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Abstract This paper describes a pipelined parallel algorithm for theMMSE-OSIC
decoding procedure proposed in V-BLAST wireless MIMO systems, for heteroge-
neous networks of processors. It is based on a block version of the square root Kalman
Filter algorithm that was initially devised to solve the RLSproblem. It has been par-
allelized in a pipelined way obtaining a good efficiency and scalability. The optimum
load balancing for this parallel algorithm is dynamic, but we derive a static load bal-
ancing scheme with good performance.
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1 Introduction

Multiple Input Multiple Output (MIMO) systems have been extensively studied in
the context of wireless communications in recent years. Theoriginal proposal by
Foschini [1], known as BLAST (Bell Labs Layered Space-Time), has generated a
family of architectures that uses multiple antenna arrays to transmit and receive in-
formation, with the goal of increasing the capacity and reliability of the links. We
focus our interest on the suboptimal but practical V-BLAST family where nearly op-
timal decoders such as MMSE (Minimum Mean Square Error Estimation) and its
ordered version OSIC (Ordered Successive Interference Cancellation), [2,3], can be
used. There are applications that use these methods to decode information in a dig-
ital receiver at a higher rate or with less bit error ratio than in SISO (Single Input
Single Output) channels [4,5], where the dimension of the problem may be several
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Dept. de Sistemas Inforḿaticos y Computación, U.P. de Valencia, (Spain), E-mail: avidal@dsic.upv.es

D. Giménez
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thousands, i.e. multicarrier systems such as OFDM used in DVB-T (Digital Video
Broadcasting-Terrestrial), WIFI 802.11a, etc.

This paper describes the parallelization of the algorithm that solves the MMSE-
OSIC decoding problem for a heterogeneous network of processors. The interest of
the heterogeneous perspective in these applications is focused on future experimen-
tations with GPUs where the CPU (with less computing power) collaborates in the
problem solution. The algorithm is based on the ideas of [2] and can be used with the
improvement presented in [3].

The paper is organized as follows: first we will describe the MMSE-OSIC decod-
ing algorithm; next, we will describe the pipelined parallelization of this algorithm
explaining the details of the proposed load balancing scheme; and finally, results of
the experimentation in a heterogeneous parallel system will be stated.

2 MMSE-OSIC decoding procedure

In a basic approach, we need to solve the typical perturbed systemy = Hx + v,
where the known full rank matrixH ∈ C

m×n, m ≥ n, represents thechannel matrix
and any manipulation of the symbols before transmission;x is a vector whose com-
ponents belong to a discrete symbol set, andv is the process noise. Let us defineHα

as theaugmented channel matrix:

Hα =

(

H√
αIn

)

. (1)

The use of MMSE (Minimum Mean Square Error estimation) yields [2]

x̂ =

⌊

(

H√
αIn

)† (

y

0

)

⌉

=
⌊

H†|m
α y

⌉

, (2)

wherex̂ is the estimation ofx, ⌊·⌉ denotes the mapping or slicing of the result in
the discrete symbol set,H†|m

α denotes the firstm columns of the pseudoinverse of
the augmentedchannel matrix (1),α−1 is a signal-to-noise ratio, and the asterisk
superscript(·)∗ denotes the complex conjugate. In OSIC, the signal components xi,
i = 1, . . . n, are decoded from the strongest one (with the highest signal-to-noise
ratio) to the weakest one, cancelling the contribution of the decoded signal compo-
nent to the received signal, and then repeating the process with the remaining signal
components, [2,6].

Every time the maximum signal-to-noise ratio remaining component is decoded
it is necessary to compute the pseudoinverse. In [2,6] it is shown how to avoid this
recomputation and how to optimize the way to obtain every component. Hence, we
can obtain:

H†|m
α = P1/2Q∗

α, (3)

whereP1/2 is a square root factor of the error estimation covariance matrix P =
E{(x − x̂)(x − x̂)∗} = (αIn + H∗H)−1, andQα ∈ C

m×n are the firstm rows
of the orthogonal matrixQ from the augmentedchannel matrix QL-factorization,
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Hα = QL. TheP1/2 andQα matrices are the only necessary data to compute in
order to obtain the result of the combined MMSE-OSIC algorithm. We can use the
square root Kalman Filter algorithm [7] in order to obtain these matrices [2,6].

2.1 The square root Kalman Filter for MMSE-OSIC

From (3),Qα = H
†|m∗
α P−∗/2. This matrix is propagated throughout the iterations

of the square root Kalman Filter that was initially devised to solve a RLS (Recursive
Least Squares) problem. Next, we reproduce a block version of the algorithm for
MMSE-OSIC that was reported in [2], which we refer to as SRKF-OSIC.

Input: H =
(

H∗
0,H

∗
1, . . . ,H

∗
m/q−1

)∗
, P1/2

(0) = 1√
α
In andQα,(0) = 0

Output: Qα = Qα,(m/q), P1/2 = P
1/2
(m/q)

for i = 0, . . . ,m/q − 1 do
CalculateΘ(i) and apply it in such a way that:

E(i)Θ(i) =







Iq HiP
1/2
(i)

0 P
1/2
(i)

−Γ(i+1) Qα,(i)






Θ(i) =







R
1/2
e,(i) 0

Kp,(i) P
1/2
(i+1)

Z(i) Qα,(i+1)






= F(i)

end for

whereZ(i) = −
(

Γ∗
(i+1) − HiH

†|m
α,(i+1)

)∗
R

−∗/2
e,(i) ; q is the number of consecutive

rows ofH processed in a block, thusHi ∈ C
q×n is theith block of q consecutive

rows ofH; the iteration index subscript enclosed between parenthesis denotes that the
variable is updated iteratively, i.e.,Qα andP1/2 are the valuesQα,(i+1) andP

1/2
(i+1)

in the last iterationi = m/q − 1. Γ(i+1) =
(

0T
iq×q, Iq,0

T
(m−q(i+1))×q

)T

∈ R
m×q.

Re,(i) andKp,(i) are variables of the Kalman Filter whose meanings are described in

[7], andH
†|m
α,(i+1) appears implicitly inZ(i).

The cost of one iteration is a matrix multiplicationHiP
1/2
(i) and the applica-

tion of a sequence of Givens rotationsΘ(i), exploiting and maintaining the trian-

gular structure ofP1/2
(i) throughout the iterations. The total cost of the iterationsis

Wseq(m,n, q) = 4n2m + 3nm2 flops approximately.

3 Parallel algorithm

A matrix enclosed within square brackets with a processor subscript denotes that part
of the matrix belongs to that processor. If it is enclosed within parenthesis, then it
denotes that the entire matrix is in the processor of the subscript.

The lastn columns of eitherE(i) or F(i) matrices of the SRKF-OSIC algorithm
will be distributed among thep processors:Pj will own nj columns beginning at
c0j

with n =
∑p−1

j=0 nj . The firstq columns of eitherE(i) or F(i) will be denoted
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by D(i) ∈ C
(q+n+m)×q. D(i) will be manipulated in a pipelined way by all the

processors, so we denote it as(D(i))Pj
, wherePj represents the processor that is

processing it.D(i) is made up of a lower triangular matrixJ(i) ∈ C
q×q and two

general matricesM(i) ∈ C
n×q and N(i) ∈ C

m×q. M(i) will be divided into p
groups of rows, (the number of rows will be indicated by a leftsuperscript). The
nonzero rows ofN(i) will depend on the iteration indexi.

3.1 Processor tasks

When thePj processor obtains zeroes in[HiP
1/2
(i) ]Pj

for theith iteration, the matrices

[P
1/2
(i) ]Pj

and[Qα,(i)]Pj
are converted into[P1/2

(i+1)]Pj
and[Qα,(i+1)]Pj

respectively.

Therefore, ifPj has obtainedHi+1, it can obtain[Hi+1P
1/2
(i+1)]Pj

and begin the pro-

cess for the(i + 1)th iteration. The pipelined behaviour of the algorithm is based on
this fact.

As an example, let us suppose that we havep = 3 processors:P0, P1 andP2. In
P0, the first step in the pipelined parallel algorithm is presented below (an apostrophe
denotes the updating of the variable):

E′
(i) = E(i)Θi,P0

=

























Iq
n2 [0]
n1 [0]
n0 [0]

−Γ(i+1)













P0







HiP
1/2
(i)

P
1/2
(i)

Qα,(i)







P2







HiP
1/2
(i)

P
1/2
(i)

Qα,(i)







P1







HiP
1/2
(i)

P
1/2
(i)

Qα,(i)







P0













Θi,P0

=

























J(i)
n2 [0]
n1 [0]

n0 [M(i)]
N(i)













P0







HiP
1/2
(i)

P
1/2
(i)

Qα,(i)







P2







HiP
1/2
(i)

P
1/2
(i)

Qα,(i)







P1





0

P
1/2
(i+1)

Qα,(i+1)





P0













,

whereΘi,P0
is a unitary transformation calculated and applied byP0 in order to

obtain zeroes in[HiP
1/2
(i) ]P0

. Now, P0 must transfer the nonzero part of(D(i))P0
to

P1. If P0 has receivedHi+1, it has all the necessary data to make up[Hi+1P
1/2
(i+1)]P0

and start again. WhenP1 receives(D(i))P0
, then:

E′′
(i) = E′

(i)Θi,P1

=

























J′
(i)

n2(0)
n1 [M(i)]
n0 [M(i)]

′

N′
(i)













P1







HiP
1/2
(i)

P
1/2
(i)

Qα,(i)







P2





0

P
1/2
(i+1)

Qα,(i+1)





P1





0

P
1/2
(i+1)

Qα,(i+1)





P0













.
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The comments given above forP0 also hold forP1. WhenP2 receives the nonzero
part of(D(i))P1

, then:

E′′′
(i) = E′′

(i)Θi,P2

E′′′
(i) =

























J′′
(i)

n2 [M(i)]
n1 [M(i)]

′
n0 [M(i)]

′′

N′′
(i)













P2





0

P
1/2
(i+1)

Qα,(i+1)





P2





0

P
1/2
(i+1)

Qα,(i+1)





P1





0

P
1/2
(i+1)

Qα,(i+1)





P0













=







R
1/2
e,(i) 0

Kp,(i) P
1/2
(i+1)

Z(i) Qα,(i+1)






= F(i).

The comments given above forP0 andP1 also hold forP2. (See Figure 1 which
depicts the behavior of the parallel algorithm whenP0 is processing theith iteration.)

Fig. 1 SRKF-OSIC pipelined parallel algorithm.

The arithmetic cost in theith iteration in thePj processor is due to the matrix mul-

tiplication [HiP
1/2
(i) ]Pj

and to the zeroing in thenj columns of[HiP
1/2
(i) ]Pj

(column-
wise and from right to left). We can verify that the parallelization arithmetic overhead
is null.
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3.2 Load balancing in heterogeneous networks of processors

The perfect load balance is obtained when all the processorsrequire the same amount
of time to process their assigned workload in certain time interval. In the pipelined
algorithm each processor processes a different iteration at the same time instant. It
is difficult to get an analytical expression to balance the load with this consideration.
We can consider a simpler criterion to balance the workload:

WPj ,i(n, q)twj
= WPk,i(n, q)twk

, ∀j 6= k (4)

wheretwj
andtwk

are the time per flop inPj andPk respectively. Thenj , ∀j, values
can be obtained by solving the following ideal equation:

WPj ,i(n, q)twj
=

Wseq,i(n, q)twseq

Smax(p, n, q)
, ∀ 0 ≤ j ≤ p − 1, (5)

whereSmax(p, n, q) is the maximum speedup attainable in the parallel system and
twseq is the time per flop for the sequential algorithm.

The maximum speedup in the heterogeneous network depends onthe time per
flop twj

of each processor. Let us definesj as the normalized relative speed of the
processors (dimensionless):

sj =
1

∑p−1
r=0

twj

twr

. (6)

We can verify that
∑p−1

j=0 sj = 1, andtwj
sj = twk

sk, ∀ j, k. We can also verify
that if Pj is u times faster thanPk, (twj

= twk
/u), thensj = usk.

Let us suppose that the sequential algorithm is run on the fastest processor of the
heterogeneous network, sayPf , 0 ≤ f ≤ p − 1, thentwseq = twf

. The maximum
speedup can be obtained from (5) when the load balance is got (4) and there is no
parallel arithmetic overhead (subsection 3.1). Let us solveSmax(p, n, q) from (5) with
j = f :

Smax(p, n, q) =
Wseq,i(n, q)twf

WPf ,i(n, q)twf

=

∑p−1
j=0 WPf ,i(n, q)

twf

twj

WPf ,i(n, q)
=

1

sf
. (7)

Hence, the maximum speedup in the heterogeneous network is the inverse of the
normalized relative speed of the fastest processor.

The (sub)optimalnj values depend on thei iteration value, so the proposed load
balancing scheme is not static (hence, we should change the column distribution at
every iteration). One possible solution to obtain a suboptimum but static load balanc-
ing scheme is to get it for the worst case, where the work load and the unbalancing
is the highest (at the last iteration:i = m/q − 1). Hence, we will begin by obtaining
np−1 with c0p−1

= 1, thennp−2 with c0p−2
= c0p−1

+ np−1, and so on.
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3.3 Communication analysis

The data thatPj must transfer toPj+1 for its ith iteration (see Figure 1) is the nonzero
part of (D(i))Pj

and theHi submatrix. Let us suppose that a linear model fits this
communication time. We can consider two communication network models: one in
which the transfer between adjacent processors can be made simultaneously (model
A, i.e., a linear array topology) and another in which these transfers must be done
serially (model B, i.e., bus topology). Hence, the total communication time for both
models areΘ (mn) + Θ

(

m2/q
)

andΘ (mnp) + Θ
(

m2/qp
)

respectively.

3.4 Scalability analysis

We obtained a null arithmetic overhead in the parallelization, so the overhead time in
the parallel algorithm is only due to the communication time. The serial time must be
compared with the total communication time overhead in order to get the scalability
of the parallel system [8]. In our case, the scalability ranges betweenn,m = Θ (p)
andn,m = Θ

(

p2
)

for the A and B models respectively. Hence, a linear scalability
behavior can be obtained with just a linear array topology.

3.5 Experimental results

The heterogeneous system used to test the parallel algorithm consisted of:

– Node 0: A monoprocessor with a 1.7 GHz Pentium IV with 1 GB of main mem-
ory, running a CentOS 4.4 32-bit operating system.

– Node 1: a CC-NUMA multiprocessor with two 1.4 GHz two-cores Itanium pro-
cessors with 8 GB of memory running a Red Hat Enterprise LinuxAS 64-bit
operating system.

using the MPI library (MPICH 1.2.7p1), compiled for 32 and 64bits, respectively.
Figure 2 depicts the arithmetic time per iteration (i = 0, . . . ,m/q − 1) with

the proposed static balancing scheme observing that it is got in the last iterations as
expected.

Taking as reference times the execution time of the sequential algorithm in both
kinds of processors, the normalized relative speed of the processors (6) weres0 ≈
0.04 and s1 = . . . = s4 ≈ 0.24, for m = 6000 and q = 20 and independent
from n. The maximum normalized relative speed in this system ismax{sj} ≈ 0.24,
thenSmax ≈ 4.2. Hence, the maximum attainable efficiency isEmax = Smax/p =
4.2/5 ≈ 83%. Figure 3 depicts the efficiency of the parallel algorithm. For high
values ofn, the efficiency is about 60–65%, which represents arelativeefficiency of
72–78% respect to the maximum.

4 Conclusions

We have proposed a pipelined parallel algorithm to solve theheaviest part of the
MMSE-OSIC decoding problem based on the square root Kalman Filter algorithm.



8

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

iteration

tim
e

P
0

P
1

P
2

P
3

P
4

Fig. 2 Arithmetic time (s) per iteration in each
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0 1000 2000 3000 4000 5000 6000
10

20

30

40

50

60

70

n

E
ffi

ci
en

cy

Fig. 3 Efficiency (%) of parallel SRKF-OSIC for
m = 6000 andq = 20.

All the processes derived from the parallel algorithm are regular, so the execution in
a heterogeneous network implies that the load must be distributed evenly according
to the speed of the processors. Although the ideal load balancing scheme for our par-
allel algorithm is dynamic, the behavior of the proposed static load balancing scheme
in the heterogeneous system was satisfactory, with good efficiency results near to
optimum values. The algorithm parallelization can be used in MIMO detection appli-
cations with GPU, FPGA or other VLSI systems implementations due to its implicit
regularity.
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