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Abstract

New communication technologies integrated into modern vehicles offer an opportunity for better

assistance to people injured in traffic accidents. Recent studies show how communication capabilities

should be supported by artificial intelligence systems capable of automating many of the decisions

to be taken by emergency services, thereby adapting the rescue resources to the severity of the

accident and reducing assistance time. To improve the overall rescue process, a fast and accurate

estimation of the severity of the accident represent a key point to help the emergency services to

better estimate the required resources. This paper proposes a novel intelligent system which is able

to automatically detect road accidents, notify them through vehicular networks, and estimate their

severity based on the concept of data mining and knowledge inference. Our system considers the most

relevant variables that can characterize the severity of the accidents (variables such as the vehicle

speed, the type of vehicles involved, the impact speed, and the status of the airbag). Results show

that a complete Knowledge Discovery in Databases (KDD) process, with an adequate selection of

relevant features, allows generating estimation models able to predict the severity of new accidents.

We develop a prototype of our system based on off-the-shelf devices, and validate it at the Applus+

IDIADA Automotive Research Corporation facilities, showing that our system can notably reduce

the time needed to alert and deploy the emergency services after an accident takes place.

Index Terms

KDD; Data Mining; Vehicular Networks; Traffic Accidents Assistance

I. INTRODUCTION

During the last decades, the total number of vehicles in our roads has experienced a remarkable

growth, making traffic density higher and increasing the drivers’ attention requirements. The imme-

diate effect of this situation is the dramatic increase of traffic accidents on the road, representing
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a serious problem in most countries. As an example, 2,478 people died in Spanish roads in 2010,

which means one death for every 18,551 inhabitants [1], and 34,500 people in the whole European

Union died as a result of a traffic accident in 2009 [2].

To reduce the number of road fatalities, vehicular networks will play an increasing role in the

Intelligent Transportation Systems (ITS) area. Most ITS applications, such as road safety, fleet

management, and navigation, will rely on data exchanged between the vehicle and the roadside

infrastructure (V2I), or even directly between vehicles (V2V) [3]. The integration of sensoring

capabilities on-board of vehicles, along with peer-to-peer mobile communication among vehicles,

forecast significant improvements in terms of safety in the near future.

Before arriving to the zero accident objective on the long term, a fast and efficient rescue operation

during the hour following a traffic accident (the so-called Golden Hour [4]) significantly increases

the probability of survival of the injured, and reduces the injury severity. Hence, to maximize the

benefits of using communication systems between vehicles, the infrastructure should be supported by

intelligent systems capable of estimating the severity of accidents, and automatically deploying the

actions required, thereby reducing the time needed to assist injured passengers. Many of the manual

decisions taken nowadays by emergency services are based on incomplete or inaccurate data, which

may be replaced by automatic systems that adapt to the specific characteristics of each accident.

A preliminary assessment of the severity of the accident will help emergency services to adapt the

human and material resources to the conditions of the accident, with the consequent assistance quality

improvement [5].

In this paper, we take advantage of the use of vehicular networks to collect precise information about

road accidents that is then used to estimate the severity of the collision. We propose an estimation

based on data mining classification algorithms, trained using historical data about previous accidents.

Our proposal does not focus on directly reducing the number of accidents, but on improving post-

collision assistance.

The rest of the paper is organized as follows: Section II presents the architecture of our proposed

automatic system to improve accident assistance. Sections III, IV, and V provide details of our

Knowledge Discovery in Databases (KDD) model adapted to the traffic accidents domain. Section VI

presents the implemented prototype built to test our system and evaluates the obtained results of

the validation process. Section VII reviews the related work on the improvement of traffic safety

through telecommunication technologies, and data mining for accident severity estimation. Finally,

Section VIII concludes this paper.
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Fig. 1. Architecture of our proposed system for automatic accident notification and assistance using vehicular networks.

II. OUR PROPOSAL

Our approach collects information available when a traffic accident occurs, which is captured by

sensors installed on-board the vehicles. The data collected are structured in a packet, and forwarded

to a remote Control Unit through a combination of V2V and V2I wireless communication. Based on

this information, our system directly estimates the accident severity by comparing the obtained data

with information coming from previous accidents stored in a database. This information is of utmost

importance, for example, to determine the most suitable set of resources in a rescue operation. Since

we want to consider the information obtained just when the accident occurs, to estimate its severity

immediately, we are limited by the data automatically retrievable, omitting other information, e.g.,

about the driver’s degree of attention, drowsiness, etc.

A. Architecture Overview

Figure 1 presents the overview of the vehicular architecture used to develop our system. The

proposed system consists of several components with different functions. Firstly, vehicles should

incorporate an On-Board unit (OBU) responsible for: (i) detecting when there has been a potentially

dangerous impact for the occupants, (ii) collecting available information coming from sensors in the

vehicle, and (iii) communicating the situation to a Control Unit (CU) that will accordingly address the

handling of the warning notification. Next, the notification of the detected accidents is made through

a combination of both V2V and V2I communications. Finally, the destination of all the collected
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information is the Control Unit; it will handle the warning notification, estimating the severity of the

accident, and communicating the incident to the appropriate emergency services.

The OBU definition is crucial for the proposed system. This device must be technically and

economically feasible, as its adoption in a wide range of vehicles could become massive in a near

future. In addition, this system should be open to future software updates. Although the design of

the hardware to be included in vehicles initially consisted of special-purpose systems, this trend is

heading towards general-purpose systems because of the constant inclusion of new services.

The information exchange between the OBUs and the CU is made through the Internet, either

through other vehicles acting as Internet gateways (via UMTS, for example), or by reaching infras-

tructure units (Road-Side Units, RSU) that provide this service. If the vehicle does not get direct

access to the CU on its own, it can generate messages to be broadcast by nearby vehicles until they

reach one of the aforementioned communication paths. These messages, when disseminated among

the vehicles in the area where the accident took place, also serve the purpose of alerting drivers

traveling to the accident area about the state of the affected vehicle, and its possible interference on

the normal traffic flow [6].

Our proposed architecture provides: (i) direct communication between the vehicles involved in the

accident, (ii) automatic sending of a data file containing important information about the accident

to the Control Unit, and (iii) a preliminary and automatic assessment of the damage of the vehicle

and its occupants, based on the information coming from the involved vehicles, and a database of

accident reports. According to the reported information and the preliminary accident estimation, the

system will alert the required rescue resources to optimize the accident assistance.

B. On-Board Unit structure

The main objective of the proposed OBU lies in obtaining the available information from sensors

inside the vehicle to determine when a dangerous situation occurs, and reporting that situation to the

nearest Control Unit, as well as to other nearby vehicles that may be affected.

Figure 2 shows the OBU system, which relies on the interaction between sensors, the data acqui-

sition unit, the processing unit, and wireless interfaces:

• In-vehicle sensors. They are required to detect accidents and provide information about its causes.

Accessing the data from in-vehicle sensors is possible nowadays using the On-Board Diagnostics

(OBD) standard interface [7], which serves as the entry point to the vehicle’s internal bus. This

standard is mandatory in Europe and USA since 2001. This encompasses the majority of the

vehicles of the current automotive park, since the percentage of compatible vehicles will keep

growing as very old vehicles are replaced by new ones.
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Fig. 2. On-Board Unit structure diagram.

• Data Acquisition Unit (DAU). This device is responsible for periodically collecting data from

the sensors available in the vehicle (airbag triggers, speed, fuel levels, etc.), converting them to

a common format, and providing the collected data set to the OBU Processing Unit.

• OBU Processing Unit. It is in charge of processing the data coming from sensors, determining

whether an accident occurred, and notifying dangerous situations to nearby vehicles, or directly

to the Control Unit. The information from the DAU is gathered, interpreted and used to determine

the vehicle’s current status. This unit must also have access to a positioning device (such as a

GPS receiver), and to different wireless interfaces, thereby enabling communication between the

vehicle and the remote control center.

C. Control Unit structure

The Control Unit (CU) is associated to the response center in charge of receiving notifications of

accidents from the OBUs installed in vehicles. In particular, the Control Unit is responsible for dealing

with warning messages, retrieving information from them, and notifying the emergency services about

the conditions under which the accident occurred.

Figure 3 shows the modules included in the Control Unit to achieve all its objectives within our

proposed system:

• Reception/interpretation module. The first step for the CU is to receive a warning message from a

collided vehicle, and so there must be a module waiting for the arrival of messages and retrieving

the values from the different fields.

• Accident severity estimation module. When a new accident notification is received, this module

will determine how serious the collision was, and the severity of the passengers’ injuries.
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Fig. 3. Control Unit modular structure.

• Resource assignment module. After deciding the severity of the accident, an additional module

is used to define resource sets adapted to the specific situation.

• Database update module. The data collected from the notified accident are stored into the existing

database of previous accidents, increasing the knowledge about the accident domain.

• Web Server module. The Control Unit incorporates a Web Server to allow easy visualization

of the historical information recorded and the current accident situations requiring assistance. A

web interface was chosen in order to increase user friendliness and interoperability.

• Emergency services notification module. When the information has been correctly managed,

the notification module sends messages to the emergency services including all the information

collected, the estimated severity, the recommended set of resources, as well as additional in-

formation about the vehicles involved in the collision (for preliminary planning of the rescue

operation). The information about vehicles consists of standard rescue sheets, which highlight

the important or dangerous parts of a specific vehicle that should be taken into account during

a rescue operation: batteries, fuel tanks, etc., as shown in Figure 4.

One of the most important modules in the Control Unit is in charge of the Accident Severity

Estimation, i.e., providing a relative measure of the potential effect of the collision on the integrity

of the vehicles and people involved. To obtain this estimation, we make use of historical information
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Fig. 4. Example of standard rescue sheet.

about previous accidents contained in an existing database, through a process of Knowledge Discovery

in Databases (KDD).

The KDD approach can be defined as the nontrivial process of identifying valid, novel, potentially

useful, and understandable patterns from existing data [8]. The KDD process begins with the under-

standing of the application specific domain and the necessary prior knowledge. After the acquisition

of initial data, a series of phases are performed:

1) Selection: This phase determines the information sources that may be useful, and then it

transforms the data into a common format.

2) Preprocessing: In this stage, the selected data must be cleaned (noise reduction or modeling)

and preprocessed (missing data handling).

3) Transformation: This phase is in charge of performing a reduction and projection of the data

to find relevant features that represent the data depending on the purpose of the task.

4) Data mining: This phase basically selects mining algorithms and selection methods which will

be used to find patterns in data.

5) Interpretation/Evaluation: Finally, the extracted patterns must be interpreted. This step may also

include displaying the patterns and models, or displaying the data taking into account such

models.
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We propose to develop a complete KDD process, starting by selecting a useful data source con-

taining instances of previous accidents. The data collected will be structured and preprocessed to ease

the work to be done in the transformation and data mining phases. The final step will consist on

interpreting the results, and assessing their utility for the specific task of estimating the severity of

road accidents. The phases from the KDD process will be performed using the open-source Weka

collection, which is a set of machine learning algorithms [9]. Weka is open source software issued

under the GNU General Public License which contains tools for data pre-processing, classification,

regression, clustering, association rules, and visualization. We will deal with road accidents in two

dimensions: (i) damage on the vehicle (indicating the possibility of traffic problems or the need of

cranes in the area of the accident), and (ii) passenger injuries. These two dimensions seem to be

related, since heavily damaged vehicles are usually associated with low survival possibilities of the

occupants. Consequently, we will use the estimations obtained with our system about the damage on

the vehicle to help in the prediction of the occupants’ injuries.

Finally, our system will benefit from additional knowledge to improve its accuracy, grouping

accidents according to their degree of similarity. We can use the criteria used in numerous studies

about accidents, including some tests such as the Euro NCAP [10], in which crashes are divided and

analyzed separately depending on the main direction of the impact registered due to the collision.

The following sections contain the results of the different phases of our KDD proposal.

III. DATA ACQUISITION, SELECTION AND PREPROCESSING PHASES

Developing a useful algorithm to estimate accident severity needs historical data to ensure that the

criteria used are suitable and realistic. The National Highway Traffic Safety Administration (NHTSA)

maintains a database with information about road accidents which began operating in 1988: the

General Estimates System (GES) [11]. The data for this database is obtained from a sample of real

Police Accident Reports (PARs) collected all over the USA roads, and it is made public as electronic

data sets [12].

In the traffic accidents domain, the most relevant sets of information in GES are: (i) Accident,

which contains the crash characteristics and environmental conditions at the time of the accident,

(ii) Vehicle, which refers to vehicles and drivers involved in the crash, and (iii) Person, i.e., people

involved in the crash. We will integrate the data harvested during the year 2011 into two different

self-built sets: one for the vehicles and another one for the occupants.

Using the data contained in the GES database, we classify the damage in vehicles in three categories:

(i) minor (the vehicle can be driven safely after the accident), (ii) moderate (the vehicle shows defects

that make it dangerous to be driven), and (iii) severe (the vehicle cannot be driven at all, and needs

to be towed). Focusing on passenger injuries, we will also use three different classes to determine
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their severity level: (i) no injury (unharmed passenger), (ii) non-incapacitating injury (the person has

minor injuries that does not make him lose consciousness, or prevent him from walking), and (iii)

incapacitating or fatal injury (the occupants’ wounds impede them from moving, or they are fatal).

After preprocessing the selected GES data, no noise or inaccuracies were detected as all the nominal

and numerical values contained reasonable values. Due to the large number of records available

in the database, we decided to only use those accident records with all the required information

complete. After removing incomplete instances, our data sets consist of 14,227 full instances of

accident reports (5,604 front crashes, 4,551 side crashes, and 4,072 rear-end crashes). These accidents

represent different types of collisions in both urban and inter-urban areas. The distribution of accidents

depending on the area is the following:

• Front collisions: 1,418 (25.3%) in urban area, and 4,186 (74.7%) in inter-urban area.

• Side collisions: 1,593 (35.0%) in urban area, and 2,958 (65.0%) in inter-urban area.

• Rear-end collisions: 1,613 (39.6%) in urban area, and 2,459 (60.4%) in inter-urban area.

Using these data, we achieve a total distribution of 4,624 accidents in urban areas, which correspond

to 32.5% of the total accidents, and 9,603 accidents in inter-urban areas (67.5%).

IV. TRANSFORMATION PHASE

This phase consists on developing a reduction and projection of the data to find relevant features that

represent the characteristics of the data depending on the objective. We selected a potential subset of

variables which could be obtained from the on-board sensors of the vehicle or auxiliary devices such

as the GPS [13]. Those variables include the type of vehicle, the speed just before the accident, and

the airbag status. Even if the GES database does not include information about the the measured

accelerations, this information could be filled using our proposed system with data collected from

notified accidents, and incorporated in future versions of the classification algorithm. Concerning

passengers, there are specific characteristics for each person that are not directly accessible, but might

help to improve the prediction accuracy. We added two of these personal variables to our data -age

and sex-, which will be used to study their relevance on the injuries suffered. Weka provides a wide

variety of feature selection algorithms. Among them, we selected three of the most commonly used:

• Correlation-based Feature Selection (CfsSubsetEval) [14]: This filtering algorithm considers that

the appropriate subsets of attributes are those that contains features highly correlated with the

class (accident severity), but not correlated with each other.

• Information gain selection (InfoGainAttributeEval): This metric is based on the change of entropy

(measure of the uncertainty associated with a random variable) of a set of training examples when

introducing knowledge about the values of a variable.
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TABLE I

MOST RELEVANT VARIABLES FOR VEHICLE DAMAGE AND PASSENGER INJURY ESTIMATION.

Attribute
Vehicle damage Passenger Injury

Full

Set

Front Side Rear-

end

Full

Set

Front Side Rear-

end

Body Type

Light Condition

Model Year

Point of Impact

Road Aligna

Road Profileb

Rollover

Speed

Speed limit

Surface condition

Trailer

Vehicle rolec

Weather

Airbag

Age

Restraint system

Seat position

Sex

Veh. damage estim.

a Roadway alignment just prior to the vehicle’s critical precrash event (straight, curve)

b Roadway profile just prior to the vehicle’s critical precrash event (level, grade, hillcrest, sag)

c Determines whether the vehicle was the striking or the struck one

• Wrapper technique (WrapperSubsetEval) [15]: This method searches the entire space of possible

variable subsets, aimed at finding the state which presents the highest accuracy. The wrapper

approach normally requires more computing time, but it usually improves accuracy.

We determined the optimal variable subset with the three different schemes, and we chose for our

final subset those variables selected by, at least, two of the previous algorithms. All the tested variables

and the results of the feature selection process appear in Table I. The top part of the table contains

variables about the vehicle involved in the accident, and hence also applicable to the occupants of

that vehicle. The bottom part shows variables only applicable to individual occupants. We compared

the results of the process when using the whole data set available (Full Set), and dividing these data

into three subsets depending on the direction of the impact.

As shown, we find noticeable differences between the sets determined for the full set of accident

data, and for each of the divisions depending on the direction of the impact. The most relevant
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Fig. 5. Influence of the speed of the vehicle on the distribution of the severity of the passengers’ injuries in (a) front, (b)

side, and (c) rear-end impacts.

attributes (in almost all cases) are the body type, the occurrence of rollover, the speed, the speed limit,

the presence of a trailer, the airbag status, and the estimation on vehicle damage. When we divide

the instances, new important values appear, like the road profile when considering front accidents, or

the light condition for rear-end crashes, which were not detected when using the full data set.

For accidents in which the vehicle strikes another urban infrastructure of the road, the attribute that

offers a better approximation to determine the accident severity is the speed of the vehicle before the

impact. Nevertheless, if you want to estimate the damage when the vehicle is struck by another one,

the type of vehicle and the speed limit in the area are more important variables than the speed itself,

as deduced by studying side and rear-end accidents. The speed limit in the area of the accident is a

good estimator of the speed of other vehicles, and usually accidents occurring in highways are more

severe than those in residential areas where the speed limit is lower.

This effect is shown in Figures 5 and 6, which highlight the influence of the speed of the vehicle and

the speed limit on the severity of the passengers’ injuries, respectively. The severity of front collisions
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Fig. 6. Influence of the speed limit on the distribution of the severity of the passengers’ injuries in (a) front, (b) side, and

(c) rear-end impacts.

is clearly dependent on the speed of the vehicle itself, since more than half of the registered accidents

occurred at speeds greater than 80 km/h resulted on severe injuries to the passengers. However, this

dependence is less visible for side impacts, where the proportion between injury levels remains more

stable, and especially for rear-end impacts, where almost 85% of the accidents happened when the

vehicle was moving at speeds below 15 km/h. Using the speed limit as an indicator, Figure 6(c)

shows that minor accidents are the dominant type for speed limits under 60 km/h, and that collisions

above this speed were associated with different levels of severity on the passengers’ injuries.

The selection of most of these variables is quite intuitive, but there are some important and non

obvious considerations. The restraint system is not selected in all cases, as it would be reasonable,

since it is not usually critical for the security of the passengers in rear-end collisions. Also, the

year when the vehicle involved in the crash was manufactured is only relevant to determine the

damages to the vehicle in rear-end collision. The presence of a trailer is also important, especially

when the vehicle is struck by another one, which can cause dangerous situations such as uncontrolled
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articulation or jackknife.

V. DATA MINING AND INTERPRETATION/EVALUATION PHASES

The most adequate data mining task for our interests is classification. Each instance has a record

indicating its class membership, while the rest of the available attributes are used to predict the class

of new instances. We selected three of the classification algorithms provided by Weka to study which

one obtains the best results in terms of prediction accuracy:

• Decision trees: J48 is an open source Java implementation of Quinlan’s C4.5 algorithm [16]

found in Weka, designed to build decision trees from a training data set. At each node of the

tree, this algorithm selects the attribute that most effectively separates the sample set into subsets

with a predominant class value. Most existing works in this area makes use of this tool to classify

road accidents, and thus we will use it as well as reference.

• Bayesian networks: Bayesian networks allow modeling a phenomenon with a set of random

variables and the dependency relationships between them. Those variables represent qualitative

knowledge of the model by a directed acyclic graph in which the variables are represented

as nodes, and the relationships of dependence and conditional independence between them are

shown as arcs between the nodes. They also allow to express the strength of the relationship

through probability distributions. We will use the BayesNet implementation of Bayesian networks,

available in Weka, along with the K2 algorithm [17] to find the graph that best represents the

set of dependence or independence in the data. This model has been rarely used in this domain,

despite its power to represent complex phenomena.

• Support Vector Machines: SVMs are a set of supervised learning algorithms that are based on

the construction of a set of hyperplanes in a high dimensional space (generated by a kernel

function) to separate instances from different classes. We will use the SMO algorithm [18] to

train the SVMs from the GES database.

These algorithms present different parameters that must be tuned to maximize the accuracy of the

built models. The specific parameters used for each algorithm are: the prune level in decision trees,

the number of parents in Bayesian networks, and the specific kernel function used in SVMs. We

carried out several tests to obtain the sets of values that produce the best performance for the selected

metrics, corresponding to the results shown.

The effectiveness of the classification can be measured using different metrics. One of the most

used ones is the True Positive Rate (TP Rate) or percentage of instances correctly classified by the

algorithm. Nevertheless, this metric could lead to wrong impressions, since those classifiers which

focus their attention on the most frequent class would get a good value on this metric, but their utility

is low as they are not able to differentiate among the existing classes properly. The False Positive Rate
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Fig. 7. Comparison of different data mining classification algorithms in the estimation of the damage on the vehicle due

to the accident: (a) using the TP Rate metric, and (b) using the AUC metric.

(FP Rate), i.e., the percentage of classification errors with respect to the total number of instances

belonging to the right class, should also be considered to determine the efficiency of the classification

process.

To cope with the deficiencies of the TP Rate metric, we will also use the area under the ROC

(Receiver Operating Characteristic) curve, abbreviated as AUC [19]. The possible values of this metric

vary between 0.5 (for random classifiers with low efficiency) and 1.0 (for a perfect classifier), and

it is computed using both the True Positive Rate and the False Positive (FP) Rate. Hence, the AUC

metric presents some desirable features when compared to the overall accuracy [20]: (i) it provides an

increased sensitivity in Analysis of Variance (ANOVA) tests because the standard error decreases as

both AUC and the number of test samples increase, (ii) it is invariant to a priori class probabilities,

and (iii) it offers an indication of the amount of work done by a classification scheme, providing low

scores to both random and “one class only” classifiers.

A. Results of the classification

Figures 7 and 8 show the results of the selected algorithms for both the TP Rate and the AUC

metrics. Results were obtained by using 10-fold cross validation, which reduces the dependence of

the result from the classification process in terms of the partition made for training and validation.

When estimating the damages in vehicles (see Figure 7), the three algorithms showed similar

performance using the TP Rate metric (though SMO is slightly worst in all cases), with an overall

accuracy about 70 or 80%. However, there are noticeable differences between the schemes under

the AUC metric, showing a clear advantage for the BayesNet algorithm. This means that Bayesian

networks are more robust when facing doubtful cases, and they are not so focused in the majority
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Fig. 8. Comparison of different data mining classification algorithms in the estimation of the injuries of the passengers in

the vehicle: (a) using the TP Rate metric, and (b) using the AUC metric.

class. When we divide the accidents depending on the direction of the impact, we obtain a relevant

increase on the accuracy for both metrics, showing average results much higher than those achieved

with the full data set. Rear-end impacts were the most difficult to estimate, since there was a high

proportion of instances where the car itself was struck by another vehicle, making it harder to estimate

the damage without knowing all the details of the other vehicle.

If we try to estimate the injuries on passengers (see Figure 8), we observe a very similar trend. All

the algorithms are very close in terms of the TP Rate metric (even closer than estimating the damage

in the vehicle), and again the overall accuracy ranges from 70% to 80%. The differences between

the three algorithms increase when we select the AUC metric, and BayesNet outperforms the other

algorithms as well. Dividing the accident data in subsets also considerably improves the results under

both metrics. However, when studying rear-end collisions, we obtain high values of TP Rate but lower

results of AUC. This effect is due to the proportion of classes of this subset, since there are very

few cases where passengers suffered from very severe injuries. In those cases, the algorithms reduce

the probability of belonging to this class, and, even if the number of instances correctly classified is

high, the AUC metric penalizes any excessive focus on a subset of the classes. This situation might

improve if we were provided with additional information about the colliding vehicle, which will be

possible using vehicular networks, including both V2V and V2I.

Since ROC analysis provides more information than using only the TP Rate metric, we will show

some of the curves produced using the input data. ROC curves are commonly employed in two-class

problems to represent the tradeoff between errors (false positives) and benefits (true positives) of

a classifier. The resulting performance can be graphed in two dimensions for a good visualization.

However, increasing the number of classes requires an increase of the number of dimensions of the
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Fig. 9. Comparison of ROC curves using different data mining classification algorithms estimating the damage on the

vehicle in a front collision, using as the positive value: (a) minor damage, (b) moderate damage, and (c) severe damage.

graph, thereby reducing visibility. A possible solution to this problem consists on producing a different

ROC curve for each class [19], considering that the selected class represents the positive value, and

the remaining classes represent negative values.

Figures 9 and 10 contain the ROC curves obtained for the three selected classification algorithms

when studying front crashes, and their effect on both the damage on the vehicle and the passenger

injuries. As shown, the tested classifiers achieve better results when discriminating the extreme

values of the class, reducing their performance for intermediate values (moderate damage and non-

incapacitating injury). There is a slight advantage for the Bayesian classifier in all the curves with

respect to the classifier based on decision trees. The SMO algorithm is the less effective when

attempting to obtain a good tradeoff between true and false positives, and it is clearly outperformed

by the other evaluated algorithms.
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Fig. 10. Comparison of ROC curves using different data mining classification algorithms estimating the injuries of the

passengers in a front collision, using as the positive value: (a) no injury, (b) non-incapacitating injury, and (c) incapacitating

or fatal injury.

B. Bayesian models for accident severity estimation

Tables II and III show the conditional dependences found on the variables selected when estimating

the severity of a road accident. In the Bayesian models, all the variables have at least one parent: the

value of the class (severity of the damage on the vehicles or the passengers’ injuries, respectively).

By studying the tables, we can find some intuitive connections, present in almost all cases. The

type of vehicle (body type) presents strong connections with the presence of trailer, since more than

80% of the instances where the vehicle was towing a trailer, the vehicle was a heavy truck. The

speed of the vehicle is the variable presenting more connections with other variables: speed limit (the

speed is usually higher as the speed limit increases, representing an upper limit to the speed in most

cases), rollover (only 15% of the registered overturned vehicles occurred at speeds under 60 km/h),

light condition (vehicles usually reach the highest speed under good visibility conditions), and so on.

Seat belts and airbags are found more often in touring cars; thus, the airbag status and the restraint
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TABLE II

MAIN CONDITIONAL DEPENDENCES BETWEEN VARIABLES USED TO ESTIMATE THE DAMAGE ON THE VEHICLES.

Accident type Dependences

Front accident
Light condition, Speed limit −→ Speed

Speed −→ Rollover, V ehicle role

Side accident

Body type −→ Speed, T railer, Rollover

Speed limit −→ Speed

Speed −→ Rollover, V ehicle role

Rear-end accident

Light condition, Surface condition, Speed limit −→ Speed

Speed −→ Rollover

Body type −→ Trailer

Weather −→ Surface condition

TABLE III

MAIN CONDITIONAL DEPENDENCES BETWEEN VARIABLES USED TO ESTIMATE THE INJURIES OF THE PASSENGERS.

Accident type Dependences

Front accident
Speed −→ Restraint system, V ehicle damge

Body type −→ Speed, Airbag

Side accident

Speed limit −→ Speed, Restraint system, V ehicle damage

Speed −→ Rollover, V ehicle damage

Body type −→ Airbag, Restraint system, Trailer, Seat position

Rear-end accident
Speed limit −→ V ehicle damage, V ehicle role, Light condition, Body type

Body type −→ Airbag, Rollover

systems usage is strongly related to the type of vehicle.

However, we find that some of the probabilities generated are not so intuitive. For example, the

probability tables associated to front and rear-end impacts for passengers’ injuries estimation show

that, under daylight conditions, the majority of accidents are not very severe, while at dawn and dusk

the probability of severe accidents increases up to 60%. This means that, when the light begins to

decline but it is still not enough to use car lighting systems, accidents tend to be more severe.

The airbag status becomes the most determinant value for determining the injury severity on the

passengers in front and side collisions. When the airbag does not need to be deployed, the impact

is not usually dangerous for the passengers, whereas strong collisions where the airbags have to

be deployed present a greater magnitude that could affect the passengers’ health. To prove this

observation, about 70% of the registered cases where the airbag was not deployed, resulted in few

injuries on the passengers, and the occupants suffered from severe injuries in more than 60% of the

instances with deployed airbag. In rear-end collisions, the airbag is rarely deployed (less than 5% of
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Fig. 11. Warning packet format for the proposed system.

the available instances), making the body type and the speed limit the most relevant features in the

classification.

C. AI application to our proposed system

The obtained results are very useful to estimate the effectiveness of the system, as well as deter-

mining the needed data to be collected from the crashed vehicles. The presented Bayesian models

generate accurate enough predictions to be used in the Control Unit of our system, which will be

later applied to build resource sets adapted to each accident.

In addition, the transformation phase allows us to define the required data set that vehicles should

collect and send after a collision happens, for each type of accident. We used this information to

define the structure of our warning message, containing a set of fields accessible via the sensors

installed within the vehicle (see Figure 11). The message structure selected can be easily adapted to

match the Basic Safety Message (BSM) defined in the Society of Automotive standard J2735 [21]

by means of using the Abstract Syntax Notation (ASN) encoding used for the BSM. According to

the previous analysis, our warning packet includes the following information:

TIME

• timestamp with the local time, to inform exactly when the accident occurred.

LOCATION

• geographical position of the vehicle, obtained through the GPS integrated system to allow the

emergency services determine the location of the crashed vehicle.

VEHICLE-OCCUPANTS

• characteristics of the vehicle, especially the body type, since its importance to determine the

severity of side and rear-end collisions is proven.
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• number of passengers, to adequate the medical team required to attend them.

• features of the passengers: these data is important for the rescue teams to adapt the medical

equipment, but it is not decisive to determine the severity of the injuries on the passengers.

• information about seat belts and airbags, this information is crucial to estimate the severity of

the injured occupants, how the accident occurred and the severity of the accident.

ACCIDENT

• speed and acceleration of the vehicle just before the accident, to estimate the severity of the

accident, especially in front collisions.

• point(s) of impact, i.e. it indicates which parts of the vehicle received the impact during the

accident.

• direction of impact force. Used to determine the type of accident detected (front, side, or rear-end

crash).

• position of the vehicle after the crash to warn the emergency team about the level of complexity

of the rescue.

The prediction models used to estimate the severity of the accident were built using the full data

obtained from the GES database. However, as shown in the transformation phase, only a subset of

the possible attributes was really relevant for the estimation depending on the main direction of the

impact. Hence, the system should focus on obtaining at least these attributes to avoid a noticeable

reduction in terms of accuracy. Additionally, since the information most complicated to be collected,

i.e., the personal information such as age and sex, has little relevance from the estimation perspective

compared to the rest of variables that should be directly obtained from in-vehicle sensors, we consider

that the system is robust enough even when handling incomplete data. In our system, the precision

of the GPS system is enough to locate crashed vehicles, since this position will only be used by the

emergency services to determine the area affected by the accident. Modsching et al. [22] discovered

that average urban scenarios (the most adverse scenarios for GPS positioning) produce a mean error

on GPS location of about 15 meters when the street presents high buildings at both sides, but the

error is reduced to just 2 meters on average when there is a clearer view of the sky, since more

satellites could be used to estimate the position. Additionally, using the information contained in the

built-in street maps to correct the current location of the vehicle, e.g., avoiding impossible positions

inside of buildings, helps to reduce the mean error to just 5 meters on average.

VI. PROTOTYPE IMPLEMENTATION AND VALIDATION

To test the correctness of the proposed design, a prototype was built using low cost off-the-shelf

devices. We measured the capacity of the system for correctly detecting and notifying the accident

to the Control Unit, and the generation of appropriate severity estimations from the collected data.
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A. Propotype Development

The Data Acquisition Unit of the OBU was built using an ARM microcontroller, programmed

to periodically collect data from in-vehicle sensors. Basically, these sensors are accelerometers and

gyroscopes that indicate the severity of the impacts received by the automobile or the occurrence of

a rollover that might endanger the integrity of the occupants. Communication between the microcon-

troller and the Processing Unit is done by sending UDP packets through an Ethernet interface. The

OBU Processing Unit in our prototype is a general-purpose Asus Eee PC netbook, equipped with a

solid state disk (SSD) to minimize the possibility of damage due to impact in crash tests. The vehicle

position and speed are obtained using a GPS device accessible using Bluetooth.

The Control Unit prototype for the initial tests was built using common software components,

allowing fast prototyping with little cost. The reception/interpretation module was implemented using

the Java programming language. This module acts as a concurrent server, creating different execution

threads to handle each message received, which allows exploiting multiprocessor or multicomputer

architectures. Databases are managed using the MySQL relational database management system.

MySQL was selected because of its scalability and easy integration with the additional components

of the Control Unit. The Web server for the visualization module is Apache. To support dynamic

content, we use the PHP (Hypertext Preprocessor) technology, which is easily integrated into Apache.

By combining these technologies and MySQL, users can visually check the system status.

B. Prototype Validation

The prototype was validated at the Applus+ IDIADA [23] Passive Security Department facilities

in Santa Oliva (Tarragona, Spain). These facilities house one of the most sophisticated crash test

laboratories in the world, and constitute an official center for approval under the Euro NCAP program.

Due to the cost of using real vehicles in the collision experiments, the e-NOTIFY prototype tests

were performed using a platform (known as "sled") that moves on rails in order to collide against a

series of metal bars that simulate the deformation suffered by a vehicle body to absorb the impact.

The speed of the stroke and the configuration of the bars used in the test determine, respectively,

the kind of accident detected and the segment the simulated vehicle belongs to (family car, off-road,

etc.). Tested speeds are determined by European standards, and vary from 10 km/h to 64 km/h to

represent different accident severities. Figure 12 shows the sled used in the tests.

The test system included an external Road Side Unit (RSU) receiving regular information from the

sled (via a wireless network) of the measurements recorded by the OBU to ensure the proper behavior

of the sensor reading module, along with a Control Unit in charge of receiving alert messages and

applying the corresponding algorithms. The real trials were performed with two different objectives:

proving that the OBU prototype was solid enough to resist a dangerous impact, and thus that it could
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Fig. 12. Sled with the prototype installed before a crash detection test.

TABLE IV

VALIDATION TESTS PERFORMED AND ACCIDENT DETECTION PARAMETERS OF THE PROPOSED SYSTEM.

Accident type Vehicle segment Severity Speed Pulse Acceleration Pred. Accuracy

Front accident

Large family car Severe acc. 64 km/h 110 ms 23-28 G 80%

Large MPV Minor acc. 36 km/h 100 ms 15-21 G 90%

Small family car No acc. 15 km/h 110 ms 4-9 G 100%

Side accident
Small Off-road 4x4 Severe acc. 29 km/h 90 ms 14-21 G 80%

Supermini No acc. 12 km/h 90 ms 3-6 G 100%

Rear-end accident
Small MPV Severe acc. 21 km/h 110 ms 8-12 G 73.33%

Supermini No acc. 10 km/h 70 ms 2-6 G 93.33%

continue working after the accident, and also ensuring the proper function of the system under a

realistic crash situation, being able to determine the severity of the accident.

All the tests produced very positive results, since the OBU did not suffer from noticeable damage

even in the strongest impacts (64 km/h). The durability of the equipment, based on off-the-shelf

devices, was remarkable after successfully surviving unharmed to all the collision tests performed,

and no error induced by the malfunction of the equipment was detected during the experiments. The

detection of the accident was performed by using data from accelerometers installed on the sled. In

order to avoid false detections, the system uses both the duration of the acceleration pulse, i.e., the

time during which the vehicle suffered from levels of acceleration higher than 3 G, and its amplitude

or peak acceleration value in the pulse. We tested several accident configurations, with different

vehicle types and directions of the impact, as shown in Table IV. The values for the speed of the

vehicle before the impact are defined by IDIADA, depending on the type of vehicle, direction of the

impact, and severity of the collision, following assessment programs like the Euro NCAP.

After a collision is detected, the OBU builds a warning message using the data from the accelerom-

eter and the rest of sensors available in the vehicle, following the format showed in Section V-C.
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Fig. 13. Images of the crash test results: Accident pulse recorded by the OBU (top), and the same accident notified and

received by the CU (bottom).

Since the tests rely on a simulated vehicle, the values of some of the variables (like model year,

weather, etc.) were filled with typical values. The message constructed this way was sent to the

Control Unit using UMTS technology, in a similar way as if the vehicle had access to the cellular

infrastructure. Finally, the Control Unit obtained the data from the warning message sent by the

vehicle. Figure 13 shows a sample of the acceleration measured by the OBU in a severe front impact,

and the corresponding notification received by the Control Unit containing the values collected from

the vehicle on-board sensors.

The data received by the Control Unit were later inserted into the severity estimation models

presented in Section V-B, based on Bayesian filters and built using historical data. We conducted

several crash tests to evaluate the prediction accuracy of these prediction models. The front, side,

and rear-end collisions were repeated 30 times for each type of impact while varying the accident
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severity, obtaining the results shown in Table IV. The OBU was able to detect non-accident situations

in almost all cases, and thus the Control Unit was not informed about those incidents. The prediction

ability for rear-end collisions is certainly lower than the results achieved for the rest of accidents,

since the experiments involved only one vehicle and no information about the other vehicles was

simulated. However, in a real environment, the Control Unit would receive this information as well,

thereby increasing the accuracy of the prediction system.

VII. RELATED WORK

Several approaches can be found in the existing literature with the objective of increasing traffic

safety through the use of telecommunication technologies, and also in the field of accident severity

estimation using historical data.

A. Using Telecommunication Technologies to Improve Traffic Safety

The U.S. Department of Transportation (DOT) developed some projects similar to ours with

the goal of improving traffic safety through the use of vehicular communication, based on testing

the effectiveness and safety benefits of the wireless connected vehicle technology in real-world,

multimodal driving conditions [24]. Some preliminary results regarding the distance traveled by

warning messages, number of relaying vehicles, and communication times in a real experiment

in the streets of Los Angeles (USA) in 2011 can be found in [25]. However, these experiments

only include V2V communications and the notification of dangerous situations between vehicles,

whereas our system mainly concentrates on improving the decision making process that follows the

occurrence of an accident. In addition, the tests were performed using the IEEE 802.11b and 802.11g

standards, instead of the IEEE 802.11p standard, which was specially designed to be used in vehicular

environments.

There are also some projects that make use of ECG (Electrocardiogram) sensors to monitor the

drivers’ condition and detect possible health problems that could endanger traffic safety.

• The authors in [26] propose a condition monitoring system to obtain physiological signals for car

driver’s health condition monitoring by means of ECG and PPG (Photoplethysmogram) sensors

attached to the steering wheel. The signals concerning heart rate are transmitted to a server PC

via a Personal Area Network (PAN) for practical tests, being analyzed to detect drowsiness and

fatigue. The results obtained from this system could be used to inform nearby vehicles about a

dangerous driver status, but the system does not include notification of abnormal statuses since

only a PAN is considered.

• Palantei et al. [27] designed a wireless system for remotely monitoring heart pulses obtained

from ECG sensors. This system allows communication of the monitoring information 50 to 250
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meters far from the person, but it is not indicated how the signal is processed to classify the

status of the person.

• The monitoring system proposed in [28] includes non-intrusive active electrodes installed on the

seats of the vehicle. The data collected is sent through a wireless PAN and the processing of the

data concerning heart rate variability in time and frequency allowed determining if the driver is

tired or stressful.

We can see that these approaches are too limited by the wireless technology used, which provides a

very short communication range. Moreover, they have only been used to determine the fatigue or stress

level, probably due to the inviability of finding real cases to test their efficiency on the estimation of

the injuries suffered after an accident. The integration of ECG sensors in modern vehicles could be

an excellent opportunity to collect information about health signs after the occurrence of an accident,

since our proposed architecture would allow the notification of the gathered data to the Control Unit

for further processing and classification by means of intelligent algorithms.

B. Previous Approaches towards Accident Severity Estimation using Data Mining

Despite the interest that may arise from understanding the influence of various factors on road

accidents, the number of works about this topic in the literature is not particularly large. In addition,

most attempts to carry out a data mining process related to traffic accidents only considered data

from a single city or a very small area, making results only slightly representative.

Several works are based on data obtained from the Traffic Office of Ethiopia, since this country

presents one of the largest number of accidents per capita. Beshah and Hill [29] used data from 18,288

accidents around Addis Ababa as the basic data set. This study uses Naïve-Bayes, decision trees, and

k-nearest neighbors (KNN) algorithms to classify the data using a cross-validation methodology,

with accuracy values close to 80%. However, the authors only provided estimations for the whole

accident, not for single occupants. Data from Ethiopia was also used to build regression tree models

for accident classification in [30]. Only 13 out of 36 variables available in the data were used to build

the classification models, but the selection process was not shown, and again only estimations about

the whole accident were provided.

The area of South Korea was also selected to develop classification models based on artificial

neural networks, decision trees, and logistic regression [31]. The data set involved 11,564 accidents,

and the authors concluded that the different classification algorithms provide similar results in terms

of accuracy, being the use of protection devices, such as the seat belt and the airbag, the most

relevant factors to classify accidents. This work was extended in [32] using ensemble methods (i.e.,

multiple models to obtain better predictive performance than could be obtained from any of the
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constituent models) combined with a prior assignation of instances through clustering, attaching a

different classification model to each cluster, which produced a better class assignment.

More recently, Chong et al. [33] selected data from all over the United States obtained during the

1995-2000 period to propose a set of models based on artificial neural networks, decision trees, and

Support Vector Machines (SVMs). All the classification models presented similar accuracy results,

and they were highly effective at recognizing fatal injuries.

Finally, some authors have focused on the characteristics of specific road segments, instead of

using the data from individual vehicles. Clustering of accident hotspots were performed by Anderson

[34] in order to determine effective strategies for the reduction of high density areas of accidents.

Authors studied the spatial patterns of injury related to road accidents in London (UK), and they

found several hotspots with relevant significance using K-means clustering. Nayak et al. [35] used

a road-based approach for modeling the crash proneness of road segments using available road and

crash attributes, classifying the road depending on their “crash proneness". They also used a prior

clustering of the accidents with similar features, and a consequent classification of the data by means

of decision trees. However, they did not establish different severity levels on the accidents studied.

From previous works, we detected significant shortcomings when attempting to combine their

results with vehicular networks, since existing works about estimating the severity of road accidents

have not been used to improve the assistance to injured passengers. All the above papers used a

whole variety of attributes to build the classification models, whereas only some of them could be

effectively extracted from the vehicle itself (e.g., the driver’s inebriation level). In addition, none of

them used an adequate feature selection algorithm to select the optimal variable subset. Finally, some

of the models are extensively used (decision trees), while other interesting methods received minor

attention (SVMs, and Bayesian networks). To the best of our knowledge, none of these approaches

have been implemented and tested in a real environment, since they only make use of historical data.

It is also noteworthy that existing proposals in the literature trying to estimate the severity of a

traffic accident do not develop a complete KDD process. In fact, the only phase of the KDD process

that has received widespread attention is the data mining phase, while the rest has been overlooked

or summarized as much as possible. Although data mining is a very important phase, the results

obtained when omitting the previous phases can loose their interest or utility.

VIII. CONCLUSIONS

The new communication technologies integrated into the automotive sector offer an opportunity

for better assistance to people injured in traffic accidents, reducing the response time of emergency

services, and increasing the information they have about the incident just before starting the rescue

process. To this end, we designed and implemented a prototype for automatic accident notification
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and assistance based on V2V and V2I communications. However, the effectiveness of this technology

can be improved with the support of intelligent systems which can automate the decision making

process associated with an accident. A preliminary assessment of the severity of an accident is needed

to adapt resources accordingly. This estimation can be done by using historical data from previous

accidents using a Knowledge Discovery in Databases process.

Most of the existing work focused on data mining in traffic accidents is based on data sets where

a very limited preprocessing and transformation were performed. After a careful selection of relevant

attributes, we showed that the vehicle speed is a crucial factor in front crashes, but the type of vehicle

involved and the speed of the striking vehicle are more important than speed itself in side and rear-end

collisions. The status of the airbag is also very useful in the estimation, since situations where it was

not necessary to deploy the airbag rarely produce serious injuries to the passengers.

The studied classification algorithms do not show remarkable differences, but we demonstrate that,

if we are able to classify the accidents depending on the types of impacts, we can noticeably increase

the accuracy of the system, especially for front crashes where the vehicle is usually the striking one. To

this end, we developed a prototype that shows how inter-vehicle communications can make accessible

the information about the different vehicles involved in an accident. Moreover, the positive results

achieved on the real tests indicates that the accident detection and severity estimation algorithms are

robust enough to allow a mass deployment of the proposed system.
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