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Abstract To create efficient funds appealing to a sector of bank clients, the objective of
minimizing downside risk is relevant to managers of funds offered by the banks. In this pa-
per, a case focusing on this objective is developed. More precisely, the scope and purpose
of the paper is to apply the mean-semivariance efficient frontier model, which is a recent
approach to portfolio selection of stocks when the investor is especially interested in the
constrained minimization of downside risk measured by the portfolio semivariance. Con-
cerning the opportunity set and observation period, the mean-semivariance efficient frontier
model is applied to an actual case of portfolio choice from Dow Jones stocks with daily
prices observed over the period 2005–2009. From these daily prices, time series of returns
(capital gains weekly computed) are obtained as a piece of basic information. Diversifica-
tion constraints are established so that each portfolio weight cannot exceed 5 per cent. The
results show significant differences between the portfolios obtained by mean-semivariance
efficient frontier model and those portfolios of equal expected returns obtained by classical
Markowitz mean-variance efficient frontier model. Precise comparisons between them are
made, leading to the conclusion that the results are consistent with the objective of reflecting
downside risk.

Keywords Banking management and funds · Portfolio selection · Downside risk · Efficient
frontiers · Semivariance · Dow Jones

1 Introduction

Generally, the banks manage collections of funds available to their clients as potential buy-
and-hold investors. Each client is invited by the bank to invest in either an available fund
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or in a portfolio of funds. This should be designed as a lifelong investment appealing to
the bank client’s preferences for risk and returns. A sector of these potential investors is
more concerned about downside risk than about other risk measures which are less intuitive
to bank clients. Then, the bank should create and offer funds oriented to downside risk
minimization. On the other hand, the bank managers and executives should advise their
clients about it. In addition to bank managers who take responsibility for mutual funds and
pension funds, there are potential users of our research such as financial consultants who
advise their clients about their investments. The results from this paper are understandable
to bank managers whatever their ability to handle the mathematical aspects of the method.
These managers are able to use practical information from the proposed method in order to
build their own funds minimizing downside risk.

Hence, we here deal with an actual case of portfolio choice to demonstrate how down-
side risk can be converted into the bank manager’s objective for the purpose of design-
ing funds satisfying the above described sector of investors. This problem is solved by the
mean-semivariance efficient frontier model (E-SV; Ballestero 2005), whose results will be
compared to those from the classical mean-variance efficient frontier model (E-V). Using
E-SV instead of E-V is justified when downside risk is a clearer and more interesting no-
tion of risk than the variance of returns. While variance measures up and down movements,
semivariance (below the mean value) measures movements of returns below the mean.

This paper aims at the following objectives.
First objective: to apply E-SV to a well-known opportunity set of blue chips, namely, the

Dow Jones opportunity set.
Second objective: to make comparisons of results between efficient portfolios obtained

from E-V and E-SV in terms of expected return and risk.
Literature on efficient frontiers, portfolio choice and related issues (concerning pa-

pers published from year 2000 onwards) includes the following papers. (a) Efficient
frontiers from linkages between utility theory and compromise programming to bound
the optimum portfolio (Ballestero and Pla-Santamaria 2004, 2005). (b) Efficient fron-
tiers from beta parameters (Bilbao et al. 2006; Ballestero et al. 2009). (c) New ap-
proaches based on multi-objective programming (Steuer et al. 2005; Steuer et al. 2007;
Ben Abdelaziz et al. 2007). (d) Goal programming to select equity funds portfolios (Pen-
daraki et al. 2004). (e) Selection from neural networks and hybrid models (Ong et al. 2005;
Huang et al. 2006; Lin et al. 2006). (f) Portfolio choice from fuzzy techniques (Arenas et al.
2001; Ben Abdelaziz and Masri 2005; Pérez-Gladish et al. 2007). (g) Portfolio choice from
multi-attributes (Aouni 2009). References related to downside risk measures for the portfolio
selection problem, before and after year 2000, are Sortino and Van der Meer (1991), Sper-
anza (1993), Konno et al. (2002) and Vercher et al. (2007). Concerning mean-downside risk
efficient frontiers, some meta-heuristic techniques have being used in order to find efficient
portfolios in the presence of cardinality constraints. See Chang et al. (2009) and Bermúdez
et al. (2012).

The paper is organized as follows. In Sect. 2, the E-SV model is motivated and reviewed.
In Sect. 3, basic numerical information for the actual case study is provided in detail. In
Sect. 4, the E-SV model is developed for the Dow Jones actual case. The paper closes with
a concluding remark.
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2 Background

2.1 Motivating semivariance: an example of two lotteries

Suppose you are willing to choose one of the following lotteries taking expected profitability
and risk into account.

Lottery 1 You can win $ 4 with probability of 90 % or lose $ 36 with probability of 10 %.
Therefore, we have:

Expected return = E1 = 4 ∗ 0.9 − 36 ∗ 0.1 = 0

Variance = V1 = (4 − 0)2 ∗ 0.9 + (−36 − 0)2 ∗ 0.1 = 144

Semivariance (below the mean value) = V1(<) = (−36 − 0)2 ∗ 0.1 = 129.6

Lottery 2 You can win $ 12 or lose $ 12, both with equal probability. Therefore, we have:

Expected return = E2 = 12 ∗ 0.5 − 12 ∗ 0.5 = 0

Variance = V2 = (12 − 0)2 ∗ 0.5 + (−12 − 0)2 ∗ 0.5 = 144

Semivariance (below the mean value) = V2(<) = (−12 − 0)2 ∗ 0.5 = 72

Notice that lotteries 1 and 2 have equal expected return and equal variance. Therefore,
you cannot make your choice by minimizing the variance, namely, by penalizing upside and
downside volatility. Your choice will be here made by minimizing downside risk, namely,
semivariance. This leads to select Lottery 2. This is consistent with a drawdown policy. In
fact, if you choose Lottery 1, then your maximum potential loss is $ 36, while if you choose
Lottery 2 your maximum loss is $ 12 only.

2.2 Analytical models

A widely used method to select portfolios of securities is mean-variance (Markowitz 1952),
which is formulated as follows:

minXV XT (1)

subject to

m∑

i=1

Eixi = E0 (2)

m∑

i=1

xi = 1 (3)

together with the non negativity conditions xi ≥ 0 for all i, where:

m is the number of assets in the opportunity set
X = (x1, x2, . . . , xi, . . . , xm) is the row vector of portfolio weights, namely, the decision
variables of the problem
XT is the transposed vector of X

V is the covariance matrix of random returns on the assets
E is the row vector of expected returns on the assets
E0 is the investor’s target or aspiration level for the portfolio expected return.
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Mean-variance (1)–(3) relies on classical Eu(R) utility theory under uncertainty (Arrow
1965) thorough (Pratt 1964) approximation. This model generally requires using historical
information on monthly or weekly returns, which involves adopting the Sharpe’s (1994)
principle that historic results have predictive ability.

From decades, there is a wide range of literature dealing with downside risk and semivari-
ance. In this literature, a relevant problem is to derive mean-semivariance efficient frontiers
from an analytical model like Markowitz E-V model, so that the new objective function is
the portfolio semivariance instead of being the Markowitz portfolio variance. A solution to
this problem has been recently given (Ballestero 2005) as follows.

min
∑

j,h

[
vjh − βjβhv(R̃M > EM)

]
xjxh (4)

or equivalently if using vectorial notation:

minXVSX
T = X(V − B)XT (5)

subject to

m∑

i=1

Eixi = E0 (6)

m∑

i=1

xi = 1 (7)

xi ≤ x0 (8)

together with the non-negativity conditions. Symbols have the following meaning:

X = (x1, . . . , xi, . . . , xm) is the row vector of portfolio weights
XT is the transposed vector of X

xj , xh are generic components in vector X

VS is the m ∗ m semivariance matrix-core of objective function (5)
V is the m ∗ m covariance matrix of random returns on the assets
vjh is the (j,h) generic element of covariance matrix V

βj , βh are Sharpe’s betas for assets j and h, respectively.
v(R̃M > EM) is semivariance (above the mean value) for market portfolio M , whose
random returns and expected returns are denoted as R̃M and EM , respectively.
B is the m ∗ m matrix whose generic element is βjβhv(R̃M > EM)

x0 is an upper limit to be imposed on every portfolio weight for diversification purposes.
This parameter should be fixed at a low level, such as 5 % or less. This bound is according
to mutual funds regulations in some countries.

Notice that both models (1)–(3) and (4)–(8) have similar structure, with a quadratic objective
function and linear constraints. Notice also that the constraints are the same in both models,
with the exception of diversification constraint (8), which is needed for the validity of the
mean-semivariance approach.

Remarks to facilitate suitable applications of the mean-semivariance model are as fol-
lows.

Remark 1 To compute the semivariance for a single stock or for a single market index is a
simple problem indeed. An example can be made. Suppose a market index M whose weekly
returns over the last 5 weeks are 0.087, 0.076, 0.0335, 0.0385 and 0.077. Obviously, in real
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world problems the time series of past returns should be much longer than 5 weeks but
we here assume a short number of weeks for simplicity. From these observed returns the
following results are obtained.

Expected return or mean value = EM = 0.0624

Semivariance above the mean

= v(R̃M > EM) = [
(0.087 − 0.0624)2 + (0.076 − 0.0624)2 + (0.077 − 0.0624)2

]
/5

= 0.000201

Semivariance below the mean

= v(R̃M < EM) = [
(0.0624 − 0.0335)2 + (0.0624 − 0.0385)2

]
/5 = 0.000281

Meaning is as follows. Over the 5-week observation period, the returns have dropped for
3 weeks below the mean value. Investors are concerned with this result. Notice that the
“semivariance below the mean” to “semivariance above the mean” ratio is as high as
0.000281/0.000201 = 1.4, namely, the falls have been around one and a half higher than
the rises. This involves a serious risk, especially for conservative investors.

Remark 2 However, the analyst is faced with a more difficult problem: how to determine
the algebraic equation of the semivariance for a portfolio of stocks, this semivariance being
a quadratic function of the unknown (x1, . . . , xi, . . . , xm) portfolio weights, namely, the ob-
jective function to minimize. A solution to this problem is Eq. (4). To make clear how this
equation can be specified, the following example can be helpful.

(a) Opportunity set: A two-stock set (S1, S2) whose portfolio weights are denoted by x1

and x2, respectively. For simplicity, this simplistic opportunity set is here used although
a two-stock portfolio is quite impossible to be diversified (see Remark 3 below).

(b) Time series of weekly returns (5 weeks for simplicity):

0.09,0.07,0.02,0.04 and 0.08 for stock S1

0.07,0.11,0.11,0.03 and 0.06 for stock S2

(c) Covariance matrix: From the time series in paragraph (b), this matrix is obtained by a
statistical software (e.g., Excel), namely,

[
0.00068 −0.00012

−0.00012 0.000944

]

(d) Market index: We assume the same market index M as in Remark 1.
(e) Beta coefficients: From the time series given in Remark 1 and paragraph (b) the beta

coefficients are straightforwardly computed by a statistical software, namely,

β1 = cov(R̃1, R̃M)

var(R̃M)
= 1.1620

β2 = cov(R̃2, R̃M)

var(R̃M)
= 0.0822

(f) Semivariance above the mean of market index M : This value is given in Remark 1,
namely, v(R̃M > EM) = 0.000201



194 Ann Oper Res (2013) 205:189–201

(g) Specifying the objective function: This is performed by introducing the just obtained
numerical parameters into Eq. (4), namely,

Min
[(

0.00068 − 1.16202 ∗ 0.000201
)
x2

1 + (
0.000944 − 0.08222 ∗ 0.000201

)
x2

2

+ 2(−0.00012 − 1.1620 ∗ 0.0822 ∗ 0.000201)x1x2

]

= Min
[
0.000409x2

1 + 0.000943x2
2 − 0.000278x1x2

]

Remark 3 In Remark 2, simplicity is achieved to the expense of mathematical strictness.
Objective function (4) is proven to be valid if and only if the portfolios are sufficiently
diversified by constraint (8), which requires an opportunity set of around 25 stocks or more.

Remark 4 By introducing the algebraic expressions of the beta coefficients into Eq. (4) and
after making some routine calculus, this equation becomes:

min
∑

j,h

[
vjh

(
1 −

(
ρjMρhM

ρjh

)
v(R̃M > EM)

vM

)]

where ρjM , ρhM and ρjh denote correlation coefficients between (j,M), (h,M) and (j,h),
respectively. Symbol vM denotes the variance of the market index. Suppose a particular
(j ∗, h∗) pair of stocks which are characterized by strong comovement between: (a) stock j ∗

and the M market index; (b) stock h∗ and the M market index; (c) both stocks j ∗ and h∗.
Then, (ρjMρhM/ρjh) ∼= 1 for j = j ∗ and h = h∗. Therefore, the (j ∗, h∗) term in the portfolio
semivariance objective function just formulated becomes approximately:

vjh

(
1 − v(R̃M > EM)

vM

)
= vjhv(R̃M < EM)/vM for j = j ∗ and h = h∗

Therefore, the particular (j ∗, h∗) term is approximately proportional to the semivariance
below the mean of the market index. In terms other than (j ∗, h∗) the influence of the market
semivariance is not characterized by proportionality.

3 Numerical actual case (I): basic information

This case deals with portfolio selection of stocks, the opportunity set of assets being the 30
Dow Jones blue chips. Efficient frontiers of portfolios will be determined either by using
mean-semivariance model (4)–(8) or by using Markowitz’s mean-variance model, so that
results from both methods can be compared.

3.1 Weekly returns and expected returns

In Table 1, the time series of Friday close prices from September, 23, 2005 to September,
18, 2009 are recorded for each Dow Jones stock as well as for the Dow Jones Index (DJI),
which is the M market portfolio in our scenario. From Table 1, the respective time series
of weekly returns have been computed together with the respective expected returns (mean
values) and beta coefficients, the latter being computed by the following equation:

βi = cov(R̃i , R̃M)

var(R̃M)
; i = 1,2, . . . ,30
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Table 1 Dow Jones Index (DJI)
and its 30 stocks: Friday close
price of every week. September
2005–September 2009. Unit:
dollars per share

Date DJI 1 . . . 30

AA . . . XOM

23/09/2005 10419.59 24.42 . . . 63.83

. . . . . . . . . . . . . . .

18/09/2009 9820.20 9820.20 . . . 69.99

Table 2 Dow Jones Index and
its 30 stocks: Weekly returns,
expected returns and betas.
September 2005–September
2009

Date Weekly returns

DJI AA . . . XOM

R̃M R̃1 . . . R̃30

23/09/2005 −0.0209 −0.0847 . . . 0.0020

. . . . . . . . . . . . . . .

18/09/2009 0.0224 0.0824 . . . 0.0001

Expected return
(mean value)

5.7E−05 1.3E−04 . . . 1.0E−03

Betas 2.03 . . . 0.78

Table 3 Dow Jones opportunity
set: covariance matrix V from
random returns on the 30 stocks.
September 2005–September
2009

1 . . . 30

AA . . . XOM

1 AA 0.0061 . . . 0.0015

. . . . . . . . . . . . . . .

30 XOM 0.0015 . . . 0.0012

where “cov” and “var” denote covariance and variance respectively, while R̃i and R̃M are
random returns on the ith stock and on the market portfolio (DJI), respectively.

In Table 2, this information is displayed. Covariance matrix V is computed from Table 2
and displayed in Table 3. Due to space limitations, these large tables and others below are
presented as fragments.

3.2 Determining the VS semivariance matrix

From the weekly returns on market portfolio M (namely, the DJI random returns), the pro-
cess to compute semivariance VS is conducted as follows.

First step. Compute the v(R̃M > EM) semivariance (above the mean value) of market
portfolio M . This is carried out in Table 4. From the second and third columns of this ta-
ble, square deviation (R̃M − EM)2 is computed and written in the fourth column if and
only if weekly return R̃M is greater than expected return EM . If, on the contrary, a weekly
return is less than (or equal to) the expected return, then zero is written in the fourth col-
umn instead of the square deviation. Market semivariance above the mean value is then
obtained by aggregating the fourth column of the table, the sum being multiplied by the
frequency (probability) equal to 1/209, as there are 209 observed returns. Thus, we obtain
v(R̃M > EM) = 0.000393.
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Table 4 Dow Jones Index (market portfolio M): Computing v(R̃M > EM) semivariance above the mean
value. September 2005–September 2009

Date DJI Mean value Square deviations

R̃M EM (R̃M − EM)2 if R̃M > EM

0 if R̃M ≤ EM

23/09/2005 −0.020894 0.000058 0

. . . . . . . . . . . .

30/12/2005 −0.015232 0.000058 0

06/01/2006 0.022562 0.000058 0.000506

. . . . . . . . . . . .

29/12/2006 0.009717 0.000058 0.000093

05/01/2007 −0.005227 0.000058 0

. . . . . . . . . . . .

06/07/2007 0.015144 0.000058 0.000228

. . . . . . . . . . . .

26/12/2008 −0.007409 0.000058 0

02/01/2009 0.060964 0.000058 0.003710

. . . . . . . . . . . .

18/09/2009 0.022361 0.000058 0.000497

Sum of square deviations 0.082149

Number of observed weekly returns 209

Semivariance v(R̃M > EM) 0.000393

Table 5 Dow Jones opportunity
set: matrix B whose generic
element (j,h) is
βj βhv(R̃M > EM). September
2005–September 2009

1 . . . 30

AA . . . XOM

1 AA 0.00162 . . . 0.00063

. . . . . . . . . . . . . . .

30 XOM 0.00063 . . . 0.00024

Second step. From the beta values (see Table 2, bottom) and the semivariance obtained
in the first step above, compute matrix B , whose generic element is:

βjβhv(R̃M > EM) = 0.000393βjβh

Matrix B is numerically displayed in Table 5 (fragment).
Third step. Compute matrix VS as the difference between matrix V (Table 3) and matrix

B (Table 5). In Table 6 (fragment), matrix VS is recorded.

4 Numerical actual case (II): mean-semivariance efficient frontier model and results

4.1 Formulating and solving the model

Semivariance matrix VS (Table 6) is the core of the objective function (5) to be minimized.
By using numerical information on expected returns (Table 2, bottom) and taking x0 = 0.05
as diversification level, the model constraints are as follows.
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Table 6 Dow Jones opportunity
set: semivariance matrix
(V − B). September
2005–September 2009

1 . . . 30

AA . . . XOM

1 AA 0.0044 . . . 0.0009

. . . . . . . . . . . . . . .

30 XOM 0.0009 . . . 0.0009

0.000135x1 + 0.001554x2 + · · · + 0.000022x15 − 0.000013x16 + · · · + 0.001130x29

+ 0.001049x30 = E0 (9)

where parameter E0 moves over a feasible range.

x1 + x2 + · · · + x30 = 1 (10)

xi ≤ 0.05 (i = 1,2, . . . ,30) (11)

together with the non-negativity conditions.
This numerical model is straightforwardly solved by Lingo special GenPRT.lg4 software.

4.2 Results: a comparison of portfolios from the mean-semivariance and mean-variance
models

By using the mean-semivariance model with the numerical information above, an efficient
frontier of 7 portfolios has been determined. Here, the targets are between E0 = 0.00100
and E0 = 0.00160. Lowest bound E0 = 0.00100 is due to the bullet shaped arc of frontier,
while the highest bound E0 = 0.00160 is because no feasible solution is found above. In
Table 7, the main characteristics of this frontier are recorded.

For the purpose of comparison, the Markowitz E-V model is applied to the same port-
folio problem, namely, by minimizing the portfolio variance (from covariance matrix V in
Table 3) subject to the same constraints (9)–(11) already used in the mean-semivariance
model. For ease of comparison, every target E0 is here fixed at the same level of the re-
spective E0 target in the mean-semivariance frontier. As above, expected returns higher
than E0 = 0.00160 lead to infeasible solutions. In both models, expected returns lower than
E0 = 0.00100 lead to a typically irregular (bullet shaped) arc of frontier (Haugen 1997),
which has been removed.

In Table 7, let us compare the resulting mean-semivariance frontier to the classical E-V
frontier.

(a) Volatility as measured by the portfolio variance. For each expected return E0, the volatil-
ity from the mean-semivariance model is slightly higher than the respective volatility
from the E-V model. This result is consistent as E-V, but not mean-semivariance, min-
imizes the portfolio variance. However, the respective discrepancies are very small. In
percentage, these discrepancies decrease from 0.35 % (for the lowest E0 return) to al-
most zero for the highest E0 return.

(b) Downside risk as measured by the semivariance. For each expected return E0, the semi-
variance from the E-V model is slightly higher than the respective semivariance from
the mean-semivariance model. Again, the result is consistent as mean-semivariance, but
not E-V, minimizes the portfolio semivariance. Like in paragraph (a), we obtain small
discrepancies, namely, from 0.42 % (for the lowest E0 return) to almost zero for the
highest expected return.
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Fig. 1 Mean-semivariance efficient frontier from the E-SV model and semivariance polygonal line from the
E-V model

(c) Assets in the portfolio. In both frontiers, each E0 portfolio includes 21–23 assets with
non-zero weight. More precisely, if we compare portfolios of equal E0 in both frontiers,
there are 3 portfolios with 22 assets and 3 portfolios with 21 assets. Frequently, for each
E0 portfolio, the assets, but not their weights, coincide in both frontiers. To be exact,
this coincidence occurs in 4 portfolios and does not occur in 2 portfolios.

(d) Portfolio weights. For each E0 portfolio, those assets, which are not weighted at 5 %
level, are weighted at levels mostly different from a frontier to another frontier. There
are two exceptions for E0 = 0.00150 and E0 = 0.00160. However, most assets reach
the upper limit of 5 % allowed by the diversification constraints.

(e) In Fig. 1, the variable plotted on the horizontal axis is portfolio expected return while
the variable on the vertical axis is portfolio semivariance. Polygon ABC (solid line)
is the mean-semivariance efficient frontier given by the proposed E-SV model. Dotted
polygon A′B ′C ′ represents the semivariances obtained by the Markowitz E-V model.
Notice that polygon ABC lies below the dotted polygon. This is a coherent result as
the E-SV model minimizes the portfolio semivariance while Markowitz E-V minimizes
the portfolio variance. The gaps between both polygons are as follows: AA′ = 0.42 %,
BB ′ = 0.39 % and CC ′ = 0.05 %. Therefore, the higher the expected return the nar-
rower the gap.

(f) In Fig. 2, the variable plotted on the horizontal axis is portfolio expected return while
the variable on the vertical axis is portfolio variance. Dotted polygon H ′I ′J ′K ′ is the
mean-variance efficient frontier given by the Markowitz E-V model. Polygon HIJK

represents the variances obtained by the proposed E-SV model. Notice that dotted poly-
gon H ′I ′J ′K ′ lies below the solid polygon. This is a coherent result as the Markowitz
E-V model minimizes the portfolio variance while the proposed model minimizes the
portfolio semivariance. The gaps between both polygons are as follows: HH ′ = 0.35 %,
II ′ = 0.48 %, JJ ′ = 0.01 % and KK ′ = 0.10 %.
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Fig. 2 Mean-variance efficient frontier from the Markowitz E-V model and variance polygonal line from the
E-SV model

5 Concluding remarks

To highlight the value added by this paper notice that a model of portfolio choice such as E-
SV needs to be tested from actual opportunity sets of stocks appropriately. An appropriate
test should discern if the new model is relevant in the sense that the results of the model
differ from the results given by the classic E-V model and they are consistent with the
objective of reflecting downside risk. So far E-SV has been nearly illustrated from fictitious
opportunity sets including a short number of assets. Such illustrations are insufficient for
testing purposes. As we have developed an accurate test from Down Jones opportunity set
of stocks, this paper can be viewed as a contribution to finance, and more precisely, to the
field of portfolio efficient frontiers in the framework of downside risk.

Future research could be conducted to construct and test models in which targets of
downside risk other than the mean value are used from the investors preferences.
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