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Abstract This paper describes a pipelined parallel algorithm forNMMSE-OSIC
decoding procedure proposed in V-BLAST wireless MIMO systefor heteroge-
neous networks of processors. Itis based on a block verétbie square root Kalman
Filter algorithm that was initially devised to solve the Rp®blem. It has been par-
allelized in a pipelined way obtaining a good efficiency acalability. The optimum
load balancing for this parallel algorithm is dynamic, bt derive a static load bal-
ancing scheme with good performance.
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1 Introduction

Multiple Input Multiple Output (MIMO) systems have been emsively studied in
the context of wireless communications in recent years. diiginal proposal by
Foschini [1], known as BLAST (Bell Labs Layered Space-Tiptgs generated a
family of architectures that uses multiple antenna arraytsansmit and receive in-
formation, with the goal of increasing the capacity andatglity of the links. We
focus our interest on the suboptimal but practical V-BLA@mfly where nearly op-
timal decoders such as MMSE (Minimum Mean Square Error Edtom) and its
ordered version OSIC (Ordered Successive Interferencedllation), [2, 3], can be
used. There are applications that use these methods toaladodmnation in a dig-
ital receiver at a higher rate or with less bit error ratiorthia SISO (Single Input
Single Output) channels [4,5], where the dimension of tleblem may be several
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thousands, i.e. multicarrier systems such as OFDM used iB-D\(Digital Video
Broadcasting-Terrestrial), WIFI 802.11a, etc.

This paper describes the parallelization of the algorithat solves the MMSE-
OSIC decoding problem for a heterogeneous network of psacssThe interest of
the heterogeneous perspective in these applicationsusddoon future experimen-
tations with GPUs where the CPU (with less computing poweljpborates in the
problem solution. The algorithm is based on the ideas offjg]@an be used with the
improvement presented in [3].

The paper is organized as follows: first we will describe tHdSE-OSIC decod-
ing algorithm; next, we will describe the pipelined parkidiation of this algorithm
explaining the details of the proposed load balancing sehamd finally, results of
the experimentation in a heterogeneous parallel systehbevgtated.

2 MMSE-OSIC decoding procedure

In a basic approach, we need to solve the typical perturbstisyy = Hx + v,
where the known full rank matrill € C™*" m > n, represents thehannel matrix
and any manipulation of the symbols before transmisstois;a vector whose com-
ponents belong to a discrete symbol set, ansithe process noise. Let us defiHg,
as theaugmented channel matrix

H
w5, o
The use of MMSE (Minimum Mean Square Error estimation) \ad2]

AV @ e

wherex is the estimation ok, |-] denotes the mapping or slicing of the result in

the discrete symbol sl denotes the first: columns of the pseudoinverse of
the augmentecthannel matrix (1)o~! is a signal-to-noise ratio, and the asterisk
superscrip{-)* denotes the complex conjugate. In OSIC, the signal comgengn

i = 1,...n, are decoded from the strongest one (with the highest sigrabise
ratio) to the weakest one, cancelling the contribution ef decoded signal compo-
nent to the received signal, and then repeating the prociéisshe remaining signal
components, [2, 6].

Every time the maximum signal-to-noise ratio remaining poment is decoded
it is necessary to compute the pseudoinverse. In [2,6] ihésve how to avoid this
recomputation and how to optimize the way to obtain everymament. Hence, we
can obtain:

Hi™ = P1/2Qz, ®)

whereP'/2 is a square root factor of the error estimation covariancaix® =
E{(x — x)(x — x)*} = (oI, + H*H)™!, andQ, € C™*" are the firstm rows
of the orthogonal matrixQ from the augmentecchannel matrix QL-factorization,
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H, = QL. TheP!/2 andQ, matrices are the only necessary data to compute in
order to obtain the result of the combined MMSE-OSIC aldyonit We can use the
square root Kalman Filter algorithm [7] in order to obtaiedk matrices [2, 6].

2.1 The square root Kalman Filter for MMSE-OSIC

From (3),Qa = HL™ P~*/2. This matrix is propagated throughout the iterations
of the square root Kalman Filter that was initially devisedblve a RLS (Recursive
Least Squares) problem. Next, we reproduce a block verdigheoalgorithm for
MMSE-OSIC that was reported in [2], which we refer to as SRBEIC.

. * * * * 1/2
Input: H — (HO,H17 . 7Hm/q71) P = L1, andQ, ) = 0

. - _ pl/2
Output: Q, = Qm(m/q)a Pl/2 = P(m/q)
fori=0,...,m/q—1do
Calculate® ;) and apply it in such a way that:

I, HPJ’ R/ 0
O — 1/2 - _F,
E»Oq 0o P |9 Ko Pl1, F
Ty Qo Ziy Qo i41)
end for
whereZ;, = — (FEH) —-H, H“’ZH)) R, 2‘/)2 g is the number of consecutive

rows of H processed in a block, thi; € C7*™ is thei" block of ¢ consecutive
rows ofH; the iteration index subscript enclosed between pareistidenotes that the

variable is updated iteratively, i.eQ, andP'/? are the value€),, (i4+1) andP/
T

(z+1)
in the last iteration = m/q — 1. T(;41) = <quxq,1q,0(m_q(i+1))xq) € R™x4,

Re (i andﬁp (i) are variables of the Kalman Filter whose meanings are destin

[71, andH“mlH) appears implicitly irZ ;)
1/2

The cost of one iteration is a matrlx multiplicatid; P() and the applica-
tion of a sequence of Givens rotatio®;), exploiting and maintaining the trian-
gular structure 011321./)2 throughout the iterations. The total cost of the iteratigns
Wsedm, n, q) = 4n’*m + 3nm? flops approximately.

3 Parallel algorithm

A matrix enclosed within square brackets with a procesdos&ipt denotes that part
of the matrix belongs to that processor. If it is enclosedhiniparenthesis, then it
denotes that the entire matrix is in the processor of thecsijths

The lastn columns of eitheiE ;) or F ;) matrices of the SRKF-OSIC algorithm
will be distributed among the processorsP; will own n; columns beginning at
co; With n = ZJ _o M- The firstq columns of eithel ;) or F ;) will be denoted
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by D(;) € Clatntm)xa D, will be manipulated in a pipelined way by all the
processors, so we denote it @ ;) p;, Where P; represents the processor that is
processing itD;y is made up of a lower triangular matrik;, € C?*¢ and two
general matriceM ;) € C*"*? andN(; € C™*4. M(;, will be divided intop
groups of rows, (the number of rows will be indicated by a mfperscript). The
nonzero rows olN ;) will depend on the iteration index

3.1 Processor tasks

When theP; processor obtains zeroes[Hin/)Q] p, for theit" iteration, the matrices

[P(li/f]pj and[Q, ;] p, are converted int@%{fl)]pj and[Q. (i+1)] p, respectively.

Therefore, ifP; has obtained, 1, it can obtainH, P}/’

(Hl)]pj and begin the pro-
cess for thei + 1) iteration. The pipelined behaviour of the algorithm is lthea
this fact.

As an example, let us suppose that we have 3 processorsP,, P; andPs. In
Py, the first step in the pipelined parallel algorithm is preéedrbelow (an apostrophe

denotes the updating of the variable):

E;) =E(;0O; p,

Iq
" 1/2 1/2 1/2
"*[0] H:P H:P ) H:P )
= '[0] le./f P}{f P}{f ST
"[o]
r Qo) Ip, L Q) 1p, L Qaud) 1 p,
—L(+1) /) p,
I
n ) 1/2 ) 1/2
7: [8] Hlll)/(é) H’ 113/(2i) 1:)1(/)2
e P P (++1) ’
[ (l)] Qa,(i) Py Qa,(i) Py Qoz,(i+1) P,
No /g,

where®; p, is a unitary transformation calculated and appliedfyin order to
obtain zeroes irﬁHiPéi/)Q}po. Now, P, must transfer the nonzero part@;) , to
Py. If Py has received; 1, it has all the necessary data to make{H@HPéi/fl)] Po

and start again. When, receive§D ;) p,, then:

"o )
Ei =E;)®ip

J.
(4)
" (0) HiP}/) 0 0
ny 1/2 1/2 1/2
=11. [Mu)]/ P/ P/l P
[1\/;[(1)] Qa,(i) Py a,(i—!—l) P, Qa,(i+1) P,



The comments given above & also hold forP;. WhenP; receives the nonzero
part of(D;)) p, , then:

= Ely®ur.

(#)
"
)
T A B AR
ny 1/2 1/2 1/2
E/(/z/) = o [1\1\//11(2‘)]/// P(i+1) P(11+1) P(i+1)
[//(i)] Qa,(iJrl) Py Qa,(i+1) P Qa,(i+1) Po
(@) Py
1/2
Roo O

1/2 =F,,
Kp.() P(i+1) F.
Ziy Qa(iv1)
The comments given above féy and P; also hold forP,. (See Figure 1 which
depicts the behavior of the parallel algorithm whgyis processing thé" iteration.)

Input
H P

h‘r—l\” o li=1)Jp,
W |
g

q n, q n,

Fig. 1 SRKF-OSIC pipelined parallel algorithm.

The arithmetic cost in thé" iteration in theP; processor is due to the matrix mul-
tiplication [HiPli/Q]pj and to the zeroing in the; columns of[HiPli/)Q}pj (column-
wise and from right to left). We can verify that the paralielion arithmetic overhead
is null.



3.2 Load balancing in heterogeneous networks of processors

The perfect load balance is obtained when all the processquire the same amount
of time to process their assigned workload in certain tinteriral. In the pipelined
algorithm each processor processes a different iteratitimeasame time instant. It
is difficult to get an analytical expression to balance ttallwith this consideration.
We can consider a simpler criterion to balance the workload:

Wp,i(n,)tw, = Wp, i(n, Q)tw,, Vj#k (4)

wheret,,, andt,,, are the time per flop i®; and P, respectively. The;, Vj, values
can be obtained by solving the following ideal equation:

Wseqi (na CI) twseq

Wil e, = =5 ong)

whereS,.x(p, n, ¢) is the maximum speedup attainable in the parallel system and
twe IS the time per flop for the sequential algorithm.

The maximum speedup in the heterogeneous network depentie dime per
flop ¢,,; of each processor. Let us defiagas the normalized relative speed of the
processors (dimensionless):

- (6)

wy

ﬁ"@
|
O =
| o+

We can verify tha@?;é s; = 1,andty,; s; = ty, sk, V j, k. We can also verify
that if P; is u times faster tha,, (t., = tw, /u), thens; = usy.

Let us suppose that the sequential algorithm is run on thedgrocessor of the
heterogeneous network, s#, 0 < f < p — 1, thent,,, = t,,. The maximum
speedup can be obtained from (5) when the load balance igtpan(l there is no
parallel arithmetic overhead (subsection 3.1). Let usesShax(p, n, ¢) from (5) with
j=1r

p—1 ) bwy
Wseqi(n» Q)twf ijo Wpfﬂ (n’ q) tw; 1

Smax 7n) = = =5 7
(P, ) me(n,q)tu,f WPf,i(me) Sr ")

Hence, the maximum speedup in the heterogeneous netwolle inerse of the
normalized relative speed of the fastest processor.

The (sub)optimah; values depend on thdteration value, so the proposed load
balancing scheme is not static (hence, we should changeothmi distribution at
every iteration). One possible solution to obtain a sulopin but static load balanc-
ing scheme is to get it for the worst case, where the work |gafithe unbalancing
is the highest (at the last iteratioh= m/q — 1). Hence, we will begin by obtaining
np_1 Withcg,_, =1, thenn,, _, with ¢y, _, = co,_, +n,_1, and so on.



3.3 Communication analysis

The data thaf’; must transfer ta?;, ; for its i iteration (see Figure 1) is the nonzero
part of (D;)) p, and theH; submatrix. Let us suppose that a linear model fits this
communication time. We can consider two communication ngtwnodels: one in
which the transfer between adjacent processors can be rimadkameously (model

A, i.e., a linear array topology) and another in which thesagfers must be done
serially (model B, i.e., bus topology). Hence, the total cmmication time for both
models ar@® (mn) + © (m?/q) and® (mnp) + © (m?/qp) respectively.

3.4 Scalability analysis

We obtained a null arithmetic overhead in the parallel@atso the overhead time in
the parallel algorithm is only due to the communication tiffiee serial time must be
compared with the total communication time overhead in oralget the scalability
of the parallel system [8]. In our case, the scalability embetweem, m = © (p)
andn,m = © (p2) for the A and B models respectively. Hence, a linear scatgbil
behavior can be obtained with just a linear array topology.

3.5 Experimental results

The heterogeneous system used to test the parallel algoeithsisted of:

— Node 0: A monoprocessor with a 1.7 GHz Pentium IV with 1 GB ofmmaem-
ory, running a CentOS 4.4 32-bit operating system.

— Node 1: a CC-NUMA multiprocessor with two 1.4 GHz two-cor&mium pro-
cessors with 8 GB of memory running a Red Hat Enterprise LIAGx64-bit
operating system.

using the MPI library (MPICH 1.2.7p1), compiled for 32 andHits, respectively.

Figure 2 depicts the arithmetic time per iteratian=£ 0,...,m/q — 1) with
the proposed static balancing scheme observing that ittisighe last iterations as
expected.

Taking as reference times the execution time of the secaletjorithm in both
kinds of processors, the normalized relative speed of thegssors (6) werg; ~
0.04 ands; = ... = s4 = 0.24, for m = 6000 andg = 20 and independent
from n. The maximum normalized relative speed in this systemds{s,} ~ 0.24,
thenSy.x ~ 4.2. Hence, the maximum attainable efficiencyfis..x = Smax/p =
4.2/5 ~ 83%. Figure 3 depicts the efficiency of the parallel algorithmr Rayh
values ofn, the efficiency is about 60-65%, which represemnalative efficiency of
72—-78% respect to the maximum.

4 Conclusions

We have proposed a pipelined parallel algorithm to solvehtbaviest part of the
MMSE-OSIC decoding problem based on the square root Kalnitar Blgorithm.
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Fig. 2 Arithmetic time (s) per iteration in each  Fig. 3 Efficiency (%) of parallel SRKF-OSIC for
processor forn = 6000, ¢ = 20, andn = 2000. m = 6000 andg = 20.

All the processes derived from the parallel algorithm agpilar, so the execution in
a heterogeneous network implies that the load must bellistd evenly according
to the speed of the processors. Although the ideal load biaigischeme for our par-
allel algorithm is dynamic, the behavior of the proposetistaad balancing scheme
in the heterogeneous system was satisfactory, with goociegfély results near to
optimum values. The algorithm parallelization can be usddIiMO detection appli-
cations with GPU, FPGA or other VLSI systems implementatidae to its implicit
regularity.
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