Document downloaded from:
http://hdl.handle.net/10251/38608

This paper must be cited as:

Roman Moltd, JE.; Vasconcelos, PB.; Nunes, AL. (2013). Eigenvalue computations in the
context of data-sparse approximations of integral operators. Journal of Computational and
Applied Mathematics. 237(1):171-181. doi:10.1016/j.cam.2012.07.021.

The final publication is available at

http://dx.doi.org/10.1016/j.cam.2012.07.021

C ight
opyng Elsevier

Eigenvalue Computations in the Context of Data-Sparse
Approximations of Integral Operators

J. E. Roman*

D. Sistemes Informatics i Computacio, Universitat Politécnica de Valéncia, Cami de
Vera s/n, 46022 Valéncia, Spain

P. B. Vasconcelos

Centro de Matemdtica, and Faculdade Economia, Universidade Porto, R. Dr. Roberto
Frias s/n, 4200-464 Porto, Portugal

A. L. Nunes

Instituto Politécnico do Cdvado e do Ave, Av. Dr. Sidonio Pais 222, }750-833 Barcelos,
Portugal

Abstract

In this work, we consider the numerical solution of a large eigenvalue prob-
lem resulting from a finite rank discretization of an integral operator. We
are interested in computing a few eigenpairs, with an iterative method, so a
matrix representation that allows for fast matrix-vector products is required.
Hierarchical matrices are appropriate for this setting, and also provide cheap
LU decompositions required in the spectral transformation technique. We
illustrate the use of freely available software tools to address the problem,
in particular SLEPc for the eigensolvers and HLib for the construction of
‘H-matrices. The numerical tests are performed using an astrophysics appli-
cation. Results show the benefits of the data-sparse representation compared
to standard storage schemes, in terms of computational cost as well as mem-
ory requirements.

Keywords: iterative eigensolvers, integral operator, hierarchical matrices,

*Corresponding author
Email addresses: jroman@dsic.upv.es (J. E. Roman), pjv@fep.up.pt (P. B.
Vasconcelos), anunes@ipca.pt (A. L. Nunes)

Preprint submitted to J. Comput. Appl. Math. January 24, 2014

numerical libraries

2010 MSC: 65F15, 65F50, 65R20, 65Y20

1. Introduction

Computing a few eigenvalues (and corresponding eigenvectors) of matri-
ces arising in large-scale scientific computing applications can be challenging.
In the last decades, very effective iterative methods have been devised to ap-
proximate the eigenspace associated to any part of the spectrum. Examples
of such techniques are restarted Krylov methods and preconditioned eigen-
solvers such as Jacobi-Davidson [1]. Also, these methods are progressively
taking shape as high-quality implementations in software libraries such as
SLEPc, the Scalable Library for Eigenvalue Problem Computations [2], thus
enabling application programmers to cope with challenging problems coming
from a wide range of applications.

Libraries such as SLEPc try to make problems computationally tractable
by combining two main ingredients: (i) exploiting sparsity of the matrices,
and (ii) exploiting parallelism.

Sparsity of matrices is a desirable property that appears in the context
of partial differential equations with standard discretization techniques such
as the finite element method. This situation is very common in practice,
and allows iterative methods to be competitive by benefiting from the cheap,
linear-cost matrix-vector products. However, there are cases where the prob-
lem is formulated as an integral equation, either from the very nature of the
problem or from a partial differential equation being formulated in boundary
integral form. In these cases, sparsity of matrices is not guaranteed, so in
principle full (dense) storage must be used, with the consequent blow-up in
computational cost. The concept of hierarchical matrix (or H-matrix) was
introduced by Hackbusch and co-workers [3, 4] with the aim of providing a
cheap representation for such class of matrices. The main idea is to build
a hierarchical decomposition of the matrix in blocks, where most of the off-
diagonal blocks are represented as the product of two low rank matrices. The
result is a data-sparse storage scheme, where the memory requirement for a
square matrix of dimension n is only O(nlogn). By reducing the computa-
tional cost to linear-logarithmic complexity, iterative schemes are attractive
again. Furthermore, the H-matrix representation also allows for inexpensive
computation of some operations that would otherwise be prohibitive, such
as matrix inversion.

In this contribution, we concentrate on the use of H-matrix representation
in the context of eigenvalue computations, similarly to [5]. Our main focus
here is on using freely available software tools, in particular SLEPc for the
eigensolvers and HLib [6, 7] for the H-matrix representation. Numerical
experiments are performed on a weakly singular integral operator, whose
discretization leads to a matrix that can be large.

Regarding parallelization, the other important ingredient mentioned be-
fore, it becomes less critical for the case of H-matrix computations, due to
the reduced computational cost (compared to dense storage). However, it is
still desirable whenever the problem size grows considerably. In this work,
we will make use of parallelization only naively.

We consider an eigenvalue problem, issued from an integral formulation
of a transfer problem in stellar atmospheres [8, 9], with operator T': X — X,
X = L'([0,7*]), defined by

*

(Tx) (1) := / g(t,0)x(0)do, T€[0,77], (1)
0
where 7* is finite, and with kernel
w
g(r,0) =S Bi(lr —a]). (2)

The kernel, which is weakly singular, is defined through the first exponential-
integral function, the first of the sequence of functions [10]

E, (1) = / T 4y s s 0,0 > 0, (3)
1 i
and depends on the albedo, w € [0, 1], considered in this work as a constant.
To solve the eigenproblem

Te = Ap (4)

with A £ 0 and ¢ # 0, ¢ € X, we consider a class of operator approximations
for which the range is a finite dimensional subspace of X. A finite rank
approximation 7, of T" is constructed by considering a family of grids (7, ;)
on [0,7*]. For x € X we set

n
J=0

Tn,j
1
<$, 6:;7j> = T——Tl / l’(O’)dO’,
n, n,J—
J J -

where e, ; = 1 if 7 € |7, j_1, T ;[and 0 otherwise. A bounded n-rank projec-
tion onto the subspace X,, = span{e,; :j =1,...,n} is defined by

n

T = Z(x,ez’ﬁen,j,

J=1

and
T,x=m,Tx.

To obtain a matrix representation of
Topn = Onpn (5)
the spectral problem for T}, is then reduced to an n X n matrix eigenproblem
Az, = 0,1,, (6)

where A, (i,) := (Ten;, €} ;). See [11] for additional details.

In section 2 we discuss several strategies for storing the discretized oper-
ator A,,, including the H-matrix representation. Section 3 provides a brief
overview of iterative solution methods for the partial eigenvalue problem. In
section 4 we provide details specific to our implementation, and in section 5

we show the results of some numerical experiments.

2. Matrix Representations of the Discretized Operator

In this section, we discuss several strategies for representing matrix A,,.
We start by showing the formula used in the standard dense storage, and
then we move to the data-sparse representation, which can be implemented
in various flavours.

2.1. Explicit Computation and Storage of Matriz Elements

The generation of A,, for large n is very time consuming, being often more
expensive than the computation of the solution of the eigenvalue problem
itself. For the present kernel,

o w Tn,i Tn,j
An(l’]) :2(7-77,71 - Tn,’i*l) /Tn,i—l /T\n,j—l El <‘7_ B O-D do-d’r (7)

= (= E3(|Tni — Tngl) + Es(|Tnio1 — Tujl)+

2(7—n,i_7—n,i71) Z %j
= +E3(|Tni — Tnj-1l) — E3(|Tnic1 — Tng-1l)),
@[l + —L— (B3 (Tn; — Tni-1) — 3)), i=]

Tn,i—Tn,i—1

(8)

For each (1, j), four evaluations of the function Fj are required. There is
a clear decay in magnitude away from the diagonal, depending on 7* and on
n: for constant values of the former, smaller values of the latter imply faster
decay from the diagonal. The idea of zeroing out all entries with magnitude
less than a certain tolerance to avoid working with dense matrix storage was
investigated in [12], and a theoretical treatment validated this approach for a
required precision [13]. Nevertheless, this strategy requires the computation
of every matrix entry in order to evaluate its magnitude, since an a priori
determination of the maximum bandwidth is not possible.

Apart from the high generation cost, the main drawback of dense (or
banded) storage is that operations such as matrix-vector products are ex-
pensive. As discussed previously, data-sparse representation such as the H-
matrix scheme may be useful to tackle this kind of problems.

2.2. Data-Sparse Representation

Grounded on the notion of distance between two subsets of an index set,
an admissibility condition is defined. From this condition test, it is decided
whether certain blocks of the matrix can be computed approximately and
stored in a special format, leading to less memory and computational costs.

Let Z = {1,...,n} be the set of indices of the basis functions e, ;, and let
t and s be two subsets of Z where a = | J,., supp e, and 3 = UjES Supp €n,;
are the corresponding domains.

Beginning with the root of the tree T7.z, that is Z x Z, it is split up
in four and an admissibility condition (ensuring exponential convergence) is
tested (see [14]):

diam(«) < ndist(a,), 9)

for n > 0 fixed. When a block is admissible, that is, the corresponding do-
main « X 3 is admissible, the division is stopped and a low rank approxima-
tion is used to represent the block; otherwise, the division process continues
recursively up to a given minimum size.

A matrix is stored in H-matrix representation if, given a block cluster
tree for an index set Z of cardinality k, the sub-matrices corresponding to
admissible leaves are stored in the factorized form ABT € R™® with rank

at most k, A € R™* and B € R***. The sub-blocks of inadmissible leaves
are stored as dense matrices. This is accomplished by replacing the kernel
g(1,0) by a degenerate approximation g(7, o), such that the integration with
respect to the different variables is segregated

g(r,0) = fo(r)h,(0). (10)

In this work, the process of building the cluster tree is undertaken by HLib
6, 7], which, as already mentioned, enables matrix operations of almost lin-
ear complexity, being therefore particularly adequate for large dimensional
problems. Alternatively, AHMED (Another software library on Hierarchi-
cal Matrices for Elliptic Differential equations) could be used. A complete
reference for H-matrices as well as for this library is [15].

With the H-matrix representation, it is possible to realize common com-
putations with linear-polylogarithmic complexity rather than quadratic or
cubic cost. For instance, the multiplication of an n x n H-matrix by a vec-
tor requires about 4n log, n floating-point operations, the (approximate) LU
decomposition about 67 login operations, and 2nlog, n operations for the
backsolves. See [3, 4] for additional details on H-matrix arithmetic.

Degenerate approximations can be built in different ways, for instance,
based on polynomial interpolation or Taylor series expansion. Another ap-
proach consists in computing a low rank approximation from an explicitly
built matrix block by means of a singular value decomposition. We next
describe these three approaches in turn.

2.2.1. SVD

A singular value decomposition (SVD) on each admissible block, with
already generated entries, can be used to preserve the most valuable infor-
mation and discard the rest. The resulting rank-k approximation can be
expressed as

k
ABT = Zupapva, (11)
p=1

where ¢, are the singular values (in descending order of magnitude), and
u, and v, are the corresponding left and right singular vectors, respectively.
The rank, k£, can be chosen to be a fixed value, or alternatively to be set
dynamically on each block, based on a prescribed tolerance e. In the latter

6

case, the condition o > € > o441 holds. In computational terms, the cost
to obtain the H-matrix is high since the entries of every admissible block
must be explicitly generated first, in the present case through (8), prior to
the singular value decomposition. Nevertheless, all the computations done
afterwards can be performed cheaply.

2.2.2. Series Expansion

For the considered problem, the derivatives of the kernel function can be
derived analytically (elegantly, by means of a recursive definition [10]). This
allows for the use of truncated Taylor series as a degenerate approximation
for the kernel of the integral operator.

For the inadmissible blocks, the entries of the matrix are computed ac-
cording to (8).

If the admissibility condition holds, the kernel g(7,0) is replaced by its
truncated Taylor series, according to (10) with f,(7) = (7 —19)” and h,(0) =

8T g(70,0). Here, we take 7y as the midpoint of the « interval.

The matrix entries G fo fo enig (T,0) e, jdodr for (i,7) € t x s will
be approximately computed by:

:/ / €n,if (T,0) e, ;dodr

/ / emep o)en ;dodr
_Z/ enifolT dT/T enjhy(o)d

,00\

Aip BjP

The sub-matrix é|txs .= ABT where A € R>{0k=1} " B g |R9x{0 k1)
and A;, = fT’” f,(T)dr and B, = fT"J 1 h,(c)do, has rank at most k.
Now, we Wlll derive analytical expressions for A;, and B;,.

Proposition 1. The entries of matriz A can be computed as

1 Tt 1 n,g pi n,g—1 a
Ay = / (= 70)’dr = <<T: o) (i =))

)

Tn,i—1
(12)
where hn,i = Tn,i — Tn,i—1-

Proof. Immediate. O

Before deducing the formula for the entries B;, of the matrix B, one needs
to obtain the expression for 02¢(m, o).

Proposition 2. The partial derivatives of the kernel g(t,0) of (2) with
respect to the first argument are

S X ()T e o>
Py(r,o) =4 Lk) S (13)
_% 2:1 (_1)p 1%(7_;“ o<T

Proof. We know from [10, §5] that

o] e—zt d e ?
Ei(z)= /1 ; dt and EEl (2) = —Ep(z) = — —

Starting with the first derivative dlg(r, o),

—(t—0o)

5 o<T w e 1Tl

0-9(1,0) = %&-El (|t —0o]) = { 1% =—— (for 7 # o).

— o>T 2 T17—0

_wme !
2 T7—0

1. For o > 7, after some initial calculations, we obtain

o eT—o eTo
af.g(r,a):—;(-)2),

T—0 (t1—0

w [e 2eT7° 2eT7°
D3g(r,0) = —= (— +) :
g() 2 T—0 (7__0_)2 (7__0_)3

and, generalizing, we reach the expression for any value of p

og(r,0) = —% Z (_1)16*1 (p—1! e°

2. For ¢ < 7, analogously to the previous case, the following expression
is obtained

Ng(r,0) = —%Z (_1)0—1 (p—1) e 7te .

With the above result we can readily obtain the expression for the entries
of matrix B, by evaluating the derivatives in 7 = 7.

Proposition 3. The entries of matrix B can be computed as

% g:l m [F (1 — k, —To + Tn,jfl)

B — (1 — k?, —T0 + Tn,j)] , Tn,j—1 > To, Tn,j > 70
— - -1
" —5 2 (p(p)—k‘)! O — k70— Tny)

—I (1 — k’,TO — Tn,j—l)] s Tn,j—1 < To, Tn,j < 7o

Proof. First recall the incomplete Gamma function

o8] e—t
F(a,x):/ tliadt.

1. For 7, j_1 > To, Tnj > To -

Tn,]' 1
B, = / —‘8fg(7'0,a)da

Tn,j—1
P k-1 - _
w (—1) /T”’] ene
- _ ~ 7 do
2 kz:; pp—Fk)! Tn,j—1 (_1)k (=70 + U)k
T — 1
= — ——— T A=k, =10+ Tn;-1) —T (A —k,—70+ 70y)] -
o ' Y 5J) sJ
2 e p(p—k)!

2. For Tnj—1 < T0y Tnj < T0:

Tn,j 1
B;, = / —lafg(To,a)dU

Tn,j—1

P —1 , — (10—
o (—1)” Tnj e~ (T0—0)
= —— JE A — —d
2 Zp(p—k)!/ e

Tnjor (To = 0)
4 p—1
w —1
= —E Z L [F (1 — k,TO — Tn,j) — F (1 — k,TO — Tn,j71>] .
It is important to remark that the entries satisfying 7, ;-1 < 7 and

Tnj > To do not comply with the admissibility condition and are computed
via (8). For these cases, the previous integral is divergent. O

2.2.3. Polynomial interpolation

As mentioned previously, an alternative to the Taylor series approach for
obtaining a degenerate kernel is to use polynomial interpolation.

Let (z,),_. . Pe a family of interpolation points in o (when dealing with
B the procedure is analogous) and consider (£,) ., to be the correspond-
ing Lagrange polynomials that satisfy 7

p=0,..

,Cp (339) = 5p79, Vo e {0, ceey]{3}

We interpolate the kernel and get its approximation in the form (10), for
fo(7) = L, (7) and hy(0) = g (z,,0).

It is necessary to find a set of interpolation points and corresponding
Lagrange polynomials for each cluster. The former can be chosen to be the
k-th order Chebyshev points, which, for an interval [yi, y»], are given by

. .:y2+yl+y2—ylcos 2p+1 .
P 2 2 2(k+1))

The corresponding Lagrange polynomials can now be written as

k
Tr — Ty

L,(x)= H pr— Vo € [yr,yo] -
0=0,02p P 0

To minimize the error when approximating the kernel g by its interpolant
g, it turns out that the interpolation should be applied differently to the two
arguments of the kernel [14], considering the diameter of the two subdomains:

§(r,0) = ZIZ:OQ (z,,0) L, (1), if diam(a) < diam(f)
’ Zﬁ:o g(r,2,) L, (0), otherwise

The admissibility condition (9) is implemented such that we take for the
left hand side the min{diam(«), diam(3)}. As a consequence, the entries of
matrices A and B from the factorization ABT are computed using

1 Tn,i Tn,j
- / L,(r)dr and B, = / g(z,,0)do
(Y Y

Tn,j—1

Ay =

if diam(«) < diam(5), and using

10

A, = / g(7,z,)dr and B;, = hi ' L,(c)do
Tn,i—1) JTh,j—1
when diam(f) < diam(«).
Similarly to the previous subsection, these entries can be computed an-
alytically. However, and to illustrate the flexibility of this approach, these
integrals will be computed using numerical quadrature formulae for the re-

sults to be presented in section 5.

3. Eigenvalue Computations

This paper is concerned with the computation of a few eigenvalues and
eigenvectors of matrix A,, that is, to obtain a partial solution of (6), by
means of iterative eigensolvers. In this section, we describe the methods very
briefly, focusing on the required matrix operations that must be available in
the implementation of H-matrices.

3.1. Iterative Figensolvers

There exist a large variety of iterative methods for the partial solution
of eigenvalue problems. A detailed description can be found in [1]. Here we
restrict our discussion to two families of methods, namely Krylov methods
and Davidson methods.

Given the problem formulation

Az = Az, (14)

where there are n eigenvalues A\ and eigenvectors x # 0 that satisfy the
equation, the goal is to find a subset of the eigenvalues in a given region
of the spectrum (for the moment, we consider the simplest case where we
seek the largest magnitude eigenvalues). Iterative eigensolvers are based on
iteratively improving a subspace V in such a way that it eventually contains a
good approximation of the eigenspace associated to the wanted eigenvalues.

Let V € R™™ m < n, be a basis of V with V'V = I, then the Rayleigh-
Ritz projection method computes H = VT AV and uses its eigendecomposi-
tion HY = Y © to obtain approximate eigenpairs (6;,z; = Vy;) of A.

Krylov methods use the so-called Krylov subspaces associated with matrix
A and a given initial vector vy,

Ko (A, v1) = span{vy, Avy, A%vy, ..., A" o} (15)

11

where without loss of generality we assume that v; has unit length and is the
first column of V.

The method of Arnoldi is an elegant algorithm that computes an or-
thonormal basis of the Krylov subspace and at the same time computes
the projected matrix H, all this in an efficient and numerically stable way.
In brief, the Arnoldi algorithm computes the m columns of V' sequentially,
where column v,y is the result of orthogonalizing Av; with respect to pre-
vious columns, and normalizing. The orthogonalization is carried out by
means of a Gram-Schmidt procedure, that removes all the components in
the directions of vy, ..., v;. The computed quantities satisfy a relation of the
form

Avm = VmHm + 5Um+16£7 (16)

where H,, is an upper Hessenberg matrix, i.e., h;; = 0 for ¢ > j+ 1. The last
term of the Arnoldi relation is the residual and gives an indication of how
close is KC,,, (A, 1) to an invariant subspace. In particular, 8 is used to assess
the accuracy of the computed Ritz pairs. See [1] for additional details.

With Arnoldi, Ritz pairs will converge very fast provided that the initial
vector vy is rich in the direction of the wanted eigenvectors. However, this
is usually not the case and consequently many iterations would be required,
but this cannot be allowed in a practical implementation in order to keep the
storage requirements and the computational cost per iteration bounded. A
workaround is to do a restart of the algorithm, that is, stop after m iterations
and rerun the algorithm with a new v; computed from the recently obtained
spectral approximations. An added benefit of this strategy is that it can
be useful for driving convergence of the eigensolver towards a part of the
spectrum different from the one targeted naturally by the method.

A very effective and elegant restart mechanism is the Krylov-Schur method
[16]. It is defined by generalizing the Arnoldi decomposition (16) of order m
to a Krylov decomposition of order m,

AV, = Viu By 4 Vigabi i1, (17)

in which matrix B,, is not restricted to be upper Hessenberg and b,,, is
an arbitrary vector. Krylov decompositions are invariant under (orthogonal)
similarity transformations, and this fact enables the truncation of the de-
composition, compressing the subspace to a smaller dimension while keeping
the relevant eigeninformation.

So far, the only operation required to matrix A is the matrix-vector prod-
uct, which can be carried out very efficiently in the H-matrix representation.

12

3.2. Computation of Eigenvalues around a Given Target

The Krylov-Schur method could in principle be used to compute any
part of the spectrum, by keeping the wanted eigenvalues in the truncated
factorization. Discarding the rest of the factorization has the effect of filter-
ing out the information associated to the unwanted eigenvectors. However,
when computing eigenvalues in the interior of the spectrum, this filter is not
powerful enough, and components associated to extreme eigenvalues keep on
appearing, thus hindering convergence to the wanted ones.

The simplest solution to compute eigenvalues closest to a given target,
o, is to use a spectral transformation, in such a way that eigenvalues are
mapped to a different position while eigenvectors remain unchanged. One
such transformation is the shift-and-invert technique, that solves the problem

(A—ol) o = pn, (18)

where the transformed eigenvalues satisfy the simple relation y = (A — o)~
Eigenvalues A\ closest to the target become dominant in the transformed
spectrum, so Krylov methods will have a fast convergence. This can be
implemented by simply replacing the action of A by that of (A — ol)7}
in the Krylov subspace expansion, that is, by solving linear systems with
(A—ol) whenever a matrix-vector product is required. These linear systems
must be solved very accurately, since Krylov methods can be very sensitive
to numerical error introduced in the computation of the Krylov subspace,
so in most applications a direct linear solver will be required, rather than
an iterative method. It is generally claimed that the main drawback of the
shift-and-invert technique is the high cost associated to direct linear solvers,
since the memory requirements and computational effort can be very high
for large, sparse matrices. In the case of the H-matrix representation, this
downside disappears because computing the factorization has much smaller
cost, both in terms of storage and operations, as well as the corresponding
triangular solves.

An alternative to the spectral transformation is the use of a precondi-
tioned eigensolver such as Jacobi-Davidson. These methods expand the sub-
space in a different way, attempting to make the whole computation more
robust with respect to numerical error in the application of the operator.
This allows the use of iterative linear solvers such as GMRES in the so-called
correction equation. Nevertheless, this does not seem to be the best approach
in the context of H-matrix representation, in view of the efficiency of matrix

13

factorization. From a practical perspective, to implement this kind of meth-
ods it is required to be able to build a preconditioner for matrix A, which
can be as simple as its diagonal.

4. Implementation Details

In this paper, we illustrate the use of standard, freely available soft-
ware tools for the assembly of numerical applications. In particular, we
demonstrate a SLEPc-based code where the H-matrix representation is im-
plemented by plugging functionality from HLib. We describe these tools
below. In a previous work [17], SLEPc was already used for solving the
eigenproblem described in section 1, with the approach of explicitly storing
the matrix elements.

SLEPc, the Scalable Library for Eigenvalue Problem Computations [2,
18], is a software package for the solution of large-scale eigenvalue problems
on parallel computers. It can be used to solve standard and generalized
eigenvalue problems, as well as other types of related problems such as the
quadratic eigenvalue problem or the singular value decomposition. SLEPc
can work with either real or complex arithmetic, in single or double precision,
and it is not restricted to symmetric (Hermitian) problems. It can be used
from code written in C, C++4, and Fortran. In this work, we do not use the
parallel capabilities of SLEPc.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scien-
tific Computation, [19]), a parallel framework for the numerical solution of
partial differential equations, and it uses primarily the basic data structures
such as those for representing vectors and matrices.

SLEPc provides a collection of eigensolvers, most of which are based on
the subspace projection paradigm. In particular, it includes a robust and
efficient parallel implementation of Krylov-Schur method described in the
previous section. Several Davidson-type solvers are included as well, in par-
ticular Generalized Davidson and Jacobi-Davidson, with various possibilities
for the computation of the correction vector. In these solvers, the user can
easily select which preconditioner to use. Apart from eigensolvers, some
spectral transformations such as the shift-and-invert technique of (18) are
available, where the user can compute interior eigenvalues with the aid of
linear solvers and preconditioners included in PETSc.

The solvers in PETSc and SLEPc have a data-structure neutral imple-
mentation. This means that the computation can be done with different ma-

14

trix storage formats, and also even with a matrix that is not stored explicitly.
By default, a matrix in PETSc is stored in a parallel compressed-row sparse
format, where each processor stores a subset of rows. For implementing a
matrix-free solver with so-called shell matrices, the application programmer
has to create one of such matrices and define its operations, by binding a
user-defined subroutine for each operation. Only the operations required by
the actual computation need to be set, so in the simplest case it is sufficient to
implement the matrix-vector product. For more advanced functionality, e.g.,
preconditioning, other operations are required as well. We use this feature
to interface our code to HLib.

HLib [6, 7] is a library for hierarchical matrices that was written by Lars
Grasedyck and Steffen Borm. It is written in C and uses BLAS and LAPACK
for lower-level algebraic operations. The library contains functions for H- and
H2-matrix arithmetics, the treatment of partial differential equations and a
number of integral operators as well as support routines for the creation of
cluster trees, visualization and numerical quadrature.

For building the H-matrix we use HLib’s supermatriz data structure,
and recursively compute the cluster tree and populate it with admissible
or inadmissible blocks, as described in section 2. We have also developed
a straightforward parallel version of the H-matrix generation, based on the
OpenMP API for shared-memory parallel programming. In particular, we
follow a tasking approach with the OpenMP task directive [20], where each
recursive call constitutes a new task.

In our code, we have implemented three operations of the shell matrix:
matrix-vector multiplication, shift of origin A := A 4+ o, and extraction of
the diagonal. These are simply calls to the corresponding HLib functions,
appropriately wrapped according to PETSc convention. In addition, we have
also implemented a shell spectral transformation in SLEPc that similarly
implements a specialized version of the shift-and-invert technique of (18) by
means of HLib’s LU decomposition.

A final note about the implementation is that both the exponential-
integral and incomplete Gamma functions are available via GSL, the GNU
Scientific Library.

5. Numerical Experiments

In this section we show results for some numerical experiments that aim at
illustrating the benefits of the H-matrix representation with respect to con-

15

ventional storage, both in terms of performance and memory requirements.

The tests have been executed on a Linux workstation with an Intel Core
i7 950 processor at 3,06 GHz with 8 MB of L3 cache memory and 8 GB of
main memory. This processor has 4 cores with hyper-threading technology (a
total of 8 virtual processors). The software configuration is based on Ubuntu
Linux 10.04, with GCC 4.4.3 (the GNU C compiler, including support for
OpenMP 3.0), PETSc 3.1, SLEPc 3.1, HLib 1.3, LAPACK 3.2.1, and GSL
1.13.

We present results when solving the transfer problem in stellar atmo-
spheres described in section 1, equations (1)—(3). For all the tests, we chose
to use a fixed value of the 7" parameter, in particular 7* = 4000. We also
set a constant value for the rank and minimum size of admissible blocks
(degree=6 and bound=80, respectively), as well as n =1 in (9).

In Table 1 we show the CPU time required for the matrix generation
phase with dimension n varying from 4000 to 256000. With a uniform grid
the resulting matrix is symmetric and the code takes this fact into consider-
ation: the generation time for the symmetric case is almost half of the time
required for the non-symmetric counterpart. The H-matrix approach, either
with Taylor or Lagrange approximations for computing the admissible blocks,
represents a significant gain in generation time compared with the version
with conventional sparse storage (note that in the sparse version we compute
all matrix elements and then decide whether they are too small to be stored).
The time reported for the SVD version includes the computation of matrix
elements as in the sparse version as well as the time required for low rank
approximation through SVD decomposition (with LAPACK). Although this
variant is the most expensive one, if the problem is to be solved several times
one may consider this approach since it allows both for a fixed rank-£ and
for a rank satisfying a prescribed tolerance, as mentioned in section 2. For
large values of n the CPU time required to compute the entries is prohibitive
for the sparse implementation. The slight differences reported for Taylor and
Lagrange result from the fact that in the latter case we implemented numer-
ical quadrature while for Taylor we used the formulae presented in section 2;
the computation of the incomplete Gamma function at the required points
is skewing the results a bit. For increasing problem size there is a constant
growth factor less than three for these two approaches while the problem size
is quadrupling. The growth factor respects the estimated nlog(n) asymptotic
cost, in contrast with the sparse version that follows n?. Some values were
not reported due to their high value.

16

Table 1: CPU time (in seconds) for the generation phase for 7% = 4000 and varying n,
with a uniform (left) and non-uniform (right) grid. The results correspond to bound==80
and degree=6.

Uniform Non-uniform
n | Taylor Lagrange SVD Sparse | Taylor Lagrange SVD
4000 | 2.1 2.0 20.1 15.3 3.9 3.5 38.6
8000 | 6.1 5.7 99.6 61.8 10.4 9.4 182.7

16000 | 16.7 15.6 536.0 2454 29.5 26.9 927.2

32000 | 49.6 47.0 3505.0 982.1 85.4 78.9 5630.7 1972.0

64000 | 140.6 133.5 - - 2454 227.2 =
128000 | 394.4 374.4 - - 690.3 637.9 -
256000 | 1019.8 958.3 - - 1783.4 1616.1 -

Table 2: Number of stored elements in the case of dense, sparse and H-matrix represen-
tation, for the non-uniform grid case in Table 1.

n | Dense Sparse H-matrix Compression
4000 | 1.6-10" 2.9-10° 1.9-10° 12.0%
8000 | 6.4-107 1.2-10% 4.2-10° 6.5%

16000 | 2.6-10% 4.5-10° 9.1-10° 3.5%
32000 | 1.0-10° 1.8-10" 1.9-107 1.9%
64000 | 4.1-10° - 4.1-107 1.0%
128000 | 1.6 - 10 - 8.6-107 0.5%
256000 | 6.6 - 101° - 1.9-108 0.28%

Table 2 complements the previous comments, showing the number of
stored elements for all approaches. Note that the actual memory require-
ments for sparse storage are quite large, since the space needed for indices
is considerable, while for the H-matrix representation the overhead in neg-
ligible. The last column shows the compression factor for H-matrix format
as a percentage of the full (dense) storage, revealing noteworthy gains for
increasing values of n.

Table 3 reports on the CPU time for the solution phase using Taylor, La-
grange and SVD data-sparse representation as well as the sparse approach.
Since the spectrum is tightly clustered (see Table 4 for the five largest eigen-
values with relative tolerance on the residual of 1077), the shift-and-invert
technique is required to enable convergence of the Krylov-Schur method. In
the following, an LU factorization on the H-matrix representation is used in

17

Table 3: CPU time (in seconds) for the solution phase for 7% = 4000 and varying n,
with a non-uniform grid (non-symmetric case). The results correspond to bound=80 and
degree=6. Times reported for the factorization are included in those for the solution.

Solution Factorization

n | Taylor Lagrange SVD Sparse | Taylor Lagrange
4000 | 0.3 0.3 0.3 0.2 0.3 0.3
8000 | 0.5 0.5 0.5 1.1 0.4 0.4
16000 1.0 1.1 1.2 8.2 0.8 0.9
32000 | 2.6 2.7 2.9 66.3 2.1 2.3
64000 | 6.5 6.8 - - 5.6 5.9
128000 | 16.4 17.3 - - 14.5 15.4
256000 | 47.5 49.3 - - 39.3 41.3

the linear solver required in the application of the shift-and-invert operator.
The factorization is the most costly operation but is performed only once,
while triangular solves are required at each iteration of the eigensolver. In
the table we show the factorization time as well as the total solution time.
For these tests, we used a Krylov basis of dimension 16, and with this size
the method does not need to restart (except for the matrix of n = 256000
where 2 restarts are required).

As expected, the computation of eigenpairs with the implementations of
the data-sparse representation is very fast compared to the sparse storage,
which shows a fast degradation in performance for increasing dimension. The
SVD approach is competitive with Lagrange and Taylor approximations, and
results for SVD on large values of n are not reported only due to the high
generation time. As mentioned above, the present problem is hard to solve
since for increasing values of n, and for fixed 7*, the eigenvalues tend to
become more and more clustered. For problems with better separation of
the spectrum, the shift-and-invert step can be avoided and consequently its
computational cost.

As mentioned at the end of section 3, Davidson methods do not seem
too appropriate in the context of hierarchical matrices, since the shift-and-
invert technique is very cheap in this case. However, we wanted to do some
experiments. With Jacobi (diagonal) preconditioning, we were able to solve
the problem (although after many iterations) by tuning the parameters of
SLEPc¢’s Davidson solver. For instance, for n = 8000 with uniform grid, the
response time is 15.5 seconds, as opposed to 0.5 seconds with shift-and-invert

18

Table 4: Computed eigenvalues for the case of a uniform grid with n = 16000 and 7* =

4000.
Eigenvalue

Taylor

Lagrange

SVD

0.749999843422
0.749999374216
0.749998592208
0.749997497401
0.749996089801

0.749999843459
0.749999374253
0.749998592245
0.749997497438
0.749996089838

0.749999843598
0.749999374391
0.749998592383
0.749997497576
0.749996089976

Table 5: Execution time (in seconds) for the matrix generation in parallel (for different
number of threads, p) corresponding to the two longest times in Table 1 (non-uniform
grid, Taylor with n = 256000 and SVD with n = 32000).

Taylor 256000 SVD 32000
p | Time Speedup | Time Speedup
1] 1783.4 - 5630.7 -
2| 891.9 1.99 3097.2 1.82
4| 446.0 3.99 1983.4 2.83
6 | 381.0 4.68 1875.1 3.00
8| 332.9 5.35 1834.0 3.07

Krylov-Schur. A much powerful preconditioner is to use the LU factorization,
but then the behaviour is almost identical to shift-and-invert. Again, we
remark that in other applications with a different spectrum, Davidson solvers
could be more useful than in this case.

Regarding parallelization of the generation phase, the multi-threaded ver-
sion was analyzed up to 8 threads. Table 5 shows the measured execution
times along with the achieved speedups, for the two longest times in Table
1 (non-uniform grid, Taylor with n = 256000 and SVD with n = 32000).
In the case of the Taylor approximation, speedup is virtually ideal up to 4
threads and decays significantly later. This can be attributed in part to the
fact that only 4 physical cores are available. In the case of SVD generation,
speedup is much worse, thus revealing a problem with load imbalance, due
to the fact that the high cost of the decomposition (cubic in the matrix block
size) makes parallel tasks differ wildly in duration.

19

6. Conclusion

In this paper, we use iterative eigensolvers to compute a few eigenele-
ments of an integral operator appearing in a radiative transfer equation in
stellar atmospheres. The computation is intensive both in time and memory
requirements, since large dimensional cases are to be treated. The genera-
tion of the matrix is expensive since it requires multiple evaluations of the
exponential-integral function, and the solution phase is costly as well, since
the shift-and-invert technique is necessary due to the clustering of the eigen-
values. The H-matrix representation provided by HLib was integrated in the
SLEPc and PETSc frameworks to tackle these two difficulties. We report
on the numerical low-rank approximations developed, on the details of the
integration of the libraries under consideration, and present a brief explana-
tion of the application problem and its most interesting characteristics. The
combined use of efficient numerical methods and the clever data storage pro-
vides a fast answer, thus enabling the solution of large dimensional problems.
Numerical tests illustrate the success of the proposed solutions.

We have addressed the issue of parallelization only partially, with a
straightforward approach. It remains as a future investigation the exten-
sion of the parallelization to the solution stage as well. Another possible
extension is the use of the more memory-efficient H?-matrix format [21].

Acknowledgements. We would like to express our gratitude to Mario Ahues
and Steffen Borm for their valuable comments and remarks.

This work was partially supported by the Spanish Ministerio de Ciencia
e Innovacién under projects TIN2009-07519 and AIC10-D-000600 and by
Fundagao para a Ciéncia e a Tecnologia - FCT under project FCT /MICINN
proc 441.00.

References

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (Eds.), Tem-
plates for the Solution of Algebraic Eigenvalue Problems: A Practical
Guide, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 2000.

[2] V. Hernandez, J. E. Roman, V. Vidal, SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems, ACM Transactions on
Mathematical Software 31 (3) (2005) 351-362.

20

3]

[4]

W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part
[: Introduction to H-matrices, Computing 62 (2) (1999) 89-108.

W. Hackbusch, B. N. Khoromskij, A sparse H-matrix arithmetic. Part
II: application to multi-dimensional problems, Computing 64 (1) (2000)
21-47.

M. Lintner, The eigenvalue problem for the 2D Laplacian in H-matrix
arithmetic and application to the heat and wave equation, Computing
72 (3) (2004) 293-323.

S. Borm, L. Grasedyck, W. Hackbusch, Introduction to hierarchical ma-
trices with applications, Engineering Analysis with Boundary Elements
27 (5) (2003) 405-422.

S. Borm, L. Grasedyck, W. Hackbusch, Hierarchical Matrices, Lec-
ture Note 21 of Max-Planck-Institut fiir Mathematik in den Naturwis-
senschaften, Leipzig (2003).

B. Rutily, L. Chevallier, The finite Laplace transform for solving a
weakly singular integral equation occurring in transfer theory, Journal
of Integral Equations and Applications 16 (4) (2004) 389-409.

M. Ahues, F. D. d’Almeida, A. Largillier, O. Titaud, P. Vasconcelos,
An L' refined projection approximate solution of the radiation transfer

equation in stellar atmospheres, Journal of Computational and Applied
Mathematics 140 (1-2) (2002) 13-26.

M. Abramowitz, I. A. Stegun (Eds.), Handbook of Mathematical Func-
tions, Dover, New York, USA, 1965.

M. Ahues, F. D. d’Almeida, A. Largillier, P. B. Vasconcelos, Defect
correction for spectral computations for a singular integral operator,
Communications on Pure and Applied Analysis 5 (2) (2006) 241-250.

F. d’Almeida, O. Titaud, P. B. Vasconcelos, A numerical study of itera-
tive refinement schemes for weakly singular integral equations, Applied
Mathematics Letters 18 (5) (2005) 571-576.

O. Titaud, Reduction of computation in the numerical resolution of
a second kind weakly singular Fredholm equation, in: C. Constanda,

21

[14]

[15]

[16]

[17]

[21]

M. Ahues, A. Largillier (Eds.), Integral Methods in Science and En-
gineering: Analytic and Numerical Techniques, Birkhauser, 2004, pp.
255-260.

S. Borm, L. Grasedyck, Low-rank approximation of integral operators
by interpolation, Computing 72 (3) (2004) 325-332.

M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Ellip-
tic Boundary Value Problems, Vol. 63 of Lecture Notes in Computational
Science and Engineering, Springer-Verlag, 2008.

G. W. Stewart, A Krylov—Schur algorithm for large eigenproblems,
SIAM Journal on Matrix Analysis and Applications 23 (3) (2001) 601-
614.

P. B. Vasconcelos, O. Marques, J. E. Roman, High-performance comput-
ing for spectral approximations, in: C. Constanda, M. E. Pérez (Eds.),
Integral Methods in Science and Engineering, Volume 2: Computational
Methods - IMSE 2008, Birkhauser, 2010, pp. 351-360.

V. Hernandez, J. E. Roman, A. Tomas, V. Vidal, SLEPc¢ users manual,
Tech. Rep. DSIC-11/24/02 - Revision 3.1, D. Sistemas Informéticos y
Computacién, Universidad Politécnica de Valencia (2010).

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,
M. Knepley, L. C. Mclnnes, B. F. Smith, H. Zhang, PETSc users man-
ual, Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory
(2010).

E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, G. Zhang, The design of OpenMP tasks,
IEEE Transactions on Parallel and Distributed Systems 20 (3) (2009)
404-418.

S. Borm, Construction of data-sparse H2-matrices by hierarchical com-
pression, SIAM Journal on Scientific Computing 31 (3) (2009) 1820
18309.

22

