

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1145/2552999.2553010

http://hdl.handle.net/10251/38955

Association for Computing Machinery (ACM)

Sáez Barona, S.; Real Sáez, JV.; Crespo, A. (2013). Deferred and atomic setting of
scheduling attributes for ada. Ada Letters. 33(2):97-108. doi:10.1145/2552999.2553010.

Deferred and Atomic Setting of Scheduling Attributes for Ada

Sergio Sáez, Jorge Real, and Alfons Crespo
{ssaez|jorge}@disca.upv.es

Universitat Politècnica de València, Spain

Abstract

Deferred setting of scheduling attributes refers to a single operation that sets a new value for a scheduling attribute of
a task at some future time. Although deferred setting of scheduling attributes is possible in Ada 2012, it is in a rather
limited way: only deadline or CPU can be changed deferredly, either at a specified time or when the task is released from
a suspension object. And only one of those two attributes at a time. Other scheduling attributes such as priority cannot
have deferred setting by means of a single operation. This would be a convenient feature to have for schemes such as job
partitioning, task splitting, or mode changes. Another issue is the absence of operations for atomically changing several
parameters at a time, which would avoid scheduling issues specially on multiprocessors.

In this paper we explore a proposal aimed at correcting these two drawbacks. On one hand, we want to be able to change
more attributes, not only deadlines, deferredly or immediately. On the other hand, we want to atomically change (now
or later) a set of attributes, thereby avoiding scheduling artifacts that arise from sequentially changing several attributes,
specially when the CPU is one of them.

Rather than providing a number of library operations for postponing the setting of a variety of scheduling attributes, we
propose to encapsulate the scheduling attributes of each task in a single tagged type that can be extended with more attributes
for specific applications if needed.

c©ACM, 2013. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in ACM SIGAda Ada Letters, Volume 33, Issue 2, August 2013. DOI
10.1145/2552999.2553010

1 Introduction

Scheduling attributes refer to task attributes such as priority, CPU affinity, period, deadline, etc. Deferred setting of
scheduling attributes refer to the ability for the programmer to specify that one or more scheduling attributes of a task need
be set to a new value but not immediately, but at some point in time in the future, such as the next activation time of the task.
One example of deferred setting of a scheduling attribute for a task is the procedure Delay Until And Set Deadline
from the Ada 2005 standard package Ada.Dispatching.EDF. Similarly, sporadic tasks can also have their deadline
changed upon their next activation if they use a suspension object for activation control. This can be achieved by means of
Suspend Until True And Set Deadline from package Ada.Synchronous Task Control.EDF.

At the 15th IRTAW, Mario Aldea, chairman of the workshop, summarized the discussion initiated around this topic as
follows [?]:

The discussion about this [deferred attributes] topic was started in session 1.A and finished in this [closing]
session. A presentation was made on the existing limitations of the current model of setting attributes (priority,
deadline and affinity) that can cause undesirable effects when trying to change several of them simultaneously
for the same task. There was some discussion about whether these changes could be performed atomically from
inside a protected operation. The conclusion was that this is not a valid approach when changing other task’s
attributes. The group sentiment was that a mechanism is required to allow deferred attribute setting for the next

dispatching point of a task. Two alternative implementations of the aforementioned mechanism were discussed:
using an attributes object or using a set of procedures. It was agreed that this issue needs further investigation,
modeling and trial implementations.

From the two alternative implementations mentioned at the end of this quote, we want to propose a model that uses the
first approach and encloses the setting of several scheduling parameters in a single operation that can be executed atomically.
By doing so, undesirable artifacts are avoided at run time, specially on multiprocessor platforms. A single container object
for all relevant scheduling attributes has also advantages if it is tagged, as we will show.

The rest of this paper is structured as follows. Section 2 describes the problem context. Section 3 defines our proposal.
Section 4 discusses implementation issues related to the proposal and that need be solved. A use example is given in Section 5.
Finally, Section 6 concludes the paper.

2 Context and problem description

The problems we are trying to solve with this proposal were already described in [?]. For convenience, we give here a
brief description. The following actions are sources for scheduling decisions and also for potential scheduling issues:

1. Changing a single task’s scheduling parameter.

2. Changing a single scheduling parameter in the future.

3. Changing a set of scheduling parameters, either now or in the future.

By scheduling parameters we mean task parameters that have an impact on how the system schedules that task, including
priority, deadline and CPU, and possibly other user-defined attributes.

The first case is solved in Ada by delaying the actual effect of the parameter change until the task’s next dispatching point.
The second case involves a parameter change plus the execution of a delay until statement. Ada allows the deferred set-
ting of scheduling attributes for the cases of deadline and CPU by means of subprograms Delay Until And Set Dead-
line and Delay Until And Set CPU. The third case, however, cannot be cleanly solved in Ada. The case is particularly
problematic in the context of multiprocessor platforms, when the CPU attribute is one of the parameters to be changed. In
other words, tasks or jobs need to (dynamically) migrate to a different processor. This is the case of multi-moded systems
and also in multiprocessor scheduling approaches such as job partitioning and task splitting [?, ?], to give some examples.

Figures 1 and 2 (reproduced from [?]) show how a task can miss its deadline when it tries to simultaneously change both
its priority and its target CPU. In both scenarios, the task T0 migrates from one CPU to another, but uses a different priority
in the target CPU. The expressions TX/PY in these figures denote task X / priority Y.

In Figure 1, task T0 misses its deadline while executing the Set Priority + Set CPU sequence. The expected ex-
ecution would be that task T0 migrates to CPU1 and preempts T2, while T1 becomes the highest priority task in CPU0, as
shown in the expected execution side of the figure. However, right after T0 changes its priority, the task T1 has the highest pri-
ority on CPU0, preempts T0 and therefore impedes it to execute the Set CPU statement until it is too late (after deadline D0).
Figure 2 shows a different situation where the incorrect behavior is caused by the sequence Set CPU + Set Priority.
In this second case, T0 migrates to CPU1 with the wrong priority, hence it can not preempt T2 and is dispatched too late to
meet its deadline. The only solution to these situations is to provide a mechanism to simultaneously change the priority and
the target CPU. Similar issues arise under multiprocessor EDF dispatching with respect to Set Deadline and Set CPU.

Although the scenarios shown in Figures 1 and 2 can be solved by encapsulating both Set CPU and Set Priority
within a protected operation, this cannot be done when the change of priority or deadline, and target CPU is combined with
a delay until statement. As shown in the two following code examples, no correct sequence of code can be found using
the current multiprocessor support in Ada. Note that these sequences of code are natural ways to implement job partitioning
schemes, for setting the CPU where the next job is going to be executed before the current job finishes; and also task splitting,
for resetting the original CPU at the end of the job.

loop
-- Task code
...
Next_Time := Next_Time + Period;

CPU 0

CPU 1

Expected execution

Se
t_
CP
U

Se
t_
Pr
io
ri
ty

CPU 1

CPU 0

Task release

Task deadline

TaskId / Task Prio

Real execution

D0 D2

T0/P1

T0/P3 T1/P2

T2/P0

D1

D0

T2/P0 T0/P1

T0/P1T0/P3 T1/P2

D2

D1

Figure 1. Expected and real executions of a Set Priority + Set CPU sequence.

Task release

Task deadline

TaskId / Task Prio

Se
t_
CP
U

Se
t_
Pr
io
ri
ty

CPU 1

CPU 0CPU 0

CPU 1

Real executionExpected execution

D0

T0/P3

T0/P1 T1/P0

D2

D1

T0/P1

T2/P2

D0 D2

T0/P3

T0/P1 T1/P0

T2/P2

D1

Figure 2. Expected and real executions of a Set CPU + Set Priority sequence.

Set_Deadline(Next_Time + Relative_Deadline);
Delay_Until_And_Set_CPU(Next_Time, Next_CPU);
-- Similar to scenario with Set_Priority + Set_CPU

end loop;

loop
-- Task code
...
Next_Time := Next_Time + Period;
Set_CPU(Next_CPU);
Delay_Until_And_Set_Deadline(Next_Time, Relative_Deadline);
-- Similar to scenario with Set_CPU + Set_Priority

end loop;

3 Proposal

The main ideas behind our proposal are:

• An object of a tagged type contains the relevant scheduling parameters (or attributes) for any given task. Let’s call this
type Sched Params. In principle, Sched Params contains only the CPU and priority of the task.

• The first natural extension to Sched Params is to add a field for representing the deadline of a task. This is useful
only for tasks scheduled under deadline-based policies such as EDF, hence we propose it as an extension to the root
type.

• The Sched Params type can also be extended by the user with other parameters that are relevant for a particular
application. Examples could be urgency level, offsets, capacity in server tasks, etc.

• The following operations are possible over Sched Params objects:

Set Attribute Sets the new value for a given attribute in the Sched Params object. The Attribute part of this
setter refers to the attributes priority or CPU for the root type. Derived types may define setters for additional
parameters, such as deadline for the Sched Params of an EDF task (see later).

Get Attribute Obtains the current value of a given attribute from the Sched Params object.

Apply Sched Params As the name indicates, makes the scheduling parameters effective immediately and atomi-
cally. This procedure can be applied to the currently executing task or to another given task.

Delay Until And Apply Sched Params This is to delay the task until a given time and atomically apply the
set of scheduling parameters defined in a Sched Params object.

Suspend Until True And Apply Sched Params For symmetry with the existing procedure Suspend Un-
til True And Set Deadline, included in Ada.Synchronous Task Control.EDF.

The following listings give the profiles and location (new Ada library packages) for the proposed functionalities. We
will first consider the type Sched Params, a tagged record that holds a minimal set of scheduling attributes, and can be
extended with more attributes if needed. In listing 1 we propose a new library package Ada.Scheduling Parameters
for the definition of this type.

Listing 1. Definition of the root type Sched Params
with System, System.Multiprocessors, Ada.Task_Identification, Ada.Real_Time;
use System, System.Multiprocessors, Ada.Task_Identification, Ada.Real_Time;

package Ada.Scheduling_Parameters is

type Sched_Params is tagged private;

procedure Set_Priority (SP : in out Sched_Params; Prio: Any_Priority);
function Get_Priority (SP : Sched_Params) return Any_Priority;

procedure Set_CPU (SP : in out Sched_Params; CPU_Nr: CPU_Range);
function Get_CPU (SP : Sched_Params) return CPU_Range;

procedure Apply_Sched_Params (SP : Sched_Params; T_Id : Task_Id := Current_Task);
procedure Delay_Until_And_Apply_Sched_Params (

SP : Sched_Params;
Delay_Until_Time : Time;
T_Id : Task_Id := Current_Task);

private
type Sched_Params is

record
Prio : Any_Priority := Default_Priority;
CPU_Nr : CPU_Range := Not_A_Specific_CPU;

end record;

end Ada.Scheduling_Parameters;

A first extension for the root type Sched Params will include a deadline parameter, useful for EDF tasks. In listing
2 we propose a new child package of Ada.Scheduling Parameters to include the new type Sched Params EDF,
derived from Sched Params, and setter and getter subprograms for the new deadline parameter. The package also provides
new procedures to apply these extended scheduling parameters to EDF tasks. Note that we also include a new scheduling
parameter At Time that we explain below.

Listing 2. Extension of root scheduling parameters for EDF
with Ada.Real_Time; use Ada.Real_Time;

package Ada.Scheduling_Parameters.EDF is

type Sched_Params_EDF is new Sched_Params with private;

procedure Set_Deadline (SP : in out Sched_Params_EDF; D : Time_Span);
function Get_Deadline (SP : Sched_Params_EDF) return Time_Span;

procedure Set_At_Time (SP : in out Sched_Params_EDF; At_Time : Time);
function Get_At_Time (SP : Sched_Params_EDF) return Time;

procedure Apply_Sched_Params (SP : Sched_Params_EDF; T_Id: Task_Id := Current_Task);
procedure Delay_Until_And_Apply_Sched_Params (

SP : Sched_Params_EDF;
Delay_Until_Time : Time;
T_Id : Task_Id := Current_Task);

private
type Sched_Params_EDF is new Sched_Params with

record
Relative_Deadline : Time_Span := Time_Span_Last;
At_Time : Time := Time_Last;

end record;

end Ada.Scheduling_Parameters.EDF;

We propose the deadline parameter to be of the type Time Span. The semantics of Delay Until And Apply -
Sched Params would be that the new absolute deadline is set for the time Delay Until Time plus the relative deadline
given in the Sched Params EDF object. The absolute deadline is not so obvious in the case of Apply Sched Params.
It could be the result of adding the relative deadline to the real-time clock value during the execution of Apply Sched -
Params. But that clock value is uncertain. We therefore propose to include the additional parameter At Time, an absolute
time taken as the reference to calculate the next absolute deadline for the task.

We considered the possibility of using such an absolute time reference as an additional parameter passed as a third pa-
rameter to Apply Sched Params. What makes that approach unattractive is that the profile for the primitive Apply -
Sched Params defined in package Ada.Scheduling Parameters would no longer be valid for all cases, since that
primitive does not include such parameter. Note that the functionality provided by such At Time attribute is not achievable
with Delay Until And Apply Sched Params. For example, we may want to promote a task by shortening its abso-
lute deadline after a certain time of the task’s execution. Hence the task cannot delay until a certain time and then shorten its
deadline, since it needs to be executing code meanwhile.

Finally, a link between Ada’s synchronous task control and scheduling parameters would be useful for sporadic tasks
whose activation is regulated by a suspension object. This is in line with the existing subprogram Suspend Until True -
And Set Deadline, which is limited to setting only the deadline for the next activation of a task waiting on a suspension
object. In listing 3 We propose a child package Ada.Synchronous Task Control.Scheduling Parameters to
contain the new functionality1.

Listing 3. Synchronous task control and scheduling attributes
with Ada.Scheduling_Parameters; use Ada.Scheduling_Parameters;
package Ada.Synchronous_Task_Control.Scheduling_Parameters is

procedure Suspend_Until_True_And_Apply_Sched_Params (
S : in out Suspension_Object; -- We’ll later introduce a new type of suspension object
SP: Sched_Params’Class);

end Ada.Synchronous_Task_Control.Scheduling_Parameters;

1For clarity, we are using the existing type Suspension Object in listing 3. In section 4.3 we will justify why we are proposing a new type of
suspension object that implements modification of scheduling parameters.

Note that SP, the Sched Params parameter for this procedure, is class-wide. Hence it can dispatch to root-type, EDF-
extended or user-extended scheduling parameters.

4 Implementation issues

The operations presented above, Apply_Sched_Params and Delay_Until_And_Apply_Sched_Params, allow the
application to atomically change several task scheduling parameters. The underlying Operating System (OS) has to provide
specific support in order to allow the Ada Run-Time Support to implement these operations adequately. Although the required
behaviour within the operating system kernel is simple, as it will be shown bellow, this support is not present in any POSIX-
like operating system (to the best of our knowledge) including those that add non-portable extensions, such as the Linux
kernel.

Any change in one scheduling parameter implies that the operating system removes the implied thread from the current
run queue and inserts it again in a (possibly different) run queue in a different position. As one or more system run queues
are modified, the system scheduler has to be invoked to determine the new highest priority thread. Furthermore, if the CPU
of a thread is changed, then some kind of Inter-Processor Interrupt (IPI) has to be sent to inform the affected CPU or CPUs
that they have to execute the scheduler. Therefore, the change of a scheduling parameter has to be considered always a thread
dispatching point.

If an application wants to change several scheduling parameters at the same time, e.g. its priority and CPU, it has to invoke
several system calls to change these parameters. For example, if the underlying OS is the Linux kernel, the application has
to invoke sched setparam and sched setaffinity system calls. Each of these system calls is a thread dispatching
point, since they may imply changes in the system run queues. The scheduling artifacts presented in section 2 are due to
the sequential execution of these system calls and their corresponding thread dispatching points. Each time the application
changes a single scheduling parameter, the scheduler can dispatch a different thread in one or more system CPUs, and
therefore, the thread that is changing the parameters can lose the CPU or the thread with the new scheduling parameter can
disturb temporarily other running threads. This undesired behaviour could be avoided if the scheduling parameters would be
changed atomically.

The actions the kernel of the RTOS has to perform to support the simultaneous modification of several scheduling param-
eters are very simple:

1. Remove the thread from the run queue where it is currently located.

2. Change all the scheduling parameters specified by the application.

3. Insert the thread in a new task queue according to the new set of scheduling parameters. This queue could be a new
priority queue in a new CPU or it could be the timer or mutex queue if the thread has to be suspended.

The main implementation issue is how to offer this kernel functionality to the application. We’ll now explore the POSIX
case and see what extensions would be needed.

4.1 Proposed POSIX extensions

Although POSIX standard does not provide support to simultaneously changing several scheduling parameters on a run-
ning process or thread (other than scheduling policy and priority using sched setscheduler system call), it provides
a similar funtionality for establishing all the scheduling parameters for the creation of a new thread. This functionality is
offered through the structure pthread attr t and the following C functions that allow the application to specify the full
set of thread attributes before creating it with pthread create.

Listing 4. Thread attributes manipulation functions
pthread_attr_init/destroy // initialize and destroy thread attributes object
pthread_attr_set/getdetachstate // set/get detach state attribute in thread attributes object
pthread_attr_set/getinheritsched // set/get inherit scheduler attribute in thread attributes object
pthread_attr_set/getschedparam // set/get scheduling parameter attributes in thread attributes object
pthread_attr_set/getschedpolicy // set/get scheduling policy attribute in thread attributes object
... // Other attributes not related directly with scheduling

In the case of the Linux kernel, a small set of non-portable extensions are also available, mainly to support the CPU
affinity of a thread. However, as it will be shown bellow, Linux also provides the function pthread getattr np that
allows retrieval of the current attributes of an already created thread.

Listing 5. Linux specific non portable extension to thread attributes
pthread_attr_set/getaffinity_np // set/get CPU affinity attribute in thread attributes object

pthread_getattr_np // get attributes of created thread

We proposes to extend this API with the corresponding pthread setattr np function that would allow the application
to specify a set of scheduling attributes that has to be applied simultaneously over an already created thread. However, in order
to support the operations that imply a possible suspension of the thread, i.e. Delay_Until_And_Apply_Sched_Params, it
is required that the new API offers the possibility of deferring the setting of the attributes until the thread becomes suspended.
Two different alternatives are proposed, similar to the ones presented in [?].

Listing 6. Proposed POSIX extensions
#include <pthread.h>

int pthread_setattr_np(pthread_t thread, pthread_attr_t *attr);
int pthread_setattr_on_suspend_np(pthread_t thread, pthread_attr_t *attr);

// or alternatively ...

#define SCHED_SET_IMMEDIATE 1
#define SCHED_SET_ON_SUSPEND 2

int pthread_setattr_np(pthread_t thread, pthread_attr_t *attr, const long flag);

Next section will use the first approach to show how the Ada Run-Time Support could implement the main operations of
the new Sched Params type.

4.2 Implementation of Sched Params operations

Based on these new OS functionalities and taking the source code GNAT GPL 2012 as a reference, the implementation of
the new proposed operations could be as follows:

procedure Apply_Sched_Params
(SP: : Sched_Params;
T_Id : Task_Id: Current_Task)

is
Attributes : aliased pthread_attr_t;
Result : Interfaces.C.int;

begin
-- Retrieve the current thread attributes
Get_Task_Attributes (Attributes’Access, T_Id);

-- Modify the task attributes
Set_Attr_Priority(Attributes’Access, SP.Prio);
Set_Attr_CPU(Attributes’Access, SP.CPU_Nr);

-- Set the new thread attributes immediately
Result := pthread_setattr_np (T_Id.Common.LL.Thread, Attributes’Access);
pragma Assert (Result = 0);

end Apply_Sched_Params;

procedure Delay_Until_And_Apply_Sched_Params
(SP: : Sched_Params;
Delay_Until_Time : Ada.Real_Time.Time;
T_Id : Task_Id: Current_Task)

is
Attributes : aliased pthread_attr_t;
Result : Interfaces.C.int;

begin
-- Retrieve the current thread attributes
Get_Task_Attributes (Attributes’Access, T_Id);

-- Modify the task attributes
Set_Attr_Priority(Attributes’Access, SP.Prio);
Set_Attr_CPU(Attributes’Access, SP.CPU_Nr);

-- Take note of the new thread attributes to be applied upon thread suspension
Result := pthread_setattr_on_suspend_np (T_Id.Common.LL.Thread, Attributes’Access);
pragma Assert (Result = 0);

delay until Delay_Until_Time; -- New scheduling attributes take effect on wake up

end Delay_Until_And_Apply_Sched_Params;

In order to simplify the implementation, it is supposed that the Ada run-time system will provide procedures to retrieve
and manipulate the Attributes type. In the current GNAT GPL 2012, the Attributes type is an opaque type that is ma-
nipulated using the POSIX interface only. The procedures used above (i.e. Get_Task_Attributes, Set_Attr_Priority
and Set_Attr_CPU), will use these existing POSIX functions and the thread information maintained by the Ada run-time
system, to prepare the Attributes object. This object represents the thread scheduling parameters at operating system
level.

4.3 Implementation of Suspension Objects

The implementation of Suspend Until True And Apply Sched Params needs a different approach to Delay -
Until And Set Sched Params. In this second case, it is clear in advance when the task will be awakened (at the
specified absolute time) and hence have its new parameters applied. But in the case of using a suspension object, the
task calling the suspension operation may either go through immediately (if the object’s state is True) or it may have to
wait for someone to set the object state to True. In the first case, the attributes need be changed as part of the call to
the suspension operation; whereas in the second case, it is the call to Set True that has the effect of enforcing the new
scheduling parameters. So we need to store the task identification and new scheduling parameters to apply them at the proper
time.

We therefore propose a new type of suspension object (Suspension Object With Sched Params) for sporadic
tasks that use deferred setting of scheduling attributes. This new type contains, as part of its internal state, two fields to store
the scheduling parameters (SP) and the task identification (T Id).

type Suspension_Object_With_Sched_Params is record
State : Boolean;
pragma Atomic (State);
-- Boolean that indicates whether the object is open.

Waiting : Boolean;
-- Flag showing if there is a task already suspended on this object

L : aliased System.OS_Interface.pthread_mutex_t;
-- Protection for ensuring mutual exclusion on the Suspension_Object

CV : aliased System.OS_Interface.pthread_cond_t;
-- Condition variable used to queue threads until condition is signaled

T_Id : Task_Id;
-- Task suspended within the Suspension Object

SP : access all Sched_Params’Class;
-- Scheduling Parameters to be applied to the suspended task

end record;

When a sporadic task invokes Suspend_Until_True_And_Apply_Sched_Params with a new set of scheduling param-
eters, if the suspension object state is true, the scheduling parameters are applied immediately within the suspension object.
Then the sporadic task continues with its next activation using the new scheduling parameters.

If the suspension object state is false, the sporadic task will be suspended until the state becomes true. In this case,
Suspend_Until_True stores the task identifier of the sporadic task and scheduling parameters for its next activation. The
task that invokes the Set_True procedure will apply the new scheduling parameters to the sporadic task before signaling the
conditional variable within the suspension object, and therefore, before waking up the sporadic task. When the sporadic task
wakes up, it already has its new scheduling parameters.

The Suspension_Object_With_Sched_Params type will also offer the Suspend_Until_True operation, that allows
a task to be suspended until the suspension object state becomes true, but without modifying its scheduling parameters.

Based on the source code from GNAT GPL 2012, the new suspension object operations could be implemented as follows:

procedure Suspend_Until_True_And_Apply_Sched_Params
(S : in out Suspension_Object_With_Sched_Params;
SP : access all Sched_Params’Class) is

Result : Interfaces.C.int;
begin

SSL.Abort_Defer.all;

Result := pthread_mutex_lock (S.L’Access);
pragma Assert (Result = 0);

if S.Waiting then
Result := pthread_mutex_unlock (S.L’Access);
pragma Assert (Result = 0);

SSL.Abort_Undefer.all;

raise Program_Error;
else

if S.State then
S.State := False;

SP.Apply Sched Params;
else

S.Waiting := True;

S.T Id := Current Task;

S.SP := SP;
loop

Result := pthread_cond_wait (S.CV’Access, S.L’Access);
pragma Assert (Result = 0 or else Result = EINTR);

exit when not S.Waiting;
end loop;

end if;

Result := pthread_mutex_unlock (S.L’Access);
pragma Assert (Result = 0);

SSL.Abort_Undefer.all;
end if;

end Suspend_Until_True;

procedure Set_True
(S : in out Suspension_Object_With_Sched_Params) is
Result : Interfaces.C.int;

begin
SSL.Abort_Defer.all;

Result := pthread_mutex_lock (S.L’Access);
pragma Assert (Result = 0);

if S.Waiting then
S.Waiting := False;
S.State := False;

if S.SP /= null then
S.SP.Apply Sched Params(S.T Id);

end if;

Result := pthread_cond_signal (S.CV’Access);
pragma Assert (Result = 0);

else
S.State := True;

end if;

Result := pthread_mutex_unlock (S.L’Access);
pragma Assert (Result = 0);

SSL.Abort_Undefer.all;
end Set_True;

5 Use example

This section shows a brief example where this new funcionality is used to implement a task subject to job partitioning.
With this scheduling scheme, a periodic task could decide to use a different CPU and priority for each job (i.e., each ac-
tivation of the task). In the example below, this design decision is represented by a cyclic plan of scheduling parameters,
Params_List. At the end of each job execution, the task retrieves the next set of scheduling parameters from its plan, and
calls Delay_Until_And_Apply_Sched_Params. This allows the task to change the scheduling parameters for its next job
atomically and avoids the scheduling artifacts mentioned in section 2.

Listing 7. Periodic task with job partitioning based on delay until
task body Periodic_With_Job_Partitioning is

type List_Range is mod N;
Params_List : array (List_Range) of Sched_Params := (...); -- Decided at design time
Params_Iter : List_Range := List_Range’First;
Next_Params : Sched_Params;
Next_Release : Ada.Real_Time.Time;
Period : Time_Span := ...;

begin
Task_Initialize;

-- First job parameters
Next_Release := Ada.Real_Time.Clock;
Next_Params := Param_List(Param_Iter);
Next_Params.Apply_Sched_Params(); -- Scheduling parameters for the first activation
loop

Task_Main_Loop;

-- Next job preparation
Params_Iter := Params_Iter’Succ;
Next_Params := Params_List(Params_Iter);
Next_Release := Next_Release + Period;

-- Suspends the task until the next job activation
Delay_Until_And_Apply_Sched_Params(Next_Params, Next_Release);
-- Next job will wake up with the next scheduling parameters applied

end loop;
end Periodic_With_Job_Partitioning;

6 Conclusion

The deferred, atomic setting of a set of scheduling attributes is a useful feature that is currently absent in Ada. It provides
a clear semantics and avoids scheduling artifacts and wrong effects derived from sequentially applying one attribute after
another, specially when the underlying hardware is a multiprocessor platform. In this paper we have proposed changes in the
direction of including this feature in Ada.

All changes proposed are additions to the standard library, with no modification proposed to any other part of the language.
The changes are also user-extensible since they are based on the use of tagged types. Perhaps the major change proposed
is a new type of suspension object to give support to deferred, atomic setting of attributes of sporadic tasks. The fact that a
sporadic task may have its parameters changed either immediately upon calling Suspend Until True (when the object’s
state is True) or deferredly when another task calls Set True (in case the object state was False when the task called
Suspend Until True) makes it necessary to provide a different type of suspension object, augmented with the capability
of setting the waiting task’s parameters.

These proposed extensions are mainly directed towards multiprocessor platforms, since the intended semantics is feasibly
implementable on single-processors in Ada. However, some single-processor scheduling approaches could benefit from the
changes proposed here, if only aesthetically (e.g., dual-priority scheduling, existing schemes for control tasks structured as
Initial-Mandatory-Optional-Final, etc).

We want to finally note a gracious side effect of this proposal. With the proposed set of procedures, there would be
strictly no need to use the existing procedure Delay Until And Set CPU from package System.Multiprocess-
ors Dispatching Domains. The nice effect is that, if that procedure did not exist, then there would be no dependence
with Ada.Real Time, and therefore System.Multiprocessors Dispatching Domains could be preelaborable.
But, unfortunately, changing the standard for this reason would introduce backward incompatibility.

References

