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Cortés), ljodar@imm.upv.es (L. Jódar), laura.villafuerte@unach.mx (L.
Villafuerte).

Preprint submitted to Elsevier Science 13 February 2011



1 Introduction

Deterministic Legendre differential equation as well as its polynomial solutions
play an significant role in the solution of physical problems [1]. As only a few
examples, we mention that they appear in solving Kepler equation to study the
motion of the planets or in the solution of physical problems based on partial
differential equations using spherical coordinates. Specific examples in this
latter sense are: the resolution of Laplace equation to compute the potential
of a conservative field such as the space gravitational potential, the resolution
of Poisson equation to compute the potential of a non-conservative field such
as the electrostatic potential of charged bodies, the resolution of D’Alembert
equation to study the wave propagation in strings, membranes or solid bodies,
etc, [1–6]. In practice, the involved data in these applied problems, such as
coefficients, forcing terms and/or initial conditions, need to be fixed after
careful measures that usually contain the error of the corresponding measuring
instruments. The inherent complexity of the surrounding medium or materials
involved in the mathematical modeling of previous physical problems makes
more realistic to assume that the data are random variables or stochastic
processes rather than deterministic constants or functions. As a consequence,
it seems to be advisable to develop reliable methods to study the random
counterpart of the deterministic Legendre differential equation.

In dealing with random differential equations and their applications to com-
plex problems appearing in different scientific areas useful methods are avail-
able such as Monte Carlo [7,8], polynomial chaos [9,10], Wiener-Hermite tech-
nique [11,12], dishonest method [13], [14, p.144], Itô calculus [15,16], etc. In
this paper we consider the so-called mean square and mean fourth calculus
which constitute powerful approaches to deal with random differential equa-
tions [17,18].

The aim of this paper is to construct mean square power series solution of the
random Legendre differential equation

(1 − t2)Ẍ(t) − 2tẊ(t) + A(A + 1)X(t) = 0, |t| < 1, (1)

where A is a non-negative random variable satisfying certain conditions to be
specified later. This includes the computation of the main statistical functions
of the solution stochastic process such as its average and variance functions.
Some of the tools and techniques to reach this first goal are shared with
those that some of the authors have recently presented to study random Airy
differential equation [19]. We point out that an important difficulty to be
overcome is the lack of sub-multiplicativity of the mean square norm (and
hence also of the mean fourth norm) together with the necessity of bounding
products of random variables that appear as coefficients of the constructed
mean square power series solution.
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The paper is organized as follows. Section 2 deals with some preliminaries
about the mean square and mean fourth calculus that will be required through-
out the paper. The concept of fundamental set of solution stochastic processes
for equation (1) is introduced in Section 2. In addition, this section includes an
important inequality related to the norm of the product of random variables
which will play a key role in the next section since it manages satisfactorily the
lack of submultiplicativity of the mean square and mean fourth norms. Sec-
tion 3 deals with the construction of a mean square convergent power series
solution to (1) in the case that A is a non-negative random variable satisfying
certain conditions related to the exponential growth of its absolute moments
with respect to the origin. Average and variance statistical functions of the
truncated random power series solution are studied in Section 4. In Section 5
we show some illustrative examples where we compare numerical results for
the average and variance obtained by random power series and Monte Carlo
approaches, respectively. Finally, conclusions are presented in Section 6.

2 Preliminaries

For the sake of clarity in the presentation, we begin this section by introducing
some concepts, notations and results that may be found in [17, chap.4], [20,
part IV], [21, chap.1-3]. Let (Ω,F , P ) be a probability space. In this paper we
will work in the set L2 which elements are second order real random variables
(2-r.v.’s), i.e., X : Ω → R such that E[X2] < ∞, where E[·] denotes the
expectation operator. One can demonstrate that L2 endowed with the so-
called 2-norm

‖X‖2 =
(
E
[
X2
])1/2

,

has a Banach space structure.

As it is usual, given a r.v. X, E [|X|s], s > 0 will denote the s-th absolute

moment with respect the origin. Note that, E
[
|X|0

]
= 1. It is easy to prove

that if E [|X|s] < ∞ then there exists E [|X|r] for all r : 0 ≤ r ≤ s. The
following result, so-called cs-inequality, is useful for bounding the absolute
moments of a binomial expression in terms of the absolute moments of both
summands [20, p.157]. Moreover it establishes that if s-th absolute moments
of X and Y are finite then s-th absolute moment of X + Y does

E [|X + Y |s] ≤ cs (E [|X|s] + E [|Y |s]) , cs =





1 if s ≤ 1,

2s−1 if s ≥ 1.

We say that {X(t) : t ∈ T } is a second order stochastic process (2-s.p.), if
the r.v. X(t) ∈ L2 for each t ∈ T , being T the so-called space of times.
Throughout this paper we will assume that T is always a real interval. The

3



expectation function of X(t) provides a statistical measure of its average sta-
tistical behavior on the domain T and it will denoted by E [X(t)] or µX(t),
while its covariance function Cov [X(t), X(s)] is defined by

Cov [X(t), X(s)] = E [(X(t) − µX(t)) (X(s) − µX(s))]

= E [X(t)X(s)] − µX(t)µX(s), t, s ∈ T .
(2)

When s = t, this yields the variance function

Var [X(t)] = Cov [X(t), X(t)] = E
[
(X(t))2

]
− (µX(t))2 , t ∈ T , (3)

which gives us a measure of the fluctuation of the s.p. about its mean func-
tion on T . The term ΓX(t, s) = E [X(t)X(s)] appearing into (2) is called the
correlation function and it plays an important role in the m.s. calculus be-
cause many important stochastic results can be characterized through this
two-variables deterministic function (see, [17, chap.4]).

A sequence of 2-r.v.’s {Xn : n ≥ 0} is said to be mean square (m.s.) convergent
to X ∈ L2 if

lim
n→∞

‖Xn − X‖2 = lim
n→∞

(
E
[
(Xn − X)2

])1/2
= 0.

Later we will present a method to provide an approximate solution s.p. to
random differential equation (1). The following properties will play a funda-
mental role when we are interested in computing the mean and the variance
functions of such approximations as well as assuring that they are close to the
correspondent exact values.

Lemma 1 ([17, p.88]) Let {Xn : n ≥ 0}, {Yn : n ≥ 0} be two sequences of
2-r.v.’s m.s. convergent to X and Y , respectively. Then

E [XnYn] −−−→
n→∞

E [XY ] .

In particular,

E [Xn] −−−→
n→∞

E [X] , Var [Xn] −−−→
n→∞

Var [X] .

Remark 2 This result can be straightforwardly extended to a sequence of
s.p.’s that suits better our interests. In this case note that if {Xn(t) : t ∈ T }
m.s. converges to X(t) for t ∈ T̂ ⊂ T then the domain of convergence of the
average and variance is at least T̂ , but it could be even larger.

A 2-s.p. {X(t) : t ∈ T } is said to be m.s. continuous in T if

lim
τ→0

‖X(t + τ) − X(t)‖2 = 0,
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for each t ∈ T , such that t + τ ∈ T (see Example 4 below). A 2-s.p.
{X(t) : t ∈ T } is said to be m.s. differentiable at t ∈ T and Ẋ(t) denotes
its m.s. derivative if

lim
τ→0

∥∥∥∥∥
X(t + τ) − X(t)

τ
− Ẋ(t)

∥∥∥∥∥
2

= 0,

for all t ∈ T , such that t + τ ∈ T . These two m.s. concepts kept the same
relation that their deterministic counterparts, i.e., if {X(t) : t ∈ T } is m.s.
derivable at t then it is also m.s. continuous at t [17, p.95]. The following
example will be used in our subsequent development.

Example 3 ([19, examples 2 and 3]) Let {Xn : n ≥ 1} be a sequence of r.v.’s
in L2 and t ∈ T being T a real interval, then for each positive integer n0, the 2-
s.p. {Xn0t

n0 : t ∈ T } is m.s. derivable and then m.s. continuous for all t ∈ T .
The m.s. derivative of this s.p. is given by: n0Xn0t

n0−1.

If X and Y are 2-r.v.’s, Schwarz inequality establishes that

E[ |X Y | ] ≤
(
E
[
X2
])1/2 (

E
[
Y 2
])1/2

.

A generalization of this result is the Holder inequality that will be required
later [20, p.158].

E [|XY |] ≤ (E [|X|r])
1/r

(E [|Y |s])
1/s

, where r > 1 and
1

r
+

1

s
= 1. (4)

Example 4 Let X(t) = A(A+1)/(1−t2) be a s.p. defined on D = {t : |t| < 1},
where A is a 4-r.v. Let us denote g(t) = 1/(1− t2) which is continuous on D.
Then applying Schwarz inequality one gets the m.s. continuity of s.p. X(t) on
D:

‖X(t + τ) − X(t)‖2 = (E [A2(A + 1)2])
1/2

|g(t + τ) − g(t)|

≤ (E [A4])
1/4

(E [(A + 1)4])
1/4

|g(t + τ) − g(t)| −−→
τ→0

0,

since both expectations factors are finite because A is a 4-r.v.

Later we will require to use the following basic property

AXn
m.s.

−−−→
n→∞

AX, (5)

which holds true if A ∈ L2, {Xn : n ≥ 0} is a sequence of 2-r.v.’s such
that Xn

m.s.
−−−→
n→∞

X and A, Xn are independent r.v.’s for each n. However,

independence hypothesis cannot be assumed in many practical cases like those
that we will consider below. This motivates the introduction of r.v.’s X such
that E[X4] < ∞ which will be denoted by 4-r.v.’s. Note that a 4-r.v. is a 2-r.v.
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The set L4 of all 4-r.v.’s endowed with the norm

‖X‖4 = 4

√
E[X4], (6)

is a Banach space (see [22, p.9]). A stochastic processes {X(t) : t ∈ T}, where

E
[
(X(t))4

]
< ∞ for all t ∈ T , will be called a 4-s.p. Applying Theorem 8, one

can prove immediately that

‖XY ‖4 = ‖X‖4‖Y ‖4. (7)

provided that X, Y ∈ L4 are independent r.v.’s. A sequence of 4-r.v.’s {Xn :
n ≥ 0} is said to be mean fourth (m.f.) convergent to a 4-r.v. X if lim

n→∞
‖Xn −

X‖4 = 0. This type of convergence will be represented by Xn
m.f.

−−−→
n→∞

X. By

applying Schwarz inequality one can establish the link between m.s. and m.f.
convergence.

Lemma 5 ([19]) Let {Xn : n ≥ 0} be a sequence of 4-r.v.’s and suppose that

Xn
m.f.

−−−→
n→∞

X. Then Xn
m.s.
−−−→
n→∞

X.

Following result is a consequence of Lemmas 1 and 5 and it provides sufficient
conditions in order to property (5) holds true without assuming hypotheses
based on independence.

Lemma 6 ([19]) Let A be a 4-r.v. and {Xn : n ≥ 0} a sequence of 4-r.v.’s

such that Xn
m.f.

−−−→
n→∞

X. Then AXn
m.s.
−−−→
n→∞

AX.

Random linear differential equation (1) can be written in the form

Ẍ(t) + A1(t)Ẋ(t) + A2(t)X(t) = 0, t1 < t < t2, (8)

where A1(t) and A2(t) are m.s. continuous s.p.’s (see Example 4). Analogously
to deterministic framework, in order to describe its solution s.p. X(t) one can
first to determine a fundamental set of solutions.

Definition 7 Let A1(t) and A2(t) be s.p.’s, and let X1(t) and X2(t) be two
solutions of the second-order random differential equation (8). We say that
{X1(t), X2(t)} is a fundamental set of solution processes of (8) in t1 < t < t2,
if any solution X(t) of (8) admits a unique representation of the form

X(t) = C1X1(t) + C2X2(t), t ∈ (t1, t2) , (9)

where C1 and C2 are r.v.’s uniquely determined by X(t).

The wronskian process WS(t) = X1(t)Ẋ2(t) − X2(t)Ẋ1(t) plays a relevant
role to provide a fundamental set of solutions. In fact, one can extended the
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deterministic proof to demonstrate that if there exists t0 ∈ (t1, t2) such that
WS(t0) 6= 0, then S is a fundamental set of solution processes to (8).

The following result will be useful to take advantage of property (7) to compute
some bounds later.

Theorem 8 ([23, p.93]) Let X, Y be independent r.v.’s. and f , g measur-
able Borel functions of each r.v., respectively. Then f(X) and g(Y ) are also
independent r.v.’s.

We close this section by establishing the following inequality that will play a
prime role for bounding the 4-norm of a product of r.v.’s what will be required
in the next section.

Proposition 9 Let {Yi}
n
i=1, n ≥ 1 be r.v.’s such that E

[
(Yi)

4n
]

< ∞, i =
1, 2, . . . , n, then ∥∥∥∥∥

n∏

i=1

Yi

∥∥∥∥∥
4

≤
n∏

i=1

(‖(Yi)
n‖4)

1/n
, n ≥ 1. (10)

This result draws directly from the following one by taking Xi = (Yi)
4 and

considering the definition of 4-norm given by (6).

Proposition 10 Let {Xi}
n
i=1, n ≥ 1 be r.v.’s such that E [|Xi|

n] < ∞, i =
1, 2, . . . , n, then

E

[
n∏

i=1

|Xi|

]
≤

(
n∏

i=1

E [|Xi|
n]

)1/n

, n ≥ 1. (11)

Proof. We proceed by induction on the integer n. For n = 1, the result follows
immediately and becomes and identity. Let us assume that (11) holds for n.
Then we apply Holder inequality (4) for X =

∏n
i=1 Xi, Y = Xn+1, r = (n+1)/n

and s = n + 1:

E [|X1| · · · |Xn| |Xn+1|] ≤
(
E
[
(|X1| · · · |Xn|)

(n+1)/n
])n/(n+1) (

E
[
(|Xn+1|)

n+1
])1/(n+1)

.

(12)
By induction hypothesis one gets

(
E
[
(|X1| · · · |Xn|)

(n+1)/n
])n

≤ E
[
(|X1|)

n+1
]
· · ·E

[
(|Xn|)

n+1
]
.

Then substituting this expression in (12) one obtains

E [|X1| · · · |Xn| |Xn+1|] ≤

(
E

[
n+1∏

i=1

|Xi|
n+1

])1/(n+1)

,

which proves the proposition. ⊠
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3 Solving the random Legendre differential equation

This section deals with the construction of a power series solution of the
random differential equation (1) which is m.s. convergent in certain domain
about t = 0 to be specified later. Hereinafter, we will assume that the absolute
moments with respect to the origin of non-negative r.v. A appearing in (1)
increase at the most exponentially, that is, there exist a nonnegative integer
n0 and positive constants H and M such that

E [|A|n] ≤ H Mn < +∞, ∀n ≥ n0. (13)

Equivalently, we assume that E [|A|n] = O(Mn) for a positive constant M .

Let us seek a formal power series solution s.p. to problem (1)

X(t) =
∑

n≥0

Xntn, (14)

where coefficients Xn are 2-r.v.’s to be determined. Assuming that X(t) is
termwise m.s. differentiable, by applying Example 3, one gets

Ẋ(t) =
∑

n≥1

nXntn−1, −2tẊ(t) =
∑

n≥1

−2nXntn = −2X1t+
∑

n≥2

−2nXntn, (15)

Ẍ(t) =
∑

n≥2

n(n − 1)Xntn−2, (16)

(1−t2)Ẍ(t) = 2X2 +6X3t+
∑

n≥2

(n+2)(n+1)Xn+2t
n−

∑

n≥2

n(n−1)Xnt
n. (17)

By imposing that (14), (15) and (17) satisfy (1), one gets

2X2 + A(A + 1)X0 + {[A(A + 1) − 2] X1 + 6X3} t

+
∑

n≥2

{(n + 2)(n + 1)Xn+2 + [−n(n − 1) − 2n + A(A + 1)] Xn} tn = 0.

Therefore a candidate m.s. solution s.p. to problem (1) can be obtained by
imposing

2X2 + A(A + 1)X0 = 0, [A(A + 1) − 2] X1 + 6X3 = 0,

(n + 2)(n + 1)Xn+2 + [−n(n + 1) + A(A + 1)] Xn = 0, n ≥ 2,





i.e.,

Xn+2 = −
(A + n + 1)(A − n)

(n + 2)(n + 1)
Xn, n ≥ 0,
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where we have used that −n(n + 1) + A(A + 1) = (A + n + 1)(A − n). By a
recursive reasoning, these coefficients Xn can be represented as follows

X2m =
(−1)m

(2m)!
X0P1(m), P1(m) =

m∏

k=1

(A−2k+2)(A+2k−1), m ≥ 0, (18)

X2m+1 =
(−1)m

(2m + 1)!
X1P2(m), P2(m) =

m∏

k=1

(A − 2k + 1)(A + 2k), m ≥ 0,

(19)
where we agree

∏v
k=u f(k) = 1 if v < u, as usual. As a consequence, s.p. given

by (14) can be represented as

X(t) = X1(t) + X2(t), where





X1(t) =
∑

m≥0

X2mt2m,

X2(t) =
∑

m≥0

X2m+1t
2m+1,

(20)

where coefficients X2m and X2m+1 are given by (18)–(19).

Previous exposition has been addressed to obtain a formal power series solu-
tion of random Legendre differential equation (1). Note that we have implicitly
applied the commutation between the r.v. A and the random infinite sum given
by (14) that, according to Lemma 6, needs to be legitimized. Thus, we have to
justify that m.f. convergence of random power series defined in (18)–(20). We
shall do that for the first series X1(t) since for the second one we can proceed
analogously. By assuming independence between initial condition X0 and r.v.
A, by (7) and Theorem 8 one gets

∑

m≥0

‖X2m‖4 |t|
2m = ‖X0‖4

∑

m≥0

1

(2m)!
‖P1(m)‖4 |t|

2m . (21)

Under hypotheses (13), we can apply inequality (9) for n = 2 and then we get

‖P1(m)‖4 =

∥∥∥∥∥

(
m∏

k=1

(A − 2k + 2)

)(
m∏

k=1

(A + 2k − 1)

)∥∥∥∥∥
4

≤



∥∥∥∥∥

m∏

k=1

(A − 2k + 2)2

∥∥∥∥∥
4




1/2

∥∥∥∥∥

m∏

k=1

(A + 2k − 1)2

∥∥∥∥∥
4




1/2

.

(22)

Now we bound first factor of right-hand side of (22) applying firstly inequality
(9) for n = m, secondly cs-inequality for X = A, Y = −2k + 2 and s = 8m,
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and finally arithmetic-geometric inequality [24, p.29]:



∥∥∥∥∥

m∏

k=1

(A − 2k + 2)2

∥∥∥∥∥
4




1/2

≤
m∏

k=1

(∥∥∥(A − 2k + 2)2m
∥∥∥
4

)1/(2m)

=
m∏

k=1

(
E
[
|(A − 2k + 2)|8m

])1/(8m)

≤
m∏

k=1

(
28m−1

{
E
[
|A|8m

]
+ |−2k + 2|8m

})1/(8m)

= 21− 1
8m





(
m∏

k=1

E
[
|A|8m

]
+ (2(k − 1))8m

)1/m




1/8

≤ 21− 1
8m

(
1

m

m∑

k=1

E
[
|A|8m

]
+ (2k)8m

)1/8

= 21− 1
8m

(
E
[
|A|8m

]
+

28m

m

m∑

k=1

k8m

)1/8

≤ 21− 1
8m

(
E
[
|A|8m

]
+ (2m)8m

)1/8
.

Taking into account hypothesis (13) we can further bound previous expression



∥∥∥∥∥

m∏

k=1

(A − 2k + 2)2

∥∥∥∥∥
4




1/2

≤ 21− 1
8m

(
MH8m + (2m)8m

)1/8
, ∀m ≥ m0.

On the other hand, we always can choice an integer m1 ≥ m0 ≥ 0, large
enough such that: (2m)8m ≥ HM8m for each m ≥ m1, then



∥∥∥∥∥

m∏

k=1

(A − 2k + 2)2

∥∥∥∥∥
4




1/2

≤ 22− 1
8m (2m)m, ∀m ≥ m1.

Following an analogous reasoning, we can get just the same bound for the
second factor appearing in the right-hand side of (22). As consequence we
obtain

‖P1(m)‖4 ≤ 24− 1
4m (2m)2m, ∀m ≥ m1,

what allow us to assures that the following deterministic series majorizes that
given in (21):

∑

m≥m1

αm, where αm =
1

(2m)!
‖X0‖4 24− 1

4m (2m)2m |t|2m .

By applying D’Alembert criterion, it is easy to check that this series is con-
vergent in the domain D = {t ∈ R : |t| < 1/e}, where e = exp(1) is the Euler
constant. Therefore, random series X1(t) given by (18)–(20) is m.f. convergent
in D, and so by Lemma 5 is also m.s. convergent. Following an analogous way,
it is easy to establish the m.s. convergence of the second series X2(t) given
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by (19)–(20) in the same domain. Note that the reasoning above shows that
both series solution X1(t) and X2(t) are m.s. uniformly convergent, therefore
taking into account Example 3 and theorem 10 of [19], the formal differentia-
tion considered in (15)–(16) is justified. On the other hand, taking t0 = 0 and
considering that X1(0) = 1, Ẋ1(0) = 0, X2(0) = 0 and Ẋ2(0) = 1, one gets
that WS(0) = 1 6= 0, then according to (9) the solution of random differential
equation (1) with random initial conditions X(0) = X0 and Ẋ(0) = X1 is
given by

X(t) = X0X̃1(t) + X1X̃2(t), t ∈ D = {t ∈ R : |t| < 1/e} , (23)

where X̃1(t) and X̃2(t) are defined by

X̃1(t) =
∑

m≥0

(−1)m

(2m)!
P1(m)t2m, X̃2(t) =

∑

m≥0

(−1)m

(2m + 1)!
P2(m)t2m+1, (24)

where P1(m) and P2(m) are given by (18), (19), respectively. Summarizing
the following result has been established:

Theorem 11 Let us assume that r.v. A satisfies condition (13) and it is in-
dependent of r.v.’s X0 and X1. Then the differential equation (1) with initial
conditions X(0) = X0, Ẋ(0) = X1 admits a random power series solution of
the form (23)–(24) and (18)–(19). Moreover the solution is m.s. convergent
for each t ∈ D = {t ∈ R : |t| < 1/e}.

Remark 12 Unlike its deterministic counterpart where the domain of con-
vergence of the correspondent power series solution is D = {t : |t| < 1} [3,
p.183], Theorem 11 just guarantees a smaller domain given by D. We point
out that regarding the construction of the solution stochastic process to random
differential equation (1) this is not an inconvenient of the previous approach.
In fact, one the random power series solution X̂1(t) has been constructed on
the domain D = D1 = (0, t̂1) with 0 < t̂1 < 1/e, an extended solution, say
X̂2(t), can be constructed on the domain D2 = (t̂1, 2t̂1) by applying exactly
the same argument but considering as initial conditions X̂2(t̂1) = X̂1(t̂1) and
˙̂
X2(t̂1) =

˙̂
X1(t̂1). This procedure can be repeated as many times as necessary

up to fill D. Note that taking t̂1 close enough to 1/e, the procedure will end
just in three steps.

From a practical point of view once a non-negative r.v. A has been set, we
need to check that it satisfies condition (13) in order to guarantee that random
power series given by (23)–(24) and (18)–(19) is m.s. convergent. Although, in
general this condition is not useful because of the lack of explicit expressions
for the absolute moments with respect to the origin of relevant r.v.’s such as
Binomial, Poisson, etc. Nevertheless, if A is a r.v. having finite domain, say,
a1 ≤ A(ω) ≤ a2, for each ω ∈ Ω then it satisfies condition (13). Indeed, without
loss of generality let us assume that A is a continuous r.v. with probability
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density function fA(a), then

E [|A|n] =
∫ a2

a1

|a|nfA(a) da ≤ Hn, where H = max(|a1|, |a2|).

Substituting the integral for a sum, previous conclusion remains true if A is
a discrete r.v. Note that important r.v.’s such as Binomial, Hypergeometric,
Uniform or Beta have finite domain. As a consequence, we can take advantage
of the so-called truncation method (see [20]) to deal with unbounded r.v.’s
such as Exponential or Gaussian. In fact, given a r.v. with an unbounded
domain it can be approximated by censuring adequately its domain and this
approximation can be improved further by enlarging enough the truncated
domain (see Example 14 below for details).

4 Approximate average and variance functions of the mean square

random power series solution

This section is devoted to compute approximations of the average and the
variance of the m.s. solution defined by (23)–(24) and (18)–(19). These ap-
proximations will be expressed in terms of the data E [X0], E [X1], E [X0X1],

E
[
(X0)

2
]
, E

[
(X1)

2
]

and certain moments related to algebraic transformations
of the random coefficient A that will be specified later. Note that the solution
is an infinite series, then in practice we need to truncate it at finite terms, so
we will consider the truncation of order M

XM(t) = X0X̃
M
1 (t)+X1X̃

M
2 (t), where





X̃M
1 (t) =

[M
2 ]∑

m=0

(−1)m

(2m)!
P1(m)t2m,

X̃M
2 (t) =

[M−1
2 ]∑

m=0

(−1)m

(2m + 1)!
P2(m)t2m+1,

(25)
which corresponds to a polynomial of degree M .

Since r.v. A is assumed to be independent of random initial conditions X(0) =
X0 and Ẋ(0) = X1, then taking the expectation operator in (25) one gets

µXM (t) = E [X0]

[M
2 ]∑

m=0

(−1)mt2m

(2m)!
E [P1(m)] + E [X1]

[M−1
2 ]∑

m=0

(−1)mt2m+1

(2m + 1)!
E [P2(m)] .

(26)
Depending whether non-negative r.v. A is discrete, with probability mass func-
tion pA(a), or continuous, with probability density function fA(a), the expec-

12



tation terms involved in (26) can be computed as follows

E [P1(m)] =





∑

a>0:pA(a)>0

m∏

j=1

(A − 2j + 2)(A + 2j − 1)pA(a),

∫ ∞

0

m∏

j=1

(A − 2j + 2)(A + 2j − 1)fA(a) da,

and

E [P2(m)] =





∑

a>0:pA(a)>0

m∏

j=1

(A − 2j + 1)(A + 2j)pA(a),

∫ ∞

0

m∏

j=1

(A − 2j + 1)(A + 2j)fA(a) da.

Taking into account the expression (3), for computing the variance of the

truncated solution process, now we only require to calculate E
[(

XM(t)
)2
]
.

Since X(t) = X1(t) + X2(t), from (20) one gets

E
[(

XM(t)
)2
]

= E







[M
2 ]∑

m=0

X2mt2m




2

+ E







[M−1
2 ]∑

m=0

X2m+1t
2m+1




2



+ 2

[M
2 ]∑

m=0

[M−1
2 ]∑

n=0

E [X2mX2n+1] t
2(m+n)+1,

(27)

where [·] denotes the integer function. To compute the two first terms on the
right-hand side we will use the following relationship

E
[(

XP (t)
)2
]

=
P∑

p=0

E
[
(Xp)

2
]
t2p + 2

P∑

p=1

p−1∑

l=0

E [Xp Xl] t
p+l.

Hence

E







[M
2 ]∑

m=0

X2mt2m




2

 =

[M
2 ]∑

m=0

E
[
(X2m)2

]
t4m + 2

[M
2 ]∑

m=1

m−1∑

n=0

E [X2mX2n] t2(m+n),

E







[M−1
2 ]∑

m=0

X2m+1t
2m+1




2

 =

[M−1
2 ]∑

m=0

E
[
(X2m+1)

2
]
t4m+2+2

[M−1
2 ]∑

m=1

m−1∑

n=0

E [X2m+1X2n+1] t
2(m+n+1).

The expectations involved in these expressions together with those that are
contained in the last term of the right-hand side of (27) can be computed as
follows:

E [X2mX2n] =
(−1)n+m

(2m)!(2n)!
E
[
(X0)

2
]
E [P1(m)P1(n)] , m, n = 0, 1, 2, . . . ,

13



E [X2m+1X2n+1] =
(−1)n+m

(2m + 1)!(2n + 1)!
E
[
(X1)

2
]
E [P2(m)P2(n)] , m, n = 0, 1, 2, . . . ,

E [X2mX2n+1] =
(−1)n+m

(2m)!(2n + 1)!
E [X0X1] E [P1(m)P2(n)] , m, n = 0, 1, 2, . . . ,

where expectations above can be computed as follows:

E [P1(m)P1(n)] =





∑

a>0:pA(a)>0

m∏

j=0

(a − 2j + 2)(a + 2j − 1)
n∏

j=0

(a − 2j + 2)(a + 2j − 1)pA(a),

∫ ∞

0

m∏

j=0

(a − 2j + 2)(a + 2j − 1)
n∏

j=0

(a − 2j + 2)(a + 2j − 1)fA(a) da,

E [P1(m)P2(n)] =





∑

a>0:pA(a)>0

m∏

j=0

(a − 2j + 2)(a + 2j − 1)
n∏

j=0

(a − 2j + 1)(a + 2j)pA(a),

∫ ∞

0

m∏

j=0

(a − 2j + 2)(a + 2j − 1)
n∏

j=0

(a − 2j + 1)(a + 2j)fA(a) da,

E [P2(m)P2(n)] =





∑

a>0:pA(a)>0

m∏

j=0

(a − 2j + 1)(a + 2j)
n∏

j=0

(a − 2j + 1)(a + 2j)pA(a),

∫ ∞

0

m∏

j=0

(a − 2j + 1)(a + 2j)
n∏

j=0

(a − 2j + 1)(a + 2j)fA(a) da.

At this point, Lemma 1 plays a crucial role since it guarantees the convergence
of the average and the variance of the truncated solution (25).

5 Examples

In this section we provide several illustrative examples. The results obtained
to approximate the average and the variance by means of the series method
presented in this paper are compared with respect to the corresponding ones
provided by Monte Carlo approach that can be considered once of the most
widespread methods to deals with random differential equations.

Example 13 Let us consider the random differential equation (1) where A is
a Beta r.v. with parameters α = 2 and β = 3, i.e., A ∼ Be(α = 2; β = 3).

Let X0 and X1 be initial conditions such that E [X0] = 1, E
[
(X0)

2
]

= 2,

E [X1] = 2, E
[
(X1)

2
]

= 5. We also assume that X0, X1 and A are indepen-

dent r.v.’s. Note that A satisfies condition (13) since it takes values on the
bounded interval [0, 1]. Then Theorem 11 guarantees that the m.s. series so-
lution of problem (1) with initial conditions X0 and X1 is given by (23)–(24)
and (18)–(19), and it is m.s. convergent on [0, 1/e] at least. Table 1 collects
the expectation of the truncated solution s.p. for different values of the trunca-
tion order M (denoted by µXM (t)) at different values of the time parameter t.
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These numerical results are compared with respect to the corresponding ones
obtained by Monte Carlo method (µ̃m

X(t)) using m simulations. One observes

t
µXM (t)

M = 10

µXM (t)

M = 20

µXM (t)

M = 80

µ̃m
X(t)

m = 105

µ̃m
X(t)

m = 2×105

µ̃m
X(t)

m = 5×105

0.0 1.00000 1.00000 1.00000 0.994659 0.999361 1.00316

0.1 1.19532 1.19532 1.19532 1.19002 1.19485 1.19843

0.2 1.38240 1.38240 1.38240 1.37719 1.38212 1.38545

0.3 1.56276 1.56276 1.56276 1.55770 1.56267 1.56572

0.4 1.73776 1.73776 1.73776 1.73290 1.73787 1.74060

0.5 1.90876 1.90879 1.90879 1.90421 1.90912 1.91145

0.6 2.07727 2.07750 2.07750 2.07327 2.07805 2.07993

0.7 2.24502 2.24631 2.24633 2.24259 2.24712 2.24845

0.8 2.41388 2.41971 2.42007 2.41702 2.42115 2.42176

0.9 2.58518 2.6077 2.61324 2.61134 2.61469 2.61419

Table 1
Comparison of the average using random truncated power series and Monte Carlo
methods in Example 13

that for values of t near of the origin (where the initial conditions are estab-
lished and the series solution s.p. is centered), the approximations obtained by
the method proposed in this paper coincide for different truncation orders of the
series solution. In fact, Table 1 shows that the approximations coincide in all
their decimal digits for M = 10 from t = 0 to t = 0.40. The full stabilization
of the five decimal digits showed from t = 0 to t = 0.9 is achieved for M = 80.
Regarding approximations obtained by Monte Carlo method, they improve as
the number m of simulations increases, as expected. However, it is worthwhile
pointing out that, in general, they are worse than those obtained by truncated
series method. Even more, the achievement of better numerical approxima-
tions using Monte Carlo entails an increase of the number of simulations, and
therefore of the computational cost, which is higher than that required by the
random truncated series method.Table 2 compares the values of variance for
the truncation method with respect to Monte Carlo method. In order to show
accurate approximations of the variance, Var

[
XM(t)

]
, greater values of M are

required. So, in Table 2 we have considered values of M that differ from those
we have taken in Table 1. In this case, stabilization is achieved for M = 110.

Example 14 In this example we take advantage of the truncation method
(see [20]) to deal with a r.v. A that neither satisfy condition (13) nor has
bounded domain. Let us consider model (1) where A is an Exponential r.v.,
A ∼ Exp(λ = 0.25). We will assume that the initial conditions X0 and X1
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t
Var

[
XM (t)

]

M = 20

Var
[
XM (t)

]

M = 80

Var
[
XM (t)

]

M = 110

Ṽar
m

X(t)

m = 105

Ṽar
m

X(t)

m = 2×105

Ṽar
m

X(t)

m = 5×105

0.0 1.00000 1.00000 1.00000 0.999229 0.998349 1.00186

0.1 1.00003 1.00003 1.00003 0.999857 0.998477 1.00179

0.2 1.00048 1.00048 1.00048 1.00089 0.999029 1.00205

0.3 1.00259 1.00259 1.00259 1.00358 1.00125 1.00388

0.4 1.00898 1.00898 1.00898 1.0105 1.00774 1.00989

0.5 1.02472 1.02472 1.02472 1.0267 1.02357 1.02515

0.6 1.05997 1.05997 1.05997 1.06229 1.05889 1.05978

0.7 1.13701 1.13703 1.13703 1.13944 1.13595 1.13608

0.8 1.31400 1.31477 1.31477 1.31667 1.31355 1.31286

0.9 1.79008 1.82113 1.82116 1.82076 1.81934 1.81806

Table 2
Comparison of the variance using random truncated power series and Monte Carlo
methods in Example 13

together with A are independent r.v.’s such that E [X0] = 1.5, E
[
(X0)

2
]

= 3,

E [X1] = 3, E
[
(X1)

2
]

= 10. Note that r.v. A has unbounded domain. Then,

we will consider the truncation of this r.v. on intervals [0, â] for â = 10, 20, 50

that will contain all the values of A with probability
∫ â
0 0.25 exp (−0.25a) da,

that correspond to 0.917915, 0.999996 and ≈ 1, respectively. The probability
density function associated to the new censured r.v., say B, is

fB(b) =
exp (−0.25b)

∫ â

0
exp (−0.25b) db

, 0 ≤ b ≤ â.

As a consequence, B satisfies hypotheses of Theorem 11 since it takes values
on a bounded interval. Tables 3 and 4 show approximations of the expectation
and variance of the solution s.p. computed by the truncation series on the
interval [0, â] and truncation order M , and Monte Carlo methods. Numerical

results show that both, average µXM

[0,̂a]

(t) and variance Var
[
XM

[0,̂a]
(t)
]
, obtained

by truncation series method are close to those computed by Monte Carlo (for
which no truncation on the r.v. A has been considered) as we enlarge the length
of the censured interval. Except in the case of the variance on the interval
[0, 50] where M = 200, in both tables, we have taken M = 100 as the order of
truncation since it corresponds to numerical stabilization of the results while
m = 2 × 105 and m = 5 × 105 simulations have been considered for Monte
Carlo method.
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t
µXM

[0,̂a]

(t)

M = 100, â = 10

µXM

[0,̂a]

(t)

M = 100, â = 20

µXM

[0,̂a]

(t)

M = 100, â = 50

µ̃m
X(t)

m = 2×105

µ̃m
X(t)

m = 5×105

0.0 1.50000 1.50000 1.50000 1.50014 1.49866

0.1 1.65422 1.56799 1.55081 1.55058 1.54973

0.2 1.54492 1.34274 1.33376 1.33441 1.33554

0.3 1.28778 1.12846 1.12562 1.12854 1.13096

0.4 1.03944 0.996154 0.983988 0.988924 0.990145

0.5 0.909792 0.893783 0.891029 0.897502 0.89584

0.6 0.896828 0.832867 0.82659 0.8367 0.829465

0.7 0.895265 0.784002 0.77795 0.7866 0.779368

0.8 0.808709 0.741713 0.737478 0.748983 0.739216

0.9 0.719894 0.701313 0.701115 0.704677 0.700813

Table 3
Comparison of the average using random truncated power series and Monte Carlo
methods in Example 14

t
Var

[
XM

[0,̂a]
(t)
]

M = 100, â = 10

Var
[
XM

[0,̂a]
(t)
]

M = 100, â = 20

Var
[
XM

[0,̂a]
(t)
]

M = 200, â = 50

Ṽar
m

X(t)

m = 2×105

Ṽar
m

X(t)

m = 5×105

0.0 0.75 0.75 0.75 0.748658 0.749314

0.1 0.637807 0.727614 0.77445 0.771705 0.77315

0.2 0.876669 1.37508 1.38233 1.38815 1.38445

0.3 1.77302 2.07496 2.05924 2.08024 2.06537

0.4 2.68231 2.63051 2.62557 2.65344 2.63869

0.5 3.21101 3.17763 3.15544 3.18115 3.16771

0.6 3.71169 3.72846 3.72451 3.7337 3.73241

0.7 4.28573 4.4122 4.41011 4.43339 4.42044

0.8 5.34813 5.41149 5.40622 5.43357 5.42255

0.9 7.2643 7.35957 7.35931 7.40313 7.37703

Table 4
Comparison of the variance using random truncated power series and Monte Carlo
methods in Example 14
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6 Conclusions

In this article we have constructed a power series solution to the random Leg-
endre differential equation (1) with coefficients depend on a random variable
A which has been assumed to be independent of the random initial conditions
X0 and X1. This includes the computation of approximations of the average
and variance functions to the random power series solution. These approxima-
tions not only agree but also improve those provided by Monte Carlo method
as we have shown through different illustrative examples. In order to obtain
a random power series solution to (1), we have assumed that random variable
A satisfies condition (13) which is related to the exponential growth of its ab-
solute moments with respect to the origin. This condition is satisfied by every
random variable having bounded codomain, otherwise it has been shown that
the method of truncation for random variables is an useful tool that allows
us to take advantage of our approach in order to get reliable approximations,
both for the mean and variance. The foundations of the theoretical results
used in this paper have been based on the so-called mean square and mean
fourth calculus which can be considered as promising and powerful theory
to deal with other second-order linear random differential equations in our
forthcoming work.
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