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Abstract— Synergic combination of different sources of knowledge is a key issue for the development of modern 

statistical translators. Reconnaissance, and thus the translation, can be improved by adding new heuristic 

characteristics. In this work, a speech translation statistical system that adds additional other-than-voice 

information in a voice translation system is presented. The additional information serves as a base for the log-

linear combination of several statistical models. We obtain the characteristics vectors using a statistical model that 

is based on the N-best reconnaissance list. We describe the theoretical framework of the problem, summarize the 

overall architecture of the system, and show how the system is enhanced with the additional information. Our real 

prototype implements a real-time speech translation system from Spanish to English that is adapted to specific 

teaching-related environments. Finally, we will provide and explain the system performance results. A tool like the 

one presented in this article may increase the participation rate of the foreign students to the lecture classes and 

talks. 

 

Keywords- speech recognition; speech translation; adaptation; pedagogical tool.  

 

1 INTRODUCTION  

 
The development of automatic real-time translation systems when the source is the voice constitutes a long 

term objective. However, recent advances in the statistical translation research field increase the chances of a 
widespread usage in the near future [1] [2]. One of the main issues in the deployment of statistical translators is 
the combination of different knowledge sources. Some of the last proposed systems use more than ten 
statistical models to guide the translator. Moreover, several research projects demonstrated that the system 
performance can be improved significantly when multimodal information is arranged in the 
translator/recognizer entry. Thus, when the system knows beforehand the topic of the speech it can be 
enhanced. 

Current voice recognition and automatic translation systems are far from having satisfactory results. The 
tools usually have significant number of errors, so they are not adequate for their use in real environments. 
However, these systems have obtained excellent results in controlled environments such as hotel reception 
desks [3] and parliamentary speeches [1]. The same case also happens in the conference tutorials and keynote 
speeches, and in class lectures. Moreover, the speakers use some information as a support for the speech. This 
information is usually some slides and personal nodes, for his/her own guide, or even a text book. 

The application environment, where we have detected the need of the system proposed in this paper, is the 
university lecture classes. An increasing number of foreign students in European countries, because of 
interchange programs, and alike, promoted by the bologna process, is requiring more effort to provide tools and 
means that help the integration of the students in the learning process while the new language skills are getting 
developed. The duration of the students is short, so it is difficult to learn enough language of the local country 
to follow the oral classes. So, a tool for simultaneously translate the lecture is very useful for the lecturers and 
students. 

When a degree subject has students from different countries, that speak two different languages (local 
language and English), there are few ways to solve this problem. One of them is to split the class in two groups, 
one with the native students and other with the foreign students, but this is not always possible because it 
doubles the lecturer teaching hours and the university resources. Another one is to suggest the lecturer to 
translate the subject content into English, so the students can have the content that is going to be explained 
during the class in both languages. Because this is the lowest cost option, it is the most followed one. Bearing 
in mind the availability of these slides, with the lecturer notes, in both languages, this information can be used 
to improve the recognition/translation process.  



We hence provide a prototype that demonstrates the viability of the real time speech translation in a real 
teaching class environment. Moreover, it can be used in conference tutorials, keynote speeches, and so on. 
Given the fact that current status-of-the-art products and techniques in the area of automatic real-time 
translation are far from perfect, the results are enhanced by providing beforehand material about the translation 
elements, e.g., specific vocabulary, texts, etc. With this purpose our speech translation system is fed with slides 
and class notes that are provided previous to the initial operation of the system. Often these sources, or 
information, are already translated and provided to the students. This offline information is used as input to the 
proposed system as well. We also detail how to adapt the real-time speech translation system to add this 
additional information and how it impacts positively in the accuracy of the results of the recognition, and, thus, 
the translation system. The implementation part and verification test of the system proposed in this work has 
been performed in the High Polytechnic School of Gandia, where there are 15% of foreigner students.  

The remainder of this paper is as follows. Section 2 shows the works and projects published related with 
speech translation and some that add other information sources to the translation system. The system is 
overviewed in Section 3. Section 4 provides the analysis of our statistical model. The system architecture is 
detailed in Section 5. Section 6 explains the how the system is trained and adapted. Section 7 details the search 
algorithm. Section 8 provides the test results of our proposed system. Finally, section 9, draws the conclusion 
and gives our future works. 

 

2 RELATED WORK 

 
The related work section is split in two parts. The first one is focused on the speech translation and the 

second one is focused on the works that add other information sources to the translation system. 
The development of automatic systems for simultaneous voice translation is one of the most pursued 

objectives in the language’s technologies research field. Some good results are appearing in the last works 
published related with this topic. E.g. EuTrans [3] project demonstrated the feasibility of simultaneous 
translation in a restricted environment (in this case it was a hotel reception desk). Advances in the speech 
recognition research field and the statistical translation allowed creating translators/demonstrators in wide 
environments. An example of these systems is TALES project (developed by IBM), that allows the 
simultaneous translation of 4 TV channels. Another example has been developed by the University of Carnegie 
Mellon, in the TC-Star framework project, and allows translating simultaneously conferences from English to 
Spanish and German. The results of these projects are quite hopeful, but they are quite far from having a 
correct grade of accuracy to be viable in practice. 

Nowadays there are several research lines of speech-to-speech translation systems. One of them is 
NESPOLE. It is a speech-to-speech machine translation research project funded jointly by the European 
Commission and the US NSF [4]. The prototype system developed in NESPOLE! is intended to provide 
effective multi-lingual speech-to-speech communication between all pairs of four languages (Italian, German, 
French and English) within broad, but yet restricted domains. The idea of this project is to allow a 
communication online client-server on which both parties are expressed in different languages. The 
transmitter’s phrases are translated and heard by receiver by means of sensitized speech. The paper also 
describes the system architecture. Here are other research projects such as VERBMOBIL [5], C-STAR, 
BABYLON and S2ST [6] that have also addressed speech-to-speech translation technology. The last one is 
quite interesting because it is focused on the translation between English and Asian languages (Japanese and 
Chinese). This requires technologies to overcome the drastic differences in linguistic expressions. The main 
issue is that existing systems are not of public domain, so they cannot be compared technically and we cannot 
know their technical features. Moreover, each group has its own scoring system.  

In the voice recognition, most systems relay on two main statistical models: acoustic models and the origin 
language model. Acoustic models form different phonetic segments produced by the human voice started from 
a sequence of features taken from the signal voice. The acoustic model is usually performed using Hidden 
Markov Models, HMM [7]. The origin language model tries to distinguish between the entry phrases with high 
appearance probability and those that are not so expected. This type of model is usually performed using the n-
gram concept [8]. An n-gram system estimates the probability of having a word, once it knows last n-1 words. 
Our speech recognition system is based on this hidden Markov Model and n-grams models. 

The translation systems that are actually providing the best results are based on statistical methods. They 
are mainly supported by two models: the translation model and the destination language model. On one hand, 
the destination language model discern between output sentences with high appearance probability. Like in the 
origin language model, the most frequent solution is usually based in the n-gram concept. On the other hand, 
the translation model is responsible of informing about the most probable translations. Several statistical 
translation models have been published in the literature. Some of the most well-known are IBM model [9] and 



the alignment templates model [10]. However, in the last years the phrase-based models have become very 
popular [11] [12] [13]. These models have big dictionaries, where there is the probability that a determined 
phrase of the origin language is translated by a phrase in the destination language. 

The speech translation systems based on stochastic finite-state networks are also having high success. 
EUTRANS system, in [14], was made using the methodologies developed and the data collected during the 
project. The speech translation is built in a similar way as speech recognition. Stochastic finite-state 
transducers, which are specific stochastic finite-state networks, are very adequate for translation modeling. The 
acoustic, language and translation models are finite-state networks that are automatically learnt from training 
samples. Other interface between automatic speech recognition and machine translation are the confusion 
networks. The authors in [14] also describe the advantages of using these networks. On one side confusion 
networks permit to effectively represent a huge number of transcription hypotheses, on the other side they lead 
to a very efficient search algorithm for statistical machine translation. 

One of the proposals to improve the voice recognition systems and the automatic translation systems is the 
use of additional information to guide the system to choose the right output. The type of sources providing this 
additional information could be very different. 

Between the projects that use additional information sources we find TransTalk project [15] and an IBM 
project [16]. Both projects are dictation systems for translators that have the destination language signal voice 
(provided by a human) and the text of the source language. We can find another example that integrates other 
information sources to the translation system in TransType 1 and TransType 2 projects [17]. In these projects a 
translation-aided system is proposed. Starting from the source text, and part of the destination text validated by 
the user, the system tries to complete the whole destination text. Moreover, in [18], the authors describe a 
translation system that allows combining source texts of different languages.  

A statistical translation module mainly uses a translation module and a language module in order to perform 
its tasks. Nevertheless, in the last years additional models are added in the log-linear framework [19]. This 
approximation may be the most appropriate if we want to combine different statistical models with high 
flexibility. In this approach, each model has a weighed parameter that allows increasing or decreasing the 
importance of that model. The adjustment parameters can be estimated by using maximum entropy methods or 
minimizing the errors observed in a validation test. 

In [20], the problem boils down to the question of how to arrive to a suitable interaction between the 
recognition process and the translation process. In this study the authors try to combine distinct features derived 
from both modules: speech recognition and statistical machine translation. All the features of the speech 
recognition and machine translation module were combined by log-linear models seamlessly. They conclude 
the work letting us know that statistical acoustic and language models helped to improve speech translation. 
The N-best recognition hypotheses are better than the single-best ones when they are used in translation. They 
show that N-best recognition hypothesis translation can improve speech recognition accuracy of incorrectly 
recognized sentences. The same approach has been made in [21]. In this paper, they attempted to derive a 
suitable Bayes decision rule for speech translation and to present suitable implementations. Authors introduced 
specific modeling assumptions to convert Bayes decisions into a practical algorithm. 

In the last years, the use of characteristics vectors in translation system has been appeared in some 
published works. Works like the ones presented in [22], [23], [24] are based on the use of confidence measures 
in statistical translation machines in order to improve the error in the translation. All these papers explain how 
we can use characteristics vectors from these measures, obtained from the “N-best list” and the first model of 
IBM, a translation output can be determined from a given input. 

As far as we know there is not any real-time translation system used for lecture classes that uses extra 
information taken from the presentation slides. Moreover there is not any statistical speech translation system 
published that allows the end user to improve the translation by adding extra information. 

 

3 SYSTEM OVERVIEW 

 
The application environment of our research is a class room where a lecturer is teaching in Spanish and 

uses the system to translate in real time into English to foreign students, but it can be used in any type of 
environment with the same features (conference tutorials and keynote speeches, presentation talks, and so on) 
Our proposal uses a real-time speech translation system to support a classroom of native students with foreign 
language-speaking students. In our specific case, we use the Spanish as the local language and English as the 
foreign language. 

Initially, the lecturer adds the presentation slides or class notes as additional information of the voice 
translation system. That is, he/she provides the slides in a tool for creating multimedia presentations (e.g. MS 
PowerPoint, Impress, PDF, etc.) making sure that the notes area for each slide contains an explanation of the 



slide. The information written should be as closest as possible to the speech. It should describe the current 
slide. 

Previous to run the lecture, the lecturer must load the multimedia presentation file in the system. The 
system takes this information provided by the slides as an external information source and increases the 
probability to find the correct translated words when the slide is presented and all along the class. 

When the lecturer is speaking, the voice signal is gathered by a microphone, the system recognizes the 
spoken sentence (the most probable sentences), writes the most probable into text, translates it, and displays a 
subtitle with the translation as a caption to the slide. We can see the blocks diagram in figure 1. 

 

 

Figure 1.  System block diagram.  

 
The system result is seen in figure 2. Last line of presentation is superimposed to the projection of the slide. 

It shows the translation of each sentence said by the lecturer. In this way, an English-speaking student is able to 
relate the content with the Spanish representation through the displayed translation.   

 

 

Figure 2.   Demonstration example.  
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4 STATISTICAL MODEL ANALISYS 

 
In this section we detail analytically the statistical speech language recognition system and the statistical 

language translation system. 
 

4.1. STATISTICAL SPEECH RECOGNITION SYSTEM 

 
The automatic speech recognition process provides to the machines the capacity of receiving voice 

messages. It is able to take the voice signal from a microphone as an input. The goal of the automatic speech 
recognition process is to decode the message obtained from the acoustic sound in order to take the appropriate 
actions.  According to [25], from the beginning of the computer science, and concretely the artificial 
intelligence, researchers have tried to provide this media to the computers. However, they have split the 
synthesis from the recognition. 

Automatic speech recognition problem can be modeled analytically from a statistical point of view. Given 
sequence of T measures from the signal voice, that is represented by   

  =   …    and a sequence of I words 

belonging to a known vocabulary that are represented by   
 
 =   …   , according to [26], the conditional 

probability P(  
 
|  

 ) is the probability of being pronounced the sequence of words   
 
 (from now called phrase) 

given the observation of the acoustic data   
 . Thus, the recognition system will provide as a result the phrase 

that maximizes that probability. It is given by equation 1.   
 

   
        

  

 

     
    

                     

 
We consider equation 1 as the result of the most probable sentence given by the speech recognition system 

(in Windows Operative System it is performed by SAPI, Speech Application Programming Interface). Using 
the equation of Bayes we can write the conditional probability as it is shown in equation 2.  

 

    
    

   
    

    
      

  

    
  

                   

 
Where,  

    
   is the probability of the phrase   

 
 or the “a priori” probability of the event   

 
 

    
    

   is the probability to observe the sequence   
  when the phrase   

 
 is pronounced. It can also be 

named as the “a posteriori” probability of   
  given   

 
. 

    
   is the probability of the phrase given the acoustic information   

 . 
The probability of     

   is the same independently of the pronounced phrase in the maximization process. 
Thus this probability can be deleted because the phrase that provides the maximum does not vary. Then, we 
can estimate the automatic speech recognition as equation 3.  

 

   
        

  

 

     
    

      
                     

 
The recognized phrase is that one that will maximize the product of two probabilities:     

    
   that relates 

the acoustic information with the phrase (we call it acoustic model), and     
    that only depends on the phrase 

(we call it language model). Moreover, inside the basic blocks of an automatic speech recognition system we 
distinguish the training and recognition steps. In the first step, the language and speech models learn from the 
voice and text. In the second step, the acoustic signal is transcribed to a phrase according to equation 3. But, we 
increase the number of recognition results that are taken into account. The system builds the “N-best list”, 
based on the acoustic signal of the entry, and we obtain a series of characteristics for each hypothesis. Taking 
in to account this set of characteristic, as a result of the recognition given by equation 3, the final result of the 
voice recognition is determined. 

 



4.2. LANGUAGE TRANSLATION SYSTEM 

 

The goal of the Statistical Speech Language Translation is to translate a given acoustic observation vector  

  
  =   …    into a target sentence   

 =   …    [16] [27]. The methodology used in our proposal is based on 

the definition of a function Pr   
    

   that returns the probability that   
  is a translation of a given acoustic 

observation [28] [29]. We can introduce a hidden variable that represents the source sentence,   
 
=   …   . 

Then, we can write equation 4. 

 

   
 = argmax Pr   

    
  = argmax       

    
    

  
  
 = 

                                                                                  

      = argmax       
    

  
  
  Pr   

    
    argmax      

    
       

    
        (4) 

 

 

Following the log-linear approach [13] [14], Pr   
    

   can be expressed as a combination of a series of 

feature functions,   (  
    

 
), that are calibrated by scaling factors, λm. Equation 5 provides the analytical 

expression.  

 

                   
    

  =   
 
     (  

    
 
)              (5)                      

 
This framework allows us a simple integration of several models in the translation system. Moreover, 

scaling factors allow us to adjust the relative importance of each model. For this objective, Och and Ney 
propose a minimum error rate criterion [30]. 

 

5 SYSTEM ARCHITECTURE 

 
The proposed system architecture is based on two main modules: the speech recognition module (that uses 

a Speech Application Programming Interface) and the translation module. They are shown in figure 3. The 
speech recognition module is in charge of transcribing the signal voice from the entrance to a representation 
close to the natural language (typically a phrase). The translation module receives the information from the 
speech recognition and translates it to the destination language. The heuristics features are used in the log linear 
combination for the search module. In order to avoid the accumulation of the errors of both processes, both 
modules should work coordinated.  
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Figure 3.  System architecture 

 
 

5.1. SPEECH RECOGNITION MODULE (SRM) 

The speech recognition module (SRM) gets the audio input stream from a microphone and obtains an N-

best output list. Each hypothesis in the N-best list is scored according to the      
    

  . Although there are 

several available open source speech recognition systems, like Sphinx or HTK, we have used the standard 
system provided by MS Windows Vista OS, as it seems to be the only one incorporating acoustic models for 
Spanish. The communication with this engine is based on the SAPI interface [31]. 

In addition this engine has a few interesting capabilities that make it well suited for a real-time applications 
like ours. For example, its functionality can be customized for a specific speaker and task which allows us to 
work with multiple output hypotheses simultaneously. These hypotheses will be used later by the translation 
module and to extract heuristic features. In the heuristic features module, we will take the appropriate features 
to classify the hypothesis probabilistically. In the translation module, we also use these hypotheses to 
probabilistically classify them based on the used models. Once it has made this classification, the system 
selects the most probable recognition output. 

The output of this module is a list of hypothesis. Each hypothesis is represented by (  
 
, (    

    
  ). Where 

  
 
 is a source word sequence and     

    
     is the probability given by the Speech Application Programming 

Interface. Moreover we also took into account the confidence obtained from each hypothesis. The total number 
of words of a phrase is also provided by the Speech Application Programming Interface. This value is also a 
part of a set of heuristic features used for classification. 
 

5.2. MACHINE TRANSLATION MODULE (MTM) 

 
The machine translation module (MTM) is based on a previous work described in [17]. In order to estimate 

Pr   
    

   a log-linear combination of several statistical models is used. 

 

3.4.1 PHRASE-BASED TRANSLATION MODELS 

 



Statistical translation models typically assume that the input and the output sentences can be divided in 
smaller units. These units are related to each other by means of an alignment and they are translated 
independently. When the units are words, we make use of the conventional word-based translation models. 
These include the well known IBM models [9], the HMM based models [32] or the template models [10] 
(under this model, the lexicon is still word-based and the alignments are restricted by the available templates). 
On the other hand, phrase-base models divide the sentence in segments, each one composed by a series of 
words. The translation probabilities now relate a sequence of words in a source sentence (  ) with another 
sequence of words in the target sentence (  ). The simplest formulation with such models is based on monotone 

models [11]. In this model, the source sentence   
 
  is segmented into K phrases (   

 ) and the target sentence   
 
 

into other K phrases (   
 ). A uniform probability distribution over all possible segmentation is assumed.  The 

monotonicity assumption implies that the target phrase in position k is produced by the source phrase in the 
same position k. This can be expressed in equation 6.  

 

     
    

                                      

 

        
     

 

 

 
The distribution          can be interpreted as a dictionary that returns the probability of translating phrase    into 
phrase   . A phrase can be a single word. A conventional word-to-word statistical dictionary can be considered 
as part of the model. If monotonicity is not admissible, a hidden variable   can be introduced. This represents 
the fact that the target phrase in position k is produced by the source phrase in position    (see equation 7). 

 

     
    

        
              

 

 

        
     

    
 

                     

 
This model allows efficient search algorithms. 
 

3.5.1 LOG-LINEAR MODEL COMBINATION 

 
The above approach has two problems. The first one is the difficulty of coming up with good models using 

a generative approach, and the second one is the difficulty to introduce other sources of knowledge in the 
process. Those problems can be solved by using a log-linear combination of models. In the experiments, we 
adopted the following log-linear model combination in the monotone search for a given segmentation of 

   
    

   into K segments       
     

  . It is shown in equation 8. 

 

    
    

    
               

    
          

         
   

 

 

   

                    
                   

                    
                   

 

   

 

   

               

 

   

  

                                                                                

 

   

 

 
This integrates the following knowledge sources: 
 

 Speech recognition model.  The probability obtained from the SRM:     
    

  . 

 Additional language models for the source language. A conventional trigram model is used: 

          
   

 . Commonly this model is introduced in the voice recognition phase. In fact, the SAPI SRM 



includes a generic Spanish language model. We use additional information that is trained from the text 
that is provided by the teacher. This model is trained using this data. 

 Generic language models for the target language. There are two models, a conventional trigram model, 

         
    , and a  five-gram class model,             

    . As explained above, the aim of these models 

is to guarantee that the resulting sentence is correct in the target language. Word classes are obtained 
using the software mkcls [33]. 

 Additional language models for the target language. A conventional trigram model is used:           
    . 

This model is trained using the additional target information provided by the teacher. 

 Generic Translation model. We use the combination of four models. On one hand the simple translation 

models (like IBM model 1) both direct (        ) and inverse (        ). These models act as 

“smoothers”' for the translation probabilities. On the other hand, direct and inverse phrase based 
translation models:            and              . These are the most complex models and should capture 
the main bulk of the work. 

 Additional Translation model. A direct phrase based translation model is used:            . Trained from 
the additional information. 
 

Each of the sources is controlled by a weight (a scaling factor) and the   . Two penalties    and    are 
included to control the values of I and K. 

Summarizing, we used a standard model based on phrases and n-grams, which has been widely analyzed in 
previous works ([17] and [29]). Moreover, in this paper we have used new methods to improve the translation 
model by combining different models obtained from various sources, such as slides.  

 

3.6.1 ADDING NEW HEURISTIC FEATURES 

 
Starting from the output hypothesis obtained in the previous subsection, which form the N-best List, the 

heuristic features can be estimated. These features have been obtained from the knowledge, such as 
Levenshtein distance and confidence values, and from inference, such as obtaining the most probable 
hypothesis based on the number of words of the phrase.  

A scheme with the modules used in the recognition process, which uses characteristics vectors, is shown in 
figure 4. First, the recorded sentences are captured using the Speech Application Programming Interface. Then, 
the information is processed and interpreted using the voice recognition engine. The hypotheses are obtained 
based on the N-Best List. Next, the characteristics of each hypothesis are estimated and are stored in vectors. 
These vectors are used to estimate which hypothesis is the most probable and uses it as the output phrase. 
Figure 4 shows the described modules. 

 

 
Figure 4.  Modules used to extract the heuristic features. 

We have added 7 characteristics vectors. They are the following ones: 
 

 Probability based on the number of words. 
 

In order to obtain this characteristic, first we store in a vector the number of words that has each hypothesis. 
If there are many hypothesis with the same number of words, the most probable recognized phrase is one of 
them, not other with different number of words. Based on this, those few phrases with different number of 



words will be penalized, and those ones with the same number of words will be rewarded. In order to estimate 
this characteristic, the size of each phrase is compared with the mean value. In the algorithm we write one 
when the number of words is equal to the mean value and zero when it is different.  This is obtained by using 
equation 9.  
 

     
            

  

   

  
                   

 
Where,    is the hypothesis to be compared,    is the rest of hypothesis, and    is the total number of 

hypothesis. 
At code level, we estimate the number of words of each phrase and the result will be stored as a 

characteristic of a characteristics vector. Then we compare this value with the rest of hypotheses, so we obtain 
a probability value. The closer it is to the rest of hypotheses, the higher probability. 

 

 Confidence value given by the recognition engine. 
 

Voice recognition engine can also provide the confidence value for each hypothesis belonging to the “N-
Best List” (Windows SAPI provides it). “N-Best List” is obtained from the recognition process. The method 
used in this process is explained in [34] and its analytical demonstration in [35]. The confidence level of the 
phrases let us know detect those phrases that are not recognized properly but they are included in our system 
[36]. Those phrases that have high confidence level will be more preferred tan the low level ones. This 
confidence values is a floating point value. The EngineConfidence feature of the ISpeechPhraseRule interface 
[34] provides this feature.   

 

 Confidence value given by SAPI 
 
This confidence is different of the recognition engine confidence. It averages the confidence level of each 

Word of the phrase and sets 0 or 1 values. Zero value is given to a very high confidence level, while 1 value is 
given to a medium-low confidence level. This value will determine the most appropriate sentences because 
there will be very few with 0 value, while most of them will have 1 value. This feature also has an analytical 
explanation in [35]. Moreover, [34] explains how this method can be used. Based on the obtained confidence, 
the hypothesis will be ordered from the highest to the lowest probability value. ISpeechPhraseRule interface 
[34] provides this feature. 

 

 Levenstein distance 
 

Levenshtein distance (also called edition distance or distance between words) is the minimum number of 
operations required to transform a chain of words to another. It is an operation, insertion, deletion or 
substitution of a character [37]. We developed Levenshtein algorithm to estimate this distance. Then, we added 
it to the characteristics vectors as a new feature.  

It is obtained performing the following steps. First, we compare the recognition output phrase with each 
hypothesis. This phrase matches the result of the partial hypotheses provided by the voice recognition engine, 
so it is the most probable phrase. Then, we estimate the Leveshtein distance from each hypothesis to the most 
probable. The lower is this value; the more similar are the phrases. The result is added to the characteristics 
vectors. 
 

 Probability at word level given a language model 
 

In this step, we start with a corpus that has been preciously trained and validated. It provides us the 
language model. This model is based on trigrams and a linear interpolation smoothing type. This model is 
included in the system. Using some libraries created by us in [11] we are able to estimate the probability of a 
phrase given a language model based on n-grams. Finally it is added to the characteristics vectors. 
 

 Probability at phrase level given a language model 
 

The process used to obtain this characteristic is similar to the process explained in the last point, but in this 
case the probability is obtained at word level. Now, instead of calculating the probability of the whole phrase, 
we estimate the probability of each isolated word. Then, we add these results and obtain the characteristic value 



for the whole phrase. In this case we do not obtain the probabilistic value which is dependent to the n-grams, or 
to the accompanying words, but of each isolated word. The process to get this probabilistic value is the 
following one: the system goes through each word of the phrase and estimates the probabilistic value at world 
level according to our language model. It is performed for all words of the phrase and this value is added to the 
result obtained for each word of the phrase. The final result is saved as its characteristic value. 

 

 Joint Probability 
 
Finally, we use joint characteristic based on the probability of the phrase according to a language model and 

the confidence value. This confidence value is given by the recognition engine. We selected these two 
characteristic because we appreciated in several tests that both characteristics have much effect in the 
evaluation results. The result of this combination is given by the following expression 10. 

 

                    
    

  
 
                  

 

Where,        is the confidence level of the n hypothesis, and          is the probability of the n 
hypothesis given the W language model. β let us vary the weight for this factor. In our case we set up β= 1. 

 

6 SYSTEM TRAINING AND ADAPTATION 

 
The models described in the previous section are composed of millions of parameters that must be learned 

from the training corpus. If available, we make use of additional information, such as text, closely related to the 
speech that we are going to translate. This text can be written in the source language, in the target language or 
in both. 

Two types of models are used. Generic models, which are learned from a large Spanish/English corpus that 
does not correspond to a particular task; and adaptation models, learned from corpus provided by the teacher. 
The training of the generic models can be previously performed. Adaptive models are learned in the adaptation 
phase. 

6.1. SPEECH RECOGNITION ADAPTATION 

There are two main ways for adapting the speech recognition module (SRM) using the SAPI interface 
[16]. SAPI adaptation uses specific calls to the SAPI interface. On the one hand, we extract each word from 
source adaptation data and use it with the SAPI call AddVocabulary to extend the SRM vocabulary. These 
words, which initially were not recognized by the system, were later recognized by the speech recognition 
engine in many cases when we added to the vocabulary. On the other hand, we are able to adapt the language 
model used by the speech recognition engine using SetAdaptationData method. This method is included in 
SAPI libraries. In this way, we are increasing the recognition engine lexicon and language model by adding 
these words or phrases which are difficult to recognize by the engine. We have appreciated that this adaptation 
method is good, but it is not as effective as last method. 

 

6.1.1. MACHINE TRANSLATION TRAINING 

There are different approaches to estimate the parameters of previous equations. Details of the estimation of 
monotone and no-monotone phrase-based models can be found in [37]. Some of these techniques correspond to 
a direct learning of the parameters from a sentence-aligned corpus using a maximum likelihood approach 
[11][39]. Other techniques are heuristics based on previous computation of word alignments in the training 
corpus [40][41]. Word alignments are the basis of the most widely used methods for finding bilingual 
segments.  However, the word alignment models usually adopted do not permit the alignment of one source 
word to many target words [9]. The strategy proposed in [33] and [42] deals with this problem in two steps.  In 
the first step, symmetrized alignments are computed from the alignments obtained in a translation direction 
(s→t) and the alignments obtained in the opposite translation direction (t→s).  Different combinations of these 
two types of alignments were proposed in [43] (intersection, union and refined). From these symmetrized 
alignments, the bilingual segments are built following different criteria in the second step [43]. These criteria 
consider that a segment from a source sentence and a segment from a target sentence give way to a bilingual 
segment. This happens if all the words in the source segment are aligned (according to the symmetrized 



alignments) with one word in the target segment and vice versa. Adjacent or internal (source or target) words 
that are not aligned with any (target or source) word can also be added to the bilingual segment. 

In this work, an alternative strategy is proposed. It also consists in two steps but they are different from the 
steps proposed in [42]. In the first step, two sets of bilingual segments were obtained: separate PB models 
(bilingual segments and the corresponding probabilities) were built, one model from word-alignments in one 
direction (s→t) and another model from word-alignments in the opposite direction (t→s).  The bilingual 
segments are obtained following a similar procedure as the one in the second step of the method proposed in 
[42].  In the second step of our strategy, these two models are combined using log-linear interpolation. 

6.2. MACHINE TRANSLATION ADAPTATION 

 
The MTM (Machine Translation Module) adaptation is hence used as follows. Using the source language 

text, an additional source language model is trained, and, using the target language text, a second additional 
target language model is trained. Finally, using both source and target text an additional third translation model 
is trained. 

These three new models are then incorporated to the system using the loglinear framework. In this 
framework each model needs a scaling factor parameter. 

 

6.3. ESTIMATION OF MODEL SCALING  FACTORS 

 
The scaling factors can be estimated by optimizing the value of a training criterion over a development 

corpus [44]. In our case, the optimization consisted in minimizing the difference between the translation word 
error rate and the BLEU (Bilingual Evaluation Understudy) scores. The optimization was carried out using the 
downhill simplex algorithm [45]. 
 

7 SYSTEM SEARCH 

 
Given a source speech   

 , the aim of the search in statistical translation is to obtain a target sentence    
  that 

maximizes equation 11: 
 

   
        

    
 
     

   

     
    

    
                     

 
The search algorithm is a crucial part in a real time statistical speech translation. Its performance directly 

affects the quality and efficiency of the translation. In this section, we describe two search algorithms which are 
based on multi-stack-decoding [46] for the monotone (equation 6) and for a non-monotone version (equation 7) 
[47]. 

The most common statistical decoder algorithms use the concept of partial translation hypothesis to perform 
the search. In a partial hypothesis, some of the source words have been used to generate a target prefix. Each 
hypothesis is scored according to the translation and language model. In our implementation for the monotone 

model, [11] we define a hypothesis as the triple (J',   
  , g), where J' is the length of the current source prefix 

(i.e., that prefix is   
  

),   
   is its translation and g is the score of that translation computed from equation 11. 

 

7.1. MONOTONE SEARCH 

 
The translation procedure can be described as follows. The system maintains a large set of hypotheses, each 

of them with its translation score. The set is divided in lists so that each hypothesis in the list covers the same 
number of source words. 

Within each list the hypotheses are sorted according to the translation score. The algorithm consists in an 
iterative process. 

In each iteration, the system extracts from each list the best scored hypothesis and extends it. The extension 
consists on selecting one or more untranslated source words and to attach one or more target words to the 
current output prefix. The extension of a hypothesis can generate hundreds of new hypotheses. The process is 
iterated Max-iter times. Thus, at most Max-iter hypothesis are extended from each list. At most Max-iter 



extensions are done (they can be less if in a given moment there are not enough hypotheses to extend). The 
output of the search is the hypothesis with highest score and with no untranslated source words. 
 

7.2. NON-MONOTONE SEARCH 

 
If a non-monotone model is used, the search can be made by using target-word reordering (TWR) [47]. 

Here, we define a hypothesis like in the monotone algorithm, and each hypothesis is also stored in a separate 
list according to the source-length prefix.  In contrast to the monotone case, we can introduce the special token 
<nul> in the target hypothesis. The meaning of this token is that, in a future expansion, the token <nul> must 
be replaced by a sequence of words. In our implementation, we allow only one token <nul>.  Therefore, we can 
distinguish between two classes of hypotheses. A hypothesis is closed if it does not contain the token <nul>, 
and it is open if it contains this token. 
 

In the process of extending a partial hypothesis, those bilingual phrase-pairs (  ,   ), in which    matches the 
source segment after the last translated word, are considered. On the one hand, if the hypothesis to be extended 
is closed (it has no <nul> token), two new hypotheses are created by adding    and <nul>  , respectively, to the 
target prefix. On the other hand, if the hypothesis is open, four new hypotheses are created: one closes the 
hypothesis by replacing the token <nul> by   ; and three new open hypotheses are obtained by putting    to the 
left or to the right of <nul> and at the end of the target prefix. We have a different parameter distortion for each 
type of extension. If the hypothesis is closed, we use the probability p0 to open it, and 1- p0 to keep it closed. If 
the hypothesis is open, we use the probabilities pc to close it. (1- p0)/3 is used for the other three extension 
types. A decoding example using this algorithm is shown in Figure 5. The Spanish sentence “A la bruja verde 
Mario dio un bofetada” is translated into the English sentence “Mary slapped the green witch”. Partial 
hypotheses are stored in sorted list with numbers from 0 to 8. In each hypothesis, the first J' words of the 
source sentence have been translated. 

 



 
Figure 5.  Decoding example using TWR algorithm.  

The restriction to at most one <nul> token implies very similar practical costs of the monotone and non-
monotone search algorithms. In practice, the parameter Maxiter can been used to increase the speed of the 
translation. 
 

The language model causes another problem. In an open hypothesis we cannot calculate the language 
model contribution of the right part of the prefix after the <nul> token. In order to solve this problem, we 
compute an estimation of the language model contribution. It consists of assigning the probability of its 
unigram to the word at the right of <nul> times the probability of the bigram for the next word.  When a 
hypothesis is closed, this estimation is replaced by the true language model contribution. 
 

There are some proposals ([48],[49],[10]) that try to solve this problem by selecting source words in different 

positions (SWR) and generating the target words left to right. In this approach, a partial hypothesis is a triple 

e: 

f: 

p: 1 

f: a la bruja verde María dio una bofetada 

e: Mary slapped the green with 

p: .0027 

f: a  

e: <nul> to  
p: .52 

List J’=1 

 

f: a  

e: to  

p: .62 

f: a la  

e: to the  

p: .24 
List J’=2 

 

List J’=4 

 

f: a la  

e: <nul> the  
p: .23 

f: a la bruja verde  

e: <nul> the green with  
p: .08 

f: a la bruja verde María  

e: Mary <nul> the green with 
p: .032 

List J’=5 

 

List J’=8 

 

… 

 

f: a la bruja  

e: <nul> the <nul> with  
p: .071 

List J’=3 

 

List J’=0 

 

f: a la bruja  

e: with the  

p: .092 

…      … 

 

…      … 

 

Mary 

a la  bruja verde  María  dio una bofetada 

slapped the green with 



(C,  
  

, g), where C is the coverage set (the source positions that have been translated).  Hypotheses with the 

same number of elements in C are stored in the same list. As it happens in TWR approach, J such lists are 

needed. 
Compared with TWR, this approach has different limitations. First, each partial hypothesis needs a 

coverage set, which increases spatial costs. Second, hypotheses with different C can be stored in the same list. 
In order to properly compare the hypothesis that covers different parts of the source sentence, estimation 
(usually heuristic) of the contribution to the score of the parts, that are not yet covered, can be introduced [50]. 
Third, in order to reduce the computational cost of the algorithm, re-ordering restrictions must be introduced. 
For example, [46] proposes that only the first $l$ yet uncovered word positions can be translated. Fourth, many 
different paths lead to hypotheses that have the same coverage set and target segment. In order to reduce the 
search space hypothesis, recombination is used. In our approach this phenomenon is less frequent, and 
hypothesis recombination is not essential. Moreover, the main limitations of the TWR approach are the 
following ones. First, in an open hypothesis, an estimation of the language model is used. Second, only one 
token <nul> is allowed.  Then, we do not cover all possible reordering. 
 

8 SYSTEM EVALUATION 

 
In order to evaluate the system we have implemented an assessment tool (see figure 6). It allowed us to 

perform various tests in order to improve the recognition system. The tool has been programmed in Pascal 
using a Delphi programming framework. With this tool we analyzed specifically: 

 The recognition result of the microphone input given by the recognition engine. 

 Partial hypotheses during the speech phrase. 

 The N-best list with possible phrases together with the characteristics vector values for each 
sentence. 

 The resulting sentence and its translation depending on the used translation models. 

 Result of the WER 
The hardware used to perform this task has been a 2Quad CPU Q9400@2.66GHz microprocessor-

based PC Intel® Core™, with 4GB of RAM and Microsoft Windows 7 Operative System. 
 

 
Figure 6.  Interface evaluation tool used to avaluate our system. 

After having integrated the tool in the system, and having performed a recognition test, we seek to improve 
the error related with each recognition process and have it into account in the prototype. In order to improve the 



recognition error we have focused our efforts in two main tasks: the adaptation of the system and the use of an 
optimum characteristics vector.  

We performed a series of experiments in order to test the system in different situations and using one or 
three different speakers depending on the situation. Next subsections show the obtained results. 
 

8.1. RECOGNITION ERROR EVALUATION USING DIFFERENT SYSTEM ADAPTATION METHODS 

 

8.1.1. MICROPHONE VOLUME AND GAIN ADAPTATION  

After integrating the tool into the system, and performing the recognition, we investigate the way to 
improve the recognition error to create a prototype with the best performance. In order to perform this 
recognition error improvement we primarily focus on two tasks: to adapt the system and to use the optimal 
characteristics vector. 

First, in the adaptation process, we analyze the external variables influence such as the microphone volume, 
or gain, during the recognition process. For this experiment, we realize a test corpus based on a series 
of phrases. Next, a speaker reads these phrases, which are recorded. Then, they are played by the tool and the 
Word Error Rate (WER) is estimated based on the test corpus. The WER results are obtained by comparing the 
output of the recognition system with the test corpus. In order to perform this test process, the system plays 
each recorded phrase and estimates the instant WER for each phrase. Finally, after finishing all recorded 
phrases, the average instantaneous value of all instantaneous values is estimated. The WER results obtained in 
this experiment are shown in figure 7. 

 

 
Figure 7.  Speech recognition WER with different microphone gains and volumes. 

These tests have been performed with a specific computer and, therefore, if the characteristics of the 
hardware change these values will change too. The purpose of this analysis is to demonstrate the influence of 
microphone volume, and gain, in the recognition process. Therefore, the volume is a variable that must taken 
into account before using the recognition tool. 

 

8.1.2. DIFFERENT SPEAKERS ADAPTATION 

Experiments have been run in a scenario that reproduces the regular conditions of a university class. In this 
scenario, a teacher taught class during 20 minutes supported by some slides and lecture notes which where 
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beforehand translated from Spanish to English. The class was recorded in an empty room without students for 
the sake of comparing output results with the same background noise conditions. Sentences were recorded in 
Spanish, and then were segmented, transcribed and translated into English. The obtained phrases were divided 
into two parts: the test corpus (made of 240 sentences) and the development corpus (with 120 phrases). Phrases 
from the test corpus were also recorded later by two additional speakers. Table 1 represents the different 
quality features for each speaker. 

In Table I, spontaneous speech column is used to inform us if the speaker has made the diction of the 
sentences of the test corpus spontaneously, or, otherwise, if he/she has read the test. The speaker adaptation 
column refers to whether the speaker has made the pre-process using Microsoft Windows’ speech recognizer 
adaptation, or not. In this case, the speaker previously reads a series of sentences in order to adjust the system.  

 

TABLE I.  QUALITY FOR THREE SPEAKERS 

 spontaneous speech speaker adaptation genre 

speaker 1 yes no male 

speaker 2 no yes male 

speaker 3 no no female 
 

 
In Table II, the speech recognition performance of three test speakers is compared. The best WER result is 

16.5 (obtained by the speaker 2). This speaker is the one who has performed an adaptation preprocess to the 
system by using Microsoft Windows’ speech recognizer. In order to do it, the speaker reads the sentences 
displayed by the application. The system self-adapts to the reader dynamically. Then, it is evident that the 
speaker adaptation capabilities are crucial to obtain good speech recognition rates.  

 

TABLE II.  SPEECH RECOGNITION PERFORMANCE FOR THREE SPEAKERS 

 WER Speech Recognition 

speaker 1 30.75 

speaker 2 16.5 

speaker 3 34.5 

 

8.1.3. SAPI ADAPTATION 

Another process that can be performed in order to adapt Microsoft Windows’ speech recognition system is 
to add to the recognition engine vocabulary new words and also phonetically adapt the system with new 
words and phrases. The process is explained in the next subsection. The average best results are shown in table 
III. The WER result for different phrases compared with other experiments is shown later (in figure 13). 

 

8.1.4. LENGUAGE MODEL ADAPTATION 

 
In the previous experiments we used a common language model based on "Europarl" [51]. In this 

subsection we will test how the language model affects to the recognition system. In order to achieve this goal, 
we performed the following tasks. 

In order to train the language model, based on the lecture notes corpus, we performed the following training 
process. It has been performed by creating a language model that is used later in our evaluation tool. 

First we added the teacher's lecture notes into a text file. This will be our reference corpus. This corpus is 
loaded in a software tool, called Stat Trans, implemented by our research group (see figure 8). It is very easy to 
use it, we just have to click the button marked in figure 8 and select teacher‘s notes text file. 

 



 
Figure 8.  Tool Stat Trans 

Then, the tool displays the window shown in figure 9. It let us set the type of language model and the size 
of the n-grams that will be used to estimate the probability. 

 

 
Figure 9.  Type of language mode and n-grams lenght value. 

The type of language model selected in our case is the linear interpolation [5]. In this method, and also in 
the backoff method, a smoothing is performed. Smoothing is a technique for solving null probability problems 
and low estimations when there are few occurrences. It allows us to modify the estimations of the Maximum 
Likehood Estimator (MLE) to avoid having an n-gram with zero probability. In the interpolation, the 
probabilities of different n-grams are combined in order to obtain the new probability. In our case, we have 
selected 3 n-grams. The validation values that we have considered optimal, after different tests or experiments, 
for these n-grams are: λ0=0.01, λ1=0.09, λ2=0.3, and λ3=0.6. 

The formula used for linear interpolation is shown in equation 12. 

 

                   λ                    λ               λ         λ   (12) 

Where         

Once the corpus training and validation has been ended, we obtain the language model. The program will 
give us information such as the vocabulary size, number of n-grams observed, number of words and number of 
sentences. Figure 10 shows the result of an example provided by our software tool. 

 

^ 



 
Figure 10.  Language model train result. 

Finally, in order to load the new language model training corpus, we must specify the directory where the 
corpus configuration file is going to be saved. The file is called "conf.ini" and the saved values are available 
from the same application (see figure 11). Among the most interesting values are the ScalingFactor and 
pAdjustLong. The first value gives the weight to have the probability of the language model in the translator.  
The effect of this value will be analyzed in the speech recognition phase. 

  

 
Figure 11.  Corpus configuration screen. 

The generic models of the MTM were initially trained by the Europarl corpus [51]. It was used to train the 
generic models of MTM. Moreover, slides and lecture notes was also used to train the additional models of 
MTM. The developed corpus is used to estimate the lambda parameters of the n-grams using the minimum 
error rate criteria.  
 

In Table III, different adaptation mechanisms are compared. As baseline there was no adaptation used. The 
SAPI adaptation mechanism uses specific calls to the SAPI interface. Specifically, we extract each word from 
the source slides and the lecture notes to extend the SRM vocabulary. In order to evaluate the MTM adaptation, 
we considered two sources of knowledge. The first one just uses the slides or the slides with class notes 
(combined with the source language), and the second case uses both source and target language. 

 



TABLE III.  PERFORMANCE ARCHIEVED DIFFERENT ADAPTATION SOURCES FOR SPEAKER 1 

 Speech Recognition 

(WER) 
Machine Translation 

     (WER)              (BLEU) 
base line 17.5 54.2 34.8 

+ SAPI adaptation 16.5 53.8 35.1 

+ source slides 15.4 53.3 35.6 

+ target slides 15.4 42.1 45.7 

+ source lecture notes 9.7 48.4 40.1 

+ target lecture notes 9.7 35.0 56.4 

 
As it is shown in the above table, the results obtained, when the system is fed by the lecture notes, are 

greatly improved in terms of WER. This happens because we feed the system with information that is very 
similar to that spoken by the speaker. This information makes also to improve the quality of the translation and 
thus the result of BLEU. 

 
We have also analyzed the influence of the ScalingFactor (S_F) in the recognition result. This variable 

determines the weight to the probability of each phrase in the speech recognition result according to our 
language model. That is, the more the S_F value of a phrase is, the higher is the dependence of the speech 
recognition result on the obtained probability (according to our language model) than on the Microsoft 
Windows speech recognition engine. Figure 12 shows the input WER (WERin) versus different S_F values. 
We can see in this figure that the optimal S_F value to improve the recognition is S_F=0.5. 

 

 
 

Figure 12.  WERin values for different S_F values. 

Figure 13 shows the comparison between a text without adaptation, a text using an adaptation type based 

on feeding the vocabulary of the speech recognition engine and applying an adjustment of Scaling factor 

equal to 0.5, and a text using the same language model than the previous case of adaptation. 
 
We can see in the figure that to apply a new language model improves the recognition. In addition, with the 

appropriate S_F value, the results are even better. It not only happens in some particular phrases but also all 
along the test. 

 
When we analyzed the comparison of several phrases, some interesting results were obtained. For example, 

in the 60th phrase the system adaptation performed efficiently because the system recognized an English word 
in the Spanish text. It weren’t able to recognize it without adaptation. Table IV shows how was recognized in 
each case. 
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Figure 13.  Different adaptation measures comparison. 

 

TABLE IV.  EXAMPLE: RECOGNITION OF THE 60TH
 WORD FOR SEVERAL ADAPTATION CASES. 

 Translated word 

Without adaptation bucle Ford 

AddPronunciation / txt evaluation bucle foro 

S_F (0.5) / AddPronunciation / txt evaluation bucle for 

 
 
Finally, another issue that is analyzed in this section is the language model used in the adaptation or training 

system. In this test, first, different language models have been trained, and, then, they have been adapted to the 
system. For the test bed described in this work, we have used four corpuses to perform the language models. 
They are the following ones:  

 Thinking in C++: It is a book to learn to program in C++ language. Therefore, this book is very much 
related with the experiment topic. 

 Lecture Notes: They are the teacher’s lecture notes. This case is very small because it is an abstract 
about one day class. 

 Evaluation Test:  They are the sentences exactly as they have been said by the teacher in the simulation 
of a class. 

 Europarl: This corpus is quite much larger than the others, but is not related to the experiment topic. 
In order to perform this experiment, we have adapted the system with each corpus previously described 

using the procedure explained in this section. After training the system with each corpus, we performed the 
test. Then, we obtained WER values. Figure 14 shows the recognition error results using different language 
models. In this figure we can observe that if the corpus content is more similar to the content said by the 
speaker, and if it is large and there is some work on it, the recognition results are better. 
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Figure 14.   WERin for different language models 

 

8.2. RECOGNITION ERROR EVALUATION USING CARACHTERISTICS VECTORS 

 
In our last experiment, we optimize the recognition error using characteristics vectors based on the baseline 

of the adaptation task. After the adaptation process, the recognition result will be used as baseline. The 
evaluation process of this task is divided into the next 3 phases. 

8.2.1. EVALUATION OF EACH CHARACTERISTIC INDIVIDUALLY 

 
First, we have implemented the code needed to create the characteristics vector. Once we completed it, we 

have evaluated each characteristic individually. The feature extraction is performed as it has been explained in 
sub-section 3.6.1. The recognition system output depends on the highest or the lowest value, depending of the 
characteristic, for each hypothesis. For this, the evaluation tool selects one N-bestlist phrase depending of the 
selected characteristic. For example, the system estimates the confidence value given by the recognition engine 
of each hypothesis or N-bestlist. These values are saved in the characteristics vector. Then, we go through the 
vector. The hypothesis with highest value will be selected as the speech recognition output. In order to do it, 
the code checks each characteristic value and saves it in the memory if the value is greater (or lower, depending 
on the characteristic). The phrase corresponding to this value is saved in memory too. At the end of the process 
we get the best value and the phrase corresponding to it is saved, thus we optimize the application. 

 

8.2.2. EVALUATION OF ALL CHARACTERISTICS TOGETHER 

 
In this case instead of evaluating each characteristic individually, we evaluate all characteristics at the same 

time. In order to do it, we add (or subtract, depending of the characteristic) all characteristic values for each 
hypothesis. The subtract is performed when minor characteristic values provide better recognition result (e.g. 
characteristics 1 and 3, that correspond to SAPI confidence value and Levenshtein distance) and we add in 
opposite cases (other characteristics). The highest value provides the system speech recognition output. 

 

8.2.3. EVALUATION OF ALL CHARACTERISTICS TOGETHER WITH DIFFERENT WEIGHTS 
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The process is similar as the one described in the previous subsection. But in this case different a weight is 
assigned depending on the characteristic. Therefore, for each hypothesis, we estimate all characteristics 
providing a specific weight and we add them. Finally, we select the hypothesis with maximum value. Equation 
13 follows the described procedure. 

 

   
        

  
 

          

 

   

 

   

                    

 
Where, W is the words sequence (phrase or hypothesis) that maximizes the argument value, h is the total 

number of hypotheses,    is the weight of each characteristic and       is the probability value of each 
hypothesis according to the characteristic set   . 

 
The weight we give to each characteristic is respect to the others, therefore it follows a probability 

distribution whose sum is 1 and depends on the results of the first evaluation. The best results have greater 
weight than the others. In order to have a consistent distribution, some characteristics may need a pre-process. 
This pre-process mainly consists on normalizing the characteristic values (that is, to have values between 0 and 
1) and to change the tendency to those ones that having low values is better. Now we can analyze all positive 
being the higher value the best one for all characteristics. Once we have normalized the characteristic values, 
we evaluate the system as we have explained before. The obtained results are shown in table V. 

 
The table shows that in four tests we obtain better results than in the test bench. One of them is when we 

take into account the probability characteristic that depends on the number of words. There is other that takes 
into account the probability characteristic at phrase level given a language model. Another adds all the 
characteristic values. Finally, the best result is provided by adding all characteristic values taking into account 
their weights. We highlight that there is a significant improvement (4.66%). We obtained a negative in the 
probability at word level given a language model. Now, we can state that this characteristic should not be used 
in this case. It is mainly because a language model based in n-grams performs well with more than one n-gram, 
but not with isolated words. 
 

TABLE V.  PERFORMANCE ACHIEVED WITH ADAPTED SYSTEM AND USING CHARACTERISTICS VECTORS FOR SPEAKER 1 

 WER Speech Recognition 

Baseline 15.4 

Words number 15.18 

Engine confidence 17.72 

SAPI confidence 17.72 

Levenshtein distance 17.26 

ML (word) probability 20.05 

ML (phrase) probability 13.07 

Joint Probability 15.86 

Sum of features 11.67 

Sum of features with weights 10.74 

 
On the other hand, we also evaluated the instantaneous WER. That is, the WERin of each one of the 

phrases provided by the recognition system. The results are shown in figure 15. 
 
We can see that, generally, in the very long phrases WER results are very similar for all tests. Even in the 

5th phrase, the result is the same. On the other hand, the WER is higher in short phrases (such as 19, 20 and 24). 
We have noticed that the characteristic related to Levenshtein distance is quite irregular, and the word level 
probability given a language model has poor performance in general. Finally, we think that the most important 
result is the WER values obtained from the evaluation of all characteristics with different weights, because it 
has the lowest value in all phrases.  

 



 
Figure 15.  Instantaneous WER results obtained for different tests 

In order to analyze in depth how affects the length of the phrase on the WER, we have measured the WER 
for the four largest and the four shortest phrases. The obtained results are shown in table VI. 

 
We have observed that there is higher WER in short phrases than in long phrases. We can also see as the 

WER result improves significantly in long phrases respect the reference value. However, in short phrases, this 
behavior does not happen. 

 

TABLE VI.  INSTANTANEOUS AND AVERAGE WER FOR THE 4 LARGEST AND THE 4 SHORTEST PHRASES. 

                   N of words 

Characteristic 
4 4 5 6 Average 26 26 27 30 Average 

Refernce value 0.25 0.5 0.2 0.33 0.32 0.46 0 0.4 0.1 0.24 

Num. words 0 0.5 0.5 0.2 0.66 0.465 0.34 0 0.4 0.1 0.21 

SAPI confidence 2 0.5 0.25 0.4 0.33 0.37 0.03 0.42 0.4 0.13 0.245 

Engine confidence 1 0.25 0.75 0.2 0.33 0.382 0.03 0.34 0.4 0.06 0.207 

N-Gram word 4 0.5 0.75 0.4 0.66 0.577 0.46 0.03 0.4 0.1 0.247 

N-Gram Phrase 5 0.25 0.5 0.2 0.33 0.32 0 0.26 0.4 0.06 0.18 



Levenshtein distance 3 0.25 0.5 0.2 0.33 0.32 0.42 0.03 0.4 0.13 0.245 

Formula 6 0.25 0.75 0.2 0.33 0.382 0.03 0.26 0.4 0.06 0.187 

All characteristics 0.25 0.5 0.2 0.33 0.32 0 0.26 0.4 0.06 0.18 

All characteristics with 
weights 

0.25 0.5 0.2 0.33 0.32 0 0.26 0.4 0.06 0.18 

 
Observing the results shown in table IV, we may think that short sentences affect more to the WER than 

long sentences because there are fewer words. But the point is that although the sentences are longer, the 
number of wrongly recognized words in the longer case is lower, so the system fails less with long sentences. 

 

9 CONCLUSIONS AND FUTURE WORK 

 
A real-time statistical speech translation system voice recognition optimization using multimodal sources of 

knowledge and characteristics vectors has been presented. We have tested it in pedagogical environments. The 
main innovation and contribution of this work is the way in which additional sources of knowledge are used to 
improve the accuracy of the system, thus having a notable improvement compared to existing systems. 
Moreover, any new proposal has been tackled from an analytical perspective, while remaining a practical work. 

Training the system with other sources of information, which are also related to the class topic, also helps 
the system considerably. They do not need to be exactly the notes of the slides of the lecturer; they can even be 
texts about the same concepts developed in the classroom, such as books referenced in the class. Generally, 
these texts and books are often available in different languages, and training the system with such pre-existing 
material also improves the system.  

The way we have used to improve the recognition is by means of characteristics vectors. Our results 
confirm that the SAPI-based speech recognizer using characteristics vectors improves the recognition results. 
There are two characteristics that improve the baseline considerably when they are used individually: the one 
that evaluates the number of words of each hypothesis respect to the rest hypothesis, and the probability at the 
phrase level given a language model of each hypothesis. We also think we can improve these results a little bit 
more by eliminating some characteristics vectors that did not give good results. 

Taking into account Figure 4, we conclude that, in general, the recognition results are good and very similar 
in long phrases. Thus, we will continue working on improving the speech recognition engine using short 
phrases, but we must take into account that the worst WER results are almost always obtained in short phrases. 

Another interesting contribution of our work has been the developed tool. It allows a collaborative 
relationship with the user. The application feeds a priori the recognition engine by using the teacher’s slides 
and notes. Thus, the user takes an important role improving the recognition. The more implication from the 
user, the better is the recognition result. It allows working with a highly efficient tool for improving the 
recognition system. 

The evaluated characteristics have been the Levenshtein distance, the probability at phrase level based on a 
given n-gram language model, confidence values given by recognition engine and the Microsoft Windows 
speech application programming interface (SAPI), etc. The optimal value obtained of the sum of these 
characteristics will determine a posteriori the speech recognition engine output. 

The experiments demonstrate how this usage of additional sources of information really improves 
significantly the overall results by a 12%. Especially, when we make use of lecture notes in both languages 
(previous to the real-time operation), the accuracy rate increases by a 35%.  

We are going to extend this work in future by performing next studies: 
- We are going to analyze how varying β of the joint probability affects to the recognition result.  
- We are going to find the optimal values of the weights that affect to the characteristics, as well as to 

select those that positively affect the result and delete the others.  
- We are going to check the number of N-bestlist hypothesis that optimizes recognition results.  
- We are going to use new corpuses related with the topic of the subject (apart of the used corpus: 

Europarl) in order to improve the recognition result. 
Moreover, in a future work we will improve the system by using fuzzy network models as interfaces 

between the automatic speech recognition and machine translation modules. New heuristic elements will also 
be added to the characteristics vectors of the translator in order to study more enhancements.  



Finally, we believe that our proposal will be quite more commercial if the output of the system is voice, 
thus we will have a system where the speaker can talk in one language and the system will send the output 
translated to other language through the speakers.  
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