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Abstract 20 

 This work describes the correlation found along 10 days between potentiometric 21 

measurements obtained by using an electronic tongue and the variation in certain 22 

physicochemical, microbial and biochemical parameters measured on a whole piece of 23 

pork loin stored under refrigeration. The electronic tongue consists of a set of six 24 
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electrodes made of Au, Ag, Cu, Pb, Zn and C, and a reference electrode. Through the 25 

use of various multivariate analysis techniques, such as: PCA and two types of artificial 26 

neural networks (i.e. multilayer perceptron (MLP) and fuzzy ARTMAP) it was found 27 

that it is possible to determine the time elapsed in relation to the degradation of the loin 28 

by using simple potentiometric measurements. Additionally, in the same pork sample 29 

used to measure redox potentials with the electronic tongue, the following parameters 30 

were also determined; pH, microbial count, concentrations of inosine 5’-monophosphate 31 

(IMP), inosine (Ino) and hypoxanthine (Hx). Through the use of PLS analysis, it was 32 

found a rather good correlation between pH and the potentiometric data. Also a 33 

remarkable correlation was observed between the measures carried out with the 34 

electronic tongue and the so-called K-index that simultaneously measures the variation 35 

in the adenosine triphosphate (ATP) degradation products. These results suggest that 36 

this simple, or a similar electronic tongue, could be useful for the undemanding 37 

qualitative or semi-quantitative evaluation of freshness in meat samples in a wide range 38 

of situations. 39 

Keywords 40 
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Introduction 43 

 Meat freshness is a rather complex concept, which includes different microbiological, 44 

physicochemical and biochemical attributes and that is related with two different 45 

processes. One, desired, is known as aging that is determined by the period of storage 46 

that meat (especially beef meat) needs in order to reach the optimum state of 47 

consumption; whereas the other, also related with storage, deals with meat spoilage due 48 
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to bacterial growth and autolysis. Traditionally, there have been two methods to 49 

evaluate meat freshness; one consists of a sensory test controlling organoleptic 50 

attributes with the help of experts and the other is the chemical or biochemical 51 

determination of the concentration of target bio-indicators. The former is rapid but 52 

expensive, whereas for the latter a large number of reported studies try to relate 53 

freshness and the concentration or presence of certain species. For instance, the 54 

determination of biogenic amines, trimethylamine or volatile amines have been 55 

proposed as a suitable method to determine meat spoilage and as an index for meat 56 

freshness (Edwards, Dainty and Hibbard, 1983; Hurst, 1990; Yano, Yokoyama and 57 

Karube, 1996). On the other hand, the determination of degradation products of ATP 58 

has also proved to be useful for the determination of meat degradation (Yano, 59 

Yokoyama, Tamiya and Karube, 1996). Other methods for evaluating aging rely for 60 

instance on the measurement of gaseous components released from food using 61 

semiconductor gas sensors (Funazaki et al., 1995),
 
or in the use of electromagnetic 62 

sensors, particularly microwave sensors (Clerjon and Damez, 2007). All these analytical 63 

techniques currently used to study freshness have proved their validity; however, in 64 

general, they are slow and need relatively sophisticated tools. This makes that the 65 

application of these techniques in the industry is rather limited, since they are not 66 

suitable for rapid monitoring, require highly skilled operators, are relatively expensive 67 

and time-consuming and in general are designed for in-laboratory use only. One 68 

important consequence is that current methods cannot evaluate correct meat freshness in 69 

the market when it is sold. Additionally, from a quality assurance viewpoint it would be 70 

advantageous to develop non-destructive sensing methods able to inspect a large 71 

number of samples on-line. In fact, the development of simple, undemanding and non-72 

destructive new analytical tools that additionally would be low-cost and that could be 73 
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applied in a wide range of situations for monitoring food freshness without requiring 74 

highly specialized personnel is still an unresolved goal. 75 

  One of the protocols that fulfil most of these requirements is related with the use of the 76 

so-called electronic noses and electronic tongues. These are tools that have been 77 

introduced recently, inspired in the mode in which mammalians recognize food through 78 

the senses of olfaction and taste (Toko, 2000).
 
These techniques are especially appealing 79 

when it is important to characterize complex attributes of the whole sample rather than 80 

to know the exact concentration of certain analytes. Electronic tongues and noses do not 81 

use specific but unspecific sensors, that are nevertheless able to respond in some way 82 

differentially toward a group of related chemical species and whose global response can 83 

be related sometimes with certain parameters or characteristics. The unspecific sensors 84 

are usually integrated in an array, i.e. the electronic tongue, and their response is 85 

commonly analyzed by suitable pattern recognition algorithms. 86 

 An easy way to build up an electronic tongue is through the use of a set of electrodes 87 

using potentiometric or voltammetric (Holmin, Spangeus, Krantz-Rulcker and 88 

Winquist, 2001) electrochemical techniques. In fact, several electronic tongues based on 89 

electrochemical sensors have been developed (Gallardo, Alegret, del Valle, 2005).
 

90 

Among them, those relying in potentiometric measurements have been the most widely 91 

used employing for instance ion-selective electrodes (Mimendia, et al., 2010). A 92 

suggestive alternative to avoid the employment of membrane-containing sensors is the 93 

use of simple metallic wires as suitable electrodes in electronic tongue devices. (Lvova 94 

et al., 2006). Electronic tongues with metallic electrodes are very simple to prepare and 95 

easy to use. The response with this kind of electrodes in the potentiometric mode is 96 

based on the spontaneous polarization of the metals and other elements in the presence 97 

of certain chemical species (Soto et al., 2006). In relation to the latter, for instance, 98 
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freshness in pork has been evaluated by means of simple solid electrodes (i.e. Pt, CuS 99 

and Ag2S) able to detect certain compounds responsible for the initial stage of the 100 

process of putrefaction of meat (Kaneki et al., 2004). 101 

 As it has been reported, changes in the redox potential of electrodes such as those used 102 

here (i.e metal electrodes and graphite) is a rather unspecific process and a number of 103 

variations in the composition and characteristics in post-mortem meat may affect to the 104 

electrode potential. For instance, these changes are among others, changes in pH, redox 105 

potential, the reaction of certain compounds with the surface of the electrodes (typically 106 

reaction of thiol containing molecules on gold or silver electrodes), physisorption 107 

processes, etc. All these changes can cause a significant modification of the potential of 108 

the electrodes. However, it is this rather unspecific behavior that makes metallic 109 

electrodes suitable for the fabrication of electronic tongues. Thus, others and we have 110 

recently reported that arrays of metal-based electrodes could be used as a simple mode 111 

to develop such devices. In fact, we have recently been able to evaluate ‘fish freshness’ 112 

using a simple set of electrodes (Barat et al., 2008). In order to advance further in the 113 

concept of using metal and metal-like electrodes for the development of suitable 114 

electronic tongues, able to relate the unspecific measurement with rather complex 115 

attributes such as freshness, we have followed the potential changes occurring on a 116 

piece of pork loin.  117 

 Within this background, we report herein, the results obtained by the use of an 118 

electronic tongue made with metallic electrodes (Au, Ag, Cu, Pb and Zn) and graphite 119 

for the analysis of the evolution of pork loins stored throughout time. A discussion in 120 

relation to the suitability of the method and a correlation of data from the electronic 121 

tongue with classical analysis including measurements of pH, microbial count and the 122 

determination of the concentration of certain ATP-degradation compounds is included. 123 
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Materials and methods 124 

Raw material 125 

 All the experiments using the electronic tongue and the biochemical determinations 126 

were carried out on a three whole pieces of pork loin. The pork loins were obtained 127 

from a local slaughterhouse with 1 day post-mortem. Samples were obtained from 128 

female pigs (crossbreeds Landrace x Large White) sacrificed with an average live 129 

weight of 130 kg. During the experimental process, the meat was stored under 130 

refrigeration at a temperature of 4 ºC. Every day, two slices of each loin were cut, one 131 

for the potentiometric measurements and one more for the corresponding biochemical 132 

analysis (vide infra).  133 

Electrochemical measurement, data acquisition and computing tools 134 

 The complete measurement equipment was built up for this specific application and 135 

was formed by several blocks including; the electrodes, the signal conditioning system, 136 

the data acquisition system and tools for the multivariate analysis of the data. Each part 137 

of the equipment is detailed below. 138 

Electrodes 139 

 The electronic tongue consists of a set of six electrodes of different materials: i.e. gold, 140 

silver, cooper, lead, zinc and graphite. The length of each electrode was about 3 cm 141 

whereas the thickness varies depending on the material used. The electrodes were 142 

soldered to a printed circuit board that served to support to the whole system. Through a 143 

central hole in the board a calomel reference electrode was also incorporated to the 144 

system. A similar set of electrodes and configuration has been used previously in other 145 

applications (Gil et al., 2008). 146 
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Signal Conditioning System 147 

 The electrical signals generated by the electrodes have characteristics, such as their 148 

small scale and high output impedance, which make them very sensitive to electrical 149 

noise. For this reason, a signal conditioning system is included in the measurement 150 

equipment. This contains two parts; one with a very high input impedance and very low 151 

current of polarization that was made with electrometric amplifiers LMC6001 152 

(www.national.com) and a second part containing an active low pass filter in order to 153 

eliminate noise signals that come from the electrical network. 154 

Data Acquisition System 155 

 The signals from the signal conditioning system are input to the data acquisition system 156 

whose mission is to capture the electrical signals coming from different sensors and, 157 

once these are suitably adapted, to store them. The data acquisition system additionally 158 

enables the display of information in real time. An Adlink PCI-9112 card 159 

(www.nudaq.com) was used in the computer that was also equipped with the VEE-Pro 160 

software (Agilent Technologies, Santa Clara, CA, www.home.agilent.com) that allows 161 

both viewing the data on the computer screen and storing the data for subsequent 162 

processing. 163 

Multivariate Analysis of data  164 

 With the response signals from the different electrodes a matrix of data was obtained 165 

that was used to perform multivariate analysis. The MATLAB
®
.(R2007 MathWorks) 166 

analysis program was used to apply techniques of pattern recognition that allow to 167 

visualize if the data taken from the electrodes were correlated with some parameters (in 168 

our case, for instance, the day of measurement, vide infra). One of the techniques most 169 

commonly employed for this purpose is the use of principal component analysis (PCA) 170 
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algorithms that transform input variables (usually strongly correlated) in a smaller 171 

number of non-correlated variables, allowing its graphical representation in two (or 172 

three) dimensions of the two (or three) principal components. 173 

 To classify the measurements, in order to make a correlation between the data and the 174 

day in which the data was taken, artificial neural networks were used. There are various 175 

types of artificial neural networks, the best known being the so-called multi-layer 176 

perceptron (MLP) algorithm. For the operation of the MLP neural network two stages 177 

are required, an initial training that establishes the value of the weights and thresholds 178 

of each neuron within the network and a second stage of testing, where new entries and 179 

values different from those in the training process are used. 180 

 MLP networks have been widely used in electronic tongue systems (Panagou, Sahgal, 181 

Magan, Nychas, 2008), but also have shown some limitations (e.g. they are difficult to 182 

train when a low number of samples are available or when there is an uneven number of 183 

samples per category (Llobet, Hines, Gardner, Bartlett and Mottram, 1999). On the 184 

other hand, artificial neural networks based on the so-called Adaptive Resonance 185 

Theory (ART) have been developed to tackle some of the problems found with the 186 

MLP. ART is basically a method that seeks to provide answers to some of the problems 187 

of stability and plasticity that normally affect MLPs and additionally can be easily 188 

trained with a reduced number of samples. Based on this theory various algorithms, 189 

such as the Fuzzy Artmap have been developed and implemented recently in electronic 190 

noses and tongues (Carpenter, Grossberg, Markuzon, Reynolds and Rosen, 1992).  191 

Potentiometric measurement method 192 

The experiments with the electronic tongue consisted of the measurement of the 193 

electrode potential during a period of ten days, which usually corresponds to the 194 

maximum time of storage for fresh pork meat at a temperature of 4ºC. Measurements 195 
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were performed every day except days 5 and 6. Each day two slices of each loin were 196 

cut (n=3); one of them was used to make potentiometric measurements, whereas 197 

biochemical analyses were carried out on the other two.  198 

To achieve homogeneity in all measurements, both ends of the loins were removed 199 

before sampling and we were careful at making slices of similar size and to puncture in 200 

the same area of each slice (centre). The samples belong to the Longissimus dorsi 201 

muscle that is a muscle of homogeneous structure 202 

 One of the main problems when using metallic electrodes is the possible occurrence of 203 

response or baseline drift that could lead to obtain irreproducible data or to mistakenly 204 

believe that drift variations are changes in meat aging. In order to control these possible 205 

drifts, each day the potential of the electrodes, when placed on a ‘standard solution’ of 206 

distilled water buffered at pH 7, was measured.  207 

 Data gathering in pork meat was carried out by sticking on the meat sample the set of 208 

electrodes and the reference electrode. Data was taken for no less than 5 minutes in 209 

order to allow the electrodes to reach the equilibrium. The data measured were 210 

automatically stored on the computer in an ASCII-file type. The file obtained included 211 

one data point for each of the electrodes, the value of which was determined by the 212 

arithmetic mean of the potential of the electrode when the steady-state was reached in 213 

order to damp possible influences of electrical noise or random variations in the 214 

measurements. With data from all the measurements performed, a result matrix was 215 

made. The matrix was formed by 6 columns, one for each of the electrodes and by 24 216 

rows (3 measurements per day during 8 days). 217 

Analytical determinations 218 

Measurement of pH 219 
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 pH was determined in samples throughout the storage time by using a puncture 220 

pHmeter (micro pH 2000, Crison). pH was assayed in different points of the same 221 

section with no variation. 222 

 223 

Microbiological analysis 224 

 Tenfold dilutions in 0.1% peptone water were prepared from each sample obtained 225 

from every container at every measurement day (n = 3) and 1 ml aliquots were plated in 226 

duplicate. Aerobic counts were determined by using Plate Count Agar (Merck). 227 

Duplicate pour plates were prepared per dilution and incubated at 28
o
C for 48 h. 228 

 229 

ATP breakdown compounds. 230 

 The ATP-degradation compounds, consisting of IMP, Ino and Hx, were determined by 231 

HPLC. The extraction procedure was similar to that described by Burns and Kee (1985). 232 

Five grams of each sample were homogenized with 20 ml of 0.6 M of cold perchloric 233 

acid for 4 min at 4
o
C by using a masticator (IUL Masticator, Barcelona, Spain). The 234 

obtained extract was centrifuged at 10,000 g under cold conditions (4
o
C) for 20 min. 235 

The supernatant was filtered through glass wool and neutralized by adding solid 236 

potassium carbonate. The neutralized extract was kept in ice for 5 min and then 237 

centrifuged at 12,000 g in a refrigerated microcentrifuge for 10 min. The supernatant 238 

was stored at -28
o
C prior to analysis.  239 

 An HPLC, model 1100, equipped with a diode array detector was used (Agilent 240 

Technologies, Palo Alto, CA). Nucleotides were separated in a LiCrospher 100 RP-18 241 

column (150 x 4 mm) (Agilent Technologies) by using a program gradient between two 242 

solvents; 0.05M dipotassium hydrogen phosphate buffer, pH 7.0 (A) and methanol. (B). 243 

Thus, after 8 min of isocratic elution with 100% solvent A, a 7 min gradient to 30% 244 
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solvent B followed by a 10 min washing step with 50% solvent B was achieved. Before 245 

a new analysis, initial conditions (100% solvent A) were maintained for 15 min. Flow 246 

rate was 0.9 ml/min and separation was achieved at 30ºC. Injection volume was 10 μl. 247 

ATP-related compounds were monitored at 254 nm and their spectral signal in the range 248 

190–350 nm was obtained to assure peak identification.  249 

Results and discussion 250 

Potentiometric measurements 251 

 The values of the potential of each electrode versus time (eight days of storage, from 252 

day 1 to day 10) are shown in Figure 1. It can be seen that the range of variation of the 253 

potential depends on the type of electrode. The potential of silver and gold electrodes 254 

varies between 0 and -200 mV. Copper electrode has a fairly continuous behavior, in the 255 

-200 mV and -300 mV range, lead electrode behaves similarly to copper but within the 256 

range -450 mV and -550 mV, whereas the zinc electrode shows responses between -1 V 257 

and -1.1 V. Finally, graphite (C) is the only electrode with positive potential and moves 258 

in the 180 mV to 250 mV range. A direct observation of the data in Figure 1 gives no 259 

conclusive information about the evolution of sensor response with the increase in 260 

storage time of meat and, therefore, a more detailed study using multivariate analysis is 261 

required.  262 

 263 

     Insert here Figure 1 264 

 265 

Fig. 1. Changes in the potential of the electrodes as a function of time in meat 266 
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Multivariate analysis 267 

 One of the basic characteristics of the metallic electrodes used for the fabrication of the 268 

electronic tongue is that their response shows overlapped sensitivity and a suitable 269 

useful technique to obtain conclusions from the large number of experimental 270 

measurements in intricate systems such as food degradation is to carry out multivariate 271 

analysis. Thus, in order to further investigate the evolution of the response collected 272 

signals throughout storage time, PCA studies were carried out. Figure 2 shows the PCA 273 

graphic for three measurements taken each day on the pork loin and also plots the data 274 

obtained from the ‘standard solution’ (vide ante). Data in PCA plot were mean-centered 275 

and the two first principal components accounted for 86.57 % of the variance. The PC 276 

axes are calculated to lie along lines of diminishing levels of variance in the data set.  277 

 278 

     Insert here Figure 2 279 

 280 

Fig. 2. PCA results of the metallic electrode response using of the combined measurements 281 

with meat and the calibration solution 282 

 283 

 A separation in two main blocks of data is clearly observed. On the negative part of the 284 

PC1 axis lie the measurements obtained from the pork loin, whereas in the positive part 285 

of PC1 are the data obtained from the measurements of the ‘standard solution’. This 286 

spontaneous clustering was expected taking into account the very different nature of the 287 

two samples measured. Data from the ‘standard solution’ are not exactly coincident but 288 

form a cloud. Moreover, it is noticeable that there is no relation between the relative 289 

positions of points from the ‘standard solution’ and their respective measurements of 290 

pork meat the same day. Also it is remarkable that whereas calibration measurements 291 
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are placed quite close to each other, the data obtained from the evolution of the meat of 292 

pork are spread in a larger zone in the PCA plot, suggesting that the electrodes are really 293 

giving response to the post-mortem evolution of meat. Although there is some 294 

dispersion in the calibration measurements, the fact that these do not appear ordered in 295 

the PCA plot according to measurement day rules out the presence of significant 296 

response drift. Therefore, the main cause of the changes in the electrode potentials with 297 

time observed on the PCA plot are changes caused by aging of the pork meat. 298 

 The PCA analysis only using the results obtained from the pork meat are plotted on 299 

Figure 3. This three-dimensional graph covers 89.09% of total data variance from the 300 

six electrodes. It can be observed that the trials from the same day gather rather together 301 

and that three major groups of measures are observed, corresponding to the early days: 302 

1, 2, 3 and 4 (group A); days 7, 8 and 9 (group B); and the day 10 (C). 303 

  304 

     Insert here Figure 3 305 

 306 

Fig. 3. Three-dimensional (right) PCA plots from the results for the metallic electrode 307 

response. Ellipses cluster together measurements carried out the same day (1 to 10) and 308 

dotted lines correspond to groups of consecutive days (A to C). 309 

 310 

Classification with Artificial Neural Networks 311 

 The data obtained can also be analyzed using artificial neuronal networks. These 312 

networks use a training phase with a set of measurements and a further phase for 313 

validation.  314 

 Therefore, in order to check the power of discrimination of the electronic tongue 315 

system, artificial neural networks were used. The aim of this approach is the 316 
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classification of each sample according to the day the measurement was taken. Two 317 

types of artificial neural networks were used in order to compare their response; i.e.  318 

MLP and fuzzy ARTMAP types. In both cases, the network had 6 inputs corresponding 319 

to the six electrodes and also 8 outputs that corresponded to the ten-day experiences. 320 

Moreover, in addition to the artificial neural network with 10 outputs, other network 321 

with a smaller number of outputs was also employed. In this process, the measurements 322 

were distributed in three groups corresponding to days 1, 2, 3 and 4 (output A), days 7, 323 

8 y 9 (output B) and day 10 (output C). The reason for this classification was derived 324 

from the PCA results in which a distribution in these four groups was observed in the 325 

score plot (see Figure 3). 326 

 The first artificial neural network used was the MLP. To estimate the rate of success in 327 

identifying the samples with each type of classifier, the ‘leave-one-out’ cross-validation 328 

method was applied using the 24 measurements available. At first an MLP was used 329 

which had 8 output neurons (i.e. eight-category classification). Several training and 330 

validation steps were made to determine both the number of neurons in the hidden layer 331 

and the transfer functions type to be used. The best results were achieved by using 8 332 

neurons in the hidden layer and log-sigmoid transfer functions, which led to an 85.83 % 333 

success rate in classification. In the second step, an MLP having 3 outputs was used, i.e. 334 

three-category classification: A (days 1, 2, 3 and 4), B (days 7 and 8) and C (day 10), 335 

which obtained a success rate of 86.23% when 3 hidden neurons and a log-sigmoid 336 

transfer function were employed. 337 

 The same sample classification strategies we envisaged employing another type of 338 

neural network (i.e. fuzzy ARTMAP). In fact from a practical point of view fuzzy 339 

ARTMAP works very well when there are very few samples for training (Carpenter, 340 

Grossberg and Reynolds, 1991), so it could be anticipated that this network would 341 
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outperform the MLP in this particular situation. The algorithm has been implemented 342 

in-house using function macros from basic functions of Matlab. Employing the training 343 

and validation method described above, a remarkable success rate of ca. 100% was 344 

obtained both for the network with 8 outputs for the network of 3 outputs. 345 

Chemical and Biochemical analysis  346 

 Above we have detailed that there is a correlation between the overall response of the 347 

set of electrodes (the electronic tongue) and the time elapsed since the beginning of the 348 

experiments. In this part of the work we are additionally interested in seeing if the 349 

changes in potential of the electrodes in the electronic tongue could be related with the 350 

evolution versus time of chemical or biochemical parameters determined on the same 351 

pork loin where the electronic tongue was used. As it is well-known, once the animal 352 

dies a number of degradation reactions begin, which contribute to diminish its 353 

freshness; some of those reactions are chemical, mainly the oxidation of organic 354 

compounds, and others are of biochemical nature (autolysis). In addition to that, 355 

microorganism growth implies an overall decrease in quality and safety. 356 

 Therefore in order to somehow validate the potentiometric method outlined above for 357 

freshness evaluation of pork meat, it is necessary to compare the changes in the 358 

potentiometric data with some other reported method for the determination of meat 359 

freshness. As we have detailed above, there is a quite large number of methods 360 

proposed for the evaluation of freshness that can be basically divided in two classes; (i) 361 

those measuring the concentration of certain bio-molecules or bio-markers signaling the 362 

evolution of meat after the death of the animal and (ii) those based on indirect methods 363 

(e.g. changes on the pH or electrical resistance and the use of electronic tongues and 364 

noses).  365 
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 In this study, the evolution of the following parameters has been measured: pH, 366 

microbial growth and variation of the concentration of different ATP breakdown 367 

compounds. 368 

Measurement of pH  369 

 pH determination showed a decrease of the concentration of protons as a function of 370 

time from 5.6 (first day) to 6.27 (day 10
th

).  371 

Microbial growth 372 

 A healthy and freshly slaughtered animal has its muscle sterile. After a period of time, 373 

the duration of which depends mainly on temperature, meat pH and slaughtering 374 

management, microorganisms experiment an exponential growth. The activity of 375 

microorganisms is the main factor that limits the shelf-life of fresh meat. For the 376 

microbiological testing of meat two types of methods are routinely used: those who 377 

make a count of the total number of microorganisms present in meat and those based on 378 

the count of a particular group. The values of microorganism concentration are shown in 379 

Colony-Forming Unit per gram (CFU/g). Unlike other methods, the count of the total 380 

number of microorganisms provides no information about the freshness or quality of 381 

edible meat but gives an image of the hygienic quality of the animal, including the 382 

abuse of temperature during handling and processing. 383 

 The microbial growth experienced a significant increase from 3.7x10
3
 CFU/g at the 384 

beginning of the experiment to values larger than 10
9
 CFU/g on day 9

th
.  385 

 386 

Measurement of nucleotides produced by the decomposition of ATP 387 

 Products obtained by ATP decomposition are considered to be among the most reliable 388 

and useful for a correct meat freshness evaluation. The analysis is based on the concept 389 
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that after slaughter, the ATP in pork meat decomposes following the sequence: ATP - 390 

ADP - AMP - IMP - Ino - Hx. During this process there is a change in the smell and the 391 

taste of the meat. Similar autolytic processes occur in all animals but the rate varies 392 

greatly among different species. The determination of the concentration of ATP alone 393 

cannot be used generally as freshness index because it disappears approximately 24 H 394 

post-mortem (Karube, Matsuoka, Suzuki, Watanabe and Toyama, 1984). Usually the 395 

same occurs for ADP and AMP. However, the simultaneous evolution of some ATP-396 

degradation compounds has been suggested to be an indication of the state of freshness. 397 

From this idea, the concept of the K’-index was introduced (see equation 1). Fresh meat 398 

has a low value of –K´, which gradually increases at a rate that depends on the species.  399 
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 This index was originally proposed to evaluate fish freshness (Batlle, Aristoy and 401 

Toldrá, 2001)
 
but also has been applied for the measurement of meat freshness in pork, 402 

rabbit or beef (Nakatani, Fujita, Sawa, Otani, Hori and Takagahara, 1986).
 
 403 

Interestingly, biosensor systems for the determination of K’-index making use of 404 

enzymes have also been reported by Zen, Lai, Yang and Kumar (2002); Park and Kim, 405 

(1999) and Park, Cho and Kim (2000). In our case, in order to calculate the K’ index 406 

during the degradation of the pork meat, the evolution of the concentration of the ATP-407 

related compounds IMP, Ino and Hx was determined using conventional 408 

chromatographic procedures. Table 1 shows all the values obtained for chemical and 409 

biochemical analysis. The mean value and associated standard deviation for three 410 

measurements each day are shown in Table 1. An analysis of variance (one-way 411 

ANOVA) was performed on the physicochemical measurements to investigate whether 412 

the changes observed in parameter values throughout storage time were statistically 413 

significant. ANOVA was performed using the Statgraphics® Plus version 5.1 414 
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(Manugistics, Rockville, M.D. USA). The p values found were 0.0021 for Hx, 0.0282 415 

for Ino, 0.0001 for IMP and 0.007 for R. All these values are below 0.05, so the null 416 

hypothesis (i.e. the differences observed in the mean values of the parameter throughout 417 

storage time are not significant) can be rejected at the 95% significance level. 418 

 419 

Table 1. Results of chemical and biochemical analysis as function of time in pork meat.  420 

 Insert here Table 1 421 

 422 

PLS analysis 423 

 We have seen above that data from the electronic tongue clustered as a function of time 424 

that it was possible to obtain a good classification of the data using artificial neural 425 

networks. In this section we additionally were interested in analyzing if the 426 

measurements taken from the electronic tongue could be used to predict the values 427 

obtained for the pH, the microbial growth, the concentrations of the compounds IMP, 428 

Ino, Hx or the value of the K-index. In order to achieve this goal, the regression 429 

technique Partial Least Square (PLS) has been used. PLS is a multivariate projection 430 

method that models the relation between an array of dependent variables (Y) and 431 

another array of independent variables (X). The principle of the technique PLS is to find 432 

the components of the matrix of input (X) that describe, as much as possible, relevant 433 

variations in the input variables, and at the same time get the highest correlation with 434 

the objectives (Y), giving the minor weight to the variations that are irrelevant or relate 435 

to noise (Berruela, Alonso-Salces and Héberguer, 2007).  436 

 For each of the parameters of interest a set training/validation was employed (Vinaixa, 437 

Llobet, Brezmes, Vilanova and Correig, 2005). To perform this task a bootstrap 438 
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validation strategy was used (Efron and Gong, 1983). This method consists of randomly 439 

drawn a group of data from the whole data set. The data that remain are used to conduct 440 

training in order to obtain the coefficients PLS and the data extracted is used for 441 

validation. This process is repeated a number of times and with the result of all the 442 

repetitions a line of adjustment is obtained between the real and predicted values. The 443 

use of this method is especially interesting when a relatively small number of 444 

measurements are available to create the model. In this way, by repeating many times 445 

the algorithm, which results in the random change of training and validation 446 

measurements, has similar effects to having carried out the experience with more data. 447 

 In our case, to each model built was trained and validated with 20 and 4 measurements, 448 

respectively and the bootstrap process was repeated 24 times, thus a line of adjustment 449 

was obtained with 96 data points. Data from the models were centered with respect to 450 

the average value of responses from each of the 6 sensors. For each model built the 451 

optimal number of factors (latent variables) was determined by cross-validation 452 

employing training measurements only.  453 

 PLS prediction models for pH, bacteria concentration, IMP, Ino, Hx and K-index were 454 

created with the potentiometric experimental data obtained from the metallic electrodes. 455 

Figure 4 shows the PLS graphic in which measured vs. predicted values of the K-index 456 

are plotted. Hence measured values represent the known K-index of the meat, 457 

meanwhile predicted values are the calculated values according with the PLS algorithm. 458 

Measured and predicted values are plotted together in order to evaluate both the 459 

accuracy and precision of the created prediction models. A preliminary evaluation can 460 

be done just by a simple visual inspection of the difference between measured and 461 

predicted values. However, a more rigorous analysis is achieved by a linear fitting of the 462 

experimental points (predicted). Here, by using a simple linear model namely 463 
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y=p1*x+p2, a fitting line and also the adjusting parameters (p1, p2 and regression 464 

coefficient) are obtained. The parameters p1 (slope of the fitting line) and p2 (intercept 465 

with y axis) represents the accuracy in prediction; meanwhile the regression coefficient 466 

can be related with the precision of the PLS model. Ideally, the predicted values should 467 

lie along the diagonal line that would indicate that the predicted and actual values are 468 

the same.  469 

 PLS prediction models including the values of p1, p2, the regression coefficient and 470 

number of latent variables are shown in Table 2 for pH, the logarithm of the bacteria 471 

concentration, concentrations of IMP, Ino, Hx and the K-index. As it can be seen, a 472 

good correlation exists for most of the parameters, being the better results those for pH 473 

and K-index. Despite these remarkable correlations it has to be pointed out that the 474 

potentiometric changes are not due to variations on pH or the nucleotide concentrations, 475 

yet the measurement of the electrode potential correlated well with these variations. The 476 

results strongly suggest the feasibility of this system for easy rapid and effective meat 477 

freshness assessment. 478 

 479 

     Insert here Figure 4 480 

 481 

Fig. 4. Predicted versus actual values of K-index using data from the potentiometric 482 

electronic tongue 483 

 484 

Table 2. Prediction results of some quality parameters for meat 485 

 486 

     Insert here Table 2 487 
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Conclusions 488 

 The potentiometric data of certain metallic (Au, Ag, Cu, Pb and Zn) and graphite 489 

electrodes have demonstrated to show a variation versus time when in contact with a 490 

piece of pork loin. Additionally, PCA and neural network analyses showed that is was 491 

possible to determine the post-mortem time elapsed by using these simple 492 

potentiometric measures and rather conventional electrodes suggesting that such an easy 493 

device could be employed for the determination of freshness in meat. Data from the 494 

electronic tongue were additionally compared with other well-known methods for the 495 

evaluation of freshness based on the determination of the concentration of certain bio-496 

molecules as a function of time after death. A relatively good correlation was found 497 

between the response of the electronic tongue and certain degradation indexes such as 498 

the pH, microbial count and nucleoside concentrations. The better correlations were 499 

observed for pH and the so-called K index that is related with the evolution of the 500 

concentration of certain nucleosides with time. The method we have reported is fast, 501 

low-cost and non destructive and it might be a suitable mode to evaluate meat freshness 502 

in a wide rage of situations. Further studies in relation to repeatability and accuracy in 503 

pork and other meat products using different electrodes and storage conditions are being 504 

carried out.  505 
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Table 2 

 Nº Latent Var. Regression Coef. Slope Intercept 

pH 4 0.9446 0.9237 0.5165 

Microbial analysis 5 0.8878 1.229 0.5517 

Hypoxanthine 9 0.8782 0.8412 0.007 

Inosine 7 0.8762 0.7479 0.6145 

IMP 8 0.8934 1.343 1.611 

K-index 9 0.9269 0.7953 2.943 

 

Table 2


