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Abstract  Fibronectin (FN) assembles into fibrillar networks by cells through an 

integrin-dependent mechanism. We have recently shown that simple FN adsorption onto 

poly(ethyl acrylate) surfaces (PEA), but not control polymer (poly(methyl acrylate), 

PMA), also triggered FN organization into a physiological fibrillar network. FN fibrils 

exhibited enhanced biological activities in terms of myogenic differentiation compared 

to individual FN molecules. In the present study, we investigate the influence of 

topological cues on the material-driven FN assembly and the myogenic differentiation 

process. Aligned and random electrospun fibers were prepared. While FN fibrils 

assembled on the PEA fibers as they do on the smooth surface, the characteristic 

distribution of globular FN molecules observed on flat PMA transformed into non-

connected FN fibrils on electrospun PMA, which significantly enhanced cell 

differentiation. The direct relationship between the fibrillar organization of FN at the 

material interface and the myogenic process was further assessed by preparing FN 

gradients on smooth PEA and PMA films. Isolated FN molecules observed at one edge 

of the substrate gradually interconnected with each other, eventually forming a fully 

developed network of FN fibrils on PEA. In contrast, FN adopted a globular-like 

conformation along the entire length of the PMA surface, and the FN gradient consisted 

only of increased density of adsorbed FN. Correspondingly, the percentage of 

differentiated cells increased monotonically along the FN gradient on PEA but not on 

PMA. This work demonstrates an interplay between material chemistry and topology in 

modulating material-driven FN fibrillogenesis and cell differentiation. 
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1 INTRODUCTION 

Fibronectin (FN) is a core glycoprotein (~220 kDa) of the extracellular matrix (ECM). It 

is synthesized by adherent cells, which afterwards assemble it into a fibrillar network 

through an integrin-dependent contractile mechanism [1,2]. Integrin-FN interactions 

promote a step-wise process that gives rise to both conformational changes of the FN 

molecule and the organization of the actin cytoskeleton. Conformational changes of FN 

induce the exposure of intermolecular binding sites that facilitate the assembly of a FN 

fibrillar matrix, so-called cell-mediated fibrillogenesis [3]. The thickness of the FN 

matrix fibrils ranges from 10 to 1000 nm in diameter and these fibrils consist of a few to 

hundred of FN molecules across. FN fibril assembly involves the 70 kDa amino-

terminal domain of FN, through binding of I1-5 either to III1-2 or III12-14 domains [4]. 

The need for controllable and reproducible in vitro models of FN networks and for 

new synthetic materials able to serve as bio-inspired scaffolds for tissue engineering has 

driven the efforts for the identification of cell-free routes able to induce FN 

fibrillogenesis. These routes are based on the assumption that unfolding of soluble FN 

dimers from their globular conformation is needed for FN-FN interactions to occur, 

leading eventually to FN polymerization and fibril formation. The methods described so 

far include (i) addition of reducing [5] or oxidizing [6] agents to the protein solution; (ii) 

the use of denaturing [7], cationic [8] or anionic [9] compounds; (iii) the use of peptidic 

FN fragments [10]; and (iv) force-based assembly, via application of mechanical 

tension [11,12] or shear forces [13-15]. 

 We have recently shown that adsorption of individual FN molecules onto particular 

surface chemistries induces exposure of self-assembly sites to drive FN fibril assembly 

and identified poly(ethyl acrylate) (PEA) as a potential surface chemistry to generate 

FN fibrils, giving rise to a new process which we refer to as material-driven FN 
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fibrillogenesis [16,17,18]. This work further investigates the biological activity of the 

material-driven FN network assembled on substrates that provide topological cues, 

evaluated by examining the myogenic differentiation process [19].  To do that, material-

driven FN fibrillogenesis was performed on random and aligned electrospun fibers, as 

well as on a gradient of FN fibrils (ranging from individual isolated FN molecules to the 

well-assembled FN network). Poly(methyl acrylate) (PMA) was used as a control 

polymer, since PMA surfaces do not promote FN fibrillogenesis [18]. 

The electrospinning technique allows for the production of very thin fibers with 

very large specific surface areas. The technique has gained importance in recent years 

for biomedical applications, such as tissue engineering, drug release, wound dressing, 

and enzyme immobilization [20,21]. Also, aligned electrospun fibers promote the 

orientation and differentiation of cells in the direction of the fibers [17,22,23]. 

Moreover, in our case, their use is biologically relevant since muscle consists of aligned 

myofibers, and, thus, not only the adequate differentiation of myoblasts, but also their 

alignment is important to achieve muscle regeneration. As a matter of fact, cell 

alignment is a prerequisite for the formation of contractile myotubes [24]. In vitro 

alignment approaches have thus become a usual method in tissue engineering, including 

the production of aligned micropatterned surfaces [25-26], microcontact printing of 

proteins [27] and aligned fibers [28]. Most of these studies focus on the influence of 

pattern size (from 3 to 100 µm) on cell alignment and morphology, with no emphasis on 

cell differentiation. 

  On the other hand, the preparation of gradients of properties allows one to 

investigate, on the same substrate, cellular responses, including migration and 

differentiation, to a continuous range of stimuli coming from the surface [29].  
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The aim of this work is to investigate the combined effect of topological cues and 

the material-driven FN network on myoblast differentiation, by modulating (i) surface 

topography with electrospun fibers and (ii) the variation of FN-fibrillogenesis 

establishing FN gradients at the material interface. Specifically, we aim at investigating 

the role of the electrospun fibers (topography, curvature) on the material-driven FN 

network, to correlate the state of the layer of FN at the cell-material interface with cell 

differentiation. Also, the comparison between a gradient of FN density vs a gradient of 

FN-fibrillogenesis is intended to be correlate with the myogenic differentiation process. 

2 MATERIALS AND METHODS 

2.1 Materials 

Polymer sheets were obtained by radical polymerization of a solution of the 

corresponding alkyl acrylate, i.e., methyl (MA) and ethyl (EA), (Sigma-Aldrich, 

Steinheim, Germany) using 1 wt% benzoin (98% pure, Scharlau, Barcelona, Spain) as 

photoinitiator. The polymerization was carried out up to limiting conversion. After 

polymerization, low molecular-mass substances were extracted from the material by 

drying in vacuum to constant weight. 

2.2 Spin coating 

Thin films were prepared by making use of a spin-coater (Brewer Science, Rolla, USA). 

Each one of the synthesized polymers was dissolved in toluene at a concentration of 5 

wt%. Spin casting was performed on 15x15 mm2 glass coverslips at 2000 rpm for 30 s. 

Samples were dried under vacuum at 60º C before use. For cell culture experiments 

samples were sterilized by UV exposure for 30 min. 
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2.3 Electrospinning 

PEA and PMA were dissolved in hexafluoroisopropanol (HFIP, Sigma) at 20 mg/mL 

and loaded into a 1 mL syringe with an internal diameter of 5 mm. Polymer solutions 

were electrospun at a constant feed rate of 900 µL/h using a programmable syringe 

pump (New Era Pump Systems, Wantagh, NY, USA) with a voltage of 12.5 kV 

(Glassman High Voltage, High Bridge, NJ, USA) and a collector distance of 20 cm. 

Randomly electrospun fibers were collected on glass covers placed on grounded 

aluminum foil (thereafter referred to as PMAr and PEAr, respectively). Aligned fibers 

were obtained under the same conditions, but the polymer solutions were electrospun 

onto a rotating drum (rotating at 900 rpm, equivalent to a linear speed of 337.5 cm/s) 

where glass coverslips were stuck (thereafter referred to as PMAa and PEAa, 

respectively). Before cell culture experiments, samples were sterilized by UV exposure 

for 30 min. 

2.4 Scanning Electron Microscopy 

The electrospun fibers were characterized by a scanning electron microscope (SEM) 

JEOL JSM 6300 (JEOL Ltd., Tokyo, Japan) at 15 kV. In order to obtain quantitative 

data about fiber anisotropy, SEM data was processed using Image J software following 

an already described procedure [30]. Shortly thereafter, Fourier-Fast transform of the 

squared picture was realized, and after a counter-clockwise rotation of 90º (in order to 

recover original fiber direction modified by the Fourier Transform) a radial projection 

of pixel intensity was determined using an external plug-in developed by O’Connell 

[31]. Normalized values (with respect to maximum intensity) are presented.   

2.5 Atomic Force Microscopy 
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AFM was performed in a NanoScope III from Digital Instruments (Santa Barbara, CA) 

operating in the tapping mode; the Nanoscope 5.30r2 software version was used for 

image processing and analysis. Si-cantilevers from Veeco (Manchester, UK) were used 

with force constant of 2.8 N/m and resonance frequency of 75 kHz. The phase signal 

was set to zero at a frequency 5–10% lower than the resonance one. Drive amplitude 

was 200 mV and the amplitude setpoint (Asp) was 1.4 V. The ratio between the 

amplitude setpoint and the free amplitude (Asp/A0) was kept equal to 0.7. 

2.6 Protein adsorption 

FN from human plasma (Invitrogen) was adsorbed on the different substrates by 

immersing the material sheets in FN solutions of concentration 20 µg/mL in Dubelcco’s 

Phosphate Saline Buffer (DPBS). After adsorption, samples were rinsed in DPBS to 

eliminate the non-adsorbed protein. AFM was performed in the tapping mode 

immediately after sample preparation. Height, phase and amplitude magnitudes were 

recorded simultaneously for each image. 

2.7 Preparation of FN gradients  

For the preparation of FN gradients on thin films of PEA and PMA (thereafter referred 

to as gPEA and gPMA, respectively) a dip-coater device (KSV-DC Small vessel, KSV-

NIMA, Finland) was used. The squared samples were immersed up to a maximum 

depth of 10 mm at the highest possible velocity (100 mm/min) in a FN solution (10 

µg/mL in DPBS) and pulled out at a controlled velocity of 6.7 mm/min, which 

corresponds to a maximum immersion time of 90 s (Fig. 5a). After adsorption, samples 

were rinsed in DPBS to eliminate the non-adsorbed protein. AFM was performed in the 

tapping mode immediately after sample preparation. 
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2.8 Cell culture 

Murine C2C12 myoblasts were obtained from ATCC. Cells were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 20% fetal bovine 

serum (Fisher) and 1% penicillin-streptomycin (Lonza) and passaged twice a week 

using standard techniques. Prior to seeding on substrates, electrospun fibers were coated 

with FN (Invitrogen) at 20 µg/mL for 1 h at room temperature, while FN gradients were 

prepared as previously described. Then C2C12 cells were seeded at 20,000 cells/cm2 on 

the different surfaces in DMEM supplemented with 1% penicillin-streptomycin and 1% 

insulin-transferrin-selenium-X (Invitrogen) to induce myogenic differentiation. 

2.9 Myogenic differentiation 

C2C12 cells were cultured on FN-coated materials for 4 days under differentiation 

conditions and immunostained for sarcomeric myosin. Briefly, cultures were fixed in 

70% ethanol/37% formaldehyde/glacial acetic acid (20:2:1) and then blocked in 5% 

goat serum in DPBS for 1 h. Samples were sequentially incubated in MF-20 mouse 

antibody (Developmental Studies Hybridoma Bank, University of Iowa, USA) and anti-

mouse Cy3-conjugated secondary antibody (Jackson Immunoresearch). Finally, samples 

were washed before being mounted in Vectashield containing DAPI (Atom).  Cultures 

were scored by the percentage of cells positive for sarcomeric myosin using in-house 

image analysis software developed under MATLAB R2006a (The MathWorks, Inc., 

Natick, MA) [18]. Anisotropy in cell distribution was evaluated in the same way 

described for the anisotropy in fiber distribution, using the images of sarcomeric myosin 

staining; values were normalized and an arbitrary offset was applied in order to avoid 

overlapping of the different curves. 
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2.10 Statistical Analysis 

Results are shown as average ± standard deviation. All experiments were performed at 

least three times in triplicate unless otherwise noted. Results were analyzed by one-way 

ANOVA. If treatment level differences were determined to be significant, pair-wise 

comparisons were performed.  

3 RESULTS AND DISCUSSION 

3.1 Material-driven fibronectin fibrillogenesis 

Poly(ethyl acrylate) (PEA) and poly (methyl acrylate) (PMA) differ in one single 

carbon in the side chain (Fig. 1a), show similar wettability (WCA ~ 80º) and total 

amount of adsorbed FN (surface density ~ 450 ng/cm2) [18]. By contrast, the 

organization of FN after adsorption from solutions of the same concentration onto thin 

films of PEA and PMA differs: while interconnected network-like fibrils are found on 

PEA, only dispersed FN molecules are observed on PMA (Fig. 1b). The spontaneous 

formation of a FN-network on PEA was described to be a time- and concentration-

dependent process, as the organization of interconnected FN fibrils occurs within 

minutes of adsorption [32] from solutions of different FN concentrations [17]. 

   The fibrillar-like organization of FN upon passive adsorption on PEA was termed 

material-driven fibrillogenesis, since the assembled FN fibrils on PEA share some 

similarities with the physiologically cell-assembled FN matrices. In particular, I1-5 

repeats located within the 70 kDa amino-terminal regions are essential for cell-mediated 

FN assembly [33]. This domain is not accessible in the folded, compact structure of FN 

in solution and a conformational change of the molecule is mandatory for physiological 

matrix assembly to occur [3]. We have recently found that for the material-driven 
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fibrillogenesis to occur, the 70 kDa amino-terminal region of FN is absolutely required. 

Addition of a recombinant 70 kDa fragment during FN adsorption on PEA completely 

blocked the organization of FN at the material interface, giving rise to discrete 

molecular aggregates resembling the FN adsorbed on PMA [18].  

   More important is that, because fibrillar structure recapitulates the native structure of 

FN matrices, the material-driven FN fibrils displayed enhanced biological activity, as 

evaluated by examining the myogenic differentiation process [19]. Sarcomeric myosin 

expression and cell bipolar alignment and fusion into myotubes, markers of myogenesis, 

were significantly higher on the substrate-induced FN network on PEA than on PMA, 

where no fibrillar organization occurs [18].  

3.2 Effect of topological cues: Myoblast behavior on electrospun fibers 

We next examined the role of topographical cues coming from elecrospun fibers on the 

formation of the FN fibrils on both PEA and PMA, as well as their influence on the 

myogenic differentiation process.  

   Homogenous straight fibers of PEA and PMA were obtained via electrospinning (Fig. 

2) and no beading was observed. Dimensions of the fibers were similar in all cases, 

ranging from 2.2±0.9 µm for PMAr to 3.9±1.4 µm for PEAa. Similarly, the average 

distance between fibers was similar for the aligned fibers (3.3±1.6 for PEAa and 2.3±1 

for PMAa). Therefore, the topology is equivalent for both PMA and PEA electrospun 

substrates, and hence differences in  cell behavior between PEA and PMA fibers cannot 

be attributed to any significant differences between the topology of the electrospun 

polymers. Fiber orientation quantified by image analysis is depicted in Fig. 2. As 

expected, random fibers show no preferential direction, while aligned fibers display a 

characteristic peak as a consequence of a highly anisotropic organization. 
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   AFM was used to investigate FN distribution on the electrospun PEA and PMA fibers 

(Fig. 3). Electrospun PEA drives FN organization into  fibrillar networks similarly to 

the organization on flat PEA surfaces [17]. Consequently, a network of FN fibrils along 

PEA fibers was observed. By contrast, FN distribution on electrospun PMA fibers 

differs from the one observed on flat PMA: rather than globular aggregates, extended 

FN molecules can be seen on PMA fibers, resembling the distribution of FN on PEA 

samples during the initial assembly of the FN fibrils, where the formation of the FN 

network is not complete yet [32]. As a matter of fact, it was previously reported that 

electrospun polymer fibers are able to alter the distribution of FN compared to the 

solvent cast smooth surface, promoting the formation of organized FN fibrils aligned 

along the length of the fiber [34].  

   The myogenic differentiation process was quantified on the electrospun polymers by 

immunostaining for sarcomeric myosin. Similar differentiation levels were found on 

random and aligned fibers of every polymer (Fig. 4). As expected, the substrate-induced 

FN network on PEA fibers enhanced differentiation compared to collagen type I, which 

is considered to be the standard substrate for myogenic differentiation [18]. By contrast, 

myoblast differentiation on electrospun PMA increases dramatically compared to 

collagen type I (Fig. 4) and smooth PMA surfaces [18]. We attribute this result to the 

differences in FN structure between on the electrospun fibers and the smooth surface. 

Dispersed FN molecules were obtained on flat PMA [18], whereas an incipient network 

formation of FN fibrils, which are known to enhance myogenic differentiation, was 

assembled on the electrospun polymer (Fig. 3).  

   Regardless the underlying chemistry, electrospun fibers trigger cell orientation as 

observed in the fluorescence images and quantified by image analysis (Fig. 4a and 4b). 

Differentiated myoblasts remain isotropically distributed on collagen type I. Clusters of 
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cells with preferred orientations are observed on random fibers (PEAr and PMAr), as it 

is revealed by image analysis with a broad peak resulting from the superposition of the 

intensity found for every cluster of cells aligned in a different direction (Fig. 4c). In 

contrast, myoblasts aligned along the direction of the fibers on both PEAa and PMAa 

and image analysis show a characteristic orientation peak (intensity falls to baseline 

levels when the angle between the cell and the fiber direction is above 30º).  

   Even though myoblast alignment is mandatory for their fusion into myotubes [35], the 

orientation of myoblasts in the direction of the aligned fibers did not cause any 

enhancement in the differentiation levels on PEAa or PMAa compared to PEAr or 

PMAr (Fig. 4b).  This results is probably related to limited cell-cell contact at the poles 

of the aligned cells on our surfaces, which is needed to enhance myogenic 

differentiation via myotube formation [24,36]. Concordantly, other authors have shown 

no enhancement in myoblast differentiation on micropatterned aligned channels with 

controlled chemistry [37]. Nevertheless, it cannot be discounted that the interplay 

between cell alignment and differentiation might not be detected via sarcomeric myosin 

staining, and other subtle effects such as modified cytoskeletal organization or increased 

cell contractility [38,39] might occur. Further studies are needed to investigate the role 

of substrate-induced cell alignment on myogenesis.  

3.3 Myoblast behavior on FN gradients  

The effect of FN fibrillogenesis on myoblast differentiation was further studied by 

making use of gradients of adsorbed FN onto flat substrates of PEA (gPEA) and PMA 

(gPMA). FN gradients were obtained by pulling out the samples from a FN solution of 

concentration 10 µg/ml at a controlled velocity. In the case of PEA, AFM revealed the 

progressive formation of a FN network as the adsorption time increased: the isolated FN 
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aggregates observed at one end of the substrate gradually interconnected with each 

other, eventually forming a fully developed network of FN fibrils (Fig. 5b). In the case 

of PMA, no fibril formation was detected, as FN adopted a globular-like conformation 

along the entire length of the substrate; increasing the adsorption time only increased 

the amount of adsorbed FN but did not yield any fibrillogenesis (Fig. 5b). It can also be 

appreciated that at the low pull-out velocity and FN concentration used to produce these 

gradients, no shear-stress induced FN fibrillogenesis was seen on either substrate [40]. 

   The effect of the different FN conformation and distribution along the two types of 

gradient (gPEA and gPMA) on cell differentiation was evaluated by means of 

sarcomeric myosin immunodetection (Fig. 6a). The FN gradient on PMA sustained 

homogeneous differentiation along its length; indeed, no statistically significant 

differences were found between the degrees of differentiation at different positions 

along the sample (Fig. 6b). On the other hand, the assembly of FN fibrils that 

accompanied the increasing amount of adsorbed FN on PEA led to a monotonic 

increase in the differentiation degree along the gradient. A statistically significant 

enhancement in myogenic differentiation was observed at the end of the gradient, where 

the FN network was fully developed (Fig. 6b). 

   Both in gPEA and gPMA cell density increased monotonically alongside the FN 

gradient, with the differences more significant for PEA than PMA (Fig. 6b). 

Considering that the surface density of C2C12 cells is not sensitive to the amount or 

distribution of FN adsorbed on either PEA or PMA [18], our data suggest that cells 

initially adhered uniformly along the FN gradient and then migrated in response to the 

biochemical gradient of signals provided by the formation of the FN gradient. Former 

studies have established that FN gradients induce haptotaxis for different cell types [41-

45]; concretely, FN has been suggested to promote myoblast migration [46]. Indeed, 
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migration was more prominent along PEA, where FN adopts a more biologically active, 

physiological-like, distribution compared to PMA [18], consistent with the diminished 

differentiation with respect to PMA (Fig. 6b). Cell migration is in fact inversely 

correlated with proliferation and differentiation of myoblasts [47-48]. 

   Taken together, these data further demonstrate the role of material-driven 

fibrillogenesis on myogenic differentiation. A gradient wherein the sole amount of FN 

was varied, but where the globular-like conformation of the protein was maintained 

(i.e., gPMA), did not yield any differential effect on myoblast differentiation and, still, 

supported cell migration. On the other hand, a gradient characterized by a gradual 

formation of FN fibrils (i.e., gPEA) led to cell migration and to a gradient of myogenic 

differentiation. We attributed the increases in cell differentiation along this gradient to 

gradual formation of a network of FN fibrils [18] and a progressively higher cell density 

[49]. To our knowledge, this is the first report where the effect of a protein gradient on 

myogenic differentiation is investigated, demonstrating the potential of this kind of 

biochemical cue to control and drive cell differentiation. Moreover, this study further 

emphasizes the role of protein conformation in cell-material interaction, since a FN 

gradient on a different material (PMA) does not induce any significant effect on 

myoblast differentiation. 

 

4 CONCLUSIONS 

We have investigated the relationship between material-driven FN fibrillogenesis and 

topological cues in the myogenic differentiation process. Topographical signals coming 

from aligned electrospun fibers orientated cells without modifying cell differentiation 

compared to random fibers of the same polymer. Strikingly, the distribution of FN on 

the PMA fibers was altered compared to the smooth surface, with the formation of 
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initial FN fibrils that enhanced cell differentiation, supporting the role of the material-

driven FN assembly on the myogenic process. Likewise, a gradient of globular FN 

molecules on PMA did not alter cell differentiation, but the increasing formation of a 

FN network on PEA led to higher levels of myogenesis. 
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Captions to Figures 

Fig. 1 FN distribution on material substrates. (a) Chemical structure of the polymers PEA and PMA. (b) 
FN distribution on material substrates as obtained by AFM: dispersed aggregates on PMA and FN 
network on PEA after adsorption from a solution of concentration 10 µg/mL 

Fig. 2 Electrospun materials. Left column: representative SEM micrograph; central column: FFT of the 
SEM picture; right column: radial projection of the normalized pixel intensity of the FFT image. The 
scale bar is valid for every image. 

Fig. 3  FN distribution on electrospun materials as obtained by AFM from a solution of concentration 20 
µg/mL. FN networks are observed on both random and aligned PEA fibers. Non-interconnected FN fibrils 
are observed on PMA fibers. 

Fig. 4 Myogenic differentiation on the different electrospun materials. (a) Fluorescence staining showing 
sarcomeric myosin-positive cells (green) and cell nuclei (red).  (b) Myogenic differentiation as 
determined by the percentage of sarcomeric myosin-positive cells. Statistically significant differences (as 
determined by ANOVA) are indicated with * (p<0.05). (c) Orientation of differentiated cells as calculated 
by FFT and radial projection of the normalized pixel intensity. The scale bar is valid for every image.	
  

Fig. 5 Gradients of adsorbed FN. (a) Sketch of the FN gradient on a PEA- or PMA-coated 15x15 mm2 
cover glass. (b) FN conformation along the gradient, as observed by the phase magnitude in AFM: on 
PEA FN gradually forms an interconnected network of fibrils, whilst on PMA no fibrillogenesis is 
observed, as FN maintains a globular conformation while the amount of adsorbed protein increases. 

Fig. 6 Myogenic differentiation along the FN gradients. (a) Fluorescence staining showing sarcomeric 
myosin-positive cells (green) and cell nuclei (red) at different positions (0, 5, and 10 mm) along the two 
types of gradient (gradient of FN on PEA, gPEA, and on PMA, gPMA). (b) Myogenic differentiation (as 
determined by the percentage of sarcomeric myosin-positive cells) and cell density at different positions 
along the gradients. Statistically significant differences (as determined by ANOVA) are indicated with * 
(p<0.1), ** (p<0.05), † (p<0.005). The scale bar is valid for every image. 
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