1 = 1

2

(
Qk + A−1

k QkA
−T
k

)
[4.7] k = k + 1
[4.8] until ‖Ak −Ak−1‖F > τl · ‖Ak‖F
[4.9] X̃ = 1

2Q

As in the Newton iterative scheme for the Riccati equation, in our implementations we set the
tolerance τl = cl ·

√
ε, where cl depends mildly on n. Once the stopping criterion is satisfied, two

additional iterations are performed to ensure that the attainable accuracy is reached.
Algorithm 4 basically consists of matrix inversion and matrix-matrix products which can be

efficiently implemented in current parallel platforms.

3.4 Solution of Lyapunov matrix equations via the Schur method

In terms of dense computations, we can derive a quasi-triangular form of the Lyapunov equation
(33) by using the (real) Schur form. In this particular case, this transformation represents a huge
computational saving. (Note that the same does not hold for the Lyapunov equation that has to
be solved at each step of Newton iteration for the Riccati equation as, there, the coefficient matrix
Ak changes at every iteration.) We can write equation (33) as

ÃX + XÃT = C (36)

where Ã = A + 1
2 tI. Recall that the real Schur decomposition of a matrix A is defined as

AV = VS, where V is an orthogonal matrix, VTV = I, and S is an upper quasi-triangular matrix
with 1 × 1 or 2 × 2 diagonal blocks containing real eigenvalues or complex conjugate eigenvalues
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of A, respectively. The Schur decomposition is invariant under shifts of origin, that is, the Schur
form of A + αI is S + αI. This allows us to reuse the computationally expensive Schur form of A
in all subsequent time steps. The resulting Lyapunov equation is

S̃X̃ + X̃S̃T = C̃ (37)

where S̃ = S + 1
2 tI, X̃ = VTXV, and C̃ = VTCV. So, basically, we have to perform a change of

basis of the right hand side C, and then transform back the computed solution to obtain X.

Algorithm 5 (n-th time step)

Input: time t, timestep ∆t, iteration number n, coefficient matrices C̃2, C̃3, M̃,

matrices from previous iterations In−1, Jn−1,
{
M̃∞k

}
k=1,...,n−1

,

Schur form S and orthogonal matrix of Schur vectors V

Output: In, Jn, M̃∞n

[5.1] C = −
n−1∑
k=1

M̃∞n−kM̃
∞
k

[5.2] C = C− C̃2

(
Jn−1

∆t + In−1

)
−
(

Jn−1

∆t + In−1

)
C̃T

2

[5.3] C = C + t3

6∆tC̃3 + t
∆t

(
M̃− In−1

)
[5.4] C̃ = VTCV

[5.5] S̃ = S + 1
2 tI

[5.6] Solve the Lyapunov equation (37) for X̃

[5.7] M̃∞n = VX̃VT

[5.8] Jn = Jn−1 + ∆tIn−1 + ∆t2

2 M̃∞n
[5.9] In = In−1 + ∆tM̃∞n

To finish the description of the algorithm, we mention an additional optimization (not shown
in Algorithms 1–5) that reduces the number of required congruence transformations such as the
ones just described, C̃ = VTCV. The cost of steps [5.4] and [5.7] is non-negligible (4 matrix-
matrix multiplications per time step), but that can be avoided completely if the change of basis
is performed outside the timestep loop. For this, the congruence transformation with V must be
applied to matrices C̃2, C̃3, M̃, I0, J0, and M̃∞0 . Finally, the change of basis must be reversed,
but this can be done in step [1.13] as M∞n = sparse(WM̃∞n WT ) with W = LV.

3.5 Numerical libraries

We will next describe the libraries used for the implementation of the time domain analysis.
Figure 4 illustrates the main building blocks, with abstraction level increasing from bottom up. As
mentioned before, the resulting code is hybrid, integrating sparse and dense computations. The
upper dashed line separates libraries whose design philosophy is oriented to sparse computations
(PETSc) from the rest. All parallel libraries follow the message-pasing programming paradigm,
and are built on top of MPI [26]. Some of the software components are really sequential libraries
(those below the lower dashed line) that are employed to perform local computations in the parallel
algorithms. The arrows in the diagram indicate dependencies.
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Figure 4: Software components employed for the implementation of the code

13



The heart of the hierarchy of libraries is ScaLAPACK, since most of the computation involves
dense matrices. The interaction between the sparse and dense parts of the code is represented by
the dashed arrow between ScaLAPACK and PETSc. This interface will be described in section
3.6.

LAPACK [1] is a well known sequential library for linear algebra computations with dense
matrices. ScaLAPACK [12] is an attempt to provide the LAPACK functionality to users of parallel
computers based on the message-passing paradigm. ScaLAPACK includes many useful subroutines
for parallel linear algebra, and it is built on top of the BLACS [14] message passing interface and
PBLAS, a parallel version of the BLAS. In ScaLAPACK, parallel matrices are stored in a 2-
D block cyclic distribution fashion, to guarantee a good load balance in parallel computations.
SCASY [16] provides ScaLAPACK-style algorithms for solving various standard and generalized
Sylvester-type matrix equations. In particular, we have used subroutines for the (quasi-)triangular
Lyapunov equation, which implement a block variant of the Bartels-Stewart (or Schur) method.
Also, we have used some subroutines that were developed as part of the Parallel SLICOT [17], in
particular a driver routine for the parallel Schur decomposition, as well as the PLICOC library
[9] that includes a Newton solver for continuous-time algebraic Riccati equations as described in a
previous subsection.

For the sparse computations we have used PETSc [5], a parallel framework for the numerical
solution of problems arising in applications modeled by partial differential equations. It follows
an object-oriented design to encapsulate data structures (such as parallel vectors an matrices) and
solution algorithms (such as iterative linear solvers and preconditioners).

3.6 Implementation details

In this section we discuss several details related to the implementation of the codes. The first
thing to consider is language interoperability. The developed codes are written in C++, whereas
PETSc is programmed in C and ScaLAPACK and most of the rest of dense libraries are encoded
in Fortran. Combining the three programming languages in a portable way requires a careful
design of the interfaces. PETSc offers interfaces for C++ and Fortran programmers, as well as
portable wrappers to LAPACK subroutines. We have extended this to also wrap subroutines from
ScaLAPACK and the other libraries.

The code is structured as a PETSc application, in which the dense computations take place at
some point, and therefore some calls have to be done to ScaLAPACK and related libraries. We
now discuss how this integration has been implemented.

As mentioned before, the PETSc programming paradigm enforces encapsulation of data struc-
tures inside opaque objects. This is the case of Mat, the class intended for representing matrices
in PETSc. A Mat object may have one of several internal representations, the most common being
a parallel compressed sparse row format. The user may replace the internal data structure at
run time, since application code uses an abstract interface that is independent from the actual
data structure. Furthermore, PETSc provides simple extensibility mechanisms that allow, e.g.,
the creation of a new Mat format.

The integration of ScaLAPACK in a PETSc application amounts to providing a mechanism
for accessing ScaLAPACK matrices in a PETSc style. Instead of the extensibility mechanism
mentioned above, we have adopted a simpler scheme in which a “quasi-object” ScaMat is defined
that mimics the behaviour of a Mat, but implements only the functionality that is strictly necessary
for our application.
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Table 1: Linear algebra operations implemented in the ScaMat interface.

Operation Description Library

ScaMatScale A← αA PBLAS
ScaMatAdd C ← βC + αA PBLAS
ScaMatAddTranspose C ← βC + αAT PBLAS
ScaMatSet aij = α (i 6= j), aii = β ScaLAPACK
ScaMatSetValue Set individual element aij ScaLAPACK
ScaMatTranspose B ← AT PBLAS
ScaMatShift A← A+ αI ScaLAPACK
ScaMatMatMult C ← βC + αAB PBLAS
ScaMatNorm r ← ‖A‖ ScaLAPACK
ScaMatCholFactor A = LLT or A = UTU ScaLAPACK
ScaMatCholCongruence A← L−1AL−T PBLAS
ScaMatSchur AV = V S PSLICOT
ScaMatCARENewton ATX +XA−XGX +Q = 0 PLICOC
ScaMatLyapunov AX +XAT = C SCASY

The ScaMat encapsulates all information necessary to handle a ScaLAPACK matrix, including
the process grid context, the array descriptor, various sizes such as local and global dimensions,
block sizes, and leading dimension, as well as the local array to store the elements of the 2-D block
cyclic distributed matrix. Additionally, two boolean flags are included, one indicating whether the
matrix is stored in symmetric format, and a second one to distinguish between storage in the upper
or lower triangular parts.

We have implemented several basic object management functions for ScaMat, for creation, de-
struction, duplication and copy, visualization of information and matrix entries, and for naming.
Also, we have functions to set the symmetry flag and to transform between symmetric and full (gen-
eral) storage. The linear algebra operations that we employed are listed in Table 1. Additionally,
we have implemented operations for inserting a PETSc Mat into a ScaMat (ScaMatInsertMat),
and to convert a sparse ScaMat into a regular PETSc matrix based on a tolerance for nonzero
elements (ScaMatSparsify).

4 Numerical results

In order to verify the implemented SBFEM code, we chose a simple settlement problem, consisting
in the settlement of a flexible foundation under constant load. Using an infinite half space, the
flexible foundation and its surrounding soil can be easily modeled. As already discussed in section
1, the problem has to be split into two separate domains. The near-field is represented by linear
finite elements and the far-field by linear scaled boundary finite elements. The FEM/SBFEM
coupling is implemented as illustrated in section 2.

Isotropic, homogeneous and fully linear elastic material can be described by three material
parameters only: Young’s modulus E, Poisson ratio ν, and density ρ. A semi-analytical solution
is known for this problem [18]. This solution is valid for constant loads in time and space, so that
the determined displacement is constant and time independent, which yields to a static solution.
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Figure 5: Infinite half space under constant area load q. (left) The computational domain is
realized using a hemisphere. (right) The computational domain is realized using a cuboid.

Table 2: Hemisphere shaped meshes (HSM) with different numbers of degrees of freedom.

HSM 1 2 3 4 5 6 7 8 9

FEM 396 738 1314 3096 6030 9033 14655 19818 49155
SBFEM 123 219 291 480 843 1083 1515 1827 3603

To make sure that the implemented software is valid for different materials, two sets of parameters
are defined.

The numerical model is implemented for time domain analysis so that the displacements are
time-dependent. As the coupled FEM/SBFEM approach fulfills the radiation condition, the nodal
displacements become constant after a certain time, whenever constant loads are applied. In those
cases, the numerical results approximate the static semi-analytical solution. To show the accuracy
of the method we use two different meshing strategies, which are discussed in detail in the following
sections.

4.1 Hemisphere shaped mesh

We start the verification using a mesh, with the interface Γ of the infinite half space having a
hemisphere-like shape. An area load of q = 70

[
kN
m2

]
is applied on a square region of 152.4 ×

152.4
[
m2
]
. The SBFEM scaling center is located in the middle of the load area. The distance

between this center and all interface nodes at the boundary Γ is exactly r = 190.5 [m]. Figure
5(left) depicts the setup of the problem.

In order to assess the accuracy of the method, the hemisphere-shaped mesh is refined several
times, so that the geometry becomes smoother with each step of refinement. This also leads to an
increasing number of degrees of freedom, as shown in Table 2.

In the first case, a set of material parameters is chosen as follows: E = 37150.0
[
kN
m2

]
, ν =

0.48 [−] and ρ = 1800.0
[
kg
m3

]
(set 1). This results in a speed of cp = 425.779

[
m
s

]
for the longitudinal

wave or p-wave, so that an adequate time step can be determined to ∆t = r
30cp

= 0.0149 [s] as it

is suggested in [13]. Performing the simulation of the settlement problem for a period of 6.25 [s],

the HHT-α parameters are set to α = − 1
4 , β = (1−α)2

4 , γ = 1−2α
2 , the time step ∆t is chosen to

0.0125 [s], and the number of time steps is set to 500.
Figure 6 (left) shows the time-dependent displacement of the settlement problem, which is

normalized by the settlement d (z) = 0.24800447 [m] acquired from semi-analytic approach. The
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Figure 6: Normalized time-dependent displacement using meshes HSM 1 to 9 for two sets of
material parameters: (left) set 1 (right) set 2.
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Figure 7: Relative error of time-dependent displacement using meshes HSM 1 to 9 for two sets of
material parameters: (left) set 1 (right) set 2.

diagram clearly illustrates that the refinement of mesh leads to convergence of the semi-analytical
solution. The relative error is given in Fig. 7 (left).

In the second case the following material parameters are used: E = 21000.0
[
kN
m2

]
, ν = 0.13 [−]

and ρ = 2100.0
[
kg
m3

]
(set 2). Here, the speed of the p-wave is cp = 102.001

[
m
s

]
so that the

adequate time step is approximated by ∆t = 0.06 [s]. The HHT-α parameters as well as the time
step ∆t = 0.0125 [s] are the same as in the previous example. The semi-analytic solution of the
settlement for this set is d (z) = 0.560443138 [m]. The normalized solution using the FEM/SBFEM
coupled approach is shown in Fig. 6 (right), and the relative error compared to the semi-analytic
solution in Fig. 7 (right). The results are similar to those obtained for the first case.
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Table 3: Cuboid shaped meshes (CSM) with different numbers of degrees of freedom.

CSM 1 2 3 4 5

FEM 3042 20625 3042 3042 20625
SBFEM - - 1227 1227 4755
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Figure 8: Normalized time-dependent displacement using meshes CSM 1 to 5 for two sets of
material parameters: (left) set 1 (right) set 2.

4.2 Cuboid shaped mesh

As generating a hemisphere-like mesh is more complicated than creating a cuboid-shaped mesh
(CSM), the settlement problem is done on a CSM as well. A sketch of the given problem is shown
in Fig. 5 (right).

Like in the previous case, an area load of q = 70
[
kN
m2

]
is applied on a square region of 152.4×

152.4
[
m2
]

with the SBFEM scaling center being located in the middle of this area. The dimensions
of the mesh are set to `x = `y = 457.2 [m] and `z = 190.5 [m], so that the smallest distance between
scaling center and boundary Γ once more is 190.5 [m].

The normalized displacements of the settlement are shown in Fig. 8. The first two graphs show
the displacement of the settlement applying only FEM discretization (CSM1 and CSM2). In this
case the boundary Γ is supported by simple roller boundary conditions which act perpendicular to
the boundary. The free surface is not subjected to any boundary condition. As already discussed
in section 1 this approach does not fulfill the radiation condition. It is easy to recognize that the
displacement does not converge to the semi-analytic solution. The third graph (CSM3) shows the
result using a modified version of a computer program called SIMILAR (“conSistent Infinitesimal
finite-element cell Method - a fInite-eLement boundARy for modelling unbounded and bounded
media”) [32]. Using this software, the computation of a mesh with more degrees of freedom
like CSM2 or CSM5 could not be done, due to the memory requirements. The last two graphs
(CSM4 and CSM5) show the results using the newly developed SBFEM code. The normalized
displacements of CSM3 and CMS4 fit in both cases very well. The mesh with the highest resolution
(CSM5) converges to the semi-analytic solution, as expected.
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Figure 9: Relative error of time-dependent displacement using meshes CSM 1 to 5 for two sets of
material parameters: (left) set 1 (right) set 2.

5 Evaluation of parallel performance

In this section we report the parallel performance of the code. The tests have been carried out on
a cluster of 28 nodes, each with 2 Opteron-240 processors at 1.4 GHz and 3 GB of RAM, linked
via a Myrinet-2000 interconnect. We have used one MPI rank per processor, fully populating one
node before adding a new one (thus, for example, experiments with 2 processes employ the two
CPUs in a single node). The parallel performance is analyzed in terms of both strong and weak
scaling. For strong scaling, time measurements are done considering a constant problem size and
increasing number of processors. For weak scaling, the problem size grows proportionally to the
number of processors.

5.1 Strong scaling

Table 4 shows the execution times for different number of processors in the solution of problem
CSM3, described in the previous section. The number of unknowns for this problem in the SBFEM
analysis is 1,227. To evaluate the parallel performance the analysis has been limited to 100 time
steps (only 100 M∞n matrices need to be stored). For this small example we cannot expect very
good parallel performance, because the local problem size gets too small with increasing num-
ber of processes. This eventually leads to a negligible computation time while the overhead of
communication is ever increasing.

From the times corresponding to 1 processor, we can observe that more than 99.5% of the time
is spent in the time domain analysis (shaded part in the flowchart of Fig. 3, which corresponds to
Algorithm 1). The computation of the first time step is dominated by the Riccati solver (Algorithm
3), and the time required for subsequent time steps (Algorithm 5) represents the major part of
time consumption. This latter time accounts mainly for the convolution integral and the Lyapunov
solver. The remaining time belonging to the time domain analysis (not shown in Table 4) is mainly
due to the computation of the Schur factorization and the coefficient matrices.

For better evaluation of the parallel performance of each part of the computation, Fig. 10
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Table 4: Measured computational time (in seconds) for different number of processors (p) corre-
sponding to the overall computation, the time domain analysis (Algorithm 1), the Riccati solver
(Algorithm 3), and the n-th time step (Algorithm 5).

p Overall Algorithm 1 Algorithm 3 Algorithm 5

1 14,617 14,551 343 13,920
3 6,163 6,136 196 5,743
6 3,279 3,262 106 3,022
8 2,723 2,707 93 2,495

12 1,925 1,911 74 1,743
15 1,725 1,713 68 1,549
20 1,482 1,469 68 1,321
24 1,375 1,363 57 1,237
30 1,042 1,031 54 914
35 1,044 1,028 57 911
48 902 889 47 785
56 885 870 50 762

displays the parallel speedup, which is defined as the ratio between time with one and p processes,

Sp =
T (1)

T (p)
, (38)

representing the gain factor when the code is run with p processors. The plot shows a steady
increasing trend of the speedup, although far from the theoretical maximum (line “Theory” in Fig.
10). Here, the maximum achieved speedup for the time domain analysis (Algorithm 1) is about 20
with 56 processes.

The parallel efficiency

Ep =
T (1)

p · T (p)
, (39)

gives an indication of how well the code is utilizing the available processors. In this case, the
efficiency falls to, approximately, 35% for the largest number of processors. Such a small value can
be attributed to the small problem size, so we repeat the analysis with the larger CSM5 (n = 4755).

Due to much larger memory requirements for CSM5, we decrease the number of time steps to
5 in order to avoid disk swap due to insufficient physical memory when run with 1 or 2 processors.
We observe a speedup for 24 and 48 processors of 14.82 and 17.47 and a parallel efficiency of
62% and 36%, respectively. This indicates that speedup and parallel efficiency increase when the
problem becomes larger.

5.2 Weak scaling

We now proceed with a weak scaling analysis to prove applicability of this approach to real problems
with a large number of unknowns. In this case, the problem size increases proportionally to the
number of processes to ensure that the local problem size is roughly constant for each processor.
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Figure 10: (left) Parallel speedup, (right) parallel efficiency corresponding to the main parts of the
computation.

In each process a submatrix with N ≈ 1, 200, 000 entries is tackled (the number varies slightly due
to geometric discretization). To simplify the exposition, we assume that the number of processes
p is a perfect square, so that processes are arranged as a

√
p × √p grid, and the local submatrix

has size n× n, where n =
√
N .

Suppose T (1) represents the time associated to a problem of size n on 1 process. In the weak
scaling analysis, we study the time for a problem of size n

√
p with p processes, which will be

denoted as T ′(p). The (scaled) speedup would be defined as before, that is, the ratio between
T ′(1) and T ′(p), but since T ′(1), the time to solve a problem of size n

√
p with 1 process, is not

available, we approximate it in terms of T (1). Since the cost of the algorithm is cubic in the
dimension of the matrix, for a size of n

√
p we have O(n3 · p√p). Then the scaled speedup can be

defined in this case as

S′p =
p
√
p · T (1)

T ′(p)
, (40)

and the corresponding scaled efficiency is

E′p =

√
p · T (1)

T ′(p)
. (41)

Both quantities are depicted in Figure 11.
For programs with good scaling characteristics the parallel efficiency is constant. In our case,

the graphs display close-to-horizontal lines for 3 to 56 processors, which indicates that the developed
code will scale well for large-scale applications. The parallel efficiency is much higher when using
only 1 or 2 nodes. This is likely due to the non existent or more effective communication while
running on one compute node.

6 Discussion and concluding remarks

The methodology and results described in this paper show that, in practice, parallel computing
can provide an answer to the high computational cost resulting from the application of SBFEM
to very large scaled engineering problems. The parallel method that we designed to deal with
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Figure 11: (left) Scaled speedup, (right) scaled efficiency corresponding to the main parts of the
computation.

these problems makes extensive use of external numerical libraries for linear algebra computations:
due to the nature of the computation, a hybrid sparse-dense program is required, which adds a
significant programming complexity as it requires the integration of numerical libraries of different
nature, and the use of the appropriate data structures in each case. The proposed solution mixes
PETSc and ScaLAPACK functionality, resulting in an efficient and reasonably scalable code.

The proposed algorithm exhibits a good numerical behaviour as the numerical test cases eval-
uated in section 4 feature convergence to the semi-analytical solution, as expected. This demon-
strates that, in practice, when run on a moderately-sized cluster, the SBFEM method can yield
the solution not only to academic benchmarks, but also to real problems.
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