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Period Selection for Minimal Hyper-period in
Real-Time Systems

Ismael Ripoll, Rafael Ballester

Abstract—Task period and deadline selection are often used to adjust the workload to the available computational resources. This
paper presents a method for adjusting the periods of the tasks which obtains the minimal hyper-period. Task periods are modelled
as a range of possible periods. The selected periods are not constrained to be natural numbers, but can also be rational numbers.
Without this limitation, the resulting hyper-period is much smaller than that of previous works. Hyper-period for natural periods grows
exponentially; with rational periods the worst case is quadratic with the largest period.

Our finding has practical applications in several fields of real-time scheduling: lowering complexity in table driven schedulers, reducing
search space in model checking analysis, generating synthetic workload for statistical analysis of real-time scheduling algorithms, etc.

Index Terms—Real-time systems, Scheduling, Plan generation, Periodic tasks, Hyper-period.

1 INTRODUCTION

The periodic task model is the base of real-time schedul-
ing theory. It provides a natural and simple way to
describe the behaviour of many physical systems that
can also be validated analytically [1]. The basic model
consists of two parameters: e¢; and p; ; the worst case
execution time (WCET) and the period, respectively.

The hyper-period is defined as the least common
multiple (lcm) of the periods of all the periodic tasks:
P = lem(py---pn), where n is the number of tasks.
Depending on the algorithm used for scheduling the
periodic tasks and the parameters of the tasks, the value
of the hyper-period may be critical for the analysis or
even for the realisation of the system.

Leung et al. [2] showed that feasibility analysis of pe-
riodic task systems can be conducted in time O(P logn).
Although the schedulability analysis has been later
greatly improved, and does not rely on the length of the
hyper-period [3], there are still many situations where
hyper-period length is a critical issue.

Dynamic priority schedulers perform better than fixed
priority ones. EDF (Earliest Deadline First) and LLF
(Least Laxity First) are optimal for periodic task sets
with arbitrary deadlines. Optimal in the sense that if
the task set can not be successfully scheduled by EDF
or LLE, then there is no other scheduling algorithm
that is able to do it. Although there are fast and ef-
ficient schedulability analysis algorithms for EDF [4],
[5], unfortunately, the complexity of the analysis is a
co-NP-complete in the strong sense [4]. When the task
model is enriched with additional requirements and con-
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straints (precedence constraints, non-preemptable tasks,
multi-processor, communications, distributed systems,
etc.), analytic analysis becomes more and more complex.
Eventually, exhaustive state space search over one or
more hyper-periods is the only known solution.

Time/table driven policies, which are considered by
the research community as too rigid and not appropriate
for the current applications demands (complex systems,
adaptable, higher processor utilisation, QoS capabilities,
etc.) have received little attention. However, table driven
solutions are still a valid (or even the only) solution
for some complex systems. Ridouard et al. [6] showed
that it is not possible to successfully schedule (neither
with fixed nor dynamic priorities) tasks allowed to self-
suspend, whereas off-line scheduler can be easily re-
alised.

In table-driven scheduling, a table with the actions
to be executed is constructed off-line. At run time, the
table is cyclically executed. The length of the table de-
pends on the number of actions (tasks or functions) to
be executed along with the hyper-period. The shorter
the hyper-period, the smaller the table will be. Table
driven scheduling is an appealing solution for small
systems with scarce computing capabilities [7], but also
on complex systems where inter-connected resources
of different categories have to be coordinately sched-
uled. Compared to priority scheduling, table driven
schedulers offer: i) simple and fast on-line scheduling
algorithms, ii) multiple devices (processor, buses, etc.)
can be managed synchronously, iii) easier certification
process for highly critical systems. Their main drawback
is related to the complexity of building and maintaining
the table. A small hyper-period alleviates this problem.

In some cases, simulation is the most convenient
method to show the performance of a new algorithm.
Statistical comparison of scheduling algorithms must
consider an interval proportional to P.

Often it is assumed that the timing constraints of



a real-time task are precisely known at the schedul-
ing analysis phase. This information is obtained from
the feedback control algorithms or the operational ap-
plication parameters, and used as input data for the
scheduling analysis. In practical applications, however,
this hypothesis is unrealistic [8]. The emerging control-
scheduling codesign methodology is trying to overcome
this limitation. The goal is to combine the design of
the feedback control algorithm with the implementation
and scheduling limitations to produce a global optimal
solution. Arzén et al. [9] stated the problem as:

Given a set of processes to be controlled and a com-
puter with limited computational resources, design
a set of controllers and schedule them as real-time
tasks such that the overall control performance is
optimized.
The periods of the tasks, and so the hyper-period, are
considered as tunable parameters that can be adjusted
in an integrated system codesign.

This work presents a novel algorithm for finding
the minimal hyper-period of a periodic task set, where
periods are specifies as ranges. The algorithm is optimal
in the sense that it finds the periods from the given
set of ranges, which have the minimal hyper-period. A
common assumption is that task parameters are natural
numbers. This restriction, which have little or no impact
at all in other aspects of scheduling, has a large impact
on the value of the hyper-period. We have removed this
assumption, and allow periods to be rational numbers.
The resulting value for rational periods is, in the worst
case, quadratic. While the hyper-period when periods
must be natural numbers is exponential.

This paper is organised as follows: next section
presents an overview of the state-of-the-art in period
selection and hyper-period reduction: section 3 revisits
the idea of “periodic task” and defines the bases for the
elastic task model presented in section 4; the problem is
formally stated in section 5; and the solution presented
in section 6; the conclusions are summarised in section 8.

2 STATE OF THE ART

The idea of selecting task periods appears in the litera-
ture as a mean to solve different scheduling problems.
In [10] the authors proposed an integrated approach to
controller design and task scheduling. Task frequencies
are allowed to vary within a certain range (determined
by the stability of the control algorithms). For each
task a performance index function which depends on
the sampling frequency and the control function. an
algorithm is proposed to determine the task frequencies
such that all tasks are schedulable for both EDF and
RMA. In a posterior work, Seto et al. [11] presented an
algorithm to select the periods which optimise the sys-
tem performance when the tasks are scheduled with the
rate monotonic scheduler (RMA). The performance of a
task is defined as inversely proportional to the period.
It is assumed that the shorter the period the better, and

there is no lower period limit. The algorithm generates
all the set of periods which are RMA schedulable, and
then select those sets that have the smallest periods.

The elastic model proposed by Buttazzo et al. [12]
considers the period of a task as a flexible spring with a
given rigidity coefficient and an upper and lower limits.
The period has a nominal value which is allowed to
be adjusted within a range. The computation time is
assumed to be fixed. The utilisation factor of a task can
be adjusted by changing the period, which can be used
to adjust the workload to handle overload situations,
increase the overall system utility or dynamically accept
new tasks. All this controlling actions are done by a
central QoS manager.

The problems related to long hyper-periods, although
deserved less attention, have also been studied by a
number of authors.

Goossens et al [13] addressed the problem of generat-
ing random task sets (to be used on algorithm simula-
tions) whose hyper-period are small enough to simulate
the whole hyper-period in a reasonable time. They show
that the hyper-period may grow exponentially with both,
the greatest possible period, and the number of tasks:
n. In particular, when the periods are large, the hyper-
period is likely to be a huge number, not practical for
simulation purposes.

The periods are generated using a table of numbers
which is built by selecting an arbitrary number of
primes, and for each prime the maximum allowed expo-
nent. This selection of primes and exponents generates
a set base divisors. Each period is then generated multi-
plying a set of randomly selected divisors. Depending on
the selected base primes and the maximum exponents,
the resulting tasks sets will show different properties:
many different periods or periods that are far from the
others, etc.

Recently, Jia Xu [14] presented a method for system-
atically adjusting the period lengths of periodic tasks,
such that the adjusted period are as closely harmonically
related to each other (therefore, having a small icm) as
possible. The method consists on building a sorted list of
reference periods which are multiple of a selected set of
prime numbers and user defined maximum exponents,
which are used as base divisors. is then used to adjust
the original task periods to the closest reference period. It
is guaranteed that the new generated period is greater or
equal to the 90% of the original one: % > 5.

Goosens and Jia Xu use a similar strategy, the former
for generating random task sets, and the later to adjust
the given workload. The core idea is to build the pe-
riods as composite numbers of relatively small primes
(2,3,5,7,11,...).

In [15], Borcal et al. presented a periodic task model
where the periods are defined as ranges (min, max val-
ues) and presented an heuristic algorithm for finding the
set of periods that gives the minimal lcm. The resulting
adjusted periods are natural numbers.



3 REASONING ABOUT PERIODIC BEHAVIOUR

The real-time periodic model defines the workload as a
set of n tasks {11, --,T,}; each task is characterised by
the vector T; = (e;,p;,d;), where ¢e; is the worst case
execution time (WCET) , p; is the period and d; the
relative deadline.

A task T; defines an infinite sequence of jobs J; ;.
Sub-index i identifies the associated task and j is the
activation number, J; ;; is the k" job in T;. Each job is
defined by the vector JiJ = (61',7’1'7]',Ti7j + dl) Where
r;,; is the release time. The release time is the instant in
time when the job become ready for execution. Figure 1
sketches the parameters of tasks and jobs.
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Fig. 1. Classic periodic model

A task set with only one periodic task generates a
sequence of jobs that will be executed exactly at the
release times, 1 ; = (j — 1) - p1, and the jobs will be
completed e; time units (t.u. for short) after the release
time. Assuming that the processor always uses e; t.u.
and that the scheduler is work-conservative!.

A periodic task can be more engineering-like defined
by saying that it is activity that has to be executed
regularly in time. How often the task has to be executed
depends on the application. The periodicity can be given
as a duration: the time distance between two consecutive
executions; or as a frequency: how many times it has to
be executed every time unit (second, minute, ...). Also
associated to the notion of periodicity is the idea of evenly
distributed. The events, should be as equally as possible
spaced in time. Ideally, events should be p; tu. apart
from the previous and next one.

While mathematicians work with perfectly defined
elements and can assign exact values to the objects
they operate with, physical world constraints are not as
clearly defined. Engineers are used to work with folerance
values. A simple resistor used to have +10% or +5% of
tolerance with respect to its nominal value; the diameter
of a bolt is described as 10 4 0.01 — 0.03, which gives a
range between [9.97,10.01]; etc.

An engineering-like definition of period should con-
tain the value of tolerance jointly with the nominal value.
Some examples of periodic work:

o The signal has to be measured every 5sec & 10ms.

o The minimum control frequency is 2H z.

o The log file has to be updated three times per hour.

The classic periodic model defines the WCET, period,
deadline, etc. as input parameters for the schedulability

1. A work-conservative scheduler never idles the processor as long
as there are active jobs.

analysis. Those parameters are referred as: “temporal
requirements”. The task temporal parameters are derived
from requirements of the physical world, more precisely
from the discrete control algorithms.

A common assumption done by control system de-
signers about the supporting computer system is that it
is fast enough to i) measure the sensors, ii) calculate the
control response action, and iii) deliver the action to the
actuator to execute the three activities all at once, that is,
there is no significant delay between reading the sensors
and sending the signal to the actuators. This idealised
behaviour of a computer is valid when the system
dynamics are slow (compared with the processor speed),
or when the processor work load is very low. A practical
solution to this problem can be found in the automotive
industry, where one ECU (electronic control unit) is used
for almost every control loop. Another solution came
from the control system discipline by developing new
multi-frequency, robust control algorithms [16].

But rather than considering scheduling analysis and
control system as two separate areas, codesign method-
ologies consider both as elements of the same problem.
The problem is stated by Torngren et al. [17]:

“Control and cost co-design problem: Given a set
of systems to be controlled and control performance
specifications for these, choose an implementation in
terms of a distributed computer system including de-
ciding the allocation of control functions, their par-
titioning into tasks, scheduling and triggering, such
that the overall production cost is minimized while
guaranteeing the specified control performance.”

The co-design methodology provides the possibility
to operate with the temporal parameters of the tasks
in a more flexible way, by adding some of the task
parameters to the iterative process of design and imple-
mentation.

Summarising, the physical world is commonly anal-
ysed, measured and controlled taken into account some
degree of inaccuracy or tolerance; the design of a com-
plex real-time system is done in an iterative way, where
design choices and even requirements may be revisited
or updated several times during the design.

4 THE ELASTIC PERIODIC MODEL
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Fig. 2. Elastic model

Our model is a simplification of the Buttazzo’s elastic
task model [12]. A task is defined as a tuple of four



numbers: T; = (e;, [p; ,p) ], d;). The period is specified as
a range of acceptable values, rather than a fixed constant
requirement. Once the period is fixed during the analysis
phase, the task will be executed at the same constant
period as any periodic task of the classic model. In
the following, p; € [p; ,p}] will denote the actual fixed
period of the task. The range of periods is only used
during the design and analysis phase.

The range of periods will be called elastic period. The
value of the period that finally will be used to schedule
the task is called fixed period.

|Physical system | |C0ntrol loop design | |Implementation |
A

Code

Code analysis

Periodic model Scheduling analysis

Simulation

Y

System dynamics

Y

Elastic model

Minimal hyper-period

Period selection

Fig. 3. Design workflow process

Contrarily to Buttazzo’s model, the periods of the
tasks are not allowed to change on-line. The scheduler,
no matter on-line or off-line, will work with periodic
tasks with fixed periods.

We will assume that d; < p; .

5 PROBLEM STATEMENT

Given a task set with elastic periods, find the
set of periods p; € [p; ,p; | such that the hyper-
period, P, is minimal.

If we force p; € NVi then P = lem(p1,...,pn). This
problem is at least as hard as the factorisation problem.
Suppose a task set with two tasks whose elastic periods
are: p; € [2, |VN]] and p» € [N, N]. If the resulting
minimal [cm is N, then N is a composite number, and
p1 is a proper divisor of N. If the minimal lem is a
multiple of N then N is prime. The remaining set of
factors can be calculated iteratively with N = N/p;.
An efficient approach to this problem was presented
in [15]. It consists of an heuristic that first computes all
the lem’s of a subset of the tasks (those with smaller
ranges), and then performs an exhaustive search of this
set of candidates on the remaining set of tasks.

If we allow the fixed periods p; to belong to Q instead
of N, the problem can be solved faster and the resulting
hyper-period is smaller.

Typically the hyper-period is defined as the lcm of the
periods of the tasks, which is a constructive definition.
Unluckily, this definition is only valid when the periods
are natural numbers. A new definition for hyper-period
is needed:

Definition 1: The hyper-period is the smallest positive
number that is an integer multiple of every task.

A property of the hyper-period is that each periodic
task is activated an integer number of times along the
hyper-period: P/p; € N

6 MINIMAL HYPER-PERIOD FOR RATIONAL PE-
RIODS

If the periods are not necessarily integers but are only
required to be rational numbers, then the problem is no
longer related to the lcm of a set of numbers. And can
be reformulated as:

Given a task set with elastic periods, find the

smallest number P such that exists a set of n

integer numbers {t1,---,t,} such that P/t; €

[P Py 1Vi.
The idea is to define the task period as a fraction of
the system hyper-period, rather than as an absolute time
duration. For example, if we have a task whose elastic
period is [30,35] and the obtained hyper-period is 100,
then the fixed period is 100/3 = 33.3 tu., which is
equivalent to execute the task 3 times along the hyper-
period.

Since the period is a rational number, it is possible
to generate a precise sequence of activations that do not
cause accumulated drift 2. For instance, the previous task
(pi = 100/3), can be activated at the following times: 0,
33, 67, 100, 133, 167, 200, etc.

Before describing the MinHyperPeriod algorithm, four
observations of the properties of the elastic model are
formulated:

Observation 1: Each elastic range [p;,p;] defines
an infinite list of intervals of valid hyper-periods:
{lp: o1 207,20 ], Bp; » 3p7 ), -}

Let I; = Up—,[kp; ,kp}] be the set of all valid hyper-
period intervals for task Tj.

Any value that falls inside a black interval of fig-
ure 4(a) is a valid hyper-period for a task with elastic
period [10,12].

If the resulting hyper-period is a number within the
interval [2p; , 2p; ], then the task T; will have two activa-
tions in hyper-period; if it is within the interval [3p; , 3p; |
then the task will have three activations, and so on.

Observation 2: The intervals generated for each elastic
period become wider and wider until they overlap, that
is, an interval intersects with the next one.

In the figure 4(a), the 5" interval ends at time 60 and
the 6" interval starts at 60. The 6" and 7' intervals
overlap from 70. Posterior intervals will overlap more
and more. Two consecutive intervals of the same task
will overlap when (k + 1)p; > kp/. Therefore, there

will be at most { L

,W non-overlapping intervals for

each elastic periocf 3. The set of valid intervals of the
figure 4(a) example are: {[10, 12], [20, 24], [30, 36], [40, 48],
[50,00)}.

2. Evenly distribution of the activations along the hyper-period can
be done using two methods: 1) floating point arithmetic and 2) the
well-known Bresenham algorithm [18], which is much faster (only
simple integer operations) and can be used to compute the activation
times at run-time.

3. We will assume that pz' > p; . This restriction is removed in
section 6.3.
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Fig. 4. Intervals of valid hyper-periods

Observation 3: The hyper-period must fall inside one
interval of each task. Therefore, the hyper-period must
belong to the intersection of the task intervals: P €
ﬂ?:l I;.

Observation 4: The minimal hyper-period occurs at the
first instant of time in which all task intervals intersect:
P =min{N_, I;}.

It is important to differentiate overlapping of intervals
of the same task and intersection of intervals of different
tasks. When the intervals of a given task overlap, it
means that any time after that time will be a valid hyper-
period for this task. Therefore, all the following intervals
of this task can be merged together into a single interval
of the form [z, ).

Since the set of intervals of a task define the set of
values that are valid hyper-periods for the task, the
intersection of intervals of two tasks define the set of
valid hyper-periods for that pair of tasks.

In the following, the term overlap will refer to the
intersection of the intervals of a given task, and term
intersect will refer to the intersection of intervals of
different tasks.

Lemma 1: The value of the hyper-period for rational
periods is bounded by:

- 2
SV I
=1 D; — D =1L \P; —D;

Proof: From observation 2, we know that any period

range stars overlapping at time p; L‘f .

= —‘ Any value

after this is a valid hyper-period to task 7;, and any
time value after all tasks overlaps is a valid hyper-period
for the task set (observation 3). Therefore the task that
overlaps latest determines the worst case hyper-period.
L
Lemma 2: The minimal hyper-period for rational pe-
riods is less than or equal to that obtained considering
natural periods only.
Proof: Let P be the minimal hyper-period obtained
when we are looking for natural periods. That is, there

exists a set of n integers {t1,---,¢,} such that P/t; =
p; Vi, where p; is some natural number belonging to
[p;,p:-r}. Thus, P = t;, - p;Vi = P € [tip;,tip?]VZ',' by
definition of (I;) P € I;Vi = P € (i, I;; therefore
(observation 3) P is also a valid candidate if we ask
for rational periods. Therefore, the minimal hyper-period
when periods can be rational numbers will be no larger
than P. O

It is interesting to note that a small modification of
the model (compatible with the standard en engineering
methods) and reformulation of the problem causes a
significant change in the obtained solutions. On one
hand, the hyper-period of non-elastic task sets grows
exponentially with the value of the largest period [13]:
P ~ emax(Pi), The probability that the hyper-period of a
task set is close to the this limit grows also exponentially
with the number of tasks. The larger the task set, the
higher the probability to have a high hyper-period. On
the other hand, the worst case hyper-period for ratio-
nal periods is quadratic on max(p; ) with a coefficient
smaller than 1.

6.1

First, a simplified version of the algorithm is presented
and explained (limited to elastic periods), which is im-
proved in subsection6.2. The algorithm is later extended
to include both elastic and non-elastic periods. Finally,
once the hyper-period is found, subsection 6.4 shows
how to calculate the values of the fixed periods.

MinHyperPeriod algorithm

1) Generate a list of tuples (time, isStart), where time
is the value of the lower or upper endpoint time
of an interval, and isStart is a Boolean value that
identifies whether the time is the lower endpoint
(true) or the upper endpoint (false). The intervals of
each task must not overlap.

2) Sort the tuples of the list in ascending time order.
In the case of the tuples with the same time, place
the tuples with isStart = true first.



3) Let counter be a variable which counts the number
of tasks that have some interval at time ¢. Initially
counter is set to zero.

4) Iterate over the sorted list of tuples. Increment
counter every lower endpoint tuple (isStart = true)
and decrement counter every upper endpoint tuple.

5) The algorithm finishes as soon as counter = n. The
value of the hyper-period is the value of time of the
last visited tuple.

Since the tuples are time ordered, every time a lower
endpoint is found we know that at that time we are
entering into an interval. It does not matter which is the
associated task for that interval, what is needed is just to
account that any time from now on (until the next upper
endpoint) is a hyper-period candidate for one more task.
Likewise, the candidate times lose one task whenever a
lower endpoint is encountered.

When the counter reaches the value n, there are n
intersecting intervals which belong to n different tasks.
Since the tuples are time sorted, the first time that
counter = n will be the minimum valid hyper-period.

TABLE 1
Sorted list of tuples and the value of the “counter” for the
example on figure 4(b)

time| 7 | 9 | 10 | 12 | 14 | 18 | 20 | 21 | 24 | 27
isStart| T | F | T F T F T T F T
counter | 1 0 1 0 1 0 1 2 - -

The minimal hyper-period is 21 in this table.

6.2

Considering that the endpoints are sorted by time and
that the intervals of each task do not overlap, it is not
necessary to compute the endpoints of all the intervals
but only the most recent interval for each task. Therefore,
the algorithm only has to keep up a sorted collection of
intervals, one for each task. Since each interval is defined
by two points, this implies using a list of 2n elements.

Every time a task endpoint is removed from the list,
the corresponding endpoint of this task’s next interval is
inserted. For lower endpoint tuples, the next time will
be time := (time + p; ); and for upper endpoint tuples,
the new value of time will be time := (time + p;).

The list of end points can be efficiently implemented
with a heap data structure, where insertion and extrac-
tion are both O(logz(n)). This algorithm is implemented
in the code presented in the appendix.

Implementation improvement

6.3 Mixed elastic and classic periods

The MinHyperPeriod algorithm is not efficient for non-
elastic periods, that is, when the elastic interval has just
one value (p; = p;). In this case, there is an infinite
number of non-overlapping intervals, and the algorithm
would degenerate into an exhaustive search of all the
period multiples.

Obviously, the hyper-period of the non-elastic periods
is the lcm of those periods. Let us denote this value
as P° Which can be computed as lem(a,b) = st)
And the ged (greatest common divisor) can efficiently*
be computed iteratively using the Euclidean algorithm
(mod is the remaining of the division):

ged(a,0) = a
gcd(a,b) = ged(b,a mod b)

The hyper-period of a mixed task set must be a multiple
of PY.
The algorithm for combined task works as follows:
1) Compute the [cm of the non-elastic periods.
2) Run the MinHyperPeriod algorithm with the elastic
periods, but the termination of the algorithm will
occur when both:

a) the counter is equal to the number of elastic tasks
(initial condition), and

b) a multiple of PY falls inside the current in-
tersecting interval. This occurs if and only if
[C“”e;;to timﬂ < L”e“"t gimeJ. current_time is the
time of the current visited tuple, while next_time
is the time value of the next tuple in the list of

endpoint tuples.

The pseudo-code of the appendix also handles mixed
task sets.

6.4 Period selection

Once the hyper-period has been obtained, the value of
the fixed periods should be calculated. The algorithm
guarantees that:

Vi, 3k; € N ge [p; . pf]

There exists at least one natural number, k;, the evenly
divides P. But k; may be not unique. There will be

multiple values of k; if P > p; L}_fiy 1 The values of

k; will be in the range:

\P/p; | < ki <[P/p}]

Consider, for example, the set of three tasks of table 2
(although the values of the WCET and deadline are not
used to compute neither the value of hyper-period nor
the fixed periods, they are specified for completeness).

TABLE 2
Example with multiple period solutions for (P = 38)

Task = (c3,[p; ,pf ],di) L}@J Lﬁ_ -‘ Valid periods
1= (1, [19,20], 4) 2 2 38/2 Ty
o= (1, [12,14], 6) 3 3 38/3 Ty
38/5 Ts
T3 = (1, [5,9], 15) 5 7 38/6 T2
38/7 T3

4. Considering the values of the periods in real cases.



As can be seen in figure 5(a), task T3 intervals overlap
at time 10 and the tree tasks intersect at time 38, the
minimal hyper-period.

Figure 5(b) sketches the activation pattern of the three
tasks. Tasks 77 and T have only one period solution:
k1 = 2 and ko = 3. But the third task has three solutions:
ki =5, ki = 6 and ki = 7, which correspond with the
periods: pi = 7.6, p} = 6.3 and p} = 5.4. It is possible
to observe that the hyper-period property is satisfied for
all the periods. That is, all the tasks have an activation
at time 38.

The final selection of the fixed period for the third
task shall be done by the system designed taking into
account other aspects not directly related to the processor
scheduling as: utility considerations, energy consump-
tion, communication requirements, etc.

As can be seen in this simple example, the use of ra-
tional periods has a minimal impact on the “regularity”
of the recurrence of the periodic tasks.

6.5 Algorithm complexity

The temporal complexity of the algorithm depends on
the number of intervals. Let I = Y " | |I;| be the total
number of non-overlapping intervals of the task set.
The first version of the algorithm creates two tuples
for each interval; the tuples are sorted; and the list is
traversed until counter = n. Therefore, the complexity is
determined by the cost of sorting I tuples: O([ log, I).
From observation 2:

Dby
! ; {p? - W

The asymptotic complexity of the improved version
is: O(I'logyn). A tighter cost can be obtained by taking
into account that the improved algorithm finishes when
the hyper-period is found, and that the loop is iterated
twice for every interval (once for the lower endpoint and
another for the upper one). Since there are less intervals
than activations (due to the fusion of the overlapping

intervals after { Pi -

b, the effective cost is at most

the cost of scheduling the task set using fixed priorities
during the first hyper-period.

Another way to evaluate the complexity of the im-
proved version is by comparing the operation of the
algorithm with a real-time scheduler. The lower and
upper endpoint of the intervals match the scheduling
points for a classic task set with twice the number of
tasks, one for the minimum period and another for
the maximum period: {T7,---,7,,T{+,---,T)}; where
Ti/ = (eivpgvdi) and Tz'// = (eivp;rvdi)

On a mixed task set, the asymptotic complexity is
reduced because there are less intervals to be analysed.
Interval intersection is only searched for elastic tasks. On
the other hand, the mean time may be slightly longer.
Non-elastic tasks forces a new condition on the tuple
search, which is likely to increase the number of visited
tuples before the algorithm terminates.

The spatial complexity of the algorithm, as described
in section 6, is linear with the number of tuples, I for
the first version, and 2n for the improved version.

Both the temporal and spatial cost of the improved
version is for practical purposes negligible.

7 EXPERIMENTAL RESULTS

First we compare the value of the hyper-period and task
periods for the example proposed by [14]. The example
contains four tasks (“Flexible P.” column); the result of
the most accurate solution presented by Xu (Table 7
of his paper) is listed in the column labelled as “Xu”.
Columns “Natural” and “Rational” show the results of
the algorithms of [15] and the current work respectively.

The nominal periods of the Xu’s example are the upper
endpoints of the respective task intervals (364, 667, 727
and 100000). And the algorithm is allowed to reduce the
period up to a defined factor, which in the example is
10%. The nominal period minus the given percentage
defines the ranges flexible periodic workload.

TABLE 3
Xu’s example solved with Natural and Rational periods,
range width 10%

Periods
Task Period Xu Natural Rational
CD-Audio | [93000, 100000] 360 93010 93000/1
ISDN [677,727] 660 710 | 93000/128
Voice (621,667 720 655 | 93000/140
Keyboard (339, 364] 92400 355 | 93000/256
Hyper-per. > 221013 277200 93010 93000

The hyper-period of both the natural and rational
periods solution is three times smaller than that of Xu.
Also, the fixed periods are closer to the nominal period.
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Fig. 6. Impact of the period range width on natural and
rational period solutions, on the Xu’s example (table 3)

When the ranges are narrow, the solution for natural
periods is closer to the lcm of the periods. The solution
for rational periods, is exponentially smaller. Using the
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Fig. 5. Minimal hyper-period with multiple period solutions

def GenerateTaskSet (n,
MIN=100;
MAX=5000;
for 1 in 0...n :

pf= random.uniform(MIN, MAX) ;
- Tolerance
e e s (R

100 4
Listing 1. Random workload generation

Tolerance) :

G WO -

(o)}

same workload, figure 6 shows how the minimal hyper-
period is affected by the range of the flexible periods.
The values for period range equal to 10% correspond to
the values on table 3.

The remaining experiments has been designed using
randomly generated workload, using the code of list-
ing 1.

Figure 7 shows the value of the minimal hyper-period
as a function of the range width, for natural and rational
periods. As expected, tighter period ranges result in
larger hyper-periods. But while the hyper-period with
natural periods grows exponentially, with rational peri-
ods the hyper-period grows polynomially.

Figure 8 compares the hyper-period for natural and
rational periods when increasing the number of tasks.
The lcm of a set of integers shows a strong dispersion
depending how many and how large are the divisors or
each number; when using elastic periods the dispersion
is reduced, but it is still significant as shown by the wide
error bars of the figure 8 (The error bars represent the
smaller and larger value of the 1000 simulations). When
periods can be rational numbers both, the dispersion and
the value of the hyper-period is much smaller.

The resulting values with rational periods are less
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Fig. 7. Natural vs Rational period solution comparison,
constant number of tasks (n = 10)

affected by the number of tasks and the range of the
periods, as shown in figure 9.

As expected from the analytical upper bounds, the use
of rational periods significantly reduces the value of the
hyper-period.

8 CONCLUSION

The hyper-period is an important property with impli-
cations in a wide variety of real-time scheduling issues.
For example, a relatively small hyper-period is beneficial
to table driven schedulers because reduces table size,
as well as its building and maintaining complexity.
Scheduling analysis of priority driven algorithms (RM
and EDF) of complex systems may require to analyse as
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Fig. 9. Hyper-period of rational periods

much events as the number of jobs in the one or two
hyper-periods.

Hyper-period reduction is achieved by using a flexible
period definition. Each task period is defined as a range
of min/max period values. In previous works, the final
selected periods are limited to be natural numbers. In
this work, the resulting periods are allowed to be frac-
tional numbers, which reduces the cost of the algorithm.
And also, the resulting hyper-period is much smaller in
the worst case.

There are several open issues to explore. Study the
behaviour (worst case, average case and analytic model)
of the hyper-period with rational periods in relation
with period range widths. Apply this result to multi-
resources table driven systems (several processor, buses
and devices).
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