

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/article/10.1007%2Fs11227-011-0610-8

http://hdl.handle.net/10251/38905

Springer Verlag (Germany)

Belloch Rodríguez, JA.; Gonzalez, A.; Martínez Zaldívar, FJ.; Vidal Maciá, AM. (2011).
Real-time massive convolution for audio applications on GPU. Journal of Supercomputing.
58(3):449-457. doi:10.1007/s11227-011-0610-8.

Noname manuscript No.
(will be inserted by the editor)

Real-Time massive convolution for audio applications on GPU
Massive convolution on GPU

Jose A. Belloch · Alberto Gonzalez ·

F.J. Martı́nez-Zaldı́var · Antonio M. Vidal

Received: date / Accepted: date

Abstract Massive convolution is the basic operation in multichannelacoustic signal pro-
cessing. This field has experienced a major development in recent years. One reason for this
has been the increase in the number of sound sources used in playback applications available
to users. Another reason is the growing need to incorporate new effects and to improve the
hearing experience. Massive convolution requires high computing capacity. GPUs offer the
possibility of parallelizing these operations. This allows us to obtain the processing result in
much shorter time and to free up CPU resources. One importantaspect lies in the possibility
of overlapping the transfer of data from CPU to GPU and vice versa with the computation,
in order to carry out real-time applications. Thus, a synthesis of 3D sound scenes could be
achieved with only a peer-to-peer music streaming environment using a simple GPU in your
computer, while the CPU in the computer is being used for other tasks. Nowadays, these
effects are obtained in theaters or funfairs at a very high cost, requiring a large quantity
of resources. Thus, our work focuses on two mains points: to describe an efficient massive
convolution implementation and to incorporate this task toreal-time multichannel-sound
applications.

Keywords Massive convolution· Multichannel audio processing· FFT · GPU ·

1 Introduction

A basic operation in multichannel acoustic signal processing is Massive Convolution. It
consists in carrying out simultaneously many convolutionsof different audio channels. This
provides a multichannel convolution that allows to achievewith different filters well known
acoustic effects like: 3D spatial sound, crosstalk cancellation, room compensation [1], loud-
speakers equalization, etc. [2].

Jose A. Belloch, Alberto Gonzalez, F.J. Martı́nez-Zaldı́var
Institute of Telecommunications and Multimedia Applications
Universidad Politecnica de Valencia Tel.: +34-96-3877007ext 73008
E-mail: jobelrod@iteam.upv.es,{agonzal,fjmartin}@dcom.upv.es

Antonio M. Vidal
INCO2-DSIC, Universidad Politecnica de Valencia (Spain)
E-mail: avidal@dsic.upv.es

2

Up to now, most of these effects could be achieved only in theaters or funfairs, always
using very powerful computers and consuming a large amount of energy. The use of GPU
(Graphics Processing Unit) makes possible to achieve theseamazing effects saving energy,
and also, to obtain them in a personal computer even faster (Figure 1), as can be seen at
[3] and [5], where some experiments comparing performance convolution in CPU and GPU
have already been carried out using OpenGL [8].

Fig. 1: Effects which require plenty of resources can be achieved using a GPU.

However, in spite of obtaining good performance using a GPU,the fact of transferring
data from/to the CPU to/from GPU avoids the execution of real-time applications. In this ar-
ticle, an algorithm with a pipeline structure is developed,which allows to perform a massive
acoustic real-time convolution. As analyzed in this article, massive convolution requires the
calculation of several FFT simultaneously. There are various libraries that implement effi-
cient FFT algorithms. They allow to obtain the Discrete Fourier Transform of a signal either
in a CPU (like MKL [9] or IPP [10]) or in a GPU (like CUFFT [11] from NVIDIA).

Multichannel convolution applications are not only based on FFT, but also they require
more operations like multiplications among signals. Hence, it is crucial to configure a data
structure suitable for exploiting both CUFFT NVIDIA library and different parallel opera-
tions. The paper is organized as follows. Section 2 describes the convolution algorithm and
how it can be developed over a GPU. In Section 3, an efficient GPU implementation of mas-
sive convolution is presented. Section 4 analyzes the performance of a possible real-time
application. Finally, some conclusions are presented in Section 5.

2 Multichannel convolution on GPU

Multichannel convolution consists in carrying out many convolutions of different channels
simultaneously. Depending on the desired audio effect, different combinations can be re-
quired: different filters applied to a sound source (Figure 2), one filter applied to several
sound sources, or different filters applied to different sound sources. In order to understand
how multichannel convolution is organized, it is importantto describe the one channel con-
volution first.

Let us considerx an input audio signal,h an acoustic filter (unit-impulse response) andy
the desired output audio signal of our system.N, M andL =N+M−1 [6] will be the lengths
of x, h andy respectively. The execution of the convolution using a GPU is illustrated in
Figure 3. In spite of the parallelism in operations that GPU offers, the transfer time penalty
prevents us from running a real time application in a GPU. Moreover, if the signalx consists
of several channels, then multiple convolutions would be required. On the other hand, if a
CPU is used to implement a massive convolution, all our resources would be used and no
more applications could be run at the same time.

3

Digital Signal

Processing

Fig. 2: Different filters applied to a sound source for audio reproduction through loudspeak-
ers in a room

Transfer

x and h

CPU->GPU

Calculate

X=FFT(x)

Calculate

H=FFT(h)

Calculate

y=IFFT(Y)

Multiply

 elementwise

Y=X*H

Transfer

y

GPU->CPU

Fig. 3: Steps in order to calculate convolution of signalsx andh on GPU.

2.1 Algorithm for long signals

In a real-time application, the length of signalx cannot be known a priori. Techniques are
available to fragment the signal, and obtain the convolution of the whole signal from the
convolution of each fragment. One of these techniques is called overlap-save [7] and it
performs as follows:

1. Fragments ofL samples are taken, whereL is some power of two, larger thanM (length
of h) and at least 512 [7].

2. In the first fragment, the firstM−1 samples will be padded with zeros.
3. From the second and following fragments, the firstM − 1 samples will be duplicated

from the lastM−1 samples of the previous fragment, see at the top of Figure 6.
4. Following the steps of the previous subsection,y0[n], y1[n], y2[n], . . . , are obtained as

the result of the convolution ofx0[n], x1[n], x2[n], . . . , withh respectively, see Figure 4.
5. From each fragment result, the firstM − 1 samples will not be valid values and will

therefore be eliminated, see Figure 5.

3 Implementation on GPU

The operation described in Section 2 is applied over every signal fragment. CUFFT NVIDIA
FFT library allows to execute multiple FFT 1D at the same time. Therefore, it is possible
to obtain as many FFT 1D as rows of a given matrix. In order to exploit this property, it
is necessary to configure a matrix signal with all the signal parts. Figure 6 illustrates the
formation of this signal matrix. CUDA toolkit versions [12]enable the use CUFFT [11]
with the propertyconcurrent copy and execution. Therefore, the latency of transferring data
from the CPU to the GPU and vice versa can be overlapped by computation time. This will
enable not only high speedup of the convolution, but also, the use of real-time applications.

4

x0[n]

h[n]

x1[n]

x2[n]

L L

L L

y0[n]

H[k]

y1[n]

y2[n]

X0=FFT(x 0) Y0=X0H y0=FFT -1(Y0)

H=FFT(h)

X1=FFT(x 1) Y1=X1H y1=FFT -1(Y1)

X2=FFT(x 2) Y2=X2H y2=FFT -1(Y2)

Fig. 4: Convolution of each fragment is calculated following the convolution theorem [6].

y[n]

y0[n]

y1[n]

y2[n]

Fig. 5: As long as convolutioned fragments are obtained, output signaly is being formed.

L

M-1

x[n]

L

x0[n]
x1[n]

x2[n]
L

L

Zero

Padding

Matrix Configuration

R

M-1 M-1

M-1 M-1 M-1

Fig. 6: A signal matrix is built from signal parts.

Therefore, the configured signal matrix of Figure 6 withR rows andL columns could be
considered as a buffer, which is being built as the incoming audio samples arrive. The first
M−1 values of one row will coincide with the lastM−1 values of the previous row, except
for the first configured matrix at the algorithm beginning whose firstM−1 values from the
first row will be zeros. The lastM −1 samples from the last row of the matrix will be kept
in an internal buffer in order to occupy the firstM − 1 positions of the next matrix to be
filled. The unit-impulse responseh will have been sent to the GPU before sending the first

5

matrix. As shown in Figure 4, and described in sections 2 and 3, vectorh will be padded
with zeros up toL samples (length of each fragment of signalx), then a FFT will be carried
out obtaining vectorH, and finally an elementwise multiplication with each fragment of X
(x in the frequency domain) will be done.

To carry out operations on GPU, since signalx is configured as a matrix, anh-matrix
must be also configured. It consists ofR replications of vectorh. Over the GPU, FFT func-
tion from the CUFFT library is applied to both matrices, thenan elementwise multiplication
is done between them (Figure 7), and finally, the inverse FFT function from CUFFT is ap-
plied again over the result matrix. Thus, time samples of output signal are obtained.

L
Zero

Padding

h-matrix (time domain) H-matrix (frequency domain)

R R parallel

ffts 1D

Elementwise

Multiplication

M

L

R parallel

ffts 1D

x-matrix (time domain) X-matrix (frequency domain)

L

M-1 M-1

L

R

Fig. 7: FFT function from CUFFT library is applied to signal matrix and h-matrix, then an
elementwise multiplication is done between them.

3.1 Scalability from one channel to multichannel

It is obvious that the hearing effects explained previouslycannot be represented by either
one filter or a single signal. Thus, when dealing with a stereosignal (two audio channels) or
maybe with a four-channel audio signal, resources will be shared, as shown in Figure 8.

3.2 Pipelined Algorithm

Theconcurrent copy and execution property enables multichannel convolution using a four-
stages pipelined model. This model uses the asynchronous transfer of matrix signals from

6

Fragments Matrix signal x (2 channels) Fragments Matrix signal x (4 channels)

Channel L

Channel R

Channel 1

Channel 2

Channel 3

Channel 4

Fig. 8: The signal matrix on the left shows 2-channel resource sharing, whereas the signal
matrix on the right shows 4-channel resource sharing

CPU to GPU and vice versa while other tasks are executed in parallel. In [12] it is recom-
mended to use differentstreams in order to execute different tasks. In our case, the value of
streams is between 1 and 4,Stream 0 is not recommended for asynchronous operations.

At the beginning of the algorithm, h-matrix is configured andsent to the GPU. Then,
the first buffer begins to be built. As in [4], we use a buffer size of 32 x 512. We will call
this buffer: A-buffer. Using asynchronous transfer, whileA-buffer is sent to GPU bystream
1, another buffer, B-buffer, is built simultaneously bystream 2. Then,stream 1 executes
the computations described in previous subsections between h-matrix and A-buffer (signal
matrix), while B-buffer is transferred from CPU to GPU bystream 2, and a new buffer (C-
buffer) is built bystream 3. Finally, a new D-buffer is built bystream 4, while C-buffer is
transferred from CPU to GPU bystream 3, execution in GPU is carried out on B-Buffer by
stream 2 and A-buffer is transferred back to CPU bystream 1. A rebuilding of output signals
(Section 2.1) from different channels are carried out on A-buffer, then output signals are
obtained. Afterwards, A-buffer is used again. Thus, four buffers (A, B, C and D) are being
used cyclically. Figure 9 shows all the stages with the time required by each of them. It
must be pointed out that, the block called ”Rebuilding signals” begins once the whole buffer
is back to CPU in order to avoid race condition. So, transfer to CPU and rebuilding go in
the same block in the algorithm. Also, time blocks of ”Get Signal Matrix” and ”Rebuilding
Signals” (Figure 9) include latency times of samples captured from external buffer A/D and
delivered to external buffer D/A respectively, as it can be seen in [14], data-sheet of AC97
SoundMAX audio codec.

4 Results

Two main tests have been carried out to verify massive convolution on GPU. The first test
concerns the speed-up achieved when the pipelined algorithm of Figure 9 is compared with
a basic convolution algorithm, shown in Figure 3, using a signal x and an impulse-response
h made up of 176400 samples and 220 coefficients respectively.The size of the configured
signal matrixx was 32 x 512 elements. The time employed using basic algorithm is 13330
ms whereas in the pipelined algorithm is 625.92 ms . Therefore using the last configuration,
the time spent can be halved.

The most significant test resolves around the number of audiochannels that can be
managed by a GPU to carry out a massive convolution. In a real time audio application,
transfer and computation on GPU must spend less time than filling the sample’s data buffer.
This time depends on the rate of the incoming samples, what isknown as sample frequency.
CD quality has an audio sample frequency of 44.1 kHz. It meansthat 44100 samples per

7

Transfer

CPU->GPU

A-buffer

Signal

Matrix

A-buffer

Filter

configuration

h

Execution

in GPU

A-buffer

Transfer

GPU->CPU

A-buffer

+

Rebuilding

Signals

Transfer h

CPU->GPU

Obtain

matrix-H on

GPU

Transfer

CPU->GPU

buffer

GetSignal

Matrix

buffer

Filter

configuration

h

Execution

in GPU

buffer

Transfer

GPU->CPU

buffer

Transfer h

CPU->GPU

Rebuilding

Signals

0.055 ms

0.083 ms

0.052 ms

2.792 ms

0.083 ms

0.167 ms

0.083 ms

2.669 ms

Execution

in GPU

CUFFT of h

Different

Stages Time

Transfer

CPU->GPU

B-buffer

Signal

Matrix

B-buffer

Execution

in GPU

B-buffer

Signal

Matrix

C-buffer

Signal

Matrix

D-buffer

Signal

Matrix

A-buffer

Stream 0

Stream 1

Stream 2

Stream 3

Stream 4

9.37 ms

Transfer

GPU->CPU

B-buffer

+

Rebuilding

Signals

Transfer

CPU->GPU

C-buffer

Execution

in GPU

C-buffer

Transfer

GPU->CPU

C-buffer

+

Rebuilding

Signals

Transfer

CPU->GPU

D-buffer

Execution

in GPU

D-buffer

Transfer

GPU->CPU

D-buffer

+

Rebuilding

Signals

T
im

e

Transfer

CPU->GPU

D-buffer

Execution

in GPU

D-buffer

Transfer

GPU->CPU

D-buffer

+

Rebuilding

Signals

Signal

Matrix

A-buffer

Transfer

CPU->GPU

D-buffer

Execution

in GPU

D-buffer

Signal

Matrix

A-buffer

Transfer

CPU->GPU

D-buffer

Signal

Matrix

A-buffer

Fig. 9: Pipeline algorithm using differentstreams provided by theconcurrent copy and exe-
cution property of GPU. On the left side, times spent by all stages ofthe algorithm

channel arrive within one second. Taking into account that one sample of one channel arrives
every 1/44100 s, different numbers of channels can be managed by a GPU, depending on
the buffer size.

Figure 9 shows that time spent on the algorithm (fill buffer, transfer CPU⇒GPU, com-
puting, transfer CPU⇐GPU, empty buffer) is 9.37 ms. This number comes from the sum
of all the steps executed by onestream taking into account some conflicts among adjacent
streams when more than a transfer CPU⇔GPU exists simultaneously, as documentation
from NVIDIA [13] explains. The same algorithm has been implemented sequentially and
executed using a core of CPU intel i7, spending 14.98 ms.

Real samples in one row of the buffer matrix will beL− (M −1) because firstM −1
samples will be zero or duplicated (In our test, 293 samples,which arrive at 1/44100 s
each). Table 1 shows that processing on GPU allows managing up to 16 audio channel
simultaneously using a matrix buffer of 32 x 512. If one row ofthe buffer were dedicated
to one channel, then, the executing time of 9.37ms would be larger than the filling buffer
time of 6.6 ms thus the application would not work properly inreal-time. Many incoming
samples would not be processed because the A-buffer (Figure9) would not be available to
be filled of samples.

5 Conclusions

The concurrent copy and execution CUDA property allows to configure a pipelined algo-
rithm, which can be used for carrying out a massive convolution. This algorithm offers much
better performance than the classical algorithm of the convolution over GPU. The main
advantage is that it is a scalable algorithm, even when the incoming signalx has several
channels or there is more than one filter or effect to be carried out over the signals.

8

Table 1: Number of possible audio channels in the application using a matrix buffer of 32 x
512

Number of Occupacy of rows Time employed Use of GPU (%) Availability
channels per channel filling buffer

1 32 212.6 ms 4.4% Yes
2 16 106.3 ms 8.8% Yes
4 8 53.15 ms 17.6% Yes
8 4 26.9 ms 35.2% Yes
16 2 13.2 ms 70.5% Yes
32 1 6.6 ms 141% No

As the results show, GPU lets dealing with 16 audio channels.With this pipelined algo-
rithm it is clear that, with only one GPU, applications like 3D spatial sound can be achieved.
Moreover the use of a single GPU provides energy saving, because the large computers used
nowadays in funfairs or theaters would no longer be requiredto develop audio applications.

Furthermore, using GPU frees up CPU resources, providing better performance and
more importantly, opening up a new way of implementing audioapplications where GPUs
have not previously been used before.

Acknowledgements This work was partially supported by the Spanish Ministeriode Ciencia e Innovacion
(Projects TIN2008-06570-C04-02 and TEC2009-13741), Universidad Politecnica de Valencia through PAID-
05-09 and Generalitat Valenciana through project PROMETEO/2009/2013

References

1. S. Spors, R. Rabenstein, W. Herbordt, Active listening room compensation for massive multichannel
sound reproduction system using wave-domain adaptive filtering, J. Acoust Soc. Am., vol 122, pag 354-
369, (2007)

2. Y. Huang, J.Benesty and J. Chen, Generalized crosstalk cancellation and equalization using multiple loud-
speakers for 3D sound reproduction at the ears of multiple listeners, IEEE Int. Conference on Acoustics,
Speech and Signal Processing page 405-408, Las Vegas, USA (2008)

3. B. Cowan, and B. Kapralos. Spatial sound for video games and virtual environments utilizing real-time
GPU-based convolution. In Proceedings of the ACM FuturePlay 2008 International Conference on the
Future of Game Design and Technology. Toronto, Ontario, Canada, November 3-5, (2008).

4. J.A. Belloch, A. M. Vidal, F.J.Martinez-Zaldivar and A. Gonzalez, Multichannel acoustic signal process-
ing on GPU, Procedings of the 10th International Conferenceon Computational and Mathematical Methods
in Science and Engineering, Vol 1, Pg 181-187, Almeria, Spain, June 26-30, (2010).

5. Brent Cowan and Bill Kapralos. GPU-Based One-Dimensional Convolution for Real-Time Spatial Sound
Generation. Scholary Journals, ISSN 1923-2691, Vol 3, No 5,(2009).

6. S.S. Soliman, D.S.Mandyam and M.D. Srinath, Continuous and Discrete Signals and Systems, Prentice
Hall, ISBN:0135184738 (1997)

7. A.V. Oppenheim A.S.Willsky and S.Hamid Nawab, Signals and Systems, Prentice Hall,
ISBN:0138147574

8. openGL: “http://www.opengl.org/”
9. MKL library: “http://software.intel.com/en-us/intel-mkl/”
10. MKL library: “http://software.intel.com/en-us/intel-ipp/”
11. CUFFT library: “http://developer.download.nvidia.com/compute/cuda/31/toolkit/docs/

CUFFT Library 3.1.pdf”
12. CUDA Toolkit 3.1: “http://developer.nvidia.com/object/cuda3 1 downloads.html”
13. CUDA Toolkit 3.2: “http://developer.nvidia.com/object/cuda3 1 downloads.html”
14. Datasheet of AC97 SoundMAX Codec: “http://www.xilinx.com/products/boards/ml505/

datasheets/87560554AD1981Bc.pdf”

