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Abstract

Plant aminopropyltransferases consist of a group of enzymes that transfer aminopropyl groups derived from
decarboxylated S-adenosyl-methionine (dcAdoMet or dcSAM) to propylamine acceptors to produce polyamines, ubiquitous
metabolites with positive charge at physiological pH. Spermidine synthase (SPDS) uses putrescine as amino acceptor to
form spermidine, whereas spermine synthase (SPMS) and thermospermine synthase (TSPMS) use spermidine as acceptor to
synthesize the isomers spermine and thermospermine respectively. In previous work it was shown that both SPDS1 and
SPDS2 can physically interact with SPMS although no data concerning the subcellular localization was reported. Here we
study the subcellular localization of these enzymes and their protein dimer complexes with gateway-based Bimolecular
Fluorescence Complementation (BiFC) binary vectors. In addition, we have characterized the molecular weight of the
enzyme complexes by gel filtration chromatography with in vitro assembled recombinant enzymes and with endogenous
plant protein extracts. Our data suggest that aminopropyltransferases display a dual subcellular localization both in the
cytosol and nuclear enriched fractions, and they assemble preferably as dimers. The BiFC transient expression data suggest
that aminopropyltransferase heterodimer complexes take place preferentially inside the nucleus.
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Introduction

Polyamines are small aliphatic polycations present in all

eukaryotes, and in flowering plants the most abundant are the

diamine putrescine, the triamine spermidine and the tetraamines

spermine and thermospermine, each of them with specific

biological functions [1]. According to the relevant physiological

roles allocated to polyamines one would expect a stringent control

of homeostasis, and indeed these compounds are subjected to strict

metabolic control by means of elaborated anabolism [2],

catabolism [3] and conjugation pathways [4,5,6]. The polyamine

biosynthesis pathway in plants has received most of the initial

attention in the field, taking advantage of conserved pathways in

other eukaryotic organisms and additional enzymes incorporated

by the cyanobacterial ancestor of the chloroplast. Two alternate

routes for putrescine biosynthesis are therefore present in plants: (i)

the unique among eukaryotes arginine decarboxylation pathway

located mainly in chloroplasts, and (ii) the ornithine decarboxyl-

ation pathway, present also in the rest of eukaryotes, which is

mainly found in the cytosol [2]. Strikingly the ornithine pathway

has lost most of its regulatory components in plants and it is even

totally absent in Arabidopsis thaliana [7]. The arginine pathway for

putrescine biosynthesis consists of three enzymes acting sequen-

tially, namely arginine decarboxylase (ADC; EC 4.1.1.19),

agmatine deiminase/iminohydrolase (AIH; EC 3.5.3.12), and N-

carbamoylputrescine amidohydrolase/amidase (NCPAH; EC

3.5.1.53). After putrescine synthesis, next biosynthetic steps require

the activity of S-adenosylmethionine decarboxylases (SAMDC; EC

4.1.1.50) to provide dcSAM. Putrescine, then, serves as the

acceptor for the dcSAM-dependent transfer of aminopropyl

groups catalyzed by the aminopropytransferases spermidine

synthases (SPDS; EC 2.5.1.16) to produce spermidine. In

Arabidopsis two genes: SPDS1 (At1g23820) and SPDS2

(At1g70310) code for SPDS activity [8] and four genes

SAMDC1-4 (At3g02470, At3g25570, At5g15959, At5g18930) code

for SAMDC [9]. The last enzymatic step of polyamine bio-

synthesis catalyzes the dcSAM-dependent transfer of aminopropyl

groups to propylamine acceptor spermidine, to produce either

spermine by the action of spermine synthase (SPMS; EC 2.5.1.22)

or its natural isomer thermospermine, by the activity of

thermospermine synthase (TSPMS; EC 2.5.1.79). In Arabidopsis

these aminopropyltransferase enzymatic activities are encoded by

single genes, namely SPMS (At5g53120) for spermine synthase [8],

and ACL5 (At5g19530) for thermospermine synthase [10]. In

terms of evolution, it seems that all spermidine synthases evolved
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from a common ancestor prior to the separation between

prokaryotes and eukaryotes, giving rise later to novel activities:

on the one hand independent origins of SPMS in animals, fungi

and angiosperm plants, and on the other hand a change in activity

to TSPMS in both archaea and bacteria that was later horizontally

transferred to plants [11]. Curiously, the independently evolved

SPMS gene in angiosperms clusters closer to spermidine synthases

than its functional metazoan orthologs and far from the ACL5 gene

encoding TSPMS active enzyme. These evolutionary features

correlate with functional data of multiprotein complex assembly,

since protein-protein interactions between aminopropyltrans-

ferases have been described in Arabidopsis for SPDS1, SPDS2

and SPMS, but not for TSPMS [8]. In spite of vast amount of

information with regard to plant aminopropyltransferases [12],

one relevant question that remains unanswered is related to the

subcellular localization of the individual enzymes and the

enzymatic complexes. Here we explore the subcellular localization

of aminopropyltransferase enzymes by immunohistochemistry and

with the use of translational fusions to the green fluorescence

protein (GFP), and we also study the localization of enzyme

complexes by means of gateway-based binary vectors that allow

Bimolecular Fluorescence Complementation (BiFC) studies in

planta. Estimation of molecular weights by gel filtration chroma-

tography support the formation of both homo and heterodimeric

enzyme complexes. From these studies we conclude that Arabidopsis

aminopropyltransferases show a dual cytosol/nuclear localization,

and the heterodimer complexes localize preferentially within the

nucleus.

Materials and Methods

Plant Material
Arabidopsis wild type (Col-0) plants were grown in pots on a mix

of 25% perlite, 25% vermiculite and 50% soil, for two to three

weeks in environmental growth chamber under long-day photo-

period cycles (16 hours light at 21uC and 8 hours dark at 19uC)

with a light intensity of 110 mmol m22 s21. Arabidopsis cell line T87

was cultured as previously described [13]. Nicotiana benthamiana

seeds were sown on a mix of 50% vermiculite and 50% soil and

grown for three to four weeks in controlled greenhouse conditions

under long-day photoperiod cycles (16 hours light/8 hours dark) at

22uC61uC.

Design of BiFC Vectors and Cloning Procedures for BiFC
and GFP Translational Fusion Constructs in Binary
Plasmids

To create the gateway destination vectors pYFN43 and

pYFC43, coding sequences of the YFP encoding gene were

PCR amplified from plasmids pBiFC-YN155 and pBiFC-YC155

[14] using the following primer pairs:

59-GGGGTACCATGGTGAGCAAGGGCGAG-
GAGCTGTT-39 and

59-GGGGCGCGCCAAGAGATCCACCTCCACCAGATC-

CACCTCCACCAGATCCACCTCCACCGGC CATGATATA-
GACGTTGTGGCTGTTGTAGTT-39 to amplify the N-termi-

nal sequence of YFP corresponding to residues 1 to 154 including

a flexible linker shown in italics, underlined cloning sites Kpn I and

Asc I and coding sequence in bold. The C-terminal sequence of

YFP corresponding to residues 154 to 240 was PCR amplified

using the primer pairs:

59-GGGGTACCATGGCCGACAAGCAGAAGAACGG-

CAT-39 and

59-GGGGCGCGCCAAGAGATCCACCTCCACCAGATC-

CACCTCCACCAGATCCACCTCCACCGGC CTTGTA-

CAGCTCGTCCATGCCGAGAGTGAT-39 with the flexible

linker in italics, underlined cloning sites Kpn I and Asc I and

coding sequence in bold. Both PCR products were cloned after

Kpn I-Asc I restriction into plasmid pMDC43 [15] after removing

the GFP6 coding sequence with Kpn I and Asc I to generate the

plasmids pYFN4 and pYFC43. Both plasmids contain attR sites

that allow the direct cloning by recombination to yield ‘in frame’

fusion of appropriate coding sequence with attL flanking sites to

either the N-terminal fragment of the YFP protein (residues 1–154)

in pYFN43, or to the C-terminal fragment of the YFP protein

(residues 154–240) in pYFC43. To enhance folding of the fusion

proteins a flexible linker was introduced between the coding

sequence of either fragment of YFP and the attR recombination

site. Sequences can be retrieved and plasmids can be requested

from the web page http://www.ibmcp.upv.es/

FerrandoLabVectors.php. All clones were introduced into desti-

nation vectors pYFN43 and pYFC43 by LR gateway-based

recombination with entry clones. Positive colonies were selected

with 50 mg/mL amikacin (Sigma, Saint Louis, Missouri, USA).

Entry clones containing the protein-protein interaction coding

sequences from AKIN10 and AKINb2 were obtained as follows.

AKINb2 partial coding sequence was subcloned from a previous

construct in pPE1000 [13] as a Nco I-Bgl II (blunt) fragment into

pENTR11(Invitrogen, Life Technologies, Grand Island, NY,

USA) digested with Nco I-Eco RV. AKIN10 coding sequence from

a pGEM vector [13] was subcloned as Eco RI-Sal I (blunt)

fragment into pENTR3C (Invitrogen, Life Technologies, Grand

Island, NY, USA) Eco RI-Eco RV digested.

Aminopropyltransferase coding sequences without stop codon

were cloned as follows. cDNA synthesized from total RNA isolated

from Arabidopsis wild type plants was used as a template to amplify

by PCR coding sequences with the following primer pairs for

SPDS1:

59-GGACAAGTTTGTACAAAAAAGCAGGCTTAATGGACGC-
TAAAGAAACCTCT-39 and

59-GGACCACTTTGTACAAGAAAGCTGGGT-

CATTGGCTTTTGACTCAAT-39.

The attB recombination sites are indicated in italics and the

coding sequences in bold. In a similar way the following primer

pairs were used for SPDS2:

59-GGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCTT-
CAACACAAGAAGCG -39 and

59-GGACCACTTTGTACAA-

GAAAGCTGGGTCGTTGGCTTTCGAATCAAT-39.

The same strategy was followed for cloning SPMS coding

sequence with the following primer pairs:

59-GGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGG-
GAGACGTCGGAATA-39 and

59-GGACCACTTTGTACAAGAAAGCTGGGTCAGAAGCCA-
GAAGTGAAGC-39.

The purified PCR products were used for BP gateway-based

recombination reaction with pDONR-Zeo (Invitrogen, Life

Technologies, Grand Island, NY, USA) to obtain the entry clones

for each aminopropyltransferase that could be used for a sub-

sequent LR gateway-based recombination reaction with either

pYFN43 and pYFC43 for BiFC assays, pMDC43 [15] for GFP N-

terminal translational fusion, pMDC83 [15] for GFP C-terminal

translational fusion and pGWB455 [16] for mRFP N-terminal

translational fusion. The binary constructs thus obtained were

introduced into Agrobacterium tumefaciens GV3101 pMP90 as

described [13].

Nuclear Localization of Aminopropyltransferases
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Plant Transformation and BiFC Assays
N. benthamiana leaves were transformed by injection of

A. tumefaciens GV3101/pMP90 cells harbouring the appropriate

plasmids as follows. To suppress gene silencing, A. tumefaciens cells

expressing the p19 protein of the tomato bushy stunt virus [17],

from Plant Bioscience Limited (PBL, Norwich, UK), were used in

the co-infiltration procedure. Overnight grown cultures of

A. tumefaciens of about 2.0 OD600 units were collected and

resuspended in similar volume of infiltration buffer (MgCl2
10 mM, MES 10 mM pH 5.6, acetosyringone 200 mM) and

incubated in a rocking platform (Kuhner, Basel, Switzerland) at

28uC for 3 to 4 hours. A mixture of Agrobacterium strains containing

the fluorescent translational fusion constructs and the p19 plasmid

at OD600 1.0:1.0:1.0 was prepared for co-infiltration into the

abaxial air space of N. benthamiana leaves with a needleless syringe.

Epidermal cell layers of at least two transformed leaves of 3–4

plants of similar age were assayed for fluorescence under confocal

microscope 3–4 days after infiltration. The experiments were

repeated at least 3 times for every construct.

Arabidopis wild type plants were stably transformed with

constructs in pMDC83 binary vector according to the floral dip

protocol [18], and hygromycin resistant T1 transgenic plants were

selected in MS agar plates with antibiotic. An average of 15 to 20

T1 transgenic seedlings were obtained for each transformation and

at least 4 were used for selecting T2 transgenic plants resistant to

hygromycin with a 3:1 ratio. An average of 10 plants from the

4 independent T2 lines for each construct were used for direct

visualization of GFP fluorescence with confocal microscopy, and

the required amount of T2 seedlings was used for the nuclear

fractionation studies.

Recombinant Protein Expression and Antibody
Production

Aminopropyltransferase coding sequences without stop codon

were cloned as follows. cDNA synthesized from total RNA isolated

from Arabidopsis wild type seedlings was used as a template to

amplify by two-step sequential PCR the aminopropyltransferase

coding sequences including a Protease 3C cleavage site (GE

Healthcare, UK). The following primer pairs were used for SPDS1

in the first PCR round:

59-CTGTTCCAGGGGCCCATGGACGCTAAA-
GAAACCTCT-39 and

59-GGACCACTTTGTACAAGAAAGCTGGGT-

CATTGGCTTTTGACTCAAT-39.

The following primer pairs were used for SPDS1 in the second

PCR round:

59-GGACAAGTTTGTACAAAAAAGCAGGCTTACTG-

GAAGTTCTGTTCCAGGGG CCCATG-39 and

59-GGACCACTTTGTACAAGAAAGCTGGGT-

CATTGGCTTTTGACTCAAT-39.

The attB recombination sites are indicated in italics, the

Protease 3C cleavage site underlined and the coding sequences

in bold.

In a similar way the following primer pairs were used for SPDS2

in the first PCR round:

59-CTGTTCCAGGGGCCCATGTCTTCAACACA-
GAAGCG-39 and

59-GGACCACTTTGTACAA-

GAAAGCTGGGTCGTTGGCTTTCGAATCAAT-39.

The following primer pairs were used for SPDS2 in the second

PCR round:

59-GGACAAGTTTGTACAAAAAAGCAGGCTTACTG-

GAAGTTCTGTTCCAGGGG CCCATG-39 and

59-GGACCACTTTGTACAA-

GAAAGCTGGGTCGTTGGCTTTCGAATCAAT-39.

The same strategy was followed for cloning SPMS coding

sequence with the following primer pairs in the first PCR round:

59-CTGTTCCAGGGGCCCATGGAGGGAGACGTCG-
GAATA-39 and

59-GGACCACTTTGTACAAGAAAGCTGGGTCAGAAGCCA-
GAAGTGAAGC-39.

The following primer pairs were used for SPMS in the second

PCR round:

59-GGACAAGTTTGTACAAAAAAGCAGGCTTACTG-

GAAGTTCTGTTCCAGGGG CCCATG-39 and

59-GGACCACTTTGTACAAGAAAGCTGGGTCAGAAGCCA-
GAAGTGAAGC-39.

The purified PCR products were used for BP gateway-based

recombination reaction with pDONR-Zeo (Invitrogen, Life

Technologies, Grand Island, NY, USA) to obtain the entry clones

for each aminopropyltransferase that were used for a subsequent

LR gateway-based recombination reaction with pDEST17 (In-

vitrogen, Life Technologies, Grand Island, NY, USA) to add a His-

tag translational fusion. The final clones were introduced into

E. coli strain BL21-CodonPlus (DE3) (Stratagene-Agilent, Santa

Clara, CA, USA) for heterologous protein expression. To purify

recombinant His-tag proteins 250 mL of transformed E. coli

cultures carrying appropriate constructs grown at 37uC to OD600

of 0.3–0.4 were induced by adding IPTG 0.8 mM and further

grown for 3 hours at 28uC. Collected cells were resuspended with

1 mL protein extraction buffer containing 20 mM Tris-HCl

pH 7.6, 300 mM NaCl, 1 mM DTT, 20 mM imidazole and

20 mL of protease inhibitor cocktail (Sigma, Saint Louis, Missouri,

USA), sonicated, and centrifuged for 15 minutes to remove cell

debris and insoluble material. Total soluble proteins were loaded

on a 1 mL His TrapTM HP (GE Healthcare, UK) previously

equilibrated with binding buffer (20 mM Tris-HCl pH 7.6,

300 mM NaCl, 20 mM imidazole) at a flow rate of 1 mL/min.

Protein elution was achieved through a linear gradient from

20 mM to 500 mM imidazole and 1 mL fractions were collected

and used for coomassie staining of SDS-PAGE gels and

immunoblot analysis. Monoclonal anti-His antibodies (Novagen,

Merck, Darmstadt, Germany) were used at 1:1000 dilution for

western blot.

The recombinant GST-SPDS2 fusion protein isolated as

previously described [8] was used to inject rabbits for antibody

production. An aliquot of the recombinant GST-SPDS2 protein

was cleaved with Factor Xa protease to isolate pure SPDS2

protein. Antibodies specific to SPDS2 were precipitated from

crude total immune serum by ammonium sulphate and affinity

purified by binding to SPDS2 purified protein blotted on

nitrocellulose [19]. Purified antibody was used at 1:100 dilution

for western blot studies whereas crude serum polyclonal antibodies

were used at 1:2500 dilution.

All secondary antibodies were used for immunoblotting at

1:5000 dilution including anti-rabbit polyclonal antibodies coupled

to either peroxidase (Santa Cruz Biotechnology, Santa Cruz, CA,

USA) or alkaline phosphatase (Thermo-Pierce, Rockford, IL,

USA) as well as anti-mouse monoclonal antibodies conjugated to

peroxidase (Santa Cruz Biotechnology, Santa Cruz, CA, USA).

Immunoblot detection was achieved using the chemiolumiscent

ECL detection kit (GE Healthcare, UK) for peroxidase coupled

antibodies or the NBT-BCIP western detection (Thermo-Pierce,

Rockford, IL, USA) for secondary antibodies conjugated to

alkaline phosphatase.

Nuclear Localization of Aminopropyltransferases
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Immunohistochemistry and Fluorescence Confocal
Microscopy

For immunolocalisation, an all-purpose fixative (80% v/v

ethanol, 3.5% v/v formaldehyde, 5% v/v acetic acid) was used

for paraffin embedding [20]. Sections from paraffin-embedded

material were blocked with 3% goat serum in PBS (10 mM

phosphate, 150 mM NaCl, pH 7.4) for 30 min at 22uC and

incubated with polyclonal anti-SPDS antibody diluted 1:500.

Immunoreactivity was visualised by the avidin-biotin complex

(Vectastain Elite ABC kit; Vector, Burlingame, CA, USA) using

diaminobenzidine as substrate for peroxidase. At least 10

biological replicates were used and observed.

Confocal imaging was carried out with a Leica True Confocal

Scanning (TCS) laser microscope. Visualization of GFP fluores-

cence was achieved by sample excitation with Argon laser at

488 nm with a 500 nm beamsplitter and the spectral detection was

set between 510 and 535 nm. For mRFP detection, the excitation

was performed with Helium-neon laser at 543 nm with a double

band dicroic mirror (488/543) and spectral detection between 564

and 610 nm. Image analysis was carried out with Leica confocal

software. To prepare agroinfiltrated N. benthamiana leaves for

confocal imaging, 1–2 cm diameter leaf sections were mounted on

a microscope slide and covered with MowiolH mounting medium

prepared according to supplier (Polysciences, Warrington, PA,

USA) for observation through the leaf abaxial side.

Biochemical Fractionation
Nuclear fractionation was performed with slight modification of

previously reported protocols [21]. Around 1.5 grams of two weak

old Arabidopsis seedlings of SPDS2-GFP T2 transgenic lines were

ground in lysis buffer (20 mM Tris-HCl pH 7.4, 25% glycerol,

20 mM KCl, 2 mM EDTA, 2.5 mM MgCl2, and 250 mM

sucrose) containing plant protease inhibitor cocktail (Sigma, Saint

Louis, Missouri, USA) and 1 mM phenylmethylsulfonyl fluoride

(PMSF). The lysate was filtered through two layers of Miracloth

(Calbiochem, Merck, Darmstadt, Germany) and centrifuged at

1,000 g for 10 min to pellet the nuclei. The cytosolic fraction was

removed until use and the nuclear pellet was washed 2–4 times in

nuclei resuspension buffer (20 mM Tris-HCl pH 7.4, 25%

glycerol, 20 mM KCl, and 0,5% Triton X-100). The nuclear

pellet was finally resuspended in 0.1 mL of medium salt buffer

(20 mM Tris-HCl pH 7.4, 0.4 M NaCl, 1 mM EDTA, 5%

glycerol, 1 mM 2-mercaptoethanol, 0.1% Triton X-100, 0.5 mM

PMSF, and plant protease inhibitor cocktail (Sigma, Saint Louis,

Missouri, USA) and then frozen and thawed and used for western

blot analysis. The purity of the different fractions was shown using

antibodies against histone H3 (Abcam, Cambridge, MA, USA),

and Ponceau staining of the ribulose-1,6-bisphosphate carboxyl-

ase.

Gel Filtration Chromatography
To investigate the behaviour of plant aminopropyltransferases

on gel filtration chromatography, about 2 mg of total protein

extract derived from Arabidopsis T87 plant cell suspension [13]

prepared as described [8] was size fractionated either on a HiPrep

Sephacryl S300 (16/60, bed volume approximate 120 mL; GE

Healthcare, UK) or on a Superose 6 HR (10/30 bed volume

approximate 24 mL; GE Healthcare, UK) previously calibrated

with molecular mass standards (Sigma MWGF1000). The flow

rate was set to 0.5 mL/min in both cases and 1 mL fractions were

collected and concentrated to 0.2 mL with Vivaspin (GE

Healthcare, UK) and aliquots of 30 mL were directly used for

immunoblot analysis with affinity purified anti-SPDS antibody.

Approximately 50 to 100 mg of each affinity purified recombi-

nant His-tagged aminopropyltransferase was loaded onto a Super-

dex 200 (10/300 GL, bed volume approximate 24 mL; GE

Healthcare, UK) with a flow rate of 0.2 mL/min previously

equilibrated with buffer containing 20 mM Tris-HCl pH 7.6 and

150 mM NaCl, and 1.5 mL fractions were scored for OD280

determination. Image of elution profile was acquired with software

Unicorn 5.2 (GE Healthcare, UK).

Results

Tissue Distribution of Spermidine Synthases in
Arabidopsis

To assess the tissue pattern of Arabidopsis aminopropyltrans-

ferases we have used polyclonal antibodies raised against

Arabidopsis SPDS2 to perform immunohistochemical localization

in Arabidopsis plant tissues. Prior to the immunostaining studies we

evaluated the biochemical properties of the antibody comparing

the cross-reactivity of crude serum versus affinity purified antibody

(Figure S1, panel A). Taking into account that the antibody was

raised against the recombinant full-length fusion protein GST-

SPDS2, and due to large sequence similarity among all three

aminopropyltransferases (82.7% between SPDS1 and SPDS2 and

around 56% between SPMS and either SPDS1 or SPDS2) we

tested the immunogenic properties of the antibody against all three

recombinant proteins expressed in E. coli. As shown in the panel B

of Figure S1, the antibody weakly cross-reacted against SPDS1

compared to SPDS2 and showed no apparent cross-reaction

against SMPS. Therefore, the immnunohistochemical results

obtained with the crude serum should be interpreted as

a combined signal for both SPDS1 and SPDS2 proteins, mostly

specific for the latter, with some possible residual background due

to GST antigenicity. Figure 1 shows the protein distribution

pattern in Arabidopsis histological sections with a clear nuclear

staining in embryo sac, stigma and style (Figure 1 b, g) and also in

the nucleus of phloem tissue in stamens, sepals and receptacle

(Figure 1 c, d, f). Weak signal could be also detected in both

stamen plastids and sepal chloroplasts (Figure 1 c, d). Within the

seed, the embryo cotyledons and radicle displayed a difused

immunostaining signal between nucleus and cytoplasm (Figure 1

k). The immunostaining pattern in vegetative tissues showed

similar subcellular localization with the most intense signals in the

nucleus of phloem tissue of the leaves (Figure 1 m, n, o), stems

(Figure 1 q, r, s) and roots (Figure 1 u, v, w) and a faint signal

detected in the chloroplasts of the leaves and stems. In summary

we have detected nuclear staining for SPDS in reproductive and

vegetative tissues and some dual cytosol/nucleus localization in the

embryo. However, it should be noticed that the limitations of this

technique in terms of resolution does not provide unequivocal

information with regard to the subcellular localization, therefore

we pursued alternative and complementary subcellular localiza-

tion studies.

Dual Subcellular Localization of Plant
Aminopropyltransferases

As a parallel approach to investigate the subcellular localiza-

tion of aminopropyltransferases we have used GFP translational

fusions to perform both transient expression in N. benthamiana by

leaf agroinfiltration and stable expression in Arabidopsis transgenic

plants. We have tested both N-terminal and C-terminal trans-

lational fusions to GFP for each of the aminopropyltransferases:

SPDS1, SPDS2 and SPMS in N. benthamiana. We have excluded

TSPMS (ACL5) from these studies due to its evolutionary

distance and lack of physical interaction with other aminopro-

Nuclear Localization of Aminopropyltransferases
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pyltransferases as previously reported [8]. To assess the

fluorescent nuclear signal, every construct was co-infiltrated in

N. benthamiana together with a red fluorescent nuclear marker

containing the nuclear localization signal of the SV40 virus [22].

As shown in Figure 2, while SPDS2 displayed a prominent

nuclear localization for both fluorescent constructs, SPDS1

translationally fused to GFP appeared both in the nucleus and

the cytoplasm of tobacco epidermal cells, with a more intense

nuclear localization when GFP was fused at the N-terminus.

SPMS showed a cytoplasmic localization pattern apparently

excluded from the nucleus for both constructs. The aminopro-

pyltransferase N-terminal translational fusions to GFP were also

used to obtain Arabidopsis transgenic plants. Arabidopsis transgenic

plants were used to evaluate with the confocal microscope the

subcellular localization of the aminopropyltransferase fluorescent

translational fusions. We concentrated our observations in the

root meristem where nuclear localization is clearly visible. As

shown in Figure 3A all three aminopropyltransferases displayed

a dual nuclear/cytosolic fluorescent signal in the root proximal

meristem. Upon approaching the transition zone and more

evidently in the elongation and differentiation zone, SPDS-GFP

displayed a fluorescent signal restricted to vascular cells, possibly

phloematic cells, in agreement with the immunohistochemical

data. Similarly, the fluorescent signal of SPMS-GFP displayed

a similar pattern to the spermidine synthases. To further

investigate the subcellular localization by means of other

techniques, we performed biochemical fractionation studies. To

this end, we used the SPDS2-GFP transgenic plants for western

blot analysis of the cellular fractions (Figure 3B). Although a large

portion of SDPS2-GFP was found in the cytosolic crude fraction

(Figure 3B lane S), a substantial proportion of the protein was

found in the nuclear enriched fraction (Figure 3B lane P). As

a nuclear marker we used antibodies against histone H3 showing

no cross-reactivity with the cytosolic fraction. The signal of

SPDS2-GFP in the nuclear enriched fraction is unlikely to derive

from other organelles since the detergent step used for nuclei

washing serves to solubilize most proteins from the lysed

organelles. It should be noted, however, that this is not

Figure 1. Histological immunolocalisation of SPDS aminopropyltransferases in Arabidopsis. Paraffin-embedded sections of different
organs of A. thaliana were incubated with anti-SPDS antibodies and an avidin-biotin-peroxidase detection system. Dark brown staining indicates
SPDS antibody-specific reaction. Either transverse or oblique sections are shown for: (a) wild-type developed flower, (b) embryo sac, (c) stamen,
(d) sepal, (e) wild-type flower primordia, (f) receptacle, (g) gynoecium (i) mature silique, (j, k) embryo, (m, n, o) leaf, (q, r, s) stem, and (u, v, w) root.
Specificity of the signal is shown by using preimmune serum as control reactions in (h, l, p, t, x). Abbreviations: C, cotyledon; Ca, cambium; Ch,
chloroplast; Co, cortex; E, epidermis; Em, embryo sac; En, peripheral endosperm; G, gynoecium; I, inner integument; N, nucleus; P, pith; Pa, palisade
mesophyll; Pe, petal; Ph, phloem; R, radicle; S, embryo; Sc, seed coat; Se, sepal; Si, silique; Sp, stigmatic papillae; St, stamen; Sy, style; Ue, upper
epidermis; V, vascular bundle; X, xylem. Bar = 100 mm in (a, e, i, m, q, u); 25 mm in (j, n, r, v); 10 mm in (b, c, d, f, g, h, k, l, o, p, s, t, w, x).
doi:10.1371/journal.pone.0046907.g001
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a quantitative analysis since it is not possible to recover all nuclei

from intact organisms. Therefore, according to the results

obtained by means of transient and stable expression with GFP

translational fusions, endogenous immunostaining, and biochem-

ical fractionation, a dual cytosol/nuclear localization for both

SPDS proteins can be assigned. To reconcile the apparent

discrepancy for the subcellular localization of SPMS between the

transient heterologous expression in N. benthamiana and the

ectopic expression in Arabidopsis, further experiments were carried

out. Taking into account the preferential nuclear localization of

SPDS-GFP fusion proteins and the reported physical interaction

between aminopropyltransferases [8], we considered the possi-

bility that the SPMS subcellular localization might depend on the

presence of SPDS proteins. To verify this, we performed co-

agroinfiltration experiments in N. benthamiana using the GFP-

SPMS construct together with the translational fusion of SPDS2

to the red fluorescent protein mRFP (mRFP-SPDS2). As shown

in Figure 4, the presence of SPDS2 leads to a shift in the

subcellular localization for SPMS to the nucleus. Therefore, the

nuclear localization of SPMS depends on the presence of SPDS

proteins in such compartment, and the variable location of

SPMS may report the formation of protein complexes in vivo.

Nuclear Localization of Aminopropyltransferase Enzyme
Complexes

To determine the subcellular localization of the enzymatic

complex formed between aminopropyltransferases previously

described [8], we chose the Bimolecular Fluorescence Comple-

mentation technique (BiFC) as it allows the non-invasive in vivo

direct imaging by confocal microscopy of the protein associations

under study [14]. The BiFC technique initially established in

animal cells was later applied in plants by the development of

suitable plant expression vectors [23,24], however none of those

vectors considered the benefit of using recombination-based

cloning techniques. We took advantage of gateway-based binary

vectors [15] that were adapted for BiFC by constructing the

pYFN43 and the pYFC43 binary plasmids (Figure S2). The BiFC

vectors were initially tested with positive interaction controls

AKIN10 and AKINb2 coding sequences, two subunits of the

Arabidopsis SnRK kinase [13], showing a clearly visible fluores-

cence signal under confocal microscope (Figure 5). We then asked

whether the aminopropyltransferases SPDS1, SPDS2 and SPMS

would show physical proximity within the plant cell and the

subcellular localization of those enzymatic complexes. Upon

testing for negative controls we detected autofluorescence for

SPDS2 constructs in pYFN43, whereas the same construct in

pYFC43 gave no background signal. Since possible alterations in

the structure of the fusion protein lead to autofluorescence

technical problems we omitted any interaction test with SPDS2

in pYFN43. The BiFC-based interaction tests for aminopropyl-

transferases indicated the assembly of homodimers for SPDS1 and

SPMS (not testable for SPDS2 due to autofluorescence) in the

same subcellular location as the individual enzymes shown as

translational fusions to GFP in Figures 2 and 3A. Heterodimer

formation was also apparent for any interaction test evaluated.

The most remarkable result was that every heterodimer tested:

SPDS1-SPMS, SPDS2-SPMS and SPDS1-SPDS2 occurred

mostly within the plant nucleus. Therefore, multienzyme com-

plexes of aminopropyltransferases seem to take place preferentially

inside the plant nucleus triggered by the dominant nuclear

localization of SPDS proteins.

Estimation of the Molecular Weight of
Aminopropyltransferase Enzymes and Enzyme
Complexes

With the available polyclonal antibody against SPDS we aimed

to elucidate the molecular weight of endogenous enzymatic

complexes by gel filtration and western blot techniques to compare

with previous studies performed with ectopically expressed

epitope-tagged versions of the enzymes [8]. Total protein extracts

from Arabidopsis cell suspensions were size fractionated with two

different gel filtration columns: Sephacryl S-300 and Superose 6,

Figure 2. Subcellular localization of aminopropyltransferases
as GFP fusion proteins in N.benthamiana. Translational fusion
constructs of aminopropyltransferases to GFP, both at the N-terminus
and the C-terminus were transiently expressed in N. benthamiana by
agroinfiltration together with a viral nuclear marker fused to mRFP, and
analysed with a laser-scanning confocal fluorescence microscope. GFP
and mRFP fluorescence spectrum are shown in left and middle column
panels. Merged visible and fluoresecent signals are shown in the right
column panel. Scale bars: 40 mm.
doi:10.1371/journal.pone.0046907.g002
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and the resulting protein fractions were analysed by western blot

against the affinity purified SPDS antibody (Figure 6). The

estimated molecular weight for both SPDS1 and SPDS2 is about

37 kDa as it can be seen in the total extract lane for both

immunoblots. Both fractionations yielded identical size exclusion

pattern for SPDS with the most intense signal corresponding

approximately to the size of a protein dimer (about 70 to 80 kDa)

and decreased signal at higher molecular weight until 150 kDa.

We could not detect SPDS protein complexes of higher molecular

weight as previously reported for the ectopic overexpression of

epitope-tagged enzymes in Arabidopsis cell suspension cultures. The

reason for this discrepancy is explained later in the Discussion

section.

Since the BiFC data suggested the building of both homodimers

and heterodimers for aminopropyltransferases, and our immuno-

blot data of gel filtration fractions did not allow the discrimination

between SPDS homo and heterodimers, we purified His-tagged

recombinant enzymes from E. coli and performed size exclusion

chromatography with the purified enzymes to evaluate the

capacity of aminopropyltransferases to assemble as homodimers.

The recombinant enzymes purified by nickel affinity chromatog-

raphy were tested for immunostaining with anti-SPDS and anti-

His antibodies (Figure S1, panel B) and subjected to gel filtration

Figure 3. Localization of aminopropyltransferase-GFP fusion
proteins and biochemical fractionation of Arabidopsis trans-
genic plants. A, the same constructs in the pMDC83 vector used for
transient expression in N.benthamiana were used to obtain Arabidopsis
transgenic plants expressing SPDS1, SPDS2 and SPMS as GFP fusion
proteins. T2 transgenic plants were selected and used to visualize the
GFP fluorescence or the transmitted signal with the laser-scanning
confocal microscope. The insets present part of the same areas with
higher magnification. Scale bars: 80 mm for the first two column panels,
and 40 mm for the next two column panels. At least 10 different
seedlings for each construct were analyzed with similar localization
pattern. B, SPDS2-GFP transgenic plants were used for biochemical
fractionation of soluble cytosol (S) or nuclear enriched pellet fractions
(P) and tested by western blotting using anti-SPDS2 affinity purified
antibodies, anti-histone H3 antibodies as a nuclear marker, and
Ponceau-S staining of the Rubisco protein as a cytosolic marker.
doi:10.1371/journal.pone.0046907.g003

Figure 4. Nuclear localization of SPMS mediated by the
presence of SPDS2 in the nucleus of N.benthamiana. Agroinfiltra-
tion studies were performed in N.benthamiana to achieve simultaneous
co-expression of GFP-SPMS with either the mRFP fluorescent protein or
the translational fusion mRFP-SPDS2 and analysed with a laser-scanning
confocal fluorescence microscope. GFP fluorescence spectrum, mRFP
fluorescence spectrum, and the visible range are shown for every co-
transformation. Scale bars: 40 mm.
doi:10.1371/journal.pone.0046907.g004

Figure 5. BiFC assays between aminopropyltransferases. Trans-
lational fusion constructs of aminopropyltransferase coding sequences
to both pYFN43 and pYFC43 were agroinfiltrated into N. benthamiana
leaves and tested for fluorescence complementation by laser-scanning
confocal microscopy. Scale bars: 40 mm.
doi:10.1371/journal.pone.0046907.g005
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chromatography with Superdex 200 column. The protein

fractions eluted were followed by absorbance at 280 nm and the

elution profile is shown in Figure 7. Two peaks corresponding to

the size of the monomer and the dimer can be detected in all cases.

Therefore the three Arabidopsis aminopropyltransferase enzymes

tested: SPDS1, SPDS2 and SPMS show the capability to assemble

as homodimers, thus confirming the BiFC data obtained.

Discussion

The advances in plant molecular biology and plant genetics

have facilitated the molecular characterization of plant polyamine

biosynthesis pathway, however, in spite of vast information with

regard to plant aminopropyltransferase biochemical features, no

details related to the subcellular localization of the enzymes and

enzymatic complexes can be found in the literature. To address

this issue we have used polyclonal antibodies generated against the

SPDS2 protein, which do partially cross-react with SPDS1 but do

not show any cross-reactivity with SPMS. The immunohistological

data from Arabidopsis wild type indicate dual cytosol/nucleus

localization for SPDS proteins in most of the tissues with

detectable signal. We have also used aminopropyltransferase

translational fusions to GFP for both transient expression in

N.benthamiana, and stable Arabidopsis transgenic plants. The results

showed a similar dual localization for SPDS1 and SPDS2 with

a prominent nuclear localization in the case of SPDS2, both in

N.benthamiana and Arabidopsis. However a partial discrepancy was

detected in the case of SPMS, since it was excluded from the

nucleus after the leaf transient expression in N.benthamiana, but

displayed some unequivocal fluorescent nuclear signal in trans-

genic Arabidopsis root proximal meristems. A closer look at the root

elongation and differentiation zone showed diffused fluorescent

signal out of the nucleus, suggesting that SPMS localization might

vary depending on the cellular context, perhaps depending on the

presence of other proteins. In relation to this, since we had

previously reported the physical interaction between all three

aminopropyltransferases SPDS1, SDPS2 and SPMS, we hypoth-

esized and confirmed (Figure 4) that the nuclear localization of

SPMS could be determined by the presence of SPDS proteins that

display a preferential nuclear localization. The reason why SPMS

translationally fused to GFP is excluded from the nucleus upon

transient expression in N. benthamiana may be due to the absence of

SPDS orthologous proteins in the tobacco leaf epidermis or to the

lack of interaction between Arabidopsis and N. benthamiana

Figure 6. Gel filtration analyses of native SPDS aminopropyl-
transferases. Total protein extracts from Arabidopsis cell suspensions
were size fractionated with two different chromatography columns:
HiPrep S300 (A) and Superose 6 (B) and tested for immunoblotting with
affinity purified anti-SPDS2 antibodies to estimate the apparent
molecular size of native SPDS complexes that resulted approximately
the size of a dimer.
doi:10.1371/journal.pone.0046907.g006

Figure 7. Recombinant aminopropyltransferases can associate
as homodimers. Aminopropyltransferase proteins expressed in E. coli
as fusion proteins to His-tag were affinity purified with nickel
chromatography and size fractionated with a Superdex 200 10/
300 GL column. 1.5 mL volume fractions were monitored for absor-
bance at 280 nm. Two peaks corresponding to the size of monomer
and dimer were detectable in every case. The gel filtration chromatog-
raphy was repeated at least twice for each purified recombinant protein
and figure shows a representative elution profile.
doi:10.1371/journal.pone.0046907.g007
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aminopropyltransferases, or both. It is remarkable that no obvious

nuclear localization signal could be found in the primary structure

for SPDS1 or SPDS2 with sequence analysis programs, so at this

point we cannot postulate whether there are cryptic primary or

most probably tertiary/quaternary structure determinants for

SPDS nuclear localization that could also explain the enhanced

nuclear accumulation for SPDS2 compared to SPDS1. Coincident

with our observations for plant aminopropyltransferases, a similar

nuclear localization pattern has been shown in Saccharomyces

cerevisiae [25]. Moreover, also similar protein interaction capabil-

ities between the enzymes SPE3 and SPE4 have been described in

the baker’s yeast [26]. To further support our observations in plant

cells, polyamines have been localized in the nucleus of animal cells

[27]. The same authors have documented the appearance of

polyamine vesicles as a hypothetical mechanism to remove the

polyamine pool from the nucleus and possibly also from the cell.

The subcellular localization data suggested that building of

enzymatic complexes could determine the location of polyamine

biosynthetic enzymes therefore we aimed to elucidate the sub-

cellular emplacement of the aminopropyltransferase complexes.

To address this issue we developed gateway-based binary vectors

for BiFC named pYFN43 and pYFC43 (Figure S2). The results of

the BiFC assays with aminopropyltransferases showed a predom-

inant nuclear localization for aminopropyltransferase heterodi-

mers (Figure 5). The BiFC analysis also showed the capability to

form homodimers for all tested aminopropyltransferases (SPSD1,

SPDS2 and SPMS). To further validate our positive data of

homodimer assembly by BiFC, we analyzed by gel filtration the

behaviour of recombinant purified enzymes showing their

capability to form homodimers in vitro (Figure 7). In agreement

with our results, to date all characterized aminopropyltransferases

are homodimers [28,29,30,31,32] with the only exception of acute

thermophiles, where aminopropyltransferases display a tetramer

structure formed by pairs of homodimers [33]. Detailed structural

analysis of aminopropyltransferase enzymes bound to substrates,

products, and inhibitors have provided valuable information with

regard to structural dimerization requirements that involve either

the N-terminal region for human SPMS [32] or both the N-

terminal and the C-terminal domains for the human SPDS

enzyme [31]. In the course of this investigation we have found

discrepancies to the previous description of the estimated size of

the multienzymatic protein complexes. Our current studies with

endogenous protein complexes rather indicate that aminopropyl-

transferases behave as dimers in vivo but do not take part in

multiprotein complexes of larger size as estimated previously [8].

Such overestimation could have occurred due to interferences with

immunoglobulins that might have artificially increased the

estimated size of immunopurified enzyme complexes.

The data presented here do not reveal which type of

aminopropyltransferase protein dimer is more frequently occur-

ring in the cell, either the homo or the heterodimer. In any case, it

seems that spermine biosynthesis enzymes can assemble as

heterodimers with spermidine synthases inside the nucleus. To

our knowledge, this is the first example of aminopropyltransferase

enzyme complexes taking place inside the nucleus. However, we

should remark that such protein interaction between SPDS and

SPMS might not reveal an enzymatic channel for the substrate

spermidine, but it could also represent an alternative enzymatic

structure with regulatory functions as it has been described in the

case of the cysteine synthase complex [34]. Why spermidine as

a substrate seems to require metabolon-like structure assembly

within the nucleus and how it is regulated remains to be solved.

But also why spermidine and spermine biosynthesis in plants seem

to take place inside the nucleus is an open question arising from

this work that demands future research efforts.

Supporting Information

Figure S1 Immunoblot detection of aminopropyltrans-
ferase proteins. Panel A shows the detection by western blot of

SPDS proteins (indicated by asterisk) from a total plant protein

extract after SDS-PAGE separation and blotting using either

affinity purified antiserum against SPDS2 protein (left panel) or

crude serum against GST-SPDS2 fusion protein (right panel).

Panel B shows the purification of recombinant aminopropyltrans-

ferases fused to His-tag and immunological detection of purified

proteins with either anti-SPDS2 crude serum antibody or mono-

clonal anti-His antibody.

(TIF)

Figure S2 Design of gateway-based BiFC binary vectors
pYFN43 and pYFC43. The figure shows the schematic diagram

of the T-DNA fragment of both pYFN43 (A) and pYFC43 (B)

plant expression binary vectors that allow gateway-based LR

recombination for BiFC assays.

(TIF)
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