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Abstract

We endow the set of real numbers with a family of fuzzy quasi-metrics, in
the sense of George and Veeramani, which are compatible with the Sorgen-
frey topology. Although these fuzzy quasi-metrics are not deduced explicitly
from a quasi-metric, they possess interesting properties related to complete-
ness. For instance, we prove that they are balanced and complete in the sense
of Doitchinov and that only one of them is right K-sequentially complete.
We also observe that compatible fuzzy quasi-metrics for the Sorgenfrey line
cannot be left (weakly right) K-sequentially complete.

Keywords: Fuzzy quasi-metric space, Sorgenfrey line, Cauchy sequence,
left (right) K-Cauchy sequence.

1. Introduction

Probabilistic-quasi-pseudo-metric spaces (briefly, PqpM-spaces) are a
natural generalization of probabilistic metric spaces (PM-spaces) due to
Menger [24], and recently some aspects on them have been studied by Cho,
Grabiec and Saadati in [3, 9, 10]. Kramosil and Michalek [21] gave a notion
of fuzzy metric space which could be considered as a reformulation, in the
fuzzy context, of the notion of PM-space. Later, George and Veeramani
introduced and studied [6, 8] a notion of fuzzy metric space which is a slight
modification of the one given by Kramosil and Michalek, but in this case it
cannot be regarded, in general, as a Menger space [14]. From now on, by
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fuzzy metric we mean a fuzzy metric in the sense of George and Veeramani.
Several authors have contributed to the development of this theory, for in-
stance [15, 16, 17, 34, 30, 32, 25, 26]. In particular, in [15, 7] the authors
proved that the class of topological spaces that are fuzzy metrizable agrees
with the class of metrizable spaces. It is interesting to notice that these
fuzzy metrics have been successfully used in color image filtering [27, 13, 2].

In [28] J.H. Park extended the notion of fuzzy metric to the intuitionistic
context. On the other hand, in [18] the authors introduced the concept of
fuzzy quasi-(pseudo-)metric that, in a similar way to the classical theory
[5], generalizes the concept of fuzzy metric due to George and Veeramani.
Obviously, fuzzy quasi-pseudo-metrics cannot be regarded, in general, as
PqpM-spaces. Nevertheless (as in the case of fuzzy metrics with respect to
PM-spaces), some concepts and results related to fuzzy quasi-pseudo-metric
spaces are similar to their corresponding ones in PqpM-spaces. This is the
case of the different concepts of sequential completeness studied in [10].

Many authors have contributed to the study of completeness and comple-
tion of quasi-metrics based on the notion of Cauchy sequence, for instance
[36, 20, 29, 33, 4, 1, 31, 22, 23], and in some cases this study has been
extended to the fuzzy context [12, 19]. Obviously, these studies are partic-
ularly interesting in the case of quasi-metrizable non metrizable topological
spaces.

It is well known that the Sorgenfrey line provides a relevant example of a
quasi-metrizable space which is not metrizable. So, this space is fuzzy quasi-
metrizable but not fuzzy metrizable [15], [18]). Customarily, every fuzzy
metric deduced from a metric d ([13], Section 3.2) inherits the completeness
properties of d, as it is the case of the standard fuzzy-metric. In that case,
the study of such properties is not relevant, in general. Further, many
properties based on the t-parameter are fulfilled by this type of fuzzy metrics
(for instance, the standard fuzzy metric is completable [16, 17], principal
[11], strong (non-Archimedean) [14], . . . ), and so the construction of fuzzy
metrics not deduced explicitly from a metric turns interesting, in order to
solve fuzzy metric questions. These facts hold in the fuzzy quasi-metric
framework (Remark 5.14).

For the reasons above we here endow the Sorgenfrey line with a family
of fuzzy quasi-metrics which are not deduced explicitly from a quasi-metric
and we focus our attention on some aspects of their completeness. Then,
we study the (sequential) completeness of these fuzzy quasi-metrics in the
sense of Doitchinov [4, 12] and the different notions of Cauchy sequence in
[29]. We prove that all these fuzzy quasi-metrics are balanced and complete
in the sense of Doichinov. On the other hand, if M is a compatible fuzzy
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quasi-metric with the Sorgenfrey line on R, then we prove that M is not
left K-sequentially complete nor weakly right K-sequentially complete, using
results of [31] and [1], respectively. We illustrate these facts with appropriate
examples and we prove that only one of our family of fuzzy quasi-metrics is
right K-sequentially complete, Theorem 5.10. We also introduce, in a natural
way, the concept of uniform equivalence between fuzzy quasi-metrics defined
on the same set and study some properties. Then we prove that all members
of our family of fuzzy quasi-metrics on R, excepting those mentioned in
Theorem 5.10, are uniformly equivalent.

The structure of the paper is as follows. After the preliminary section,
we introduce a family of fuzzy quasi-metrics which are compatible with
the Sorgenfrey line, in Section 3. In Section 4 we prove that all of them
are balanced and complete, both in the sense of Doitchinov. In Section 5
we prove that only one of the mentioned fuzzy quasi-metrics is right K-
sequentially complete, and in Section 6 we show that the rest of fuzzy quasi-
metrics are uniformly equivalent.

2. Preliminaries

From now on, we will denote by N and R the set of positive integers and
real numbers, respectively. Our basic reference for general topology is [5].

Let us recall [35] that a continuous t-norm is a binary operation ∗ :
[0, 1]× [0, 1] → [0, 1] such that ([0, 1],≤, ∗) is an ordered Abelian topological
monoid with unit 1.

Definition 2.1. [18] A fuzzy quasi-metric space is an ordered triple (X,M, ∗)
such that Xis a (nonempty) set, ∗ is a continuous t-norm and M is a
fuzzy set on X × X× ]0,+∞[ satisfying the following conditions, for all
x, y, z ∈ X, s, t > 0:

Q1: M(x, y, t) > 0

Q2: M(x, y, t) = 1 if and only if x = y

Q3: M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s)

Q4: M(x, y, ·) : ]0,+∞[ → ]0, 1] is continuous.

Condition Q2 is equivalent to the following:
M(x, x, t) = 1 for all x ∈ X and t > 0, and M(x, y, t) < 1 for all x 6= y

and t > 0.
If (X,M, ∗) is a fuzzy quasi-metric space, we will say that (M, ∗), or

simply M , is a fuzzy quasi-metric on X. A fuzzy quasi-metric M is a fuzzy
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metric, in the sense of George and Veeramani [6], if M(x, y, t) = M(y, x, t)
for all x, y ∈ X, t > 0.

Frequently we will use the following well-known fact without mention:
M(x, y, ·) is nondecreasing for all x, y ∈ X.

Example 2.2. Let (X, d) be a quasi-metric space [5]. Define a ∗ b = ab for
all a, b ∈ [0, 1], and let Md be the fuzzy set on X ×X× ]0,+∞[ defined by

Md(x, y, t) =
t

t+ d(x, y)

Then (X,Md, ·) is a fuzzy quasi-metric space and Md is called the standard
fuzzy quasi-metric induced by d (see [18], [6]). Notice that (X,Md,∧) is also
a fuzzy quasi-metric space, where ∧ denotes the t-norm min.

Every fuzzy quasi-metric M on X generates a T1-topology τM on X

which has as a base the family of open sets of the form {BM (x, r, t) : x ∈
X, r ∈]0, 1[, t > 0}, where BM (x, r, t) = {y ∈ X : M(x, y, t) > 1− r} for all
r ∈]0, 1[.

If (X, d) is a quasi-metric space, then the topology τ(d) generated by
d coincides with the topology τMd

generated by the standard fuzzy quasi-
metric Md.

As in the classical case we say that a topological space (X, τ) is fuzzy
quasi-metrizable if there is a fuzzy quasi-metric M on X such that τ = τM .
In such a case M is said to be compatible with τ , and also that τ admits a
(compatible) fuzzy quasi-metric. From the above result it follows that every
quasi-metrizable topological space admits a compatible fuzzy quasi-metric.
Conversely, if (X,M) is a fuzzy quasi-metric space, the family {Un : n ∈ N}
where Un = {(x, y) ∈ X ×X : M(x, y, 1

n
) > 1− 1

n
} is a countable base for a

quasi-uniformity UM on X compatible with τM [18]. Hence, the topological
space (X, τM ) is quasi-metrizable [5].

Proposition 2.3. A sequence {xn} in a fuzzy quasi-metric space (X,M, ∗)
converges to x if and only if lim

n
M(x, xn, t) = 1 for all t > 0.

Definition 2.4. A fuzzy quasi-metric M is called stationary [17] if M does
not depend on t. In this case we will write M(x, y) instead of M(x, y, t).

3. Introducing the family of fuzzy quasi-metrics

We start this section introducing a family of fuzzy quasi-metrics on R.
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Proposition 3.1. Let k ≥ 0 and consider the fuzzy set Nk on R
2×]0,∞[

defined by

Nk(x, y, t) =

{

ex+k
ey+k

if x ≤ y,
1
2

if x > y.

Then (R, Nk, ·) is a stationary fuzzy quasi-metric space.

Proof. It is straightforward.

From now on, as usual, we will write Nk(x, y) instead of Nk(x, y, t).

Proposition 3.2. Consider the fuzzy set N on R
2×]0,∞[ defined by

N(x, y, t) =

{

ex+t
ey+t

if x ≤ y,
1
2

if x > y.

Then (R, N, ·) is a fuzzy quasi-metric space.

Proof. We only prove the triangle inequality.
Notice that for x, y ∈ R and t > 0 we have that N(x, y, t) = Nt(x, y),

where Nt is the stationary fuzzy quasi-metric of Proposition 3.1. Now, the
family {Nt : t > 0} is increasing, in the sense that Nt ≤ Ns if t < s. Then
for x, y, z ∈ R and t, s > 0 we have

N(x, z, t + s) = Nt+s(x, z) ≥ Nt+s(x, y) ·Nt+s(y, z) ≥ Nt(x, y) ·Ns(y, z)
= N(x, y, t) ·N(y, z, s).

Throughout the paper Nt (t ≥ 0) and N will denote the fuzzy quasi-
metrics of Proposition 3.1 and 3.2, respectively.

Remark 3.3. We have just seen in the proof of Proposition 3.2 that N can
be defined by the family {Nt : t > 0}. Also, N0, which will take an interesting
role in Section 5, can be defined by this family. Indeed, N0 = inf{Nt : t > 0}.

It is easy to verify that (R, N,∧) is not a fuzzy quasi-metric space, so N

is not a standard fuzzy quasi-metric.
From now on we will denote by S the Sorgenfrey topology (also known

as the right half-open interval topology) on R.

Proposition 3.4.

(i) τNk
= S for all k ≥ 0.

(ii) τN = S.
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Proof. (i) For k ≥ 0 the open balls centered at x ∈ R with radius r ∈]0, 1
2
[

in (R, Nk, ·) are of the form

BNk
(x, r) =

[

x, ln
ex + kr

1− r

[

and clearly τNk
is the topology S on R.

(ii) It is easy to verify that τN =
∨

t>0

τNt and hence, by (i), τN = S.

4. D-completeness

Let anm ∈ R for n,m = 1, 2, . . . We write lim
n,m

an,m = r if for each ε > 0

there exists nε ∈ N such that |anm − r| < ε for all n,m ≥ nε.
In [4], Doitchinov constructed a completion theory for a type of quasi-

metrics called balanced. He pointed out that the quasi-metric d on R given
by

d(x, y) =

{

y − x if x ≤ y,

1 if x > y,
(1)

which generates the Sorgenfrey topology on R, is balanced and complete in
that theory.

According to Doitchinov’s completion theory, in [12] the authors intro-
duced the next concepts.

Definition 4.1. Let (X,M, ∗) be a fuzzy quasi-metric space. The sequence
{xn} in X is D-Cauchy if there exists a sequence {yn} in X such that

lim
m,n

(ym, xn, t) = 1 for all t > 0

Any sequence {ym} satisfying the above condition with respect to a
Cauchy sequence {xn} will be called a consequence to {xn}.

Definition 4.2. A fuzzy quasi-metric space (X,M, ∗) is called D-complete,
or simply M is D-complete, if every D-Cauchy sequence in X is convergent
with respect to τM .

Definition 4.3. Let (X,M, ∗) be a fuzzy quasi-metric space. The fuzzy
quasi-metric M is called balanced or BF-quasi-metric if it satisfies the fol-
lowing condition:
(BF) If {x′n} and {x′′m} are sequences in X, x′, x′′ ∈ X, t1, t2 > 0, then
from M(x′, x′n, t1) ≥ r′ for each n, M(x′′m, x′′, t2) ≥ r′′ for each m, and
lim
m,n

M(x′′m, x′n, t) = 1 for all t > 0 it follows that M(x′, x′′, t1 + t2) ≥ r′ ∗ r′′.
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Proposition 4.4. (R, Nk, ·) is balanced for each k ≥ 0.

Proof. Fix k ≥ 0. Let {x′n} and {x′m} be two sequences in R , r′, r′′ ∈]0, 1[,
x′, x′′ ∈ R such that Nk(x

′, x′n) ≥ r′ and Nk(x
′′

m, x′′) ≥ r′′ for all m,n ∈ N

and lim
m,n

Nk(x
′′

m, x′n) = 1.

From lim
n,m

Nk(x
′′

m, x′n) = 1 we have that there exists n0 ∈ N such that

Nk(x
′′

m, x′n) > 1
2
for all m,n ≥ n0, hence by definition of Nk we have that

x′′m < x′n for all m,n ≥ n0.
Since {x′′m} is upper bounded and {x′n} is lower bounded we have that

c′′ = sup{x′′m : m ≥ n0} ≤ inf{x′n : n ≥ n0} = c′.
Suppose c′′ < c′. Then by definition of Nk we have Nk(x

′′

m, x′n) ≤
Nk(c

′′, c′) = α < 1. Hence, Nk(x
′′

m, x′n) ≤ α for all m,n ≥ n0, a contra-
diction. Thus c′′ = c′. Put sup{x′′m : m ≥ n0} = c = inf{x′n : n ≥ n0}. We
will show that Nk(c, x

′′) ≥ r′′. We distinguish two cases:

(a) First, suppose r′′ > 1
2
. Since Nk(x

′′

m, x′′) > 1
2
then by definition of Nk

we have x′′m < x′′ for all m ∈ N and also c ≤ x′′. Hence Nk(c, x
′′) ≥

Nk(x
′′

n0
, x′′) ≥ r′′.

(b) Second, suppose r′′ ≤ 1
2
. We distinguish two cases:

(b1) Suppose c > x′′. Then by definition of Nk we have Nk(c, x
′′) =

1
2
≥ r′′.

(b2) Suppose c ≤ x′′. Then x′′m ≤ x′ for all m ≥ n0 and then, by
definition of Nk, Nk(c, x

′′) ≥ Nk(x
′′

n0
, x′′) ≥ r′′.

In a similar way it can be proved that Nk(x
′, c) ≥ r′.

Finally, Nk(x
′, x′′) ≥ Nk(x

′, c) ·Nk(c, x
′′) ≥ r′ · r′′.

Proposition 4.5. (R, N, ·) is balanced.

Proof. Let {x′n} and {x′′m} be sequences in R, r′, r′′ ∈ ]0, 1[, t1, t2 > 0,
x′, x′′ ∈ R such that N(x′, x′n, t1) ≥ r′, N(x′′m, x′′, t2) ≥ r′′ for all n,m ∈ N

and lim
m,n

N(x′′m, x′n, t) = 1 for all t > 0.

We have that N(x′, x′n, t1 + t2) ≥ r′, N(x′′m, x′′, t1 + t2) ≥ r′′ for all
n,m ∈ N, i.e. Nt1+t2(x

′, x′n) ≥ r′, Nt1+t2(x
′′

m, x′′) ≥ r′′ for all n,m ∈ N

and also lim
m,n

Nt1+t2(x
′′

m, x′n) = 1. Now, by the previous proposition Nt1+t2

is balanced, so, we have that Nt1+t2(x
′, x′′) ≥ r′ · r′′, i.e. N(x′, x′′, t1 + t2) ≥

r′ · r′′.
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We omit the proof of the next proposition.

Proposition 4.6. If {xn} is a convergent sequence in a fuzzy quasi-metric
space (X,M, ∗) then {xn} is D-Cauchy.

Proposition 4.7. (R, Nk, ·) is D-complete for all k ≥ 0.

Proof. Fix k ≥ 0. Let {xn} be a D-Cauchy sequence in (R, Nk, ·) and let
{ym} a cosequence to {xn}, so lim

m,n
Nk(ym, xn) = 1. Then for ε = 1

2
there

exists p2 ≥ 2 such that Nk(ym, xs) > 1− 1
2
for all m, s ≥ p2, and so ym ≤ xs

for all s ≥ p2 ≥ 2.
Now by induction we construct a sequence {ypm} such that pm ≥ m,

pm ≥ pm−1 and Nk(ym, xs) > 1 − 1
m

for all m, s ≥ pm. So, ym ≤ xs for all
m, s ≥ pm, and in particular, Nk(ypm, xs) > 1− 1

m
for all s ≥ pm.

Clearly it is satisfied that a = sup{ym : m ≥ p2} ≤ b = inf{xm : m ≥
p2}. We will see that a = b. Indeed, in other case, it should be a < b. Hence
Nk(a, b) = α < 1 and so lim

m,n
Nk(ym, xn) ≤ Nk(a, b) < 1, a contradiction.

We will see that {xn} converges to b in S. For it, let ε ∈ ]0, 1
2
[ and take

the basic neighborhood [b, b+ ε[ of b.
We consider the decreasing function f : ]1,∞[→ R defined by f(n) =

ln
eb + k

n

1− 1
n

. Clearly f is continuous on n, when considering the usual topology

of R, and it satisfies f(n) > b for all n > 1 and also lim
n→∞

f(n) = b. Therefore

we can choose n0 ∈ N such that ln
eb + k

n0

1− 1
n0

< b+ ε.

Now, by construction of {ypm} we have that Nk(ypn0
, xn) > 1 − 1

n0
for

all n ≥ pn0
, and therefore Nk(b, xn) ≥ Nk(ypn0

, xn) > 1− 1
n0

for all n ≥ pn0
.

Hence,
eb + k

exn + k
> 1−

1

n0

for all n ≥ pn0
and then, after an easy compu-

tation, we have that xn < ln
eb + k

n0

1− 1
n0

< b+ ε for all n ≥ pn0
.

Theorem 4.8. (R, N, ·) is D-complete.

Proof. Let {xn} be a D-Cauchy sequence in (R, N, ·). By Definition 4.1 {xn}
is also D-Cauchy in (R, Nt, ·) for each t > 0. Then by Proposition 4.7 and
3.4 the sequence {xn} converges with respect to S.
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Remark 4.9. If {ym} is a cosequence of the Cauchy sequence {xn} in
(R, Nk, ·) for some k > 0 then {ym} is a cosequence of {xn} in (R, Nt, ·)
for all t > 0.

Indeed, in Proposition 4.7 we have proved that {xn} converges to b ∈ R in
S, and hence {xn} converge to b in the usual topology of R, i.e. lim

n
xn = b.

Now, from lim
m,n

Nk(ym, xn) = 1 it holds lim
m,n

eym + k

exn + k
= 1, so we conclude that

lim
m

(eym + k) = eb + k. Therefore lim
m

ym = b and lim
m,n

eym + t

exn + t
= 1 for all

t > 0, and so {ym} is a cosequence of {xn} in (R, Nt, ·) for all t > 0.

5. Fuzzy left (right) K-sequentially completeness

In [29], the authors reviewed and introduced some definitions on com-
pleteness in quasi-pseudo-metric spaces. Next, we adapt the definitions (iv)-
(vi) to our fuzzy context.

Definition 5.1. Let (X,M, ∗) be a fuzzy quasi-metric space. A sequence
{xn} in X is said to be

(a) right (left) K-Cauchy if for each ε ∈ ]0, 1[ and t > 0 there is an integer
k such that M(xr, xs, t) > 1− ε for r ≥ s ≥ k (s ≥ r ≥ k).

(b) weakly left (right) K-Cauchy if for each ε ∈ ]0, 1[ and t > 0 there is
an integer k such that M(xk, xm, t) > 1− ε (M(xm, xk, t) > 1− ε) for
all m ≥ k.

In the same way it is possible to adapt definitions (i)-(ii) of [29] to our
fuzzy context but the reader will notice after seeing Corollary 5.7 that they
would not be really relevant in the scope of this paper.

Attending to Definition 5.1 we obtain the next proposition.

Proposition 5.2. Let {xn} be a sequence in R. Then {xn} is [weakly] left
(right) Cauchy in (R, N, ·) iff {xn} is [weakly] left (right) Cauchy in (R, Nt, ·)
for all t > 0.

Corresponding to the above four definitions of Cauchy sequence we have
the following four notions of completeness.

Definition 5.3. Let (X,M, ∗) be a fuzzy quasi-metric space. Then X is
said to be [weakly] left (right) K-sequentially complete if every [weakly] left
(right) K-Cauchy sequence in X converges to some point in X with respect
to τM .
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Since left (right) K-Cauchy sequences are weakly left (right) K-Cauchy
then weakly left (right) K-sequential completeness implies left (right) K-
sequential completeness. The reader may find further interesting results
related to completeness, but in the context of PqpM-spaces, in [10].

Next, we will study the completeness of Nt (t ≥ 0) and N , in the context
of this section.

Definition 5.4. A topological space (X, τ) is called completely left K-sequen-
tially fuzzy quasi-metrizable if it admits a left K-sequentially complete fuzzy
quasimetric M which is compatible with τ , i.e. τM = τ . This terminology
is extended, in a natural way, to the other completeness concepts.

Theorem 5.5. Let (X,M, ∗) be a weakly right K-sequentially complete fuzzy
quasi-metric space. Then (X, τM ) is completely weakly right K-sequentially
quasi-metrizable.

Proof. It is easy to verify that the countable family {Un : n ∈ N} where
Un = {(x, y) ∈ X ×X : M(x, y, 1

n
) > 1− 1

n
} is a base for a quasi-uniformity

UM . Then, since τM is T1 there exists a quasi-metric d on X whose induced
quasi-uniformity coincides with UM . Imitating the proof of [15] Theorem
2 one can easily obtain that d is a weakly right K-sequentially complete
quasi-metric on X.

In the same way it is proved the next theorem.

Theorem 5.6. Let (X,M, ∗) be a left K-sequentially complete fuzzy quasi-
metric space. Then (X, τM ) is completely left K-sequentially quasi-metriza-
ble.

It is known that the Sorgenfrey line does not admit any weakly right K-
sequentially complete quasi-metric [1] nor any left K-sequentially complete
quasi-metric [31]. Then, by Theorem 5.5 and 5.6 we have the next corollary.

Corollary 5.7. The Sorgenfrey line does not admit any weakly right K-
sequentially complete fuzzy-quasi-metric, nor any a left K-sequentially com-
plete fuzzy quasi-metric.

Proposition 5.8. (R, Nt, ·) is not right K-sequentially complete for each
t > 0.

Proof. Fix t > 0. Consider the sequence {xn} where xn = −n for each
n ∈ N. We will see that {xn} is right K-Cauchy in (R, Nt, ·).
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Let ε ∈ ]0, 1
2
[. Consider the decreasing function f : R →]0, 1[ given by

f(k) =
t

ek + t
. Obviously, f is continuous on k, in the usual topology of R,

and lim
k→−∞

f(k) = 1, so we can find k ∈ N such that
t

e−k + t
> 1− ε. Now,

for r ≥ s ≥ k we have

M(xr, xs, t) =
exr + t

exs + t
=

e−r + t

e−s + t
>

t

e−k + t
> 1− ε

and hence {xn} is right K-Cauchy in (R, Nt, ·).
Finally, {xn} does not converge in R with respect to S. Indeed, for each

x ∈ R there exists k ∈ N such that −k < x, then Nt(x, xn) =
1
2
for all n ≥ k,

and {xn} does not converge to x.

By Proposition 5.2 the sequence {xn} of Proposition 5.8 is also right
K-Cauchy in (R, N, ·) and, as we have seen, it does not converge in S. So
we have the next corollary.

Corollary 5.9. (R, N, ·) is not right K-sequentially complete.

Theorem 5.10. (R, N0, ·) is right K-sequentially complete.

Proof. Let {xn} be a right K-Cauchy sequence in R. So, for ε ∈ ]0, 1
2
[ there

exists k ∈ N such that N0(xr, xs) > 1 − 1
2
for r ≥ s ≥ k. Consequently

exr ≤ exs for r ≥ s ≥ k and hence (we can suppose that) {xn} is decreasing.
We will see that {xn} is lower bounded in the usual metric of R.

Indeed, we have that M0(xr, xk) > 1
2
for all r ≥ k and it means that

exr

exk
>

1

2
and so it is easy to verify that xr ∈ ]xk + ln 1

2
, xk[ for all r ≥ k

and thus {xn} is lower bounded. Let c = inf{xr : r ≥ k}. The sequence
{xn} converges to c in the usual topology of R, and since {xn} is decreasing
it converges to c in S.

In the next example, according to Corollary 5.7, we give a left K-Cauchy
sequence in (R, Nt, ·) (t ≥ 0) and (R, N, ·) which does not converge in the
Sorgenfrey topology.

Example 5.11. (a) (R, Nt, ·) is not left K-sequentially complete for each
t ≥ 0.

Consider the sequence {xn} in R where xn = 1− 1
n
, n = 2, 3, . . . After

a tedious computation one can verify that {xn} is left K-Cauchy in
(R, Nt, ·) for all t ≥ 0. Now, {xn} converges to 1 in the usual topology
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of R, but it does not converge in S since [1, ε[ does not contain any
element of {xn}, for ε > 0. So, (R, Nt, ·) is not left K-sequentially
complete.

(b) (R, N, ·) is not left K-sequentially complete.

By Proposition 5.2 the sequence {xn} of (a) is left K-Cauchy in (R, N, ·)
and, as we have seen, it does not converge in S.

We have seen in Theorem 5.10 that N0 is right K-sequentially complete.
Now, in the next example, according to Corollary 5.7, we give a weakly right
K-Cauchy sequence in (R, N0, ·) which does not converge in the Sorgenfrey
topology.

Example 5.12. (R, N0, ·) is not weakly right K-sequentially complete.
Consider the sequence {xn} in R given by

xn =

{

1− 1
n

if n odd
1 if n even.

One can verify that {xn} is weakly right K-Cauchy in (R, N0, ·). Now,
as above, {xn} converges to 1 in the usual topology of R, but it does not
converge in S.

Remark 5.13. If we adapt the definition (iii) of [29] Definition 1 to our
fuzzy setting, we obtain the usual one if M is a fuzzy metric [6]:

A sequence {xn} in the fuzzy quasi-metric space (X,M, ∗) is Cauchy if
for each ε ∈ ]0, 1[ and t > 0 we can find n0 ∈ N such that M(xn, xm, t) >
1− ε for m,n ≥ n0.

It is obvious that a Cauchy sequence in (R, Nt, ·), t ≥ 0, or in (R, N, ·)
is necessary constant after a certain stage, and so it converges.

Remark 5.14. Consider the standard fuzzy quasi-metric Md deduced of the
quasi-metric d given by equation (1). We can also deduce from d the family
of stationary fuzzy quasi-metrics {((Md)t, ·) : t > 0}, compatible with S,
where (Md)t is defined by

(Md)t (x, y) =
t

t+ d(x, y)

It is easy to verify that Md and (Md)t are all balanced and D-complete
[12].

Now, the situation with respect to completeness studied in this section is
very different. Indeed, first we notice that if we define the fuzzy set (Md)0
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on X2 by (Md)0 = inf{(Md)t : t > 0} then (Md)0 is not a (stationary) fuzzy
quasi-metric, since (Md)0(x, y) = 0 for each x, y ∈ R. Now, as a conse-
quence of that, as it is well known, d is right K-sequentially complete, then
it is easy to prove that (Md) and (Md)t (t > 0) are all right K-sequentially
complete.

6. Uniformly equivalent fuzzy quasi-metric spaces

In this section (X,M1, ∗) and (Y,M2, ⋄) will be two fuzzy quasi-metric
spaces.

Definition 6.1. Let f : X → Y be a mapping. Then f is called uniformly
continuous if given ε ∈ ]0, 1[ and t > 0 we can find δ ∈ ]0, 1[ and s > 0
such that M2(x, y, t) > 1− ε whenever M1(x, y, s) > 1− δ. We also say, as
usual, that f : (X,M1, ∗) → (Y,M2, ⋄) is uniformly continuous. A uniformly
continuous mapping is obviously continuous.

Proposition 6.2. Let f : (X,M1, ∗) → (Y,M2, ⋄) be uniformly continuous
and let {xn} a sequence in X. If {xn} is Cauchy in some sense of Definition
4.1 or 5.1 then {f(xn)} is Cauchy in the same sense.

Proof. It is straightforward.

Two fuzzy quasi-metrics M1 and M2 on X are called topologically equiv-
alent if τM1

= τM2
. By Proposition 3.4 Nk (k ≥ 0) and N are all them

topologically equivalent.
According to the classical case we introduce the next definition.

Definition 6.3. Two fuzzy quasi-metrics M1 and M2 on X are said to be
uniformly equivalent if the identity mappings i : (X,M1, ∗) → (X,M2, ⋄) and
i : (X,M2, ⋄) → (X,M1, ∗) are uniformly continuous. In this case M1 and
M2 are, obviously, topologically equivalent; the converse is false (Proposition
6.6).

Proposition 6.4. If M1 and M2 are two uniformly equivalent fuzzy quasi-
metrics on X then the set of Cauchy sequences, in any of the above senses,
in (X,M1, ∗) agrees with the set of Cauchy sequences, in the same sense, in
(X,M2, ⋄).

Proof. It is straightforward.

We will see in Remark 6.8 that the converse of Proposition 6.4 is false.

Proposition 6.5.
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(i) Ni and Nj are uniformly equivalent on R for all i, j > 0.

(ii) N and Ni are uniformly equivalent on R for all i > 0.

Proof. (i) Fix t, T > 0 with t < T . We will see that Nt and NT are
uniformly equivalent on R.

Since NT (x, y) > Nt(x, y), obviously the identity mapping i : (R, Nt, ·)
→ (R, NT , ·) is uniformly continuous.

We will see that also i : (R, NT , ·) → (R, Nt, ·) is uniformly continuous.

Let ε ∈ ]0, 1
2
[, and choose δ < min

{

t ε
T
, ε

}

with δ > 0.

Then if NT (x, y) > 1 − δ we have
ex + T

ey + t
> 1 − δ and, after an easy

computation, we obtain

x ≤ y < ln
ex + T · δ

1− δ

and by the election of δ we have x ≤ y < ln
ex + t ε

1− ε
.

Then ey <
ex + t ε

1− ε
and, after an easy computation, we obtain

ex + t

ey + t
> 1− ε,

i.e. Nt(x, y) > 1 − ε, and so i : (R, NT , ·) → (R, Nt, ·) is uniformly
continuous.

(ii) The proof of (ii) is obtained imitating the proof of (i).

Based on previous results the next proposition is obvious but we choose
to give a proof for adding some more information.

Proposition 6.6. N0 is not uniformly equivalent to Nt for all t > 0, on R.

Proof. We have seen in the proof of Proposition 5.8 that the sequence {−n}
is right Cauchy in (R, Nt, ·) for all t > 0. Now, this sequence is not lower
bounded in the usual metric of R. Then as we have seen in the proof of
Theorem 5.10, {−n} cannot be right K-Cauchy in N0. Hence, by Propo-
sition 6.2 the identity mapping i : (R, Nt, ·) → (R, N0, ·) is not uniformly
continuous.
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Using the same argument we obtain the next proposition.

Proposition 6.7. N0 is not uniformly equivalent to N .

Remark 6.8. Taking into account that τNt = S for all t ≥ 0 and that Nt

is D-complete for all t ≥ 0 and that convergent sequences, respect to S, are
always D-Cauchy, then the set of D-Cauchy sequences in (R, Nt, ·) for t > 0
agrees with the set of D-Cauchy sequence in (R, N0, ·). Nevertheless, as we
have just seen, Nt for t > 0, is not uniformly equivalent to N0.

The same argument remains valid for N with respect to N0.

Acknowledgement. The authors are grateful to the referees for their valu-
able suggestions.
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