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Abstract. This paper describes two techniques for Datalog query evalu-
ation and their application to object-oriented program analysis. The first
technique transforms Datalog programs into an implicit Boolean Equa-
tion System (Bes) that can then be solved by using linear-time complex-
ity algorithms that are available in existing, general purpose verification
toolboxes such as Cadp. In order to improve scalability and to enable
analyses involving advanced meta-programming features, we develop a
second methodology that transforms Datalog programs into rewriting
logic (Rwl) theories. This method takes advantage of the preeminent
features and facilities that are available within the high-performance sys-
tem Maude, which provides a very efficient implementation of Rwl. We
provide evidence of the practicality of both approaches by reporting on
some experiments with a number of real-world Datalog-based analyses.

1 Introduction

Datalog [32] is a simple relational query language that allows complex interpro-
cedural program analyses involving dynamically created objects to be described
in an intuitive way. The main advantage of formulating data-flow analyses in
Datalog is that analyses that traditionally take hundreds of lines of code can be
expressed in a few lines [35]. In real-world problems, the Datalog clauses that en-
code a particular analysis must generally be solved under the huge set of Datalog
facts that are automatically extracted from the analyzed program.

We propose two different Datalog query answering techniques that are
specially-tailored to object-oriented program analysis. Our techniques essentially
consist of transforming the original Datalog program into a suitable set of rules
which are then executed under an optimized top-down strategy that caches and
reuses “rewrites” in the target language. We use two different formalisms for
transforming any given set of definite Datalog clauses into an efficient imple-
mentation, namely Boolean Equation Systems (Bes) [5] and Rewriting Logic
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(Rwl) [26], a very general logical and semantical framework that is efficiently
implemented in the high-level executable specification language Maude [9]. This
paper provides a comprehensive overview of both techniques, which are fully
automatable. For a detailed description of the methods, see [3, 4].

In the Bes-based program analysis methodology, the Datalog clauses that
encode a particular analysis, together with a set of Datalog facts that are au-
tomatically extracted from program source code, are dynamically transformed
into a Bes whose local resolution corresponds to the demand-driven evaluation
of the program analysis. This approach allows us to reuse existing general pur-
pose analysis and verification toolboxes such as Cadp, which provides local Bes
resolution with linear-time complexity. Similarly to the Query/Subquery tech-
nique [33], computation proceeds with a set of tuples at a time. This can be a
great advantage for large datasets since it makes disk access more efficient.

Our motivation for developing our second, Rwl-based query answering tech-
nique for Datalog was to provide purely declarative yet efficient program anal-
yses that overcome the difficulty of handling meta-programming features such
as reflection in traditional analysis frameworks [22]. Tracking reflective method
invocations requires not just tracking object references through variables but
actually tracking method values and method name strings. The interaction of
static analysis with meta-programming frameworks is non-trivial, and analysis
tools risk losing correctness and completeness, particularly when reflective calls
are improperly interpreted during the computation. By transforming Datalog
programs into Maude programs, we take advantage of the flexibility and versa-
tility of Maude in order to achieve meta-programming capabilities, and we make
significant progress towards scalability without losing the declarative nature of
specifying complex program analyses in Datalog. The current version of Maude
can do more than 3 million rewritings per second on standard PCs, so it can be
used as an implementation language [30]. Also, as a means to scale up towards
handling real programs, we wanted to determine to what extent Maude is able to
process a sizable number of constraints that arise in real-life problems, like the
static analysis of Java programs. After exploring the impact of different imple-
mentation choices (equations vs rules, unraveling vs conditional term rewriting
systems, explicit vs implicit consistency check, etc.) in our working scenario (i.e.,
sets of hundreds of facts and a few clauses that encode the analysis), we elab-
orate on an equation-based transformation that leads to efficient transformed
Maude-programs.

Datalog-based program analysis

Datalog is a logic programming language like Prolog, but is does not have data
structures such as lists [14]. As a consequence, all queries in Datalog can be guar-
anteed to terminate, and they have a very simple semantics, enabling aggresive
optimizations.

The Datalog approach to static program analysis [35] can be summarized as
follows. Each program element, namely variables, types, and code locations are
grouped in their respective domains. Thus, each argument of a predicate symbol
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is typed by a domain of values. Each program statement is decomposed into basic
program operations such as load, store, and assignment operations. Each kind of
basic operation is described by a relation in a Datalog program. By considering
only finite program domains, and applying standard loop-checking techniques,
Datalog program execution is ensured to terminate.

In order to describe the general transformations from Datalog programs into
Bes (resp. Maude programs), let us introduce our running example: a context-
insensitive points-to analysis borrowed from [35].

Example 1. The upper left side of Fig. 1 shows a simple Java program where
o1 and o2 are heap allocations (extracted by a Java compiler from correspond-
ing bytecode). The Datalog pointer analysis approach consists in first extracting
Datalog facts (relations at the upper right side of the figure) from the program.
For instance, the relation vP0 represents the direct points-to information of a
program, i.e., vP0(v,h) holds if there exists a direct assignment of heap object
reference h to program variable v. Other Datalog relations such as store, load
and assign relations are inferred similarly from the code. Using these extracted

public A foo { ... p = new Object(); /* o1 */

q = new Object(); /* o2 */

p.f = q;

r = p.f; ... }

vP0(p,o1).

vP0(q,o2).

store(p,f,q).

load(p,f,r).

vP(V1,H1) :- vP0(V1,H1).

vP(V1,H1) :- assign(V1,V2), vP(V2,H1).

hP(H1,F,H2) :- store(V1,F,V2), vP(V1,H1), vP(V2,H2).

vP(V1,H1) :- load(V2,F,V1), vP(V2,H2), hP(H2,F,H1).

Fig. 1. Datalog specification of a context-insensitive points-to analysis.

facts, the analysis deduces further pointer-related information, like points-to re-
lations from local variables and method parameters to heap objects (vP(V1,H1)
in Fig. 1) as well as points-to relations between heap objects through field iden-
tifiers (hP(H1,F,H2) in Fig. 1).

A Datalog query consists of a goal over the relations defined in the Datalog
program, e.g., :- vP(X,Y). This goal aims at computing the complete set of
program variables in the domain of X that may point to any heap object Y during
program execution. In the example above, the query computes the following
answers: {X/p,Y/o1}, {X/q,Y/o2}, and {X/r,Y/o2}.

In the related literature, the solution for a Datalog query is classically con-
structed following a bottom-up approach; therefore, the information in the query
is not exploited until the model has been built [19]. In contrast, the typical top-
down, logic programming interpreter would produce the output by reasoning
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backwards from the query. Between these two extremes, there is a whole spec-
trum of evaluation strategies [6, 7, 33]. In this work, we essentially consider the
top-down approach for developing our techniques since it is closer to Bes local
resolution as well as to Maude’s evaluation principle, which is based on (non-
deterministic) rewriting.

Related Work. The description of data-flow analyses as a database query was
pioneered by Ullman [32] and Reps [29], who applied Datalog’s bottom-up magic-
set implementation to automatically derive a local implementation.

Recently, Bess with typed parameters [24], called Pbes, have been success-
fully used to encode several hard verification problems such as the first-order
value-based modal µ-calculus model-checking problem [25], and the equivalence
checking of various bisimulations [8] on (possibly infinite) labeled transition sys-
tems. However, Pbess were not used to compute complex interprocedural pro-
gram analyses involving dynamically created objects until our work in [3]. The
work that is most closely related to the Bes-based analysis approach of ours is
[20], where Dependency Graphs (Dgs) are used to represent satisfaction prob-
lems, including propositional Horn Clauses satisfaction and Bes resolution. A
linear time algorithm for propositional Horn Clause satisfiability is described
in terms of the least solution of a Dg equation system. This corresponds to
an alternation-free Bes, which can only deal with propositional logic problems.
The extension of Liu and Smolka’s work [20] to Datalog query evaluation is not
straightforward. This is testified by the encoding of data-based temporal logics
in equation systems with parameters in [25], where each boolean variable may
depend on multiple data terms. Dgs are not sufficiently expressive to represent
such data dependencies on each vertex. Hence, it is necessary to work at a higher
level, on the Pbes representation.

The idea of using a tabled implementation of Prolog for the purpose of pro-
gram analysis is a recurring theme in the logic programming community [16].
Oege de Moor et al. [16] have developed fast Datalog evaluators that are imple-
mented via optimizing compilation to Sql which performs a specialized version
of the well-known ‘magic sets’ transformation. The system, named CodeQuest is
specifically suited for source code querying. CodeQuest consists of two parts: an
implementation of Datalog on top of a relational database management system
(Rdbms), and an Eclipse (www.eclipse.org) plugin for querying Java code via
the Datalog implementation. Datalog queries are compiled in Sql and evaluated
by the database system. The database is updated incrementally as the source
code changes. Typical queries in CodeQuest refer to the enforcement of general
rules such as the correct usage of Apis and coding style rules (e.g., declarations
and naming conventions), or framework-specific rules (e.g., identify which classes
have a method with a given name). Other queries aim to compute metrics or to
program understanding (e.g., analyse which methods implement a given abstract
method or are never called transitively from the main method). The use of a
database system as the backend, together with its powerful Rdbms optimiza-
tions, makes the evaluation mechanism of CodeQuest very scalable. A commer-
cial version has been implemented on top of this work by Semmle [11]. It offers
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a complete code analysis environment, that stores Java projects as relational
databases, and provides an object-oriented query language, called .Ql, to allow
Sql-like queries on the databases. First, .Ql is translated into a pure Datalog in-
termediate representation, that is then optimised and translated to Sql. Finally,
the Sql program can be executed on a number of databases such as Microsoft
Sql Server, PostgreSQL and H2. Apart from the completely different evaluation
mechanisms and implementation technology, the main differences of our tools,
Datalog Solve and Datalaude, with respect to CodeQuest is in their focus.
While CodeQuest focuses on source code queries during the development process,
we are more interested in performing dataflow analysis (particularly points-to
analysis), that require deeper semantic analysis.

A very efficient Datalog program analysis technique based on binary decision
diagrams (Bdds) is available in the Bddbddb system [35], which scales to large
programs and is competitive w.r.t. the traditional (imperative) approach. The
computation is achieved by a fixpoint computation starting from the everywhere
false predicate (or some initial approximation based on Datalog facts). Datalog
rules are then applied in a bottom-up manner until saturation is reached so
that all the solutions that satisfy each relation of a Datalog program are ex-
haustively computed. These sets of solutions are then used to answer complex
formulas. In contrast, our approach focuses on demand-driven techniques to solve
the considered query with no a priori computation of the derivable atoms. In
the context of program analysis, note that all program updates, like pointer up-
dates, might potentially be inter-related, leading to an exhaustive computation
of all results. Therefore, improvements to top-down evaluation are particularly
important for program analysis applications. Recently, Zheng and Rugina [36]
showed that demand-driven Cfl-reachability with worklist algorithm compares
favorably with an exhaustive solution. Our technique to solve Datalog programs
based on local Bes resolution goes in the same direction and provides a novel
approach to demand-driven program analyses almost for free.

As for the Rwl-based approach, it essentially consists of a suitable transfor-
mation from Datalog into Maude. Since the operational principles of logic pro-
gramming (resolution) and functional programming (term rewriting) share some
similarities [17], many proposals exist for transforming logic programs into term
rewriting systems [23, 28, 31]. These transformations aim at reusing the term
rewriting infrastructure to run the (transformed) logic program while preserving
the intended observable behavior (e.g., termination, success set, computed an-
swers, etc.) Traditionally, translations of logic programs into functional programs
are based on imposing an input/output relation (mode) on the parameters of the
original program [28]. However, one distinguished feature of Datalog programs
that burdens the transformation is that predicate arguments are not moded,
meaning that they can be used both as input or output parameters. One recent
transformation that does not impose modes on parameters was presented in [31].
The authors defined a transformation from definite logic programs into (infini-
tary) term rewriting for the termination analysis of logic programs. Contrary to
our approach, the transformation of [31] is not concerned with preserving the
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computed answers, but only the termination behavior. Moreover, [31] does not
tackle the problem of efficiently encoding logic (Datalog) programs containing a
huge amount of facts in a rewriting-based infrastructure such as Maude.

Plan of the Paper. The rest of the paper is organized as follows: Section 2 de-
scribes the application of Datalog and Bes to program analysis and reports on
experimental results for a context-insensitive pointer analysis of realistic Java
programs. Section 3 describes the Rwl-based analysis technique and the anal-
ysis infrastructure that we deployed to effectively deal with reflection. Finally,
Section 4 concludes and discusses some lines for future work.

2 The BES-based Datalog evaluation approach

This section summarizes how Datalog queries can be solved by means of Boolean
Equation System [5] (Bes) resolution. The key idea of our approach is to trans-
late the Datalog specification representing a specific analysis into an implicit
Bes, whose resolution corresponds to the execution of the analysis [3]. We im-
plemented this technique in the Datalog solver Datalog Solve that is based on
the well-established verification toolbox Cadp, which provides a generic library
for local Bes resolution.

A Boolean Equation System is a set of equations defining boolean variables
that can be resolved with linear-time complexity. Parameterised Boolean Equa-
tion System [24] (Pbes) are defined as Bes with typed parameters. Since Pbes
are a more compact representation than Bess for a system, we first present an
elegant and natural intermediate representation of a Datalog program as a Pbes.
In [3], we established a precise correspondence between Datalog query evaluation
and Pbes resolution, which is formalized as a linear-time transformation from
Datalog to Pbes, and vice-versa. As in [35], we assume that Datalog programs
have stratified negation (no recursion through negation) and totally-ordered fi-
nite domains.

2.1 From Datalog to BES

In the following, we illustrate how a Pbes can be obtained from a Datalog
program in an automatic way. In Fig. 2 we introduce a simplified version of the
analysis given in Fig. 1 that contains four facts and the first two clauses that
define the predicate vP:

Given the query :- vP(V,o2)., our transformation constructs the Pbes
shown below, which defines the boolean variable x0 and three parameterised
boolean variables (xvP0 , xassign and xvP ), one for each Datalog relation in the
analysis. Parameters of these boolean variables are defined on a specific do-
main and may be either variables or constants. The domains in the example
are the heap domain (Dh = {o1, o2}) and the source program variable domain
(Dv = {p, q, r, w}).
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vP0(p,o1).

vP0(q,o2).

assign(r,q).

assign(w,r).

vP(V,H) :- vP0(V,H).

vP(V,H) :- assign(V,V2), vP(V2,H).

Fig. 2. Datalog partial context-insensitive points-to analysis

Pbes are evaluated by a least fixpoint computation (µ) that sets the boolean
variable x0 to true if there exists a value for V that makes the parameterised
boolean variable xvP (V, o2 ) true. Logical connectives are interpreted as usual.

x0
µ
= ∃V ∈ Dv . xvP (V, o2 )

xvP0(p, o1 )
µ
= true

xvP0(q , o2 )
µ
= true

xassign(r , q)
µ
= true

xassign(w , r)
µ
= true

xvP (V : Dv, H : Dh)
µ
= xvP0(V,H) ∨ ∃V 2 ∈ Dv.(xassign(V, V 2) ∧ xvP (V 2, H))

Intuitively, the Datalog query is transformed into the relevant boolean vari-
able x0, i.e., the boolean variable that will guide the Pbes resolution. Each
Datalog fact is transformed into an instantiated parameterised boolean vari-
able (no variables appear in the parameters), whereas each predicate symbol
defined by Datalog clauses (different from facts) is transformed into a param-
eterised boolean variable (in the example xvP (V : Dv, H : Dh)). This param-
eterised boolean variable is defined by the disjunction of the corresponding
Datalog clauses’ bodies, in terms of boolean variables and variable quantifica-
tions. Variables that do not appear in the parameters of the boolean variable
are existentially quantified on the specific domain (in the example ∃V ∈ Dv and
∃V 2 ∈ Dv).

From Pbes to Bes. Among the different known techniques for solving a Pbes
(see [10] and the references therein), we consider the resolution method based on
transforming the Pbes into an alternation-free parameterless boolean equation
system (Bes) that can be solved by linear time and memory algorithms when
data domains are finite [24].

The first step towards the resolution of the analysis is to write the Pbes in a
simpler format, where, by using new auxiliary boolean variables, each formula at
the right-hand side of a boolean equation contains at most one operator. Hence,
boolean formulae are restricted to pure disjunctive or conjunctive formulae.

Thereafter, by applying the instantiation algorithm of Mateescu [24], we ob-
tain a parameterless Bes where all possible values of each typed data term are
enumerated over their corresponding finite data domains. Actually, we do not
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explicitly construct the parameterless Bes. Instead, an implicit representation of
the instantiated Bes is defined. The interested reader will find the implicit repre-
sentation in [3]. This implicit representation is then used by the Cadp toolbox to
generate the explicit parameterless Bes on-the-fly. Intuitively, the construction
of the Bes can be seen as the resolution of the analysis.

However, the idea of näıvely instantiating all the boolean variable parameters
in the parameterised Bes results in an inefficient implementation since a huge
number of possible instantiations are enumerated at each computation step. In
order to avoid this, we derive and subsequently optimize a version that instan-
tiates only the parameters necessary to resume the computation. Similarly to
Query/Subquery [33], we consider the binding of variables occurring in different
atoms when transforming a clause: boolean equations only instantiate parame-
ters to the values of variable arguments that appear more than once in the body
of the corresponding Datalog clause; otherwise, arguments are kept unbound. In
this way, instantiation takes place only when values are needed. Moreover, if the
corresponding predicate symbol is extensively defined by a set of facts, the only
possible values of its variable arguments in the instantiation are those in the
defining facts.

To illustrate the idea behind this optimized version of the generated Bes,
in Fig. 3 we show (a part of) the Bes that results from our running example.
Boolean variables, whose name starts with x (shown in bold in the figure) are
those that correspond to the goal and subgoals of the original program. Boolean
variables starting with r or g are auxiliary boolean variables that are defined
during unfolding and instantiation of (sub)goals. The first fragment of the Bes
(four equations) shows the definition process for the initial query, represented by
the boolean variable x0. The query is unfolded and partially instantiated. In our
example, there is only one query (:- vP(V,o2).) with one single subgoal. Since
no variables are shared, V is kept unchanged. Then, the partially instantiated
(sub)query is solved by means of its associated boolean variable (xvP(V,o2)).
Finally, xvP(V,o2) is defined as the disjunction of the boolean variables that
correspond to querying the facts (xf ) and querying the clauses (xc).

A query to the clauses of a predicate is defined as the disjunction of
the boolean variables that represent the body of the Datalog clauses. In the
case of the query vP(V,H) defined by two clauses, the corresponding boolean
variable xcvP(V,H) is defined in terms of two boolean variables rvP0(V,H) and
rassign(V,V2),vP(V2 ,H). The r boolean variable is defined as the disjunction of the
different possible instantiations of the query on the shared variables. These par-
tial instantiations are represented by rpi boolean variables. For instance, we can
observed that rassign(V,V2),vP(V2 ,H) can be instantiated with the two possible
values for V 2, the only shared variable. The rpi boolean variables are defined
as the conjunction of the (partially instantiated) subqueries, which are repre-
sented by x boolean variables. As before, boolean variables x are defined as the
disjunction of the boolean variables that correspond to querying the facts (xf )
and querying the clauses (xc), as shown in the equation for xassign(V,q). Finally,
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x0
µ
= gvP(V,o2)

gvp(V,o2)
µ
= gpivP(V,o2)

gpivP(V,o2)

µ
= xvP(V,o2)

xvP(V,o2)
µ
= xfvP(V,o2) ∨ xcvP(V,o2)

...

� unfolding and partial instantiation (pi)

- partially instantiated query

- querying the facts (f) and the clauses (c)

xcvP(V,H)

µ
= rvP0(V,H) ∨ rassign(V,V2),vP(V2 ,H)

rvP0(V,H)
µ
= rpivP0(V,H)

...

rassign(V,V2),vP(V2 ,H)
µ
= rpiassign(V,q),vP(q,H) ∨ rpiassign(V,r),vP(r,H)

rpiassign(V,q),vP(q,H)

µ
= xassign(V,q) ∧ xvP(q,H)

xassign(V,q)
µ
= xfassign(V,q) ∨ xcassign(V,q)

xfassign(V,q)

µ
= xiassign(r,q)

xiassign(r,q)

µ
= true

...

clause 1
?

clause 2

?
? ?

instantiation

? ?
instantiation

- partially instantiated query

- querying the facts and the clauses

Fig. 3. An excerpt of the generated Bes.

facts are instantiated to final values and are represented as boolean variables xi,
set to true.

As stated above, when the rpi boolean variables are generated, only variables
that are shared by two or more subgoals in the body of the Datalog program
are instantiated, and only values that appear in the corresponding parameters of
the program facts are used. In other words, we do not generate spurious boolean
variables, such as rpiassign(V,w),vP(w,H), which can never be true.

Solution extraction. By considering the optimized parameterless Bes de-
fined above, the query satisfiability problem is reduced to the local resolution of
boolean variable x0. The value (true or false) computed for x0 indicates whether
or not there exists at least one satisfiable goal. In order to compute all the dif-
ferent solutions of a Datalog query, it is sensible to use a breadth-first search
strategy (Bfs) for the resolution of the Bes. Such a strategy forces the res-
olution of all boolean variables in the Bfs queue that are potential solutions
to the query. Query solutions are extracted from all the boolean variables that
are reachable from boolean variable x0 following a path of true-valued boolean
variables.

2.2 The prototype Datalog Solve

We implemented the Datalog transformation to Bes in a fully automated Datalog
solver tool, called Datalog Solve1, which was developed within the Cadp

1 http://www.dsic.upv.es/users/elp/datalog solve/
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verification toolbox [15]. Of course, other source languages and problems can be
specified in Datalog and solved by our tool as well.

Datalog Solve takes as input the Datalog facts that are automatically
extracted by the Joeq compiler [34] and a Datalog query that consists of the
initial goal and the specification for the analysis.

implicit BES

resolution

Y/N (query satisfiability)

Query answers

: input/output

: provides Datalog Solve

(.class)

Java program Joeq compiler
analysis

specification
(datalog clauses)

vP0
load
store
assign

Cæsar Solve

(Cadp)

library

Fig. 4. Java program analysis using the Datalog Solve tool.

The Datalog Solve architecture (120 lines of Lex, 380 lines of Bison and
3 500 lines of C code) consists of two components, as illustrated in Fig. 4. The
front-end of Datalog Solve constructs the (implicit) optimized Bes represen-
tation from the considered Datalog analysis. The back-end of our tool carries out
the interpretation of the Bes that is generated and solved on-the-fly by means
of the generic Cæsar Solve library of Cadp.

This architecture clearly separates the implementation of Datalog-based
static analyses from the resolution engine, which can be extended and optimized
independently.

2.3 Experimental Results

In order to test the scalability and applicability of the transformation, the
Datalog Solve tool was applied to a number of Java programs by computing
the context-insensitive pointer analysis described in Fig. 1. We have compared
our prototype against Bddbddb on four of the most popular 100% Java stan-
dalone applications hosted on Sourceforge used as benchmarks for the Bddbddb
tool [35]. Execution times (in seconds) are presented in Table 1: “Time” column
refers to the analysis computed by our prototype; “Bddbddb” column shows
the execution time of the Bddbddb solver; and “Opt.Time” column shows some
preliminary results of an ongoing optimization of our prototype, that makes use
of an auxiliary data structure (tries) to improve efficiency. This “optimized” ap-
proach is still under development [12, 13] and is not fully automated; however,
the results are very promising. The results show that our approach works on
large amounts of facts as can be encountered in the analysis of real programs.
Even with the best encountered boolean variable ordering, the Bdd-based ap-
proach appears to be penalized by the poor regularity of the points-to analysis
domains and poor redundancy of the analysis relations with respect to our ap-
proach based on an explicit encoding.
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Table 1. Description of the Java projects used as benchmarks.

Name Classes Methods Vars Allocs Time Bddbddb Opt.Time

freetts (1.2.1) 215 723 8K 3K 10 3.8 0.02
nfcchat (1.1.0) 283 993 11K 3K 8 3.86 0.01
jetty (6.1.10) 309 1160 12K 3K 73 6.41 0.04
joone (2.0.0) 375 1531 17K 4K 4 3.45 0.01

3 The RWL-based Datalog evaluation approach

With the aim to achieve higher expressiveness for static-analysis specification,
we translate Datalog into a powerful and highly extensible framework, namely,
rewriting logic. Due to the high level of expressiveness of Rwl, many ways for
translating Datalog into Rwl can be considered. Because efficiency does matter
in the context of Datalog-based program analysis, our proposed transformation
is the result of an iterative process that is aimed at optimizing the running time
of the transformed program. The basic idea of the translation is to automatically
compile Datalog clauses into deterministic equations. Queries and answers are
consistently represented as terms so that the query is evaluated by reducing its
term representation into a constraint set that represents the answers.

3.1 From Datalog to Maude

Membership equational logic [27] is the subset of Rwl that we use for represent-
ing the translated Datalog programs. A membership equational theory consists
of a signature and a set of equations and membership axioms. Its operational
semantics is based on term rewriting modulo algebraic axioms, where equations
are considered as left-to-right rewriting rules, while membership axioms are as-
sertions of membership to a given sort.

The translated programs have been expressed in Maude [9], which provides
many powerful features, like Aci-matching2, efficient set-representation, meta-
programming capabilities (e.g., reflection), and memoization. In this subsection,
we first summarize the key ideas of the transformation and its Maude repre-
sentation, and then we describe how we deal with points-to analyses involving
reflection in our framework. The complete transformation is given in [4], and the
proof of its correctness and completeness can be found in [2].

Answer representation. Datalog answers are expressed as equational con-
straints that relate the variables of the queries to values. Values are represented
as ground terms of sort Constant that are constructed by means of Maude Quoted
Identifiers (Qids). Since logical variables cannot be represented with rewriting

2 Matching modulo Associativity, Commutativity, and Identity.
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rule variables because of their dual input-output nature, we give a representa-
tion for them as ground terms of sort Variable by means of the overloaded
vrbl constructor. A Term is either a Constant or a Variable. These elements
are represented in Maude as follows:

sorts Variable Constant Term .

subsort Variable Constant < Term .

subsort Qid < Constant .

op vrbl : Term -> Variable [ctor] .

In our formulation, answers are recorded within the term that represents the on-
going partial computation of the Maude program. Thus, we represent a (partial)
answer for the original Datalog query as a set of equational constraints (called
answer constraints) that represent the substitution of (logical) variables by (log-
ical) constants that are incrementally computed during the program execution.
We define the sort Constraint as the composition of answer equations. Elements
of sort Constraint represent single answers for a Datalog query as follows:

sort Constraint .

op = : Term Constant -> Constraint .

op T : -> Constraint .

op F : -> Constraint .

op , : Constraint Constraint -> Constraint [assoc comm id: T] .

eq F, C:Constraint = F . --- Zero element

Constraints are constructed3 by the conjunction ( , ) of solved equations of
the form T:Term = C:Constant, the false constraint F, or the true constraint
T. Note that the conjunction operator , obeys the laws4 of associativity and
commutativity. T is defined as the identity of , , and F is used as the zero
element.

Unification of expressions is performed by combining the corresponding an-
swer constraints and checking the satisfiability of the compound. Simplification
equations are introduced in order to simplify trivial constraints by reducing them
to T, or to detect inconsistencies (unification failure) so that the whole conjunc-
tion can be drastically replaced by F, as shown in the following code excerpt:

var Cst Cst1 Cst2 : Constant . var V : Variable .

eq (V = Cst) , (V = Cst) = (V = Cst) , T . --- Idempotence

eq (V = Cst1) , (V = Cst2) = F [owise] . --- Unsatisfiability

In our setting, a failing computation occurs when a query is reduced to F. If a
query is reduced to T, then the original (ground) query is proven to be satisfiable.
On the contrary, if the query is reduced to a set of solved equations, then the

3 The actual transformation defines a more complex hierarchy of sorts in order to
obtain simpler equations and improve performance.

4 Associativity, commutativity, and identity are easily expressed by using Aci at-
tributes in Maude, thus simplifying the equational specification and also achieving a
more efficient implementation.
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computed answer is given by a substitution {x1/t1, . . . , xn/tn} that is expressed
by the computed normal form x1 = t1 , ... , xn = tn.

Since equations in Maude are run deterministically, all the non-determinism of
the original Datalog program has to be embedded into the term under reduction.
This means that we need to carry all the possible (partial) answers at a given
execution point. To this end, we introduce the notion of set of answer constraints,
and we define a new sort called ConstraintSet as follows:
sorts ConstraintSet .

subsort Constraint < ConstraintSet .

op ; : ConstraintSet ConstraintSet -> ConstraintSet [assoc comm id: F] .

The set of constraints is constructed as the (possibly empty) disjunction ; of
accumulated constraints. The disjunction operator ; obeys the laws of asso-
ciativity and commutativity and is also given the identity element F.

Transformed predicates are naturally expressed as functions (with the same
arity) whose codomain is the ConstraintSet sort. They will be reduced to
the set of constraints that represent the satisfiable instantiations of the original
query. The transformed predicates of our running example are represented in
Maude as follows:

op vP vP0 assign : Term Term -> ConstraintSet .

In order to incrementally add new constraints throughout the program execution,
we define the composition operator x for constraint sets as follows:

op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

The composition operator x allows us to combine (partial) solutions of the sub-
goals in a clause body.

A glimpse of the transformation. Let us describe the transformation by eval-
uating queries in our running example. For instance, by executing the Datalog
query :- vP0(p,Y) on the program in Fig. 2, we obtain the solution {Y/o1}.
Here, vP0 is a predicate defined only by facts, so the answers to the query rep-
resent the variable instantiations as given by the existing facts. Thus, we would
expect the query’s Rwl representation vP0(’p, vrbl(’Y)) to be reduced to
the ConstraintSet (with just one constraint) vrbl(’Y) = ’o1. This is accom-
plished by representing facts according to the following equation pattern:

var T0 T1 : Term .

eq vP0(T0,T1) = (T0 = ’p , T1 = ’o1) ; (T0 = ’q , T1 = ’o2) .

eq assign(T0,T1) = (T0 = ’r , T1 = ’q) ; (T0 = ’w , T1 = ’r) .

The right-hand side of the Rwl equation that is used to represent the facts that
define a given predicate (in the example vP0 and assign) consists of the set of
constraints that express the satisfiable instantiations of the original predicate.
As can be observed, arguments are propagated to the constraints, thus allowing
the already mentioned equational simplification process on the constraints. For
this particular case, the reduction proceeds as follows:
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vP0(’p,vrbl(’Y))

→ (’p = ’p , vrbl(’Y) = ’o1) ; (’p = ’q , vrbl(’Y) = ’o2)
∗→ (T , vrbl(’Y) = ’o1) ; (F , vrbl(’Y) = ’o2)
∗→ vrbl(’Y) = ’o1 ; F

→ vrbl(’Y) = ’o1

Another example of Datalog query is :- vP(V,o2), whose execution for the
leading example delivers the solutions {{V/q},{V/r},{V/w}}. Thus, we expect
vP(vrbl(’V),’o2) to be reduced to the set of constraints (vrbl(’V) = ’q) ;
(vrbl(’V) = ’r) ; (vrbl(’V) = ’w). In this case, vP is a predicate defined by
clauses, so the answers to the query are the disjunction of the answers provided
by all the clauses defining it. This is represented in Rwl by introducing auxiliary
functions to separately compute the answers for each clause, and the equation
to join them is as follows:

op vP-clause-1 vP-clause-2 : Term Term -> ConstraintSet .

var X Y : Term .

eq vP(X,Y) = vP-clause-1(X , Y) ; vP-clause-2(X , Y) .

In order to compute the answers delivered by a clause, we search for the sat-
isfiable instantiations of its body’s subgoals. In our translation, we explore the
possible instantiations from the leftmost subgoal to the rightmost one. In order to
impose this left-to-right exploration, we create a different (auxiliary) unraveling
function for each subgoal. Each of these auxiliary functions computes the partial
answer depending on the corresponding and previous subgoals and propagates it
to the subsequent unraveling function5. Additionally, existential variables that
occur only in the body of original Datalog clauses, e.g., Z, are introduced by
using a ground representation that is parameterised with the corresponding call
pattern in order to generate fresh variables (in the example below vrblZ(X,Y)).

As shown in the following code excerpt, in our example, the first Datalog
clause can be transformed without using unraveling functions. For the second
Datalog clause (with two subgoals) only one unraveling function is needed in
order to force the early reduction of the first subgoal.

op vrblZ : Term Term -> Variable .

op unrav : ConstraintSet TermList -> ConstraintSet .

eq vP-clause-1(X,Y) = vP0(X,Y) .

eq vP-clause-2(X,Y) = unrav( assign(X, vrblZ(X,Y)) , X Y ) .

The unrav function has two arguments: a ConstraintSet, which is the first
(reduced) subgoal (the original subgoal assign(X,Z) in this case); and the X Y
call pattern. This function is defined as follows:

var Cnt : Constant . var TS : TermList .

var C : Constraint . var CS : ConstraintSet .

eq unrav( ( (vrblZ(X,Y) = Cnt , C) ; CS ) , X Y ) =

( vP(Cnt,Y) x (vrblZ(X,Y) = Cnt , C) ) ; unrav( CS , X Y ) .

eq unrav( F , TS ) = F .

5 Conditional equations could also be used to impose left-to-right evaluation, but in
practice they suffer from poor performance as our experiments revealed.
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The unraveling function (in the example unrav) takes a set of partial answers
as its first argument. It requires the partial answers to be in solved equation
form by pattern matching, thus ensuring the left-to-right execution of the goals.
The second argument is the call pattern of the translated clause and serves to
reference the introduced existential variables. The propagated call pattern is
represented as a TermList, that is, a juxtaposition ( operator) of Terms. The
two unrav equations (recursively) combine each (partial) answer obtained from
the first subgoal with every (partial) answer computed from the (instantiated)
subsequent subgoal (vP(Cnt,Y) in the example).

Consider again the Datalog query :- vP(V,o2). We undertake all possible
query reduction by using the equations above. Given the size of the execution
trace, we will use the following abbreviations: V stands for vrbl(’V), vPci for
vP-clause-i, and Z-T0-T1 for vrblZ(T0,T1).

vP(V,’o2 )

→ vPc1(V,’o2) ; vPc2(V,’o2)
∗→ vP0(V,’o2) ; unrav( assign(V,Z-V-o2) , V ’o2 )
∗→ ((V = ’p , ’o2 = ’o1) ; (V = ’q , ’o2 = ’o2))

; unrav( ((V = ’r , Z-V-o2 = ’q) ; (V = ’w , Z-V-o2 = ’r)) , V ’o2 )
∗→ (F ; (V = ’q , T)) ; (vP(’q,’o2) x (V = ’r , Z-V-o2 = ’q))

; unrav( (V = ’w , Z-V-o2 = ’r) , V ’o2 )
∗→ (V = ’q) ; ((vPc1(’q,’o2) ; vPc2(’q,’o2)) x (V = ’r , Z-V-o2 = ’q))

; (vP(’r,’o2) x (V = ’w , Z-V-o2 = ’r)) ; unrav( F , V ’o2 )

...

∗→ (V = ’q) ; (V = ’r) ; (V = ’w)

Reflection. Reflection in Java is a powerful technique that is used when a pro-
gram needs to examine or modify the runtime behavior of applications running
on the Java virtual machine. For example, by using reflection, it is possible to
write to object fields and invoke methods that are not known at compile time.

The main difficulty of reflective analysis is that we do not have all the basic
information for the points-to analysis at the beginning of the computation. This
is because Java methods that handle reflection may generate new basic points-to
information. A sound approach for handling Java reflection in Datalog analyses
is proposed in [22]. We transform Datalog clauses that specify the reflection
analysis into Maude conditional rules in a natural way. Then, the Maude reflection
capability is used during the analysis to automatically generate the rules that
represent the deduced points-to information and adds them to the program. This
is in contrast to [22], which resorts to an external artifact with ad-hoc notation
and operational principle.

We have implemented a small prototype which essentially consists of a mod-
ule at the Maude meta-level that implements a generic infrastructure to deal
with reflection. Fig. 5 shows the structure of a typical reflection analysis as it
is run in our tool. The static analysis is specified in two object-level modules,
a basic module and a reflective module. These modules can be written in either
Maude or Datalog since Datalog analyses are automatically compiled into Maude
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Fig. 5. The structure of the reflective analysis.

code. The basic program analysis module contains the rules for the classical anal-
ysis (which neglects reflection), whereas the reflective program analysis module
contains the part of the analysis that deals with the reflective components of
the Java program. At the meta-level, the solver module consists of a generic fix-
point algorithm that feeds the reflective module with the points-to information
inferred by the basic analysis. Then, rules that encode the new inferred informa-
tion are built by the reflective analysis and added to the basic module in order
to infer new information, until a fixpoint is reached. A detailed description can
be found in [2].

3.2 The prototype Datalaude

We implemented the Datalog to Rwl transformation in Datalaude6 (700 lines
of Haskell code and 50 lines of Maude code). The prototype transforms the set
of Datalog rules and facts into a Maude membership equational theory. Then,
the generated theory is used to reduce each query into its answer constraint set
representation in Maude.

Experimental results. We report on the performance of Datalaude by com-
paring it to a previous rule-based Datalog-to-Rwl transformation that consisted
of a one-to-one mapping from Datalog rules into Maude conditional rules. We
briefly present the results obtained by using the rule-based approach and the
enhanced equational-based Datalaude approach with and without the opti-
mization of using the memoization capability of Maude.

Table 2 shows the resolution times of the three selected versions for different
sets of initial Datalog facts (assign/2 and vP0/2), which were extracted by the
Joeq compiler [34] from a Java program (with 374 lines of code) that implements
a tree visitor algorithm. The evaluated query is ?- vP(Var,Heap). Note that
the results obtained are progressively better, which emphasizes the fact that
by favoring determinism and unconditional equations the computation time can
be greatly reduced. Memoization is a table-based mechanism that stores the
canonical form (equational simplification) of subterms having operators, at the

6 http://www.dsic.upv.es/users/elp/datalaude
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Table 2. Number of initial facts (assign/2 and vP0/2) and computed answers (vP/2),
and resolution time (in seconds) for the three implementations.

assign/2 vP0/2 VP/2 rule-based equational equational+memo

100 100 144 6.00 0.67 0.02
150 150 222 20.59 2.23 0.04
200 200 297 48.48 6.11 0.10
403 399 602 382.16 77.33 0.47
807 1669 2042 4715.77 1098.64 3.52

top, tagged with the memo attribute. Whenever such subterm is encountered
during the computation, its canonical form is searched in the table and used
instead. Since subcomputations involving the vP operator will be repeated many
times in the points-to analysis, the overall computation is substantially sped up
when the operator vP is given the memo attribute.

These results confirm that the current Datalaude implementation is the one
that best fits our program analysis purposes. More details of this experiment and
a comparison with other implementations can be found in [4].

4 Conclusion and Future Work

This article overviews two novel complementary approaches for solving Datalog
queries. Both approaches are fully automatable and applicable to a large class of
Datalog programs. In this article, we illustrated them on a popular application
domain, namely Datalog-based pointer analysis.

– We used boolean equation systems (Bes) to efficiently compute fixpoints in
Datalog evaluations. Bes resolutions achieve the robustness of bottom-up
evaluation, satisfactorily coping with redundant infinite computations. Our
transformation also achieves the effectiveness of demand-driven techniques
by propagating values and constraints that are part of the query’s subgoals
in order to speed up the computation.

– We defined, formalized, and proved the correctness of another novel transfor-
mation from Datalog programs into Maude programs. By taking advantage of
the cogent Rwl reflection capabilities, we also demonstrated the adequacy of
Maude to support declarative, accurate, and sound complex pointer analyses
that include meta-programming features such as reflection in Java programs.

Two new Datalog solvers, called Datalog Solve and Datalaude, respectively,
were designed, implemented, and successfully used for the evaluation of the
Datalog-based program analysis over several realistic Java programs. The Bes-
approach is really fast and can analysis in few milliseconds a context-insensitive
points-to analysis on a real Java project. Such an approach would perfectly fit in
Integrated Development Environments (Ides) to provide rapid feedback to a de-
veloper during the development of its code. However, this evaluation technique is
not so appropriate to define, compose and experiment new analyses as it would
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be with a purely declarative approach based on rewriting logic. Rwl offers a
sound framework to design complex program analyses in just a few lines.

As ongoing work, we recently endowed Datalog Solve with new, optimized
strategies for local Bes resolution, where Datalog rules are first decomposed in or-
der to allow goal-directed bottom-up evaluation with complexity guarantees [21].
As future work, we plan to explore such sophisticated Datalog optimizations in
a purely declarative framework like Maude. Inversely, we could also benefit from
the regular structure of our Bes encoding by distributing the Bes resolution
over a network of workstations with balanced partitioning while still preserving
locality, similarly to [18]. A promising, complementary approach we plan to ex-
plore consists in distributing the workload directly at the Datalog level by using
Map-Reduce-based algorithms such as [1].

Acknowledgements. We are grateful to Fernando Taŕın and Adam Kepa for their
valuable contributions to the experiments shown in this paper.
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12. Feliú, M., Joubert, C., Taŕın, F.: Efficient BES-based Bottom-Up Evaluation of
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