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Abstract 
Differentiating between users that interact on a tabletop could be beneficial for collaborative 

tasks to support territoriality-oriented features such as a more efficient space management or 

a better presentation of the contents. In this paper, we design a novel algorithm for the user 

differentiation or segmentation based on the simultaneous manipulation of controls. This is a 

potential differentiating factor that has remained unexplored so far, and in combination with 

other factors may become relevant to successfully accomplish such differentiation task. 

Basically it relies on the idea that users manipulate digital elements with a single hand, and 

hence, if two controls are being used at the same time, they most likely belong to different 

users. On the generic algorithm, three different versions have been implemented that include 

several heuristics to address the problem. The comparison under a simulated experiment 

shows that the heuristic involving more knowledge on distances on user controls performed 

better according to different goodness functions. This shows promising to further 

development and refinement of the approach by expanding it with other potential factors to 

eventually build a robust user differentiation subsystem. 
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1 Introduction 
Interactive tabletops provide a natural way of working collectively and several studies have 

shown their potential for collaborative activities (Dillenbourg & Evans, 2011) (Hornecker, 

Marshall, Dalton, & Rogers, 2008) (Morris, Paepcke, & Winograd, 2006). As stated in 

(Decouchant, Mendoza, Sánchez, & Rodríguez, 2013) systems intended to support 

collaboration should adapt themselves, for instance, in terms of the state of the activities, 

available resources and collaborators’ location. This context-awareness interaction is relevant 

to provide a more user-oriented interface by considering the context of use and the context of 

user interfaces (Seo & Lee, 2013a) (Seo & Lee, 2013b). However, although multiple users are 



involved in many of the tabletop-based tasks, applications are not usually aware of who is 

interacting or which controls belong to which users. Therefore, they do not take into account 

this valuable information that could be useful to mitigate some typical issues that sometimes 

arise in these interfaces or provide some enhanced features. For example, a specific issue is 

the surface clutter when there are many controls on a limited area. Some refined strategies 

could be devised to reduce the clutter by taking into account the ownership of controls. An 

option could be rearranging the interface elements around their owner in order to obtain a 

better layout of the elements and make more space available (for instance, moving away the 

elements that have not been used in a while). This rearrangement would be motivated by two 

main observations. Firstly, as reported in (Scott, Sheelagh, Carpendale, & Inkpen, 2004) and 

(Tse, Histon, Scott, & Greenberg, 2004) users tend to territorialize their working space and 

almost exclusively use the area in front of them. Secondly, users prefer working with their own 

UI elements, fact that was described in (Morris, Paepcke, Winograd, & Stamberger, 2006), 

showing that even if users can share the controls, they choose to replicate them. To 

successfully involve all these ideas, it is essential to differentiate the users owning the controls. 

In general, being aware of who is using the surface would allow the development of user 

interfaces that automatically adapt to the way users interact in terms of content visualization 

and space management. Therefore, studying the way to differentiate users is interesting 

because it could open new design considerations on how the content can be better delivered 

on these multi-user tabletop interfaces and eventually improve the quality of the designed 

tabletop-based applications. 

Researchers like Harrison et al. (Harrison, Sato, & Poupyrev, 2012) and Zhang et al. (Zhang, 

Yang, Ens, Liang, Boulanger, & Irani, 2012) have specified some desirable qualities that user 

differentiation systems should have. According to these authors, they should avoid requiring 

wearable elements and minimize or suppress the peripheral hardware. They should also be 

fast, robust (allowing the correct distinction between a variable number of users interacting 

both sequentially and simultaneously), transparent (not distracting the users from their tasks) 

and, finally, cheap, easily deployable, compact and with low power requirements. 

In this paper, we focus on describing a factor that has not yet been considered: the 

simultaneous use of different controls, which in combination with other factors may increase 

the robustness of the ownership of controls assignment process. When interacting with digital 

media, users tend to use one single hand even though multi-touch surfaces allow bimanual 

interactions (Terrenghi, Kirk, Sellen, & Izadi, 2007). Therefore, for some situations it could be 

thought that, if two UI elements are being manipulated at the same time, they most likely 

belong to different users. In addition, some co-located collaborative activities have shown a 

certain trend to parallelization of tasks while users interact orally with one another (Morris, 

Lombardo, & Wigdor, 2010). Therefore, it could be possible to effectively use this factor to 

differentiate between users, because many controls would be manipulated at the same time, 

restricting their number of possible owners. Hence, we propose in this paper an algorithm to 

effectively segment (or partition) the controls on a surface according to their most likely owner 

based on collisions arising as a result of simultaneous manipulations of the controls in the 

shared multi-touch surface. We present several goodness functions that may be applied during 



the segmentation process and we perform an experimental analysis to be able to identify the 

most effective one(s) in this respect. 

The rest of the paper is organized as follows. First, related work is described in Section 2, 

distinguishing between approaches relying on hardware setups versus those focused only on 

software processing, with no additional hardware instrumentation. In Section 3, we discuss 

three different approaches for our partitioning algorithm. Section 4 shows an experiment for 

evaluating these approaches according to several goodness functions. Finally, in Section 5, the 

conclusions and future works are described. 

2 Related work 
Several works have been conducted in order to provide the user-aware assignment of controls 

to owners in a shared multi-touch surface. Among the existing works we distinguish two types 

of approaches: hardware-based and software-based. Hardware solutions rely on either 

enhancing the tabletops with external devices or equipping the user with some wearables, 

whereas most software approaches explore a single factor for the user differentiation task, 

usually the position and orientation of finger contacts. According to the desirable qualities 

proposed by (Harrison, Sato, & Poupyrev, 2012) (Zhang, Yang, Ens, Liang, Boulanger, & Irani, 

2012) that user differentiation systems should have, software-based approaches seem to be 

more desirable, except for they are less robust than the hardware-based ones. 

Regarding hardware solutions, the DiamondTouch tabletop (Dietz & Leigh, 2001) uses 

antennas beneath the surface that form a circuit with some receivers situated under the seats 

of the users. When a finger touches the surface, the circuit closes producing a unique electrical 

path, which allows the system to know which user has produced the contact. Harrison et al. 

(Harrison, Sato, & Poupyrev, 2012) present a promising method for user differentiation based 

on the electrical properties of users’ bodies, using an external sensor. Although it is designed 

for tablets, the principles they use could be extended to tabletops in the near future.  

Dohse et al. (Dohse, Dohse, Still, & Parkhurst, 2008) propose the use of an external camera 

situated above the surface to infer the position of the users capturing their hands and arms. 

Schmidt et al. present HandsDown (Schmidt, Chong, & Gellersen, 2010), a way of user 

identification based on the contour of the hands and the posterior tracking of the user using 

also an external camera. Proposals described in (Annett, Grossman, Wigdor, & Fitzmaurice, 

2011) (Tănase, Vatabu, Pentiuc, & Graur, 2008) use proximity sensors to detect users and track 

them even if they move around the table. However, if they move away, the system forgets 

about them and they are considered new users when they return. Other works use gloves with 

coded tags (Marquardt, Kiemer, Ledo, Boring, & Greenberg, 2011), wristbands with LED 

transmitting an identification code (Meyer & Schmidt, 2010) or rings transmitting infrared light 

pulses (Roth, Schmidt, & Güldenring, 2010), which are recognized by the vision systems of 

some tabletops (e.g. Microsoft PixelSense). 

All the previous proposals need of additional hardware besides the working tabletop, 

sometimes embedded in it and sometimes external. Some drawbacks are identified by their 

respective authors, such as that the users are tied to a fixed location (Dietz & Leigh, 2001) 

(Dohse, Dohse, Still, & Parkhurst, 2008), the recognition is not very accurate when several 



users are working on the same side of the table (Dohse, Dohse, Still, & Parkhurst, 2008), and 

the number of users is limited (Dietz & Leigh, 2001) (Harrison, Sato, & Poupyrev, 2012) 

(Marquardt, Kiemer, Ledo, Boring, & Greenberg, 2011) (Meyer & Schmidt, 2010) (Roth, 

Schmidt, & Güldenring, 2010). Also, the use of wearable hardware (Marquardt, Kiemer, Ledo, 

Boring, & Greenberg, 2011) (Meyer & Schmidt, 2010) (Roth, Schmidt, & Güldenring, 2010) may 

result uncomfortable for some people, and it usually requires a previous registration from the 

users (also observed in (Schmidt, Chong, & Gellersen, 2010)), which is not a very natural way of 

starting the interactions. 

With respect to software solutions, Wang et al. (Wang, Cao, Ren, & Irani, 2009) present an 

approach to the differentiation of users by using the orientation of fingers to infer their 

position. However, it presents some problems when several users are working on the same 

side of the surface and, if they move, the system cannot track them. In this line, Dang et al. 

(Dang, Straub, & André, 2009) also present a way of finding the hand which some contacts 

belong to, given the position and orientation of the fingers. Zhang et al. (Zhang, Yang, Ens, 

Liang, Boulanger, & Irani, 2012) also present a differentiation of users relying on the 

orientation of fingers and a machine learning approach to predict the position of users. 

Although their solution provides high accuracy, they have only studied interactions done with 

the index finger and with at most three users standing at very specific places. In this work, the 

authors remark the potentiality of combining their distinction method with other approaches. 

When working with controls where the contents are represented in a fixed direction, such as 

text elements, the controls are faced towards the owner (Kruger, Carpendale, Scott, & 

Greenberg, 2003) (Morris, Lombardo, & Wigdor, 2010). Morris et al. (Morris, Lombardo, & 

Wigdor, 2010) rely on a technique based on the pointing direction of controls in order to 

detect users. Nevertheless, their solution works only with this type of controls. This would not 

be suitable when working with 360º controls, which try to mitigate the problem of accessing 

the elements from any position around the table (e.g. (Catala, Garcia-Sanjuan, Jaen, & 

Mocholi, 2012)). Besides, their proposal considers only four directions (North, South, East, 

West) and, therefore, the number of users that can be interacting with the surface is limited to 

four.  

3 Tabletop User Segmentation Based on Simultaneous 

Interactions 
In order to allow the system to differentiate between users when several ones are interacting 

simultaneously with the controls of an application, we have designed an algorithm that 

exploits the “simultaneous manipulation of controls” factor described in Section 1. The 

rationale behind the proposed algorithm is the classification of the existing controls in several 

groups in order to avoid two controls to be in the same one if they have been manipulated at 

the same time previously. We henceforward refer to this time overlapping as “usage collision”. 

Thus, a given group is a collision-free container of controls. The ideal situation will be having all 

the controls belonging to a given user in the same segment, and as many as users interacting 

on the tabletop. The case of specific controls that require the simultaneous manipulation of 

contacts is not a threat for our approach since these manipulations are known in advance, i.e. 



the gestures involving more than one contact are known at design time and may be filtered 

out not to consider them as usage collisions.  

Let us define a function   (Hit) that indicates whether two controls have collided with each 

other in the past: 

              { }))              { }))  {          } 

     )  {
                              
                

  

At the beginning of the execution, all the controls are inside a single group, and any new 

control entering the system is automatically classified in it. As soon as two elements collide, 

the segmentation algorithm is triggered in order to obtain a new collision-free separation (a 

new collection of parts) of the existing controls. This is accomplished by extracting one of the 

two colliding controls from its group and moving it to another where there are no controls that 

have been collided previously with it (migration). If there is no such a collision-free container 

then a new one is created (split). Moreover, if, after migration takes place, two groups contain 

controls that have not collided with one another, the algorithm will merge the two segments 

into one (merging). This will avoid the number of groups to increase disproportionately. The 

main steps of the algorithm, executed after a new collision is detected, are shown in Algorithm 

1. In sum, this algorithm is designed to support two properties or states: 

 If two groups exist is because there exists at least one control in one of them that has 

collided with at least another control of the other container. In mathematical terms: 

            |      (             | (     )      )  

               { }) 

 None of the controls within a group have collided with one another, which can be 

mathematically expressed as: 

                 ( (     )       ) 

Input:   ,    colliding controls 

Precondition:    and    have not collided in the past and they are in the same group when the 

collision takes place. Otherwise, the states before and after the execution of the algorithm will 

be the same. 

Begin 

 Step 1: Select control to be moved  :             ) 

 Step 2 (split): If   does not have any destination collision-free group, create a new 

one and establish it as the destination container for  . Then go to step 4. 

 Step 3 (migration): Select the destination group within the ones m can be moved to: 

             ) 
 Step 4 (merging): Try to merge any groups containing only controls that have not 

collided with one another. 

End 

Algorithm 1. Algorithm used to move controls between groups when a collision occurs. 

In the optimal situation, if every control of each user collides with all the controls of the 

others, the algorithm arrives to the desired situation where there exists one group per user 

and every control within a group belong to the same person, although this situation may be 

reached before all the collisions take place. In most cases the segmentation algorithm will 



reach suboptimal solutions which are still better than following a completely uninformed 

approach in terms of territoriality management. 

To deal with steps 1 and 3, different versions of the algorithm have been created. A naive one 

or baseline (defined as a basis for comparison), where the selected control and the destination 

group are chosen arbitrarily, and several alternative heuristic-based ones to make the 

classification more accurate since the movements of controls are made to containers where 

they are more likely to pertain. This is important because in a real application, where people 

are manipulating controls, it would be difficult that all the collisions necessary to achieve the 

optimal classification take place.  

3.1 Heuristic approaches 
Users tend to maintain their controls grouped (Scott, Sheelagh, Carpendale, & Inkpen, 2004). 

Under this hypothesis, we propose several more informed versions of the algorithm which are 

based on the distances between controls. A group can be seen as a set of points representing 

the positions of its contained controls. Therefore, the centroid of a given group   with   

controls inside (which positions are labeled from    to   ) is calculated as follows: 
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Under the previous assumption, the distance from each control to the centroid of its group 

(the one containing the controls owned by the same user) should be smaller than the distance 

to the centroids of the rest. 

Let us redefine the argmin and argmax functions so they return a single element instead of a 

set: 
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And argmax’ is defined analogously. 

Let us define now some functions that will be needed for the formal specification of the 

different heuristic approaches. These functions are           , which returns the number of 

available (collision-free) containers for a given control; and            , which indicates 

whether a control can be moved to a specific group (if it is collision-free for the given control). 

Also, let    be the current group of a surface control  . 
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Given the             function, the step 3 of our algorithm is defined in a straightforward way 

by the function            . Note that      represents the position of a surface control  . 
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Subsections 3.1.1 - 3.1.3 explain, for each considered approach, how the step 1 of the 

algorithm is defined. 

3.1.1 Closest Remote Centroid Migration Approach (CRCM) 

When a collision occurs between two controls, this approach chooses the one with the closest 

available group (i.e. closest to the centroid) as the candidate control to be migrated. In case of 

tie, the selected control will be that with a greater number of available destinations. This is to 

prevent the excessive creation of new segments, although the case where two controls are at 

the exact same distance from a centroid is highly unlikely.  

Let   
      be the distance of a control   to the centroid of its closest available group: 
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Then, the selection function for two colliding controls   ,    could be defined as follows: 
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3.1.2 Furthest Local Centroid Migration Approach (FLCM) 

This is a different approach where, given the two colliding controls, the one which is furthest 

away from the centroid of its current group is chosen to be moved. In case of tie, the behavior 

is the same as for CRCM. The rationale behind this heuristic is that the further the control is to 

the centroid of its current segment the more likely it is it belongs to a different one.  

Let   
        be the distance between the control   and the centroid of its current group: 

  
        ‖               )‖             

The selection function for two colliding controls   ,    in this case would be defined as follows: 
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In the unlikely case in which both controls are at the same distance to the centroid of their 

current group, the one with more available destinations is selected. 



3.1.3 Remote-Local Centroids Difference Approach (RLCD) 

In both CRCM and FLCM approaches, it is possible to come to a situation where the state 

reached after moving a control is worse than the previous one. For example, in CRCM, if the 

selected control to be moved    has a distance to its destination centroid which is greater than 

the distance to its current group, i.e. in mathematical terms if          {     }   
        , but 

   
      ‖     

             )‖ where     {        |     }, then the best option for    

might be stay in its current group, which it is the closest for the control.  

Let us specify an example of the situation described above with some sample numerical values 

as shown in Figure 1. In the picture,    and    are represented as circles; the centroid of their 

current container is symbolized as a square; and the centroids of their respective closest 

available groups, as triangles. In this example, if only CRCM was taken into account, the 

selected control to be moved would be   , as it presents a lower value of distance to the 

centroid of the remote closest segment. From the perspective of FLCM, this decision would be 

erroneous, since    is closer to the centroid of its current group, and    would be the candidate 

control that would have to be moved instead. The same situation occurs if FLCM is applied 

because the selected control (  ) leads to a non-optimal state of the system in terms of the 

CRCM approach.  
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Figure 1. Example of RLCD measured distances for two colliding controls   ,   . The centroids 

of their closest available destination containers are represented by triangles, and the centroid 
of their own current group is represented by a square. 

Therefore, this example suggests that a clever combination of CRCM and FLCM would result in 

a better heuristic in terms of effectively migrating colliding controls.  

Given two colliding controls   ,    , let us define two error measures        |   
         

     | 

and          |   
           

       | where        represents the overall distance difference 

with respect to the respective closest remote available destination and          represents 

the overall distance difference with respect to the centroid of the current group of   ,   . If 

       is greater than          then we will migrate the control which is closest to its remote 

available destination (         {     }   
     ) because this decision will contribute to reduce 

the difference which is greater in magnitude (      ). Otherwise, the control to be migrated 



will be the one which is furthest away from its current segment (        {     }   
       ) 

because this decision will contribute to reduce the greater difference (        ). 

RLCD is defined in mathematical terms as follows: 
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4 Experimental Analysis 
The performance analysis of the proposed approaches can be done in terms of their 

theoretical asymptotic complexity and in terms of its experimental computational 

effectiveness, i.e. not only according to the time it takes to perform the computation after a 

collision occurs but also analyzing the suitability of the state reached after a collision has been 

processed using each of the proposed approaches. Taking into account the asymptotic time 

complexity, the choice of the approach is irrelevant. All of them have an asymptotic cost 

    ) considering   the number of current segments or groups. As   tends to the number of 

controls   (in the situation where each control is in a different segment), the complexity of the 

worst case in which there would be just one control per group would be     ). Although this 

is a high theoretical cost, empirically the time is not a critical factor due to the physical 

restrictions of the applications of this algorithm, where the number of users and the number 

of controls per user involved are limited. 

However, the most important issue is to find the approach that provides a better distribution 

of the controls among groups. This comparative study has been carried out by implementing a 

simulator of collisions so that a great number of experimental repetitions may be generated 

for each configuration of the experimental factors without the intervention of real users.  

4.1 Apparatus 
The implemented simulator allows the specification of the simulation factors: the dimensions 

of the working surface, the number of users involved and their respective number of controls. 

In our experiments, the value for the “dimensions of the surface” factor has been fixed to 1024 

x 768 pixels, to consider a surface of real dimensions such as the Microsoft Pixelsense 1.0. The 

simulator places a certain number of controls on the surface randomly, depending on two 

parameters: the number of users   that could be interacting at the same time with the 

application, and the number of controls   that each user owns. The distribution of the controls 

is done under the territoriality hypothesis explained in Section 3.1, i.e. grouped in front of their 

owner. The simulator divides the surface as if the users were situated around it (simulating a 

real situation such as the one shown in Figure 2), assigning the same size of working space to 

each user, and places the appropriate number of controls randomly in each section according 

to  , as depicted in Figure 3 with an example for     and    . On this configuration all 

the possible collisions between the controls from different users are randomly generated. All 

these sequences of simulated interactions will be part of the datasets used as input in the 

study. 



 

Figure 2. Several users interacting with a tabletop. 

 

Figure 3. Distribution of the controls by the simulator in a hypothetical situation with     
and    . 

4.2 Goodness Functions 
To study the goodness of the different approaches, several functions have been implemented. 

For each collision observed, these functions represent how far the state reached after the 

collision is from the ideal situation in which all the controls have been successfully classified. In 

terms of how these functions have been defined, the closer their value is to zero, the better 

the approach, because it drives the state of the groups containing controls towards the ideal 

classification in which all of them contain only the controls owned by a single user. 

Let    be the number of different users who have controls inside the group  ;  , the number 

of current existing groups;   , the number of controls within  ;  , the number of participants; 

and  , the number of controls that each user owns. The measured functions are defined as 

follows: 

 Function F1 (Excess of users): Ideally, there should be one segment for each user. This 

function measures the difference between the current number of users in a group with 

respect to the desired situation. 
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 Function F2 (Excess of controls): Ideally, there should be   controls per user in each 

group. This function computes the difference between the current number of controls 

within a container with respect to the desired situation. 
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 Function F3 (Spread of controls): The controls inside a group should belong to the 

same user and, therefore, they should be physically close to one another. This function 

measures the distance between the controls and the centroid of their respective 

container. The more grouped they are, the closer to 0 the value will be. 

   
∑ ∑

‖          )      ‖
 

  
                     

 
 

 Function F4 (Lack or excess of groups): On the final (ideal) situation, the number of 

containers   should be equal to the number of users  , since each one of them should 

contain the controls belonging to a single user. Hence, this function measures the lack 

(negative values) or excess (positive values) of groups with respect to this ideal 

situation. 

       

In addition to the previous functions, several refinements of function F1 have been considered 

given that the heterogeneity of each group in terms of the users included is a key quality 

factor. In this sense we want to pay special attention to the degree or “density” of this 

heterogeneity in terms of the proportion of controls of a given user in a group with respect to 

the proportion of controls in that same container belonging to other users. This heterogeneity 

density can be measured in different ways given the proportion of controls of a given user in a 

group. Let us define: 
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 Function F5 (Proportion of controls: max): It takes the maximum value of the densities 

in each container and obtains an average value for all the segments. In other words, it 

measures the goodness of a given approach as how effective it is in terms of increasing 

the maximum average density of each group. 
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 Function F6 (Proportion of controls: max-min): It takes the difference between the 

maximum and the minimum values of the density in each group and obtains an 

average value. It measures how effective is a given approach in increasing the 

difference between the maximum and minimum values of density within each group.  
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 Function F7 (Proportion of controls: max1-max2): It takes the difference between the 

two maximum values of density in each container and then obtains the average value 

of those calculated differences. This function measures the effectiveness of a given 

heuristic in reducing the number of maximum densities within a group. Groups with 

high values of densities for different users involve a potentially high number of control 

migrations in the future to reach the ideal situation in which all the controls in a given 

segment belong to the same user.  
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 Function F8 (Proportion of controls: max-rest): This is a more elaborated version of 

functions F6 and F7 in which not just the differences between max-min densities or 

max1-max2 densities are calculated within each group, but rather the difference 

between the highest and the average of the rest density values. 
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4.3 Procedure 
A set of experiments have been conducted to know whether there are any significant 

differences among the presented heuristic approaches when the number of users   and the 

number of controls   for each user vary. The comparative analysis of the proposed heuristics 

has been performed in terms of the goodness functions described above.  

In the experimental design, the number of users   has been varied from 2 to 9 and the 

number of controls per user  , from 1 to 10. In order to simplify the analysis, these values 

have been arranged in groups of density (low, medium and high) as it is depicted in Table 1. 

Among all possible combinations of values for   and  , a subset of 3 has been randomly 

selected as representative candidates for the different densities. With these combinations, the 

corresponding datasets have been generated according to the conditions described in section 

4.1 changing both the position of the controls and the order in which the collisions take place, 

resulting in 50 trials per combination and a total of 450 different trials. 



Hence, a trial refers to a specific combination of   and   along with a specific sequence order 

of collision events among the controls. Every collision event in each trial’s sequence will be 

processed by all the approaches. After a collision is observed and processed using a given 

approach, each goodness function is computed and its value stored for a posterior analysis, so 

that a complete trace of the evolution of this function is obtained. 

U Low 2, 3 

Medium 4, 5, 6 

High 7, 8, 9 

C Low 1, 2, 3 

Medium 4, 5, 6 , 7 

High 8, 9, 10 

Table 1. Classification of   and   by densities.  

4.4 Results and discussion 

  
U 

 
  Low Medium High 

C 

Low 

U2C2 3120 U4C1 3201 U7C3 3 - 2 - 10 

U3C1 0123 U5C3 32 - 10 U8C2 3210 

U3C3 3 - 201 U6C2 32 - 1 - 0 U9C1 23 - 01 

Medium 

U2C5 312 - 0 U4C6 3 - 2 - 1 - 0 U7C4 3 - 2 - 1 - 0 

U2C6 312 - 0 U5C5 3 - 2 - 1 - 0 U8C6 3 - 2 - 1 - 0 

U3C7 3 - 21 - 0 U6C7 3 - 2 - 1 - 0 U9C5 3 - 2 - 1 - 0 

High 

U2C8 3 - 120 U4C10 3 - 2 - 1 - 0 U7C10 3 - 2 - 1 - 0 

U2C9 312 - 0 U5C8 3 - 2 - 1 - 0 U8C8 3 - 2 - 1 - 0 

U3C10 3 - 21 - 0 U6C9 3 - 2 - 1 - 0 U9C9 3 - 2 - 1 - 0 

Table 2. Classification of the approaches from the best to the worst for the goodness function 
F1. 

  
U 

 
  Low Medium High 

C 

Low 

U2C2 1302 U4C1 3201 U7C3 2301 

U3C1 0123 U5C3 3201 U8C2 2310 

U3C3 0132 U6C2 2 - 310 U9C1 23 - 01 

Medium 

U2C5 1320 U4C6 3210 U7C4 23 - 01 

U2C6 13 - 20 U5C5 32 - 10 U8C6 23 - 0 - 1 

U3C7 3120 U6C7 32 - 01 U9C5 23 - 01 

High 

U2C8 13 - 02 U4C10 321 - 0 U7C10 32 - 1 - 0 

U2C9 13 - 20 U5C8 32 - 1 - 0 U8C8 32 - 01 

U3C10 321 - 0 U6C9 32 - 10 U9C9 32 - 01 

Table 3. Classification of the approaches from the best to the worst for the goodness function 
F2. 



  
U 

 
  Low Medium High 

C 

Low 

U2C2 3210 U4C1 3201 U7C3 3 - 2 - 1 - 0 

U3C1 3210 U5C3 32 - 1 - 0 U8C2 3 - 21 - 0 

U3C3 3210 U6C2 32 - 1 - 0 U9C1 3210 

Medium 

U2C5 3210 U4C6 3 - 21 - 0 U7C4 3 - 2 - 1 - 0 

U2C6 3120 U5C5 3 - 2 - 1 - 0 U8C6 3 - 2 - 1 - 0 

U3C7 321 - 0 U6C7 3 - 2 - 1 - 0 U9C5 3 - 2 - 1 - 0 

High 

U2C8 3120 U4C10 3 - 21 - 0 U7C10 3 - 2 - 1 - 0 

U2C9 3120 U5C8 3 - 2 - 1 - 0 U8C8 3 - 2 - 1 - 0 

U3C10 3 - 21 - 0 U6C9 3 - 2 - 1 - 0 U9C9 3 - 2 - 1 - 0 

Table 4. Classification of the approaches from the best to the worst for the goodness function 
F3. 

  
U 

 
  Low Medium High 

C 

Low 

U2C2 3120 U4C1 1023 U7C3 1302 

U3C1 0123 U5C3 1320 U8C2 10 - 32 

U3C3 1032 U6C2 1 - 302 U9C1 01 - 23 

Medium 

U2C5 1320 U4C6 3 - 12 - 0 U7C4 3120 

U2C6 3120 U5C5 321 - 0 U8C6 31 - 2 - 0 

U3C7 3 - 12 - 0 U6C7 321 - 0 U9C5 132 - 0 

High 

U2C8 31 - 02 U4C10 3 - 21 - 0 U7C10 3 - 21 - 0 

U2C9 31 - 20 U5C8 3 - 21 - 0 U8C8 3 - 21 - 0 

U3C10 321 - 0 U6C9 32 - 1 - 0 U9C9 3 - 21 - 0 

Table 5. Classification of the approaches from the best to the worst for the goodness function 
F4. 

  
U 

 
  Low Medium High 

C 

Low 

U2C2 3120 U4C1 3021 U7C3 3 - 2 - 1 - 0 

U3C1 0123 U5C3 32 - 1 - 0 U8C2 32 - 1 - 0 

U3C3 3 - 210 U6C2 32 - 1 - 0 U9C1 32 - 10 

Medium 

U2C5 312 - 0 U4C6 3 - 2 - 1 - 0 U7C4 3 - 2 - 1 - 0 

U2C6 3120 U5C5 3 - 2 - 1 - 0 U8C6 3 - 2 - 1 - 0 

U3C7 3 - 21 - 0 U6C7 3 - 2 - 1 - 0 U9C5 3 - 2 - 1 - 0 

High 

U2C8 31 - 20 U4C10 3 - 2 - 1 - 0 U7C10 3 - 2 - 1 - 0 

U2C9 31 - 20 U5C8 3 - 2 - 1 - 0 U8C8 3 - 2 - 1 - 0 

U3C10 3 - 2 - 1 - 0 U6C9 3 - 2 - 1 - 0 U9C9 3 - 2 - 1 - 0 

Table 6. Classification of the approaches from the best to the worst for the goodness function 
F5. 

 

 

 



  
U 

 
  Low Medium High 

C 

Low 

U2C2 3120 U4C1 3021 U7C3 3 - 2 - 1 - 0 

U3C1 0123 U5C3 32 - 1 - 0 U8C2 32 - 1 - 0 

U3C3 3 - 210 U6C2 32 - 1 - 0 U9C1 32 - 10 

Medium 

U2C5 312 - 0 U4C6 3 - 2 - 1 - 0 U7C4 3 - 2 - 1 - 0 

U2C6 3120 U5C5 3 - 2 - 1 - 0 U8C6 3 - 2 - 1 - 0 

U3C7 3 - 21 - 0 U6C7 3 - 2 - 1 - 0 U9C5 32 - 1 - 0 

High 

U2C8 31 - 20 U4C10 3 - 2 - 1 - 0 U7C10 3 - 2 - 1 - 0 

U2C9 31 - 20 U5C8 3 - 2 - 1 - 0 U8C8 3 - 2 - 1 - 0 

U3C10 3 - 2 - 1 - 0 U6C9 32 - 1 - 0 U9C9 3 - 2 - 1 - 0 

Table 7. Classification of the approaches from the best to the worst for the goodness function 
F6. 

  
U 

 
  Low Medium High 

C 

Low 

U2C2 3120 U4C1 3021 U7C3 3 - 2 - 1 - 0 

U3C1 0123 U5C3 32 - 1 - 0 U8C2 32 - 1 - 0 

U3C3 3 - 210 U6C2 32 - 1 - 0 U9C1 32 - 10 

Medium 

U2C5 312 - 0 U4C6 3 - 2 - 1 - 0 U7C4 3 - 2 - 1 - 0 

U2C6 3120 U5C5 3 - 2 - 1 - 0 U8C6 3 - 2 - 1 - 0 

U3C7 3 - 21 - 0 U6C7 3 - 2 - 1 - 0 U9C5 32 - 1 - 0 

High 

U2C8 31 - 20 U4C10 3 - 2 - 1 - 0 U7C10 3 - 2 - 1 - 0 

U2C9 31 - 20 U5C8 3 - 2 - 1 - 0 U8C8 3 - 2 - 1 - 0 

U3C10 3 - 2 - 1 - 0 U6C9 32 - 1 - 0 U9C9 3 - 2 - 1 - 0 

Table 8. Classification of the approaches from the best to the worst for the goodness function 
F7. 

  
U 

 
  Low Medium High 

C 

Low 

U2C2 3120 U4C1 3021 U7C3 3 - 2 - 1 - 0 

U3C1 0123 U5C3 32 - 1 - 0 U8C2 32 - 1 - 0 

U3C3 3 - 210 U6C2 32 - 1 - 0 U9C1 32 - 10 

Medium 

U2C5 312 - 0 U4C6 3 - 2 - 1 - 0 U7C4 3 - 2 - 1 - 0 

U2C6 3120 U5C5 3 - 2 - 1 - 0 U8C6 3 - 2 - 1 - 0 

U3C7 3 - 21 - 0 U6C7 3 - 2 - 1 - 0 U9C5 32 - 1 - 0 

High 

U2C8 31 - 20 U4C10 3 - 2 - 1 - 0 U7C10 3 - 2 - 1 - 0 

U2C9 31 - 20 U5C8 3 - 2 - 1 - 0 U8C8 3 - 2 - 1 - 0 

U3C10 3 - 1 - 2 - 0 U6C9 32 - 1 - 0 U9C9 3 - 2 - 1 - 0 

Table 9. Classification of the approaches from the best to the worst for the goodness function 
F8. 

Each experiment has been named UxCy, where x is the number of users involved and y, the 

number of controls per user. Table 2 - Table 9 show a sorting of approaches (from the best to 

the worst) based on each goodness function. The approaches are represented by a number 

instead of their names to increase the readability of the tables. The approach 0 represents the 

naive one (the baseline), approaches 1, 2 and 3 represent CRCM, FLCM and RLCD respectively. 



Within the tables, the different approaches form groups if there are no significant differences 

between them. Inside these groups, they are also sorted according to their mean value (from 

the lowest to the greatest). For instance, in Table 2 the entry for experiment U6C2 is “32-1-0” 

which means that there are three statistically significant different groups of approaches being 

3 (RLCD) and 2 (FLCM) the best ones followed by approach 1 (CRCM) and approach 0 (baseline) 

which is the worst one in terms of the goodness function F1. However, despite there are no 

significant differences between 3 and 2 the average F1 goodness value for approach 3 is lower 

than the one for approach 2 and this is why it is listed first within the group “32”. 

In order to determine the groups of approaches, the differences in terms of performance were 

statistically tested. When data normality could be assumed based on Shapiro-Wilk tests, an 

ANOVA was performed and post-hoc pairwise comparisons using Bonferroni’s method were 

applied to check which approaches are significantly different from one another. Nevertheless, 

when the normality assumption cannot be accepted, a Kruskal-Wallis test is done with its 

respective post-hoc pairwise comparisons. In one way or another, the idea is to be able to 

decide whether the performance of each approach for a given goodness function significantly 

differs from each other, and eventually decide about the groups. 

 

Figure 4. Evolution of F1 with the collisions produced for the experiment U5C5. 

The analysis of Table 2 (F1, excess of users) reveals that there is no clear separation between 

approaches for low densities of either   or  , even though sometimes the naive approach 

appears to be separated from the other ones. This indicates that, when the number of users or 

the number of controls per user is small, the use of an informed approach tends to separate 

quicker the controls of different users than the naive approach. As the densities of   and   

become higher, the difference between approaches is clearer. The naive approach presents 

the worst results, followed by the approach 1 (CRCM) which only takes into account the 

distance to the available destinations in order to choose the control to be moved from a group 

in case of collision. Approach 2 (FLCM), which chooses always the control which is furthest to 

its own segment, seems to be slightly better, but the combination of approaches CRCM and 

FLCM into approach RLCD is the one which outperforms the others, keeping, mostly, controls 

from the same user grouped. Figure 4 shows the measured values of F1 after each collision 



produced for an experiment with medium densities for both   and  . As it can be seen in this 

plot, the use of heuristics clearly reduces the excess of users within groups. 

 

Figure 5. Evolution of F2 with the collisions produced for the experiment U5C5. 

Regarding F2, the excess of controls (see Table 3), there are no significant differences between 

approaches 2 (FLCM) and 3 (RLCD), which are better than the other two for combinations of 

medium and high densities of   and  . This means that, when trying to have   controls in each 

group (which would be the ideal situation), the right decision to choose is moving the control 

that is furthest to the centroid of its own container. For low densities of controls per user, 

there are no clear differences between approaches. Additionally, some combinations of 

medium size of users and controls reveal a varying set of winning approaches. These varying 

results make us conclude that F2 is not an effective discrimination factor to measure the 

goodness of the approaches as it is shown in Figure 4. 

 

Figure 6. Evolution of F3 with the collisions produced for the experiment U5C5. 

Function F3 (see Table 4) measures the average distance between the controls classified in the 

same group and their centroid. Since this function takes into account the distances between 

controls, it is expected that the heuristic versions outperform the baseline (which chooses the 



control to be moved randomly). Indeed, the results reveal that for any combinations of 

medium and high densities there is a clear separation of approaches. RLCD approach (number 

3) is the winner heuristic followed by approaches 2 (FLCM) and 1 (CRCM) (with FLCM 

outperforming CRCM), keeping together the controls that are closest to each other (see Figure 

6). The separation is not that clear for low densities of   and medium-high densities of  , but 

the tendency is the same. However, for a low density of number of users there are no 

significant differences between the different approaches, although RLCD shows smaller mean 

values of F3. 

 

Figure 7. Evolution of F4 with the collisions produced for the experiment U5C5. 

The differences between approaches are not very strong considering F4 (the lack or excess of 

groups), as it can be seen in Figure 7 as well as in Table 5. Although the RLCD approach seems 

to outperform the baseline for combinations of medium and high densities of   and  , high 

densities of   are needed in order to differentiate between the heuristic approaches. In this 

case, the approach that creates a number of segments closest to the ideal case is the approach 

3 (RLCD), followed by the other two heuristic approaches and, finally, the naive one. Besides 

being a metric to measure how close is an approach to the ideal case, this function is 

important to measure the goodness of an heuristic because a great excess of the number of 

groups could be detrimental to the asymptotic computational cost, that is a function of the 

number of this number  :     ). Figure 7 shows the evolution of this function with respect to 

the number of collisions processed. At first, there are fewer groups than desired, and after 

around the sixtieth collision, there are an excessive number of them. However, this excess is 

quite small and, therefore, this is not a critical issue for the computational cost. 

Functions F5 (Table 6), F6 (Table 7), F7 (Table 8) and F8 (Table 9) measure the heterogeneity 

inside a group in terms of the proportion of controls belonging to each user who has controls 

in that group. Even though these functions differ from one another, essentially they measure a 

similar factor, i.e. density heterogeneity, which should in theory result in a similar capability 

for discriminating among approaches. This is in fact confirmed by the results obtained and, as 

it happens with the other goodness functions explained before, the differences between 

approaches become very clear when dealing with combinations of medium and high densities 

of both   and  . In this case, as it can be seen in Figure 8, the RLCD approach outperforms the 



others, followed by approaches 2 (FLCM), 1 (CRCM) and 0 (the baseline). Besides, when either 

low densities of   or   are involved, approaches CRCM and FLCM degrade and become as 

effective as the naive one, but still in this situation RLCD emerges as the best one in most 

cases. 

 

Figure 8. Evolution of F5, F6, F7 and F8 with the collisions produced for the experiment U5C5. 

In conclusion, taking into account the different goodness functions measured, the use of 

heuristics presents better results than choosing arbitrarily the control to be moved. This 

behavior is clearer as the number of users   and the number of controls per user   increases. 

Nevertheless, it is important to note that, even with small sizes of   and  , the distribution of 

controls made with some heuristic approaches of the algorithm is usually better than the one 

made with the naive approach. In addition, although high sizes of both   and   could be 

considered unrealistic because of the limited dimensions of the interactive surfaces, the 

combination of medium values for   and   still support these conclusions, and therefore this 

research opens the direction towards future scenarios in which larger surfaces will be involved. 

The results also show that the RLCD approach, which is the most elaborated one in terms of 

measuring heterogeneity within each group, is the winner under all circumstances except 

when low densities of users and controls are present. However, in these situations where the 

surface is not highly populated, territoriality is not an issue and the application of these 

algorithms could be avoided. 

5 Conclusions and future work 
In this paper we have proposed a solution for the problem of user differentiation without using 

any hardware besides the tabletop, by focusing on a factor that has not yet been explored in 



detail: the simultaneous use of different controls. A segmentation algorithm has been 

implemented which maintains controls in different groups if they are assumed to belong to the 

same user, achieving in this way the differentiation of the users manipulating those controls. 

The algorithm follows a generic design so that the basic operations of splitting, migrating and 

merging that have been considered can be implemented in different ways leading to different 

approaches. This will be particularly useful to consider and easily accommodate other factors 

together within the algorithm in the future, by simply expanding or re-implementing these 

functions with the new elements. In this work, three approaches have been implemented for 

control migration based on different heuristics. These approaches have been named CRCM 

(Closest Remote Centroid Migration), FLCM (Furthest Local Centroid Migration) and RLCD 

(Remote-Local Centroids Difference) and they include the benefits of another factor: the 

distance between controls. Whereas CRCM selects for migration the closest control to another 

free group, FLCM chooses the one furthest to its current container. RLCD is a hybrid version of 

the previous ones. 

In a simulated environment, the three versions of the algorithm have been compared between 

one another and also against a baseline (which arbitrarily selects the control to be moved). The 

comparison has been performed according to eight goodness functions, and the results have 

shown that, in general, the best approach is the RLCD one. This implies that not always it is 

preferable to move the control which is closest to a collision free destination if it is very close 

to the other controls in its current group, and vice versa. 

As a future work, we intend to further test this algorithm with the heuristic of the RLCD 

approach by performing some experiments with real users in order to test its actual 

performance in a task that requires user differentiation. Also, we will combine this factor with 

others already explored by other authors, such as the position and orientation of fingers, and 

see whether the user differentiation system becomes more robust and accurate when 

combining several factors. 
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