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Introduction

Schauder frames are used to represent an arbitrary element x of a function space E as a
series expansion involving a fixed countable set (xj)j of elements in that space such that
the coefficients of the expansion of x depend in a linear and continuous way on x. Unlike
Schauder bases, the expression of an element x in terms of the sequence (xj)j , i.e. the re-
production formula for x, is not necessarily unique. In the classical literature of function
spaces the Schauder frames are usually referred to as atomic decompositions. In abstract the-
ory of Banach spaces the concept of atomic decomposition is often associated with a certain
sequence space selected a priori while the notion of Schauder frame makes no reference to
any sequence space. However, the two concepts are closely related and some papers in the
area ([8], [4], [5]) are written in terms of atomic decompositions whereas others ([7], [1], [24])
are stated in terms of Schauder frames. Atomic decompositions appeared in applications to
signal processing and sampling theory among other areas. Feichtinger characterized Gabor
atomic decompositions for modulation spaces [10] and the general theory was developed in
his joint work with Gröchenig [11] and [12]. In these papers, the authors show that recon-
struction through atomic decompositions is not limited to Hilbert spaces. Indeed, they obtain
atomic decompositions for a large class of Banach spaces, namely the coorbit spaces. Atomic
decompositions or Schauder frames are a less restrictive structure than bases, because a com-
plemented subspace of a Banach space with basis has always a natural Schauder frame, that
is obtained from the basis of the superspace. Even when the complemented subspace has a
basis, there is not a systematic way to find it. There is a vast literature dedicated to the
subject. The related topic of frame expansions in Banach spaces was considered for example
in [6] and [8].

Carando and Lasalle [4] and [5] studied atomic decompositions and their relationship
with duality and reflexivity of Banach spaces. They extended the concepts of shrinking and
boundedly complete Schauder basis to the atomic decomposition framework. They considered
when an atomic decomposition for a Banach space generates, by duality, an atomic decom-
position for its dual space and characterized the reflexivity of a Banach space in terms of
properties of its atomic decompositions. Unconditional atomic decompositions allowed them
to prove James-type results characterizing shrinking and boundedly complete unconditional
atomic decompositions in terms of the containment in the Banach space of copies of ℓ1 and
c0 respectively.

Very recently, Pilipovic and Stoeva [32] (see also [31]) studied series expansions in (count-
able) projective or inductive limits of Banach spaces. In this article we begin a systematic
study of Schauder frames in locally convex spaces, but our main interest lies in Fréchet spaces
and their duals. The main difference with respect to the concept considered in [32] is that our
approach does not depend on a fixed representation of the Fréchet space as a projective limit
of Banach spaces. We mention the following preliminary example as a motivation for our
work: Leontiev proved that for each bounded convex domain G of the complex plane C there
is a sequence of complex numbers (λj)j such that every holomorphic function f ∈ H(G) can
be expanded as a series of the form f(z) =

∑∞
j=1 aje

λjz, converging absolutely and uniformly
on the compact subsets of G. It is well-known that this expansion is not unique. We refer
the reader e.g. to Korobeinik’s survey [20]. A priori it is not clear whether the coefficients
aj in the expansion can be selected depending continuously on the function f . However,
Korobeinik and Melikhov [22, Th. 4.3 and remark 4.4(b)] showed that this is the case when
the boundary of the open set G is of class C2; thus obtaining what we call below an uncon-
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ditional Schauder frame for the Fréchet space H(G). These are the type of phenomena and
reproducing formulas that we try to understand in our paper.

Our main purpose is to investigate the relation between the properties of an existing
Schauder frame in a Fréchet space E and the structure of the space, for example if E is
reflexive or if it contains copies of c0 or ℓ1. For complete barrelled spaces, we show in 1.4
that having a Schauder frame is equivalent to being complemented in a complete locally
convex space with a Schauder basis. Perturbation results for Schauder frames are given in
Theorem 1.6. We introduce shrinking and boundedly complete Schauder frames on a locally
convex space, study the duality of these two concepts and their relation with the reflexivity
of the space; see Theorem 2.9. Unconditional Schauder frames are studied in Section 3. We
completely characterize, for a given unconditional Schauder frame, when it is shrinking or
boundedly complete in terms of properties of the space in Theorems 3.9 and 3.12. As a
tool, that could be of independent interest, we show Rosenthal ℓ1 Theorem for boundedly
retractive inductive limits of Fréchet spaces; see Proposition 3.11. Some examples of concrete
Schauder frames in function spaces are also included in Section 4. Our Theorem 4.2 shows a
remarkable relation between the existence of a continuous linear extension operator for C∞

functions defined on a compact subset K of Rn and the existence of an unconditional Schauder
frame in C∞(K) using exponentials.

1 Schauder frames in locally convex spaces

Throughout this work, E denotes a locally convex Hausdorff linear topological space (briefly,
a lcs) with additional hypotheses added as needed and cs(E) is the system of continuous
seminorms describing the topology of E. The symbol E′ stands for the topological dual of
E and σ(E′, E) for the weak* topology on E′. We set E′

β for the dual E′ endowed with the
topology β(E′, E) of uniform convergence on the bounded sets of E. We will refer to E′

β as the
strong dual of E. The bidual E′′ of E is the dual of E′

β. Basic references for lcs are [18] and
[27]. If T : E → F is a continuous linear operator, its transpose is denoted by T ′ : F ′ → E′,
and it is defined by T ′(v)(x) := v(T (x)), x ∈ E, v ∈ F ′. We recall that a Fréchet space is a
complete metrizable lcs. An (LF )-space is a lcs that can be represented as an inductive limit
of a sequence (En)n of Fréchet spaces, and in case all the spaces En are Banach spaces, we
call it an (LB)-space. In most of the results we need the assumption that the lcs is barrelled.
The reason is that Banach-Steinhaus theorem holds for barrelled lcs. Every Fréchet space
and every (LB)-space is barrelled. We refer the reader to [18] and [30] for more information
about barrelled spaces.

Definition 1.1 Let E be a lcs, {xj}∞j=1 ⊂ E and {x′j}∞j=1 ⊂ E′. We say that
(
{x′j}, {xj}

)
is

an Schauder frame of E if

x =

∞∑
j=1

x′j (x)xj , for all x ∈ E,

the series converging in E.

A lcs E which admits a Schauder frame is separable. Let E be a lcs with a Schauder basis

{ej}∞j=1 ⊂ E and let {e′j}∞j=1 ⊂ E′ denote the coefficient functionals. Clearly,
(
{e′j}, {ej}

)
is
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a Schauder frame for E. The main difference with Schauder basis is that, in general, one may
have a sequence {xj}∞j=1 ⊂ E and two different sequences {x′j}∞j=1 ⊂ E′ and {y′j}∞j=1 ⊂ E′

so that both
(
{x′j}, {xj}

)
and

(
{y′j}, {xj}

)
are Schauder frames. See the comments after

Theorem 4.2.

Proposition 1.2 Let E be a lcs and let P : E → E be a continuous linear projection. If(
{x′j}, {xj}

)
is a Schauder frame for E, then

(
{P ′(x′j)}, {P (xj)}

)
is a Schauder frame for

P (E).
In particular, if E is isomorphic to a complemented subspace of a lcs with a Schauder

basis, then E admits a Schauder frame.

Proof. Since ⟨P ′(x′j), y⟩ = ⟨x′j , P (y)⟩ = ⟨x′j , y⟩ for all y ∈ P (E) and j ∈ N, we obtain a
Schauder frame:

y = P (y) = P

 ∞∑
j=1

x′j (y)xj

 =
∞∑
j=1

⟨P ′ (x′j) , y⟩P (xj) .

2

As usual ω denotes the countable product KN of copies of the scalar field, endowed by the
product topology, and φ stands for the space of sequences with finite support. A sequence
space

∧
is a lcs which contains φ and is continuously included in ω.

Lemma 1.3 Let {xj}∞j=1 be a fixed sequence of non-zero elements in a lcs E and let us denote
by
∧

the vector space

∧
:= {α = (αj)j ∈ ω :

∞∑
j=1

αjxj is convergent in E}. (1.1)

Endowed with the system of seminorms

Q :=

qp ((αj)j

)
:= sup

n
p

 n∑
j=1

αjxj

 , for all p ∈ cs(E)

 (1.2)

∧
is a sequence space and the canonic unit vectors form a Schauder basis. If E is complete,

then
∧

is complete. In particular, if E is a Fréchet (resp. Banach) space, so is
∧
.

Proof. It is routine to check that the unit vectors are a topological basis of
∧
. Since

q

(
n∑

i=1

αiei

)
≤ q

(
n+m∑
i=1

αiei

)

for every q ∈ Q and for all m,n ∈ N and α1, . . . , αn+m ∈ K we can apply [18, 14.3.6] to
conclude that the unit vectors are also a Schauder basis. 2

Theorem 1.4 Let E be a complete barrelled locally convex space. The following conditions
are equivalent:
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(1) E admits a Schauder frame.

(2) E is isomorphic to a complemented subspace of a complete sequence space with the
canonical unit vectors as Schauder basis.

(3) E is isomorphic to a complemented subspace of a complete locally convex space with a
Schauder basis.

In particular, a Fréchet space E admits a Schauder frame if and only if it is isomorphic to a
complemented subspace of a Fréchet space with a Schauder basis.

Proof. (1) ⇒ (2) Let
(
{x′j}, {xj}

)
be a Schauder frame of E. We may assume that xj ̸= 0

for all j ∈ N. Let
∧

be the complete lcs of sequences defined as in Lemma 1.3. We define
Fn : E −→ E as Fn (x) :=

∑n
j=1 x

′
j (x)xj . Since E is barrelled the sequence (Fn)n is

equicontinuous, that is, for every p ∈ cs(E) there exists p′ ∈ cs(E) such that p (Fn (x)) ≤ p′ (x)

for every x ∈ E and for every n ∈ N. Consequently the map U : E −→
∧
, U (x) :=

(
x′j (x)

)
j
,

is injective and continuous. Moreover, the map S :
∧

−→ E, S
(

(αj)j

)
:=
∑∞

j=1 αjxj , is

linear and continuous, since

p
(
S
(

(αj)j

))
= p

 ∞∑
j=1

αjxj

 ≤ sup
n
p

 n∑
j=1

αjxj

 = qp

(
(αj)j

)
.

As S ◦ U = IE we conclude that U is an isomorphism into its range U (E) and U ◦ S is a
projection of

∧
onto U (E) .

(2) ⇒ (3) is trivial, while (3) ⇒ (1) is consequence of Proposition 1.2. 2

The following Corollary is a consequence of an important result of Pe lczyński. A locally
convex space is said to satisfy the bounded approximation property if the identity of E is the
pointwise limit of an equicontinuous net of finite rank operators. If the locally convex space is
separable, then the net can be replaced by a sequence. Pe lczyński [29] (see also [25, Theorem
2.11] ) proved that a separable Fréchet space has the bounded approximation property if and
only if it is isomorphic to a complemented Fréchet space with a Schauder basis.

Corollary 1.5 A separable Fréchet space E admits a Schauder frame if and only if E has
the bounded approximation property.

Proof. It follows from Theorem 1.4 and the aforementioned result of Pe lczyński [29]. 2

Taskinen [35] gave examples of a complemented subspace F of a Fréchet Schwartz space
E with a Schauder basis, such that F is nuclear and does not have a basis. By Theorem 1.4,
F has a Schauder frame. Vogt [36] gave examples of nuclear (hence separable) Fréchet spaces
E which do not have the bounded approximation property. These separable Fréchet spaces
E do not admit a Schauder frame, although by Komura-Komura’s Theorem [27, Theorem
29.8] they are isomorphic to a subspace of the countable product sN of copies of the space of
rapidly decreasing sequence, that has a Schauder basis.

To end this section we discuss perturbation results. The following result, that is needed below,
can be found in [16, page 436]: Let E be a complete lcs and let T : E → E be an operator
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with the property that there exists p0 ∈ cs(E) such that for all p ∈ cs(E) there is Cp > 0 such
that p(Tx) ≤ Cpp0(x) for all x ∈ E (that is, T maps a neighborhood into a bounded set) and
moreover Cp0 can be chosen strictly smaller than 1. Then I−T is invertible (with continuous
inverse on E).

Theorem 1.6 Let ({x′j}, {xj}) be a Schauder frame of a complete lcs E.

(1) If (yj)j is a sequence in E satisfying that there is p0 ∈ cs(E) such that for all p ∈ cs(E)
there is Cp > 0 with:

(i)
∑∞

j=1 |x′j(x)|p(xj − yj) ≤ p0(x)Cp for each x ∈ E and

(ii) Cp0 can be chosen strictly smaller than 1,

then, there exists (y′j)j a sequence in E′ such that ({y′j}, {yj}) is a Schauder frame for
E.

(2) If (y′j)j is a sequence in E′ satisfying that there is p0 ∈ cs(E) such that for all p ∈ cs(E)
there is Cp > 0 with:

(i)
∑∞

j=1 |(x′j − y′j)(x)|p(xj) ≤ p0(x)Cp for each x ∈ E and

(ii) Cp0 can be chosen strictly smaller than 1,

then, there exists (yj)j a sequence in E such that ({y′j}, {yj}) is a Schauder frame for
E.

Proof. In case (1) we consider the operator T (x) =
∑∞

j=1 x
′
j(x)(xj − yj). It is well defined

as the series is absolutely convergent in E, hence convergent, and T is continuous as

p(Tx) ≤
∞∑
j=1

|x′j(x)|p(xj − yj) ≤ p0(x)Cp.

Now, S := I − T is invertible, therefore one can take y′j = (S−1)′(x′j) to conclude.

In case (2) we argue in the same way with the operator T (x) =
∑∞

j=1(x
′
j − y′j)(x)xj , and the

sequence (yj)j is given by S−1(xj), j ∈ N. 2

Our next result should be compared with [9, Proposition 2].

Corollary 1.7 Let ({x′j}, {xj}) be a Schauder frame of a complete lcs E. Suppose that there
exists p0 ∈ cs(E) such that |x′j(x)| ≤ p0(x) for every x ∈ E, j ∈ N. Let (yj)j ⊂ E such

that
∑∞

j=1 p(yj − xj) < ∞ for every p ∈ cs(E) and
∑∞

j=1 p0(yj − xj) < 1. Then there exists
(y′j)j ⊂ E′ such that ({y′j}, {yj}) is a Schauder frame for E.

Corollary 1.8 Let E be a Fréchet space with fundamental system of seminorms (pk)k and
let ({x′j}, {xj}) be a Schauder frame of E. Suppose that (y′j)j ⊂ E′ satisfies

p∗1(x
′
j − y′j) <

1

1 + j2pj(xj) + 3jp1(xj)
where p∗1(x

′) = sup{|x′(x)| : p1(x) ≤ 1}.

Then there exists (yj)j ⊂ E such that ({y′j}, {yj}) is a Schauder frame for E.
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Given a Schauder frame ({x′j}, {xj}) on a complete lcs E, if x′1(x1) ̸= 1 the map x →∑∞
j=2 x

′
j(x)xj is invertible as 1 is not an eigenvalue of the rank one operator x → x′1(x)x1;

see [19, p. 207]. Hence there exists (y′j)j ⊂ E′ such that ({y′j}j , {xj+1}j) is a Schauder frame
and similarly there exists (yj)j ⊂ E such that ({x′j+1}j , {yj}j) is a Schauder frame. That is,
we can remove an element and still obtain Schauder frames. We recall that for a Schauder
basis (xj)j with functional coefficients (x′j)j one has x′1(x1) = 1.

2 Duality of Schauder frames

Given a Schauder frame
(
{x′j}, {xj}

)
of E it is rather natural to ask whether

(
{xj}, {x′j}

)
is

a Schauder frame of E′. This is always the case when E′ is endowed with the weak* topology
σ(E′, E).

Lemma 2.1 If
(
{x′j}, {xj}

)
is a Schauder frame of E, then

(
{xj}, {x′j}

)
is a Schauder

frame of (E′, σ (E′, E)).

Proof. For every x′ ∈ E′ and x ∈ E we have

x′ (x) = x′

 ∞∑
j=1

x′j (x)xj

 =
∞∑
j=1

x′j (x)x′ (xj) =

 ∞∑
j=1

x′ (xj)x
′
j

 (x) ,

and x′ =
∑∞

j=1 x
′ (xj)x

′
j with convergence in (E′, σ (E′, E)). 2

We investigate conditions to ensure that
(
{xj}, {x′j}

)
is a Schauder frame of the strong

dual (E′, β (E′, E)) of E. Moreover, we investigate the relation between the existence of
certain Schauder frames and reflexivity. We recall that in the case of bases this questions lead
to the concept of shrinking basis and boundedly complete basis; see [18].

Given a Schauder frame
(
{x′j}, {xj}

)
of a lcs E we denote, for each n ∈ N, Tn (x) :=

∞∑
j=n+1

x′j (x)xj , that is a continuous linear operator on E.

Definition 2.2 1. A Schauder frame
(
{x′j}, {xj}

)
of a lcs E is said to be shrinking if, for

all x′ ∈ E′,
lim
n→∞

x′ ◦ Tn = 0

uniformly on the bounded subsets of E.

2. A Schauder frame
(
{x′j}, {xj}

)
of a lcs E is said to be boundedly complete if the series∑∞

j=1 x
′
j (x′′)xj converges in E for every x′′ ∈ E′′.

Proposition 2.3 Let E be a lcs and let
(
{x′j}, {xj}

)
be a Schauder frame of E. The following

are equivalent:

(1)
(
{xj}, {x′j}

)
is a Schauder frame for E′

β.
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(2) For all x′ ∈ E′,
∑∞

j=1 x
′ (xj)x

′
j is convergent in E′

β.

(3)
(
{x′j}, {xj}

)
is shrinking.

Moreover, if
(
{x′j}, {xj}

)
is a shrinking Schauder frame of E, then

(
{xj}, {x′j}

)
is a

boundedly complete Schauder frame of E′
β.

Proof. (1) ⇒ (2) is clear by the definition of Schauder frame.
(2) ⇒ (3) From the assumption and lemma 2.1, x′ =

∑∞
j=1 x

′ (xj)x
′
j in the topology

β (E′, E) . As x′ ◦ Tn =
∑∞

j=n+1 x
′ (xj)x

′
j we conclude.

Finally, we prove (3) ⇒ (1). Every x′ ∈ E′ can be written as x′ =
∑∞

j=1 x
′ (xj)x

′
j with

convergence in the weak* topology σ (E′, E) . Given a bounded set B in E,

supx∈B

∣∣∣∣∣∣
x′ − n∑

j=1

x′ (xj)x
′
j

 (x)

∣∣∣∣∣∣ = supx∈B|x′ ◦ Tn(x)|

which tends to zero, hence x′ =
∑∞

j=1 x
′ (xj)x

′
j in the topology β (E′, E) .

Finally, if
(
{x′j}, {xj}

)
is a shrinking Schauder frame of E, then

(
{xj}, {x′j}

)
is a Schauder

frame of E′
β. Moreover, given x′′′ ∈ E′′′ set x′ := x′′′|E to obtain

∞∑
j=1

x′′′ (xj)x
′
j =

∞∑
j=1

(
x′′′
∣∣
E

)
(xj)x

′
j =

∞∑
j=1

x′ (xj)x
′
j = x′.

2

A space E is called Montel if it is barrelled and every bounded subset of E is relatively
compact. Since the pointwise convergence of an equicontinuous sequence of operators implies
the uniform convergence on the compact sets, every Schauder frame of a Montel space E is
shrinking. Beanland, Freeman and Liu [1] have shown that every infinite dimensional Banach
space which admits a Schauder frame has also a Schauder frame which is not shrinking. The
main tool in the proof is the existence of weak∗ null sequences in the unit sphere of E′. This
result has inspired the following characterization of Fréchet spaces with a Schauder frame
that are Montel. In fact, since a Fréchet space E is Montel if and only if every weak∗ null
sequence in E′ is also strongly convergent [3], an adaptation of the proof of [1, Theorem 2.3]
gives the following result.

Theorem 2.4 Let E be a separable Fréchet space with the bounded approximation property.
Then E is Montel if and only if every Schauder frame of E is shrinking.

Recall that a boundedly complete Schauder basis (ej)j in a lcs E is a basis such that if

(αj)j ∈ ω and
(∑k

j=1 αjej

)
k

is bounded, then
∑∞

j=1 αjej is convergent.

In [4] it is shown that a basis (ej)j in a Banach space X is boundedly complete if and only if

the Schauder frame
(
{e′j}, {ej}

)
is boundedly complete. This extends to arbitrary barrelled

spaces.
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Proposition 2.5 Let E be a barrelled lcs with a Schauder basis (ej)j. Then the following
are equivalent:

(1) The basis is boundedly complete.

(2) The Schauder frame
(
{e′j}, {ej}

)
is boundedly complete.

Proof. To prove (1) ⇒ (2) we fix x′′ ∈ E′′ and we prove that
∑∞

j=1 e
′
j (x′′) ej converges in E.

For every x′ ∈ E′ and x ∈ E we have

lim
k→∞

 k∑
j=1

x′ (ej) e
′
j

 (x) = lim
k→∞

x′

 k∑
j=1

e′j (x) ej

 = x′(x).

Since E is barrelled we conclude that
{∑k

j=1 x
′ (ej) e

′
j , k ∈ N

}
is β(E′, E)-bounded. Con-

sequently
{∑k

j=1 x
′′
(
e′j

)
x′(ej), k ∈ N

}
is a bounded set of scalars for every x′ ∈ E′, which

means that
{∑k

j=1 x
′′
(
e′j

)
ej , k ∈ N

}
is σ(E,E′)-bounded. As all topologies of the same dual

pair have the same bounded sets ([18, 8.3.4]) we finally obtain that
{∑k

j=1 x
′′
(
e′j

)
ej , k ∈ N

}
is a bounded subset of E and the conclusion follows.

To prove (2) ⇒ (1) we fix (αj)j ⊂ K such that
(∑k

j=1 αjej

)
k

is bounded and we show

that
∑∞

j=1 αjej is convergent in E. Since
(∑k

j=1 αjej

)
k

is σ (E′′, E′)-relatively compact then

it has a σ (E′′, E′)-cluster point x′′ ∈ E′′. By hypothesis,
∑∞

j=1 x
′′
(
e′j

)
ej is convergent in E,

so to conclude it suffices to check that x′′
(
e′j

)
= αj . To this end we fix j ∈ N and k > j and

observe that

e′j

(
k∑

i=1

αiei

)
=

k∑
i=1

αie
′
j (ei) = αj .

As x′′(ej) is a cluster point of
{
e′j

(∑k
i=1 αiei

)}∞

k=1
we finally deduce x′′

(
e′j

)
= αj . 2

Remark 2.6 Let
(
{x′j}, {xj}

)
be a Schauder frame of E and let P : E → E be a continuous

linear projection. It is easy to see that if
(
{x′j}, {xj}

)
is shrinking (boundedly complete) then(

{P ′(x′j)}, {P (xj)}
)

is a shrinking (boundedly complete) Schauder frame for P (E).

Lemma 2.7 Suppose that
(
{x′j}, {xj}

)
is a Schauder frame of a barrelled lcs E such that

for all k ∈ N

lim
n→∞

x′k − n∑
j=1

x′k (xj)x
′
j

 = 0 in E′
β. (2.1)

Then
(
{xj}, {x′j}

)
is a Schauder frame of the closed linear span H = span

{
x′j

}E′
β

.

9



Proof. We fix x′ ∈ H and show that x′ =
∑∞

j=1 x
′ (xj)x

′
j with convergence in E′

β. To this
end we fix U a neighborhood of zero in E′

β and consider Fn(x) =
∑n

j=1 x
′
j(x)xj , n ∈ N, x ∈ E.

Since (F ′
n)n ⊂ L (E′) is equicontinuous, there is another β (E′, E)-neighborhood V, V ⊂ U ,

such that F ′
n (V ) ⊂ 1

3U for each n ∈ N. Find u =
∑s

k=1 αkx
′
k, αk ∈ K, s ∈ N, with x′−u ∈ 1

3V .
By condition (2.1) we can find n0 ∈ N such that u− F ′

n (u) ∈ 1
3V for each n ≥ n0. Finally,

x′ − F ′
n

(
x′
)

= x′ − u− F ′
n

(
x′ − u

)
+ u− F ′

n (u) ∈ 1

3
V +

1

3
U +

1

3
V ⊂ U if n ≥ n0.

Thus E′
β- lim

n→∞
F ′
n

(
x′
)

= x′ and the conclusion follows. 2

Remark 2.8 (a) Observe that if
(
{xj}, {x′j}

)
is a Schauder frame of the closed linear span

H = span
{
x′j

}E′
β

then (2.1) holds since x′k ∈ H for each k ∈ N.

(b) If {xj} is a Schauder basis in E with functional coefficients {x′j} then (2.1) also holds,
since x′k −

∑n
j=1 x

′
k (xj)x

′
j = 0 for every n ≥ k.

(c) If E is a Montel space, (2.1) holds since every weakly convergent sequence in a Montel
space is also strongly convergent to the same limit, by [18, 11.6.2].

Theorem 2.9 Let
(
{x′j}, {xj}

)
be a Schauder frame of a lcs E. Then,

(1) If
(
{x′j}, {xj}

)
is a boundedly complete Schauder frame, E is a barrelled and complete

lcs E with E′′
β barrelled, then E is complemented in its bidual E′′

β.

(2) If E is reflexive and (2.1) in Lemma 2.7 holds, then
(
{x′j}, {xj}

)
is shrinking.

(3) If
(
{x′j}, {xj}

)
is shrinking and boundedly complete, then E is semi-reflexive. If, in

addition, E is barrelled then it is reflexive.

Proof.
(1) Since

(
{x′j}, {xj}

)
is boundedly complete the linear map P : E′′ → E, P (x′′) :=∑∞

j=1 x
′′
(
x′j

)
xj is well defined. Since E′′

β is barrelled we can apply Banach-Steinhaus theorem

to conclude that P is continuous, and it is clearly surjective. As E is barrelled, it can be
canonically identified with a topological subspace of its bidual E′′

β . Then it is easy to see that
P is a projection.

(2) As E is reflexive then it is barrelled and Lemmas 2.1 and 2.7 hold. In particular,

for each x′ ∈ H = span{x′j}
E′

β we have x′ =
∑∞

j=1 x
′ (xj)x

′
j with convergence in E′

β. Since
E is semi-reflexive, β (E′, E) and σ (E′, E) are topologies of the same dual pair. Hence, by

Lemma 2.1 we obtain H = span{x′j}
E′

β = span{x′j}
(E′,σ(E′,E))

= E′. The result follows by
Proposition 2.3.

(3) Fix x′′ ∈ E′′. Since the Schauder frame is boundedly complete then
∑∞

j=1 x
′
j (x′′)xj

converges to an element x ∈ E. We claim that x′′ = x. In fact, since the Schauder frame is

10



shrinking, for every x′ ∈ E′ we have x′ =
∑∞

j=1 x
′ (xj)x

′
j with convergence in E′

β. Thus

⟨x′′, x′⟩ = ⟨x′′,
∞∑
j=1

x′ (xj)x
′
j⟩ =

∞∑
j=1

x′ (xj)x
′′ (x′j) =

 ∞∑
j=1

x′′
(
x′j
)
xj

(x′) = ⟨x, x′⟩.

It follows x′′ = x. 2

For a Fréchet space E, the bidual E′′
β is again a Fréchet space, therefore barrelled. For

LB-spaces, this is not always the case. In fact, if λ1(A) is the Grothendieck example of a
non-distinguished Fréchet space, λ1(A) is the strong dual of an LB-space E. The bidual of E,
being the strong dual of λ1(A), is not barrelled. See [23, Chapter 31, Sections 6 and 7] and
[27, Example 27.19].

3 Unconditional Schauder frames

In this section we assume that E is a complete lcs and we denote by U0(E) the set of absolutely
convex and closed 0-neighborhoods. We refer the reader to [18] for unconditional convergence
of series in locally convex spaces.

Definition 3.1 A Schauder frame
(
{x′j}, {xj}

)
for a lcs E is said to be unconditional if for

every x ∈ E we have x =
∑∞

j=1 x
′
j (x)xj with unconditional convergence.

Remark 3.2 By [26, p.116] a series
∑∞

j=1 xj in a (sequentially) complete lcs converges un-

conditionally if and only if the limits lim
n→∞

n∑
j=1

ajxj exist uniformly for (aj)j in the unit ball

of ℓ∞, and the operator ℓ∞ → E, {aj} 7→
∑∞

j=1 ajxj , is continuous.

Lemma 3.3 Let X be a normed space, E a barrelled space and G any lcs. Then every
separately continuous bilinear map B : X × E → G is continuous.

Proof. Let W ∈ U0(G) and let UX be the closed unit ball of X. Now we take T :=
{y ∈ E : B (x, y) ∈W for every x ∈ UX} =

∩
x∈UX

B−1
x (W ) , where Bx = B(x, ·). Note that

T is an absolutely convex closed subset since each Bx : E → G is continuous. Fixing y ∈ E,
since By : X → G is continuous then B−1

y (W ) ∈ U0 (X) , what means that there exists λ > 0
such that λUX ⊂ B−1

y (W ). Therefore B (x, λy) ∈ W for every x ∈ UX and λy ∈ T , that is,
T is absorbent. Since E is barrelled then T ∈ U0 (E) and from B (UX × T ) ⊂W we conclude
that B is continuous. 2

Corollary 3.4 Let
(
{x′j}, {xj}

)
be an unconditional Schauder frame for a complete barrelled

lcs E. Then, the bilinear map

B : E × ℓ∞ → E, B (x, a) :=

∞∑
j=1

ajx
′
j (x)xj ,

is continuous.

11



The property of having an unconditional Schauder frame is also inherited by complemented
subspaces.

Proposition 3.5 Let E be a lcs and let P : E → E be a continuous linear projection.

If
(
{x′j}, {xj}

)
is an unconditional Schauder frame for E, then

(
{P ′(x′j)}, {P (xj)}

)
is an

unconditional Schauder frame for P (E).
In particular if E is isomorphic to a complemented subspace of a lcs with a unconditional

Schauder basis, then E admits an unconditional Schauder frame.

Similarly to Lemma 1.3 we have the following.

Lemma 3.6 Let (xj)j be a fixed sequence of non-zero elements in a lcs E and let us denote

by
∧̃

the space

∧̃
:= {α = (αj)j ∈ ω :

∞∑
j=1

αjxj is unconditionally convergent in E}. (3.1)

Endowed with the system of seminorms

Q̃ :=

q̃p ((αj)j

)
:= sup

b∈Bℓ∞
p

 ∞∑
j=1

bjαjxj

 , for all p ∈ cs(E)

 , (3.2)

∧̃
is a complete lcs of sequences and the canonical unit vectors are an unconditional basis.

Theorem 3.7 Let E be a complete, barrelled lcs. The following conditions are equivalent:

(1) E admits an unconditional Schauder frame.

(2) E is isomorphic to a complemented subspace of a complete sequence space with the
canonical unit vectors as unconditional Schauder basis.

(3) E is isomorphic to a complemented subspace of a complete locally convex space with
unconditional Schauder basis.

Proof. The proof follows the steps of Theorem 1.4 but the continuity of the map

U : E −→
∧̃
, x→

(
x′j(x)

)
j
,

now follows from Corollary 3.4. 2

In our next two results, bipolars are taken in E′′ that is U◦◦ = {x′′ ∈ E′′ : |x′′(x′)| ≤
1 for all x′ ∈ U◦}.

Lemma 3.8 Let E be a lcs and let U be an absolutely convex and closed 0-neighborhood. For
every z ∈ E′′ such that pU◦◦ (z) > 0 there exists (xα) ⊂ E with pU (xα) ≤ pU◦◦ (z) and xα → z
in σ (E′′, E′).

12



Proof. First, we observe that x := z
pU◦◦ (z) ∈ U◦◦, a set that coincides with U

σ(E′′,E′)
by

the bipolar Theorem ([18, 8.2.2]). Therefore there exists (yα)α ⊂ U such that yα → x in
σ (E′′, E′). Now, it suffices to take xα := pU◦◦ (z) yα. 2

Theorem 3.9 Let E be a complete, barrelled lcs which admits an unconditional Schauder

frame
(
{x′j}, {xj}

)
. Then,

(
{x′j}, {xj}

)
is boundedly complete if and only if E does not

contain a copy of c0.

Proof. Suppose that E contains a copy of c0. Since E is separable, there exists a projection

P : E → E such that P (E) is isomorphic to c0 ([18, 8.5.9]). If
(
{x′j}, {xj}

)
is boundedly

complete, then
(
{P ′(x′j)}, {P (xj)}

)
is a boundedly complete Schauder frame in P (E) ≃ c0.

By Proposition 2.9, c0 is complemented in its bidual, a contradiction.

In order to show the converse, suppose that E does not contain a copy of c0 and
(
{x′j}, {xj}

)
is not boundedly complete. Then there exists x′′ ∈ E′′, x′′ ̸= 0, such that

∑∞
j=1 x

′′
(
x′j

)
xj is

not convergent in E. We can find an absolutely convex 0-neighborhood U1 and two sequences

(pi), (qi) of natural numbers such that p1 < q1 < p2 < q2 < . . . and pU1

(∑qj
i=pj

x′′ (x′i)xi

)
≥ 1

for each j ∈ N. We set yj :=
∑qj

i=pj
x′′ (x′i)xi and define T : φ → E by T

(
(aj)j

)
:=∑∞

j=1 ajyj . We first prove that T is continuous when φ is endowed with the ∥·∥∞- norm.
To this end, take U an absolutely convex neighborhood of the origin in E. Since x′′ ̸= 0,
x′′ ∈ E′′, there is an absolutely convex 0-neighborhood U2 in E such that pU◦◦

2
(x′′) > 0. Put

V := U1 ∩ U2 ∩ U . Clearly pV ◦◦ (x′′) ≥ pU◦◦
2

(x′′) > 0. We can apply Corollary 3.4 to find an
absolutely convex closed 0-neighborhood W in E such that W ⊂ V and

pV

( ∞∑
i=1

dix
′
i (z)xi

)
≤ pW (z) ∥d∥∞ (3.3)

for each n ∈ N, each d ∈ ℓ∞ and z ∈ E. For a = (aj)j ∈ φ, and s := max(supp a), the support
of a being the set of non-zero coordinates of a, we define bi = aj for pj ≤ i ≤ qj , and bi = 0
otherwise. We have

∞∑
j=1

ajyj =

s∑
j=1

ajyj =

qs∑
i=p1

bix
′′ (x′i)xi.

Given ε > 0, we can apply Lemma 3.8 to find y ∈ E, pW (y) ≤ pW ◦◦ (x′′) and

max
p1≤i≤qs

∣∣(x′′ − y
) (
x′i
)∣∣ ≤ ε

2qs ∥a∥∞ max (pV (xi) , 1)
.

This implies

pV

 qs∑
i=p1

bix
′′ (x′i)xi

 ≤ pV

 qs∑
i=p1

bix
′
i (y)xi

+

qs∑
i=p1

|bi|
∣∣(x′′ − y

) (
x′i
)∣∣ pV (xi) ≤

≤ pV

 qs∑
i=p1

bix
′
i (y)xi

+
ε

2
.
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Now, by the estimate (3.3), we obtain

pV

 qs∑
i=p1

bix
′
i (y)xi

 ≤
(

max
p1≤i≤qs

|bi|
)
pW (y) ≤

(
max
1≤j≤s

|aj |
)
pW ◦◦

(
x′′
)
.

Then,

pV

 s∑
j=1

ajyj

 ≤ ∥a∥∞ pW ◦◦
(
x′′
)

+
ε

2
.

Since this holds for each ε > 0 , we get

pU

 ∞∑
j=1

ajyj

 ≤ pV

 ∞∑
j=1

ajyj

 ≤ ∥a∥∞ pW ◦◦
(
x′′
)
.

Thus the operator T : (φ, ∥·∥∞) → E is continuous. Since E is complete, T admits

a unique continuous extension T̃ : c0 → E. As by assumption E does not contain c0,

we can apply Theorem 4 in [33, p.208] to conclude that
(
T̃ (ej)

)
j

has a convergent subse-

quence
(
T̃ (ejk)

)
k
. That is, (yj)j admits a convergent subsequence (yjk)k. Moreover, since

T̃ : (c0, σ (c0, l1)) → (E, σ (E,E′)) is also continuous then
(
T̃ (ej)

)
j

= (yj)j is σ (E,E′)-

convergent to 0, hence (yjk)k must converge to 0 in E. This is a contradiction, since pU1 (yj) ≥
1 for each j ∈ N. 2

Definition 3.10 [30] An (LF )-space E = indn→En is called boundedly retractive if for every
bounded set B in E there exists m = m(B) such that B is contained and bounded in Em and
Em and E induce the same topology on B.

By [13] an (LF )-space E is boundedly retractive if and only if each bounded subset in E is
in fact bounded in some step En and for each n there is m > n such that Em and E induce
the same topology on the bounded sets of En.

For (LB)-spaces, this is equivalent to the a priori weaker condition that for all n ∈ N, there
exists m > n such that for all k > m, Em and Ek induce the same topology in the unit
ball Bn of En ([28]). In particular (LB)-spaces with compact linking maps En ↪→ En+1 are
boundedly retractive. More information about these and related concepts can be seen in [37].

Obviously, each Fréchet space F can be seen as a boundedly retractive (LF )-space, just
take Fn = F for all n ∈ N. In particular 3.12 holds for Fréchet spaces. Every strict (LF)-
space is boundedly retractive. In particular, for a open subset Ω in Rd, the space D(Ω) is a
boundedly retractive (LF )-space. The space E ′(Ω) and the space HV in Example 1 of Section
4 are boundedly retractive (LB)-spaces.

Rosenthal ℓ1-theorem was extended to Fréchet spaces by Dı́az in [9], showing that every
bounded sequence in a Fréchet space has a subsequence that is either weakly Cauchy or
equivalent to the unit vectors in ℓ1.
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Proposition 3.11 (Rosenthal ℓ1-theorem for (LF )-spaces). Let E = indn→En be a bound-
edly retractive (LF )-space. Every bounded sequence in E has a subsequence which is σ (E,E′)-
Cauchy or equivalent to the unit vector basis of ℓ1. In particular, E does not contain a copy
of ℓ1 if and only if every bounded sequence in E has a σ (E,E′)-Cauchy subsequence.

Proof. Let (xj)j be a bounded sequence in E and assume that has no σ (E,E′)-Cauchy
subsequence. There is n0 ∈ N such that (xj)j is a bounded sequence in En0 . Now select
m ≥ n0 such that Em and E induce the same topology on the bounded sets of En0 . Since (xj)j
is bounded in Em and it has no σ (Em, E

′
m)-Cauchy subsequence, we can apply Rosenthal’s

ℓ1-Theorem in the Fréchet space Em to conclude that there is a subsequence (xjk)k which is
equivalent to the unit vector basis of ℓ1. That is, there exist c1 and a continuous seminorm p
in Em such that

c1

∞∑
k=1

|αk| ≤ p

( ∞∑
k=1

αkxjk

)
≤ sup

k
p(xjk)

∞∑
k=1

|αk| ,

for every α = (αk)k ∈ ℓ1.
As the inclusion En0 ↪→ Em is continuous, we find a continuous seminorm q in En0 such

that for x ∈ En0 one has p(x) ≤ q(x). Then, for each α = (αk)k ∈ ℓ1,

c1

∞∑
k=1

|αk| ≤ p

( ∞∑
k=1

αkxjk

)
≤ q

( ∞∑
k=1

αkxjk

)
≤ sup

k
q(xjk)

∞∑
k=1

|αk| .

Set F := {
∑∞

k=1 αkxjk : α = (αk)k ∈ ℓ1} ⊂ En0 . Then p and q restricted to F are equivalent
norms, and F endowed with any of them is a Banach space isomorphic to ℓ1. The spaces En0

and Em induce on F the same (Banach) topology. Denote by UF the closed unit ball of F
and by τm and τ the topologies of Em and E, respectively. Then τ and τm coincide on UF ,
which is an absolutely convex 0-neighbourhood for τm|F . Applying a result of Roelcke [30,
8.1.27] we conclude that τm and τ coincide in F ; hence, there is a continuous seminorm r on
E such that p(z) ≤ r (z) for every z ∈ F . This implies, for each α = (αk)k ∈ ℓ1,

c1

∞∑
k=1

|αk| ≤ p

( ∞∑
k=1

αkxjk

)
≤ r

( ∞∑
k=1

αkxjk

)
≤
(

sup
k
r (xjk)

) ∞∑
k=1

|αk| .

Thus, (xjk)k is equivalent to the unit vectors of ℓ1 in E and the inclusion F ↪→ E is a
topological isomorphism into. Then, E contains an isomorphic copy of ℓ1. 2

We use the notation µ (E′, E) for the topology on E′ of uniform convergence on the
absolutely convex and σ(E,E′)-compact sets. In the proof of the next result we utilize
the fact that a boundedly retractive (LF )-space E does not contain ℓ1 if and only if every
µ (E′, E)-null sequence in E′ is β (E′, E)-convergent to 0. This was proved by Domański and
Drewnowski and by Valdivia independently for Fréchet spaces. The proof can be seen in [2]
and the proof for arbitrary boundedly retractive (LF )-spaces follows the same steps as in [2,
Theorem 10] but using Proposition 3.11 instead of Rosenthal ℓ1-theorem for Fréchet spaces.

Theorem 3.12 Let E be a boundedly retractive (LF )-space. Assume that E admits an un-

conditional Schauder frame
(
{x′j}, {xj}

)
. Then,

(
{x′j}, {xj}

)
is shrinking if and only if E

does not contain a copy of ℓ1.
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Proof. We first assume that
(
{x′j}, {xj}

)
is shrinking. Then, by Proposition 2.3,

(
{x′j}, {xj}

)
is a Schauder frame for E′

β and, in particular, E′
β is separable. Consequently E contains no

subspace isomorphic to ℓ1.

Conversely, assume that E does not contain a copy of ℓ1. By Lemma 2.1,
(
{xj}, {x′j}

)
is

a Schauder frame of (E′, σ (E′, E)). We check that, for all x′ ∈ E′,

∞∑
j=1

x′(xj)x
′
j (3.4)

is subseries summable to x′ in E′
β. Since for each x ∈ E the convergence of

∞∑
j=1

x′j(x)xj (3.5)

is unconditional and E is sequentially complete, then (3.5) is subseries summable and we
conclude that (3.4) is also σ (E′, E)-subseries summable. We can apply Orlicz-Pettis’ Theorem
([18, p. 308]) to obtain that (3.4) is µ (E′, E)-unconditionally convergent to x′. Therefore it

is β (E′, E)-convergent to x′, as E does not contain a copy of ℓ1. Consequently
(
{x′j}, {xj}

)
is shrinking. 2

4 Examples

In this section we will present some examples of Schauder frame on locally convex spaces.
These Schauder frames are shrinking and boundedly complete since all the spaces involved
are Montel spaces.

Example 1. This example was obtained by Taskinen in [34]. Denote by D the open unit disc
D := {z ∈ C : |z| < 1} and for each n let vn be the weight vn (z) := min

{
1, |log (1 − |z|)|−n} .

We consider the weighted Banach space of holomorphic functions

H∞
vn :=

{
f : D → C analytic : ∥f∥vn = sup

z∈D
|f (z)| vn (z) <∞

}
.

Since vn+1 ≤ vn then H∞
vn ⊂ H∞

vn+1
continuously and we consider the inductive limit

HV = indn→∞H
∞
vn .

The unit disc D is decomposed as D :=
∪

j Dj with
◦
Dj ̸= ∅ for all j ∈ N in such a way

that the set of elements of D belonging to more that one of the Dj ’s has Lebesgue measure

0. Let us fix, for all j ∈ N, λj ∈
◦
Dj . As proved in [34], we can obtain such a decomposition

with the property that

S : HV → HV, f 7→ (Sf) (z) :=

∞∑
j=1

m (Dj) f (λj)(
1 − λjz

)2 ,

is an isomorphism.
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Theorem 4.1 [34, Theorem 1] Under the conditions above, let uj (f) :=
(
S−1f

)
(λj) and

fj(z) :=
m(Dj)

(1−λjz)2
be given. Then ({uj} , {fj}) is a shrinking and boundedly complete Schauder

frame for HV .

Proof. Each f ∈ HV can be written as

f = S
(
S−1 (f)

)
=

∞∑
j=1

(
S−1f

)
(λj) fj ,

hence ({uj} , {fj}) is a Schauder frame in HV . Since HV is a Montel space we can apply
Theorem 2.9 to conclude that the Schauder frame is shrinking. 2

As pointed in [34, p. 330], the coefficients in the series expansion above are not unique.

Example 2. Let K be a compact subset of Rp that coincides with the closure of its interior,

i.e. K =
◦
K. Let C∞ (K) be the space of all complex-valued functions f ∈ C∞(

◦
K) uniformly

continuous in
◦
K together with all partial derivatives. The Fréchet space topology in C∞(K)

is defined by the norms:

qn (f) := sup
{∣∣∣f (α) (x)

∣∣∣ : x ∈ K, |α| ≤ n
}
, n ∈ N0.

A continuous and linear extension operator is a continuous and linear operator T :
C∞(K) → C∞ (Rp) such that T (f)|K = f. Not every compact set admits a continuous
and linear extension operator but every convex compact set does. Further information can
be found in [15].

Theorem 4.2 Let K ⊂ Rp be a compact set which is the closure of its interior. The following
conditions are equivalent:

(1) There exists a continuous and linear extension operator T : C∞(K) → C∞ (Rp) .

(2) There are sequences (λj)j ⊂ Rp and (uj)j ∈ C∞ (K)′ such that
(
{uj} ,

{
e2πix·λj

})
is an

unconditional Schauder frame for C∞(K).

Proof. (1) ⇒ (2).We considerM > 0 such thatK ⊂ [−M,M ]p and choose ϕ ∈ D ([−2M, 2M ]p)
such that ϕ(x) = 1 for all x in a neighborhood of [−M,M ]p. For every f ∈ C∞(K) we define
Hf = ϕ (T (f)) ∈ D (]−2M, 2M [p). Then H : C∞ (K) → D (]−2M, 2M [p) is a continuous
and linear map and Hf |K = f . After extending Hf as a periodic C∞ function in Rp we get

Hf (x) :=
∑
j∈Zp

aje
2πix·λj , where λj =

1

4M
(j1, . . . , jp)

and ak = ak (Hf) are the Fourier coefficients of Hf . By [21], supj∈Zp |aj | |j|m < ∞ for

every m, which implies that the series f =
∑

j∈Zp aje
2πix·λj converges absolutely in C∞ (K) .

Each ak, being a Fourier coefficient of Hf, depends linearly and continuously on f. Then(
uj (·) , e2πix·λj

)
j∈Zp is a Schauder frame for C∞ (K), with uj ∈ C∞ (K)′ defined by uj (f) =

aj (Hf).

17



(2) ⇒ (1). For every f ∈ C∞(K) we have

f(x) =

∞∑
j=1

uj(f)e2πix·λj in C∞(K)

and
∞∑
j=1

uj(f)bje
2πix·λj

converges in C∞(K) for every (bj) ∈ ℓ∞. After differentiation, we obtain that the series

∞∑
j=1

uj(f)2πbjλ
α
j e

2πix·λj

converges in C∞(K) for every α ∈ Np
0 and (bj) ∈ ℓ∞. In particular, this series converges for

a fixed x0 in the interior of K, from where it follows

∞∑
j=1

∣∣uj(f)2πλαj
∣∣ < +∞

for every α ∈ Np
0. Consequently T (f) (x) :=

∑∞
j=1 uj(f)e2πix·λj defines a C∞ function in Rp

and we obtain that T : C∞(K) → C∞(Rp) is a linear extension operator. The continuity
of T follows from the Banach-Steinhaus theorem, as T (f) is the pointwise limit of Tn (f) :=∑n

j=1 uj (f) fj , fj(x) := e2πix·λj . 2

Assume that condition (1) in the previous theorem holds. Then, for a fixed j0 ∈ Zp we can
choose ϕ such that the j0-th Fourier coefficient of ϕT (e2πiλ

j0 ·) is not equal to 1. According
to the comment after Corollary 1.8, we may remove one of the exponentials in the Schauder
frame above and still obtain a Schauder frame.

Choosing ψ ̸= ϕ in the proof above, we find a different sequence (vj) ∈ C∞ (K)′ such that(
{vj} ,

{
e2πix·λj

})
is an unconditional Schauder frame for C∞(K). In fact, according to [21],

no system of exponentials can be a basis in C∞ ([0, 1]) .

Example 3. We give a Schauder frame of the Schwartz space S(Rp) of rapidly decreasing
functions. It is inspired by the work of Pilipovic, Stoeva and Teofanov [31], although their
Theorem 4.2 cannot be directly applied to conclude that one gets a Schauder frame. Let
a, b > 0, and Λ = aZp × bZp be given. For z = (x, ξ) ∈ R2p and f ∈ L2(Rp) we put
π(z)f(t) = e2πiξtf(t − x). Let us assume that g ∈ S(Rp) and {π(λ)g : λ ∈ Λ} is a Gabor
frame in L2(Rp). As proved by Janssen (see [17, Corollary 11.2.6]) the dual window is also a
function h ∈ S(Rp) and every f ∈ L2(Rp) can be written as

f =
∑
λ∈Λ

⟨f, π(λ)g⟩π(λ)h. (4.1)

For every λ ∈ Λ we consider uλ ∈ S ′(Rp) defined by uλ(f) = ⟨f, π(λ)g⟩ .

Proposition 4.3 ((uλ)λ∈Λ, (π(λ)h)λ∈Λ) is an unconditional Schauder frame for S(Rp).
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Proof. According to [17, Corollary 11.2.6], the topology of S(Rp) can be described by the
sequence of seminorms

qn(f) := sup
z∈R2p

|⟨f, π(z)g⟩| vn(z), n ∈ N,

where vn(z) = (1 + |z|)n. So, we only need to check that, for every n ∈ N,∑
λ∈Λ

|⟨f, π(λ)g⟩| qn (π(λ)h) <∞. (4.2)

To this end, we fix N > n large enough. Since

|⟨π(λ)h, π(z)g⟩| ≤ |⟨h, π(z − λ)g⟩| ≤ qN (h)vN (z − λ)−1

and vn is submultiplicative we obtain that (4.2) is dominated by

qN (h)qN (f)
∑
λ∈Λ

(vN (λ))−1 vn(λ) <∞

and the proof is finished. 2

This example is closely related to the fact that {π(λ)g : λ ∈ Λ} is a Gabor frame for each
modulation space defined in terms of a polynomially moderate weight; see for instance [17,
Corollary 12.2.6].

Acknowledgement. This research was partially supported by MEC and FEDER Project
MTM2010-15200. The authors are thankful to D. Freeman for pointing out several relevant
references to them.

References

[1] K. Beanland, D. Freeman and R. Liu. Upper and lower estimates for Schauder frames
and atomic decompositions. arXiv:1202.2492v1

[2] J. Bonet and M. Lindström. Convergent sequences in duals of Fréchet spaces. In Func-
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for Fréchet spaces. Proc. Amer. Math. Soc., 117(2):363–364, 1993.

[4] D. Carando and S. Lassalle. Duality, reflexivity and atomic decompositions in Banach
spaces. Studia Math., 191(1):67–80, 2009.

[5] D. Carando, S. Lassalle, and P. Schmidberg. The reconstruction formula for Banach
frames and duality. J. Approx. Theory, 163(5):640–651, 2011.

[6] P. Casazza, O. Christensen, and D. T. Stoeva. Frame expansions in separable Banach
spaces. J. Math. Anal. Appl., 307(2):710–723, 2005.

[7] P.G. Casazza, S.J. Dilworth, E. Odell, Th.Schlumprecht and A. Zsk. Coefficient quanti-
zation for frames in Banach spaces. J. Math. Anal. Appl., 348(1):66–86, 2008.

19



[8] P. G. Casazza, D. Han, and D. R. Larson. Frames for Banach spaces. In The functional
and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), volume 247 of
Contemp. Math., pages 149–182. Amer. Math. Soc., Providence, RI, 1999.

[9] J. C. Dı́az. Montel subspaces in the countable projective limits of LP (µ)-spaces. Canad.
Math. Bull., 32(2):169–176, 1989.

[10] H. G. Feichtinger. Atomic characterizations of modulation spaces through Gabor-type
representations. Rocky Mountain J. Math., 19(1):113–125, 1989. Constructive Function
Theory—86 Conference (Edmonton, AB, 1986).
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[12] H. G. Feichtinger and K. H. Gröchenig. Banach spaces related to integrable group
representations and their atomic decompositions II. Monatsh. Math., 108(2-3):129–148,
1989.

[13] C. Fernández. Regularity conditions on (LF)-spaces. Arch. Math. (Basel), 54(4):380–383,
1990.

[14] D. Freeman, E. Odell, Th. Schlumprecht and A. Zsák. Unconditional structures of
translates for Lp(Rd). arXiv:1209.4619v1.

[15] L. Frerick. Extension operators for spaces of infinite differentiable Whitney jets. J. Reine
Angew. Math., 602:123–154, 2007.

[16] H. G. Garnir, M. De Wilde, and J. Schmets. Analyse fonctionnelle. Théorie constructive
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