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Hierarchical triple-Maglev Dual-Rate Control over a
Profibus-DP Network

Ricardo Pizá, Julián Salt,Member, IEEE,Antonio Sala,Member, IEEE,Ángel Cuenca,Member, IEEE

Abstract—This paper addresses a Networked Control System
(NCS) application on an unstable triple-magnetic levitation setup.
A hierarchical dual-rate control using a Profibus-DP network has
been used in order to stabilise a triangular platform composed
of three maglevs. The control difficulty is increased due to the
existence of time-varying network-induced delays. To solve this
issue, a local decentralisedH∞ control action is complemented by
means of a lower-rate output-feedback controller in the remote
side. Experimental results show a good stabilization and reference
position accuracy under disturbances.

Index Terms—Networked control systems, network delay, dual-
rate control systems, LMI, stability analysis, maglev, Profibus.

I. I NTRODUCTION

When a control application is projected on a network based
environment, in which different devices (sensor, actuator,
controller) are connected by means of a shared communication
medium [1], [2], [3], typical problems such as data packet
losses, lack of synchronization among devices, bandwidth
limitations, and time-varying delays occur.

In some cases, the controlled process is very sensitive to
these problems.

That is the case of a maglev based platform [4], [5], in net-
work based control [6]. This magnetic levitation process con-
trol problem is challenging because each one of the systems
that configure the platform are unstable and nonlinear. Maglev
platforms have also been used to demonstrate applicabilityof
control strategies in research literature [7], [8].

Also, magnetic levitation has a wide range of applications
[9], [10]. Thus, this paper demonstrates some network-based
hierarchical control techniques in a 3-maglev platform.

Regarding the network to be selected in control, there are
plenty of options with current technology. In an unstable, fast
system such as the one in consideration, a low-latency high-
bandwidth network would be a reasonable choice, for example
a network based on traditional field bus protocols such as
Profibus, DeviceNet, CAN, InterBus, Field Bus... or a network
based on newer industrial Ethernet protocols as ProfiNET,
EtherNet/IP, Powerlink, EtherCAT, Modbus TCP or SERCOS
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Fig. 1. Hierarchical control structure

III [11]. Any of these networks may be suitable for controlling
this platform.

In this work a Profibus-DP with asynchronous operation
mode has been selected [12]. Some characteristics of Profibus
make this network specially interesting and challenging from
a control engineering point of view. There are two kinds of de-
lays on this network: one of them is the delay induced by data
transfer between buffers and nodes, and the other one is the
delay that appear in the transmission between network nodes;
hence, a distribution of time-varying communication delay
appears. The chosen control strategy will also require triggered
bus mechanism for synchronization based on Profibusfreeze
andsynccommands. Other Profibus-based control applications
are reported in [13], [14], etc.

The objective of the paper is to experimentally demonstrate
a methodology, described below, for designing hierarchical
network based control systems for a multivariable, unstable
plant when computational capabilities and network band-
width/sampling rates are restricted, and data transfer delays
are present.

So, a hierarchical control system is proposed. Indeed, due to
the limitations in sampling rate and the communication delay
magnitudes it was not possible to design a single stabilizing
remote control in the maglev platform. Consequently, first
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of all, a fast-rate local decentralised controller is designed
and, in the following step, a more sophisticated slower-rate
“coordinating” remote control has been designed. Indeed, due
to the lack of shared information, the decentralised controllers
(perfectly working with one maglev) had a bad performance
with the 3-maglev platform in place, falling frequently: neither
the local-only nor the remote-only solutions were satisfactory.

For each maglev a standalone local controller has been de-
signed and implemented using robustH∞ control techniques
[15]. The remote controllers have been designed using LMI-
gridding techniques [16].

The paper is organised as follows. Second section describes
the physical process (the triple-maglev system) used as a test
platform in the experiments. Third section (and an additional
appendix) presents how this process is modeled and linearised.
The hierarchical control structure is introduced in section IV.
Before presenting the experimental results in section VI, some
network and hardware configuration aspects used in these
experiments are detailed in section V. Finally, a conclusion
section is included.

II. 3-M AGLEV PLATFORM DESCRIPTION

The experimental platform used in this work comprises
several elements:

• Three magnetic levitation units. These units can be op-
erated in a standalone way, as done in experiment 1 in
later sections.

• A Y-shaped levitated platform to which individual ma-
glevs can be attached.

• A National Instruments CompactRio 9074 acting as a
local controller.

• A desktop PC acting as a remote controller.
• A Profibus-DP network.

Let us describe now the most relevant characteristics of
them.

The controlled plant is a levitated platform, shown in Fig.
2 (left). This levitated platform is an equilateral triangle shape
with permanent magnets located at the corners of the platform.
A drawing scheme is shown in Fig. 3. The vertical position of
each magnet is controlled by an electro-magnet. Thus, there
are three maglevs located at the terminals of the platform. Each
maglev takes a voltage input signal to generate the magnetic
field and takes the vertical position measure using a set of
infrared sensor array.

The levitators have been provided by Extra Dimension
Technologies (http://www.xdtech.com), model ML-EA. The
magnetic levitation unit includes the own levitator with his
own power amplifier unit. The maglev provides position
information, from the infrared sensor array in±10 volts range.
The control signal to be provided to the power amplifier must
be also in±10 volts range.

In order to build the coupled platform, the three independent
loads of the maglevs were attached to the above referred
Y-shape aluminum sheet. Fig. 4 shows a drawing with the
levitated structure. Dimensions are expressed in mm, and in
the center of the platform the circular shapes correspond toan

Fig. 2. Experimental setup.

Fig. 3. Experimental setup. Drawings

extra load (a coin of 2 euros, 8.5 grams) used in transient anal-
ysis experiments. The total weight for the levitated platform
is 0.423 Kg.

Further details on the control-relevant model parameters are
discussed in appendix A.

A similar maglev platform can be found in different works,
for example, in [17], as well as those based on predictive
control [18], fuzzy control [19], [20], or some non-linear
control methods [21].

III. M ODELLING AND L INEARIZATION

This section discusses how the specific model is obtained
and linearised in order to apply the control scheme proposed
in later sections.

1

23

X (alpha angle)

Y (beta angle)

Fig. 4. Platform dimensions (top and side view), reference model axis and
maglev numeration.
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A. Single Maglev Modeling

The well-known Lagrange equations [22] can be used to
derive the differential equations of electro-mechanical systems

d

dt

∂T

∂q̇
−

∂T

∂q
+

∂D

∂q̇
+

∂V

∂q
= FG

where T , V and D represent the generalized kinetic1, and
the potential and dissipation energies, respectively.FG denotes
the generalized forces, and the variableq express one of the
generalized coordinates.

Let us denote the air gap between the variable magnet
and the levitated load with the variablez. Assuming infinite
permeability except on air gap, with permeabilityµ, and
uniform magnetic flux densityB, the energyTmag stored in
the levitator’s air gap is:

Tmag =
B2

2µ
·A · z

whereA is the cross-sectional area, beingB given byFmµ/z,
whereFm stands for the magneto-motive force (linear with
currentNI (coil) plus a permanent magnet componentI0,
beingN the inductor number of turns).

In summary, the magnetic energy is:

Tmag =
(NI + I0)

2µA

2z
(1)

The reader is referred to [23] (for instance) for details on
magnetic field modeling.

Adding the mechanical kinetic energy termTmech = 1
2mż2,

the gravitational potentialV = −mgz, the resistive dissipation
R · i, and using both charge and air gap as generalised
coordinates, the following nonlinear model can be obtained
(details omitted for brevity, see [24] for similar modelling
problems):

mz̈ −
µ(NI + I0)

2A

4z2
−mg = 0 (2)

µAN2

z
İ +

µAN(I0 +NI)ż

z2
+RI = V (3)

Of course, the uniform-magnetic-field model is not exact
as there exist lateral and bottom air gaps. In addition, if the
intensity polarity were abruptly changed, the flux lines for
the resulting magnetic field would be modified; however, the
assumption is made that such situations will not occur around
the chosen operation point.

The equations obtained before, (2)-(3), define the theoretical
model. Assuming a suitable operating point, a linearized single
maglev continuous-time model is obtained:

M

3
· z̈(t) = f(t) (4)

f(t) = K1I(t) +K2 · z(t) (5)

Lİ(t) +Q · ż(t) +RI(t) = v(t) (6)

where M/3 is the mass of the whole levitated platform
corresponding to one levitator,f is the electromagnetic force,

1To avoid confusion, note thatT will later denote sampling rate, but
symbolising in this way kinetic energy keeps notation in this section similar
to standard mechanics textbooks.

the constantsL, R, K1 andK2 are available in the levitator’s
manual provided by the manufacturer. The parameterQ mod-
els the potential induced by the movement of the levitated
magnet2. The maglev’s numerical values for the parameters
can be consulted in Appendix A.

Introducing a measurement equation

y(t) = K3 · z(t) (7)

the variabley is the position measurement taken with the
infrared sensor system, beingK3 a linearised calibration
constant available on the maglev user’s manual.

These equations can be expressed in state space form for a
generic maglevi as:




İi(t)
żi(t)
z̈i(t)



 =







−Ri

Li
0 −Qi

Li

0 0 1
3Ki

1

M

3Ki
2

M
0






·





Ii(t)
zi(t)
żi(t)



+

+





1
Li

0
0



 · vi(t)

yi(t) =
(

0 Ki
3 0

)

·





Ii(t)
zi(t)
żi(t)



 (8)

B. Global Platform (coupled) Model

When the global three-levitator platform is considered, its
position will be determined by the height of the center of
mass and by two angular coordinates3. Rigid-body dynamic
equations must be then considered.

First of all, the meaning ofz will be changed to denote the
vertical displacement of the platform’s center-of-mass (zi will
denote each maglev’s). The linear motion is only considered
along thez-axis:

Mz̈ =
∑

i

fi

Second, denoting the resulting torque vector asτ , the rotation
of the platform around the center of gravity yields

Jω̇ = τ − ω × (Jω)

whereJ is the inertia matrix. However, when linearizing
around zero rotational speed, and choosing small rotations
around principal axis (diagonal inertia matrix) as angular
coordinates, then these equalities can be considered, being α
andβ the angles of rotation of levitated platform aroundX
andY axes respectively.

2It has been estimated in a separate experiment by moving the maglev and
measuring position and induced voltage (opening the circuit). A least-squares
fit between a filtered numerical derivative of the position and the voltage has
been used (details omitted for brevity).

3The rest of the degrees of freedom, i.e., rotation around thevertical
axis and two horizontal displacement coordinates, cannot be controlled with
the available actuators. Fortunately, as the levitators are somehow attracted
towards the electromagnets also in the horizontal axis, these uncontrollable
models are stable. Nevertheless they are only very lightly damped (by air,
eddy currents...; actually, damping is so subtle that it hasnot been considered
in the –controlled– vertical coordinate movement): the platform must be
carefully and slowly positioned without introducing significant energy on these
coordinates.
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Jxxα̈ = τx (9)

Jyyβ̈ = τy (10)

beingτx andτy the torques on axisx andy, respectively, with
the chosen reference frame as shown in Fig. 4.

Expressions of torques at the center of gravity from each of
the maglev electromagnetic forces are:

τ1x = f1L cosα, τ1y = 0
τ2x = f2L cosα cosβ sin π

6 , τ2y = f2L cosα cosβ sin π
3

τ3x = f3L cosα cosβ sin π
6 , τ3y = f3L cosα cosβ sin π

3

beingL the length of the arm, andα andβ the rotation angles
around X and Y axes respectively.

For sensor measurements, these are the expressions:

z1 = z + Lα
z2 = z − L sin π

6 · α+ L sin π
3 · β

z3 = z + L sin π
6 · α− L sin π

3 · β

Then, the equation of movement in the vertical direction is:

Mz̈ = f1 + f2 + f3

The linearized torques around the horizontal position are:

τ1x = f1L, τ1y = 0
τ2x = f2L sin π

6 , τ2y = f2L sin π
3

τ3x = f3L sin π
6 , τ3y = f3L sin π

3

Hence, the overall linearized system equations are:

L1İ1 +Q1 · ż1 +R1I1 = v1
L2İ2 +Q2 · ż2 +R2I2 = v2
L3İ3 +Q3 · ż3 +R3I3 = v3
f1 = K1

1I1 +K1
2z1 = K1

1I1 +K1
2Lα

f2 = K2
1I2 +K2

2z2 = K2
1I2 +K2

2L(sin
π
3 · β − sinπ

6 · α)
f3 = K3

1I3 +K3
2z3 = K3

1I3 +K3
2L(sin

π
6 · α− sinπ

3 · β)
Mz̈ = f1 + f2 + f3
Jxxα̈ = L(f1 + f2 sin

π
6 + f3 sin

π
6 )

Jyyβ̈ = L(f2 sin
π
3 + f3 sin

π
3 )

Reorganizing:

İ1 = −
R1

L1
I1 −

Q1

L1
ż − Q1L

L1
α̇+ 1

L1
v1

İ2 = −
R2

L2
I2 −

Q2

L2
ż +

Q2L sin π
6

L2
α̇−

Q2L sin π
3

L2
β̇ + 1

L2
v2

İ3 = −
R3

L3
I3 −

Q3

L3
ż −

Q3L sin π
6

L3
α̇+

Q3L sin π
3

L3
β̇ + 1

L3
v3

z̈ =
K1

1

M
I1 +

K2
1

M
I2 +

K3
1

M
I3 +

L(K1
2+sin π

6 (K3
2−K2

2))

M
α+

+
L sin π

3 (K2
2−K3

2)

M
β

α̈ =
LK1

1

Jxx
I1 −

LK2
1

Jxx
I2 −

LK3
1

Jxx
I3+

+
L2(K1

2+sin2 π
6 (K2

2−K3
2))

Jxx
α+

L2 sin π
6 sin π

3 (K
3
2−K2

2)

Jxx
β

β̈ =
LK2

1 sin π
3

Jyy
I2 +

LK3
1 sin π

6

Jyy
I3+

+
L2 sin π

6 (K3
2 sin π

6 −K2
2 sin π

3 )

Jyy
α+

+
L2 sin π

3 (K2
2 sin π

3 −K3
2 sin π

6 )

Jyy
β

MAG LE V

P LAT F OR M

+
v1 y1LOC AL

C ONT R OLLE R  1

e1

r3

+

-

+
v2 y2LOC AL

C ONT R OLLE R  2

e2

+
v3 y3LOC AL

C ONT R OLLE R  3

e3

r2

r1

+

-

+

-

PR OF IB US -DP

R E MOT E

C ONT R OLLE R

ri yi

Fig. 5. Proposed hierarchical control system architecture. Remote supervi-
sory level controller, communications network, local controllers and maglev
platform.

Therefore, denoting the state, input and output vector as:

x =





























I1
I2
I3
z
ż
α
α̇
β

β̇





























, u =





v1
v2
v3



 , y =





K1
3z1

K2
3z2

K3
3z3



 (11)

then the state equations are:

ẋ = Ax+Bu (12)

y = Cx (13)

being the system matrices those in (14) on page 5.

IV. D ISCRETEDUAL -RATE CLOSED-LOOP MODELS AND

CONTROL STRUCTURE

If the linear state equations (12) and (13) are discretized at
a periodT0 (with zero-order hold at the input), it results in:

x((k + 1)T0) = Ax(kT0) +Bu(kT0) (15)

y(kT0) = Cx(kT0) +Du(kT0) (16)

The state of each of the subsystems (to be used by each
decentralised controller) will be denoted asxi in the sequel,
and the output asyi. Obviously, the full statex above is
composed by the juxtaposition of allxi and, due to the inertial
coupling, matrixA is not block-diagonal.

Consider now the hierarchical control structure appearingin
Figure 5. This structure depicts multiple controllers controlling
in a decentralised way the above plant, and a remote controller
in charge of coordination.

Each subsystem has a one degree of freedom local controller
attached to it, whose state will be denoted asXCi, with
equations given by:
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A =









































−
R1
L1

0 0 0 −
Q1
L1

0 −
Q1L

L1
0 0

0 −
R2
L2

0 0 0 −
Q2
L2

Q2L sin π
6

L2
0 −

Q2L sin π
3

L2

0 0 −
R3
L3

0 0 −
Q3
L3

−
Q3L sin π

6
L3

0
Q3L sin π

3
L3

0 0 0 0 1 0 0 0 0
K1

1
M

K2
1

M

K3
1

M
0 0

L(K1
2+sin π

6
(K3

2−K2
2 ))

M
0

L sin π
3

(K3
2−K2

2 )

M
0

0 0 0 0 0 0 1 0 0
LK1

1
Jxx

−
LK2

1
Jxx

−
LK3

1
Jxx

0 0
L2(K1

2+sin2 π
6

(K2
2−K3

2))

Jxx
0

L2 sin π
6

sin π
3

(K3
2−K2

2)

Jxx
0

0 0 0 0 0 0 0 0 1

0
LK2

1 sin π
3

Jyy

LK3
1 sin π

6
Jyy

0 0
L2 sin π

6
(K3

2 sin π
6

−K2
2 sin π

3
)

Jyy
0

L2 sin π
3

(K2
2 sin π

3
−K3

2 sin π
6

)

Jyy
0









































B =





























1
L1

0 0

0 1
L2

0

0 0 1
L3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0





























C =





0 0 0 K1
3 0 K1

3L 0 0 0
0 0 0 K2

3 0 −K2
3L sin π

6 0 K2
3L sin π

3 0
0 0 0 K3

3 0 K3
3L sin π

6 0 −K3
3L sin π

3 0





(14)

XCi((k + 1)T0) = A
[i]
d XCi(kT0) +B

[i]
d ei(kT0) (17)

vi(KT0) = C
[i]
d XCi(kT0) +D

[i]
d ei(kT0) (18)

beingei = ri−yi or, considering all of them in vector notation,
e = r − y.

Obviously, the overall controller state equations of the local
subsystem will have a block-diagonal structure: the notation
XC will denote the state of all controllers (juxtaposing each
controller state in a larger vector). The state of the controlled
system (3-maglev platform) plus that of the local controllers
will be denoted asχ = (xT XT

C )
T . Obviously, although

the controller state equations are block-diagonal, there will
be some coupling due to the plant not being fully diagonal.
The role of the remote controller will be to compensate such
coupling neglected in the local decentralized side.

In order to achieve the coordination, the overall local
subsystem equations will be considered in the form:

χ((k + 1)T0) = A0χ(kT0) +B0r(kT0) (19)

y(kT0) = C0χ(kT0) +D0r(kT0) (20)

A. Dual-rate modelling

The remote system will be in charge of controlling the local
subsystem over a networkat a slower rate, because network
limitations will be assumed to exist limiting the sampling rate
(see section V).

The local controllers will be operating at a fast sampling
rate with periodT0, the remote controller will operate at a
slower rateT = NT0. The network-induced round-trip time
delay between a local controller sendingyi and receivingri
will be denoted bydi(kT ).

Some assumptions on the values of the delays in each loop
are needed. Ample detail will be given in Section V, but at this
moment, we may preliminarly assert that, due to the chosen
configuration of the Profibus communication, thesync and
freeze commands will allow to assume that the delay is
coincident in all channels and multiple of the local sampling
period. In the sequel, such delay will be denoted byδ(kT ) =

d(kT )×T0. The value ofd(kT ) will be assumed to be known
at next sample time, given the sequence of network commands
chosen for synchronization (see Sect. V for details).

Although the hierarchical control structure is reminiscent
of a cascade control, conventional cascade-control design
assumes a time-scale separation so that a separate design is
possible [25] and small delays would be negligible in the
outer very-low-bandwidth loop. In the proposal here, the action
of the remote controller will be fast enough to influence
the stability and performance of the inner loop: bandwidth
of both loops will be intentionally similar and Lyapunov
functions considering the whole remote+local+plant statewill
be needed.

1) Slow-rate modeling: In order to design the remote
controller a slow-rate model (at periodT = NT0) is needed.

Considering the fast-rate behaviour (19), the slow-rate state
update equations will be given by the well-known convolution
expression [26]:

χ((k + 1)NT0) = AN
0 χ(kNT0) +

+

N
∑

h=1

Ah−1
0 B0r(((k + 1)N − h)T0) (21)

However, as the reference input is updated after a delay of
δ(kT ) = d(kT )T0 and kept constant until next update (see
Figure 6), the above must be corrected to:

χ((k + 1)NT0) = AN
0 χ(kNT0) +

+



A
N−d(kT )
0

d(kT )
∑

j=1

Aj−1
0 B0



 r((k − 1)NT0) +

+





N−d(kT )
∑

i=1

Ai−1
0 B0



 r(kNT0) =

= AN
0 χ(kNT0) + B1(N, d(kT ))r((k − 1)NT0) +

+B2(N, d(kT ))r(kNT0) (22)

By assumption,T will be strictly greater thand(kT )T0 ∀k,
because the sampling periodT has been selected in order to
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u((k-1)T)

u(kT)

kT
kNT 0

kT+d(kT) (k+1)T
(k+1)NT 0

d(kT)=d(kT)T0

Fig. 6. Control and state update chronogram

verify this restriction4. If d(kT ) > N , the model would get
more complex needing incorporation of further past values of
r, i.e., r((k − 2)NT0), etc. For simplicity, this issue will be
pursued no further.

If an augmented stateΨ(kT ) = (χ(kT ), r((k − 1)T )′

referred to the remote periodT is considered, the system as
seen by the upper level can be expressed as:

Ψ((k + 1)T ) =

(

AN
0 B1(N, d(kT ))
0 0

)

Ψ(kT ) +

+

(

B2(N, d(kT ))
I

)

r(kT ) (23)

For brevity in further developments, notationsA∗ andB∗

are introduced in (23), yielding:

Ψ((k + 1)T ) = A∗(N, d(kT ))Ψ(kT ) +

+B∗(N, d(kT ))r(kT ) (24)

The modelling procedure in Section III allows obtaining the
above matrices in the experimental platform.

B. Control design strategy

Once the dual-rate modeling and notation have been de-
scribed, this section discusses general ideas on the chosen
control design methodologies.

Basically, on one hand, three low-order (and hence with low
computational requirements) local controllers will be designed
using standard mixed-sensitivityH∞ control techniques [15],
assuming a decoupled system.

On the other hand, LMI-gridding and non-stationary
Kalman filter are used in the coordinating remote controller
(see in [16], [27] the basic formulae for the LMI-gridding
approach, and in [28], [29] for the Kalman filter), assuming a
fully coupled plant.

In this section, the control techniques in the remote side are
reviewed for convenience. Note, importantly, that in orderto
develop this control system structure, the delayd(kT ) must be
known. Conditions for applicability of a separation principle
are also discussed in [16].

4For this purpose some experimental off-line tests have beendone to
determine the maximum round-trip delay.

1) LMI gridding: From the augmented model (24), the
control synthesis problem can be cast as a state-feedback one,
leading to:

r(kT ) = −F ∗Ψ(kT ) (25)

however, the gainF ∗ must ensure robustness against the
unknown round-trip delayd(kT ) because its value is not
known a priori at the timer(kT ) is computed: its value will
be later obtained by using thefreeze/sync commands, but
it will be useful only for thea posterioriobserver part.

In order to achieve stabilizing controllers subject to time-
varying delays, an LMI gridding procedure [16] is considered.
From [16], if there exist matricesX and M so that (26)
on page 7 is verified for anyd(kT ) which may arise in
experimental operation: in this particular application,d(kT )
takes values in[1, . . . , N − 1].

If the LMIs are feasible, the feedback controllerF ∗ =
MX−1 stabilizes (24) with decay rateϑ (continuous-time
equivalent), andΨ(kT )TX−1Ψ(kT ) is the associated Lya-
punov function. As discussed in Section V, the experimental
setup requiredN = 4 and gridding on possible values of
d(kT ) = 1, 2, 3, so (26) is actually a collection of 3 LMIs.

2) Non-stationary Kalman filter:Regarding the observer
design for system (24), asd(kT ) can be obtained from
freeze/sync commands at the timer((k + 1)T ) is com-
puted, Kalman gains depending on induced delays can be
obtained with non-stationary Kalman filters [30], [31], whose
equations are:

P (kT ) = A
∗(N, d(kT ))Λ(kT )A∗(N, d(kT ))T + V (kT ) (27)

L(kT ) = P (kT )CT (CP (kT )CT +W (kT ))−1 (28)

Λ((k + 1)T ) = (I − L(kT )C)P (kT ) (29)

WhereV (kT ) and W (kT ) are process and measurement
noise parameters. The observer gain isL(kT ), with an es-
timated state, denoted bỹΨ(kT ), obtained via the current-
observer update equation:

Ψ̃(kT ) = (I − L(kT )C)
(

A
∗(N, d((k − 1)T )Ψ̃((k − 1)T ) +B

∗(N, d((k − 1)T )r(kT )
)

+L(kT )y(kT ) (30)

In order to implement the above equation, the packet
received by the remote node should contain the array of
measurementsy(kT ), the time in which those ones were
measured, and the delayd((k − 1)T ) in the preceding cycle
as explains next section.

V. HARDWARE AND NETWORK CONFIGURATION

The control experiments developed in this paper have been
implemented as follows.

In the first level, the local controllers have been imple-
mented using a National Instruments CompactRIO device as
shown in Figure 2 (right).

The network was a Profibus-DP one; its nodes were a
ComSoft DFProfi-II DP card in the PC and a Profibus module
cRio PB in the compactRio controller, the latter operating as
a bus master. Details on the network elements can be found
in http://www.comsoft.de and http://www.ni.com.
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[

e−2ϑTX X(A∗(N, d(kT )))T −MT (B∗(N, d(kT )))T

A∗(N, d(kT ))X −B∗(N, d(kT ))M X

]

> 0 (26)

TABLE I
DISTRIBUTION HISTOGRAM OF NETWORK ROUND-TRIP DELAY

Delay 5 ms 10 ms 15 ms
Occurrences 123,154 1,084,502 292,357
Percentage 8.21% 72.3% 19.49%

The available Profibus-DP bandwidth enables to use a
second level where a remote coordinating control action is in-
jected just every 20 milliseconds. Indeed, the chosen Profibus
configuration parameters were bus rate 187.5 kBits/s with
asynchronous operation mode.

Let us now discuss how the remote control and local-
level synchronization are carried out. EveryT = 20ms
the supervisor controller starts the control task as follows
(symbollicaly depicted in figure 7):

• Stage 1.Master node sendsfreeze command to slave
nodes. All slaves receive the message at approximately
the same time (with some microseconds jitter due to the
bus cycle) and freeze the inputs (from the process). In the
next Profibus cycle, slaves send frozen inputs (measures)
to master node. Receivingfreeze command is used also
for synchronizing slave clocks tot = 1 ms.

• Stage 2.Master node receives the measures from slaves
and process data according to the control algorithm.

• Stage 3.Master node sendssync command to slave
nodes. Then, their outputs to the process are internally
updated at the next Profibus cycle in the buffers but not
applied until anunsync command is received.

• Stage 4.Master node sends the referredunsync com-
mand to slaves, and then all of them update the outputs
(reference to local controllers) simultaneously at the
next multiple of the local sampling timeT0. As the
remote controller knows the moment in which it sent
the unsync command, it can computed(kT ) for the
observer update.

• Stage 5.With their internal sampling timeT0 = 5ms lo-
cal controllers are performing platform control algorithm
with no communication with master node. At sampling
time T = 20ms the measurements are taken and stored
in the buffer. The master node starts again the control
process att = 21 ms, and the sequence returns to stage
1.
Distribution of round-trip delaysd(kT ): An experimen-

tal test was conducted to measure the magnitude of the
network-induced time delays: the most repeated round-trip
time delay corresponds to a 10ms period, with eventual delays
at 5 and 15ms, as shown in Table I. For this reason, the grid
of times for discretizing the system will be formed by the set
of values(5, 10, 15) ms.

VI. N UMERICAL RESULTS AND EXPERIMENTS

In this section, the numerical results of the controller
computations and the experimental measurements will be

described.
Note that, although it is “theoretically possible” to control

a linear system with a discrete-time controller at any desired
period, the disturbance rejection and tolerance to modeling
errors severely diminish as such period increases with unstable
systems. This fact is proved to be fundamental in our experi-
ments, in the sense that:

1) theH∞ controllers designed for the long periodT =
20 ms were not able to stabilize, in actual experiments,
even a single maglev, in a local configuration with no
network delay, even if they were of course stable in the
simulations. Hence, the slow-rate remote-only control
option was not a viable solution.

2) On the other hand, a local controller at each of the
levitators with a SISO loop may be a viable solution.
Indeed, local stabilizing controllers atT0 = 5 ms with
the decoupled model were obtained byH∞ techniques,
and were able to stabilise appropriately a single maglev.

3) However, due to disregarded couplings, modeling error
is introduced which will degrade performance of the
local-only decentralised controllers, as later experiments
show. Of course, incorporating the coupling would re-
quire communication between the different subsystems,
assumed to be feasible only via the chosen network (at
a slower rate).

In summary, the above issues justify the need of the
proposed dual-rate structure.

In order to deal with these issues, a set of experiments have
been developed, as follows.

A. Preliminary experiments: single-maglev control.

First of all, a preliminary experiment with a single maglev,
not with the whole platform, has been developed. In this ex-
periment, first, a standaloneH∞ controller has been designed
and implemented. This type of controller is chosen in the local
controller in order to suitably balance disturbance rejection
performance versus tolerance to modeling errors at particular
frequencies.

A first set of controllers are designed for each single
maglev using a mixed-sensitivity approach using a set of
weight values, that is, sensitivity weight, control actionweight
and complementary sensitivity weight. For the designed con-
trollers the values of these corresponding weights are 1,
0.2 and 0.6. Using the Robust toolbox Matlab command
[K,CL,GAM,INFO]=MIXSYN(G,1,0.2,0.6), where G is the
equivalent discrete model plant for state space maglev model,
the different local controllers for each one of the three maglevs
are obtained. Weights have been chosen as constants to keep
the resulting controller order low.

Experimentally, a set of controllers has been designed using
several sampling periods keeping the same design parameters.
As a result of all the experiments, the greatest sampling period



8

kT
- Freeze
- Slaves sync local clock with master

Master receives y (KT)
i

Sync Slaves receive
references

Slaves working at T0

Unsync

Master computation

Input delay d(kT)

Slaves update r (kT)i

Slaves wait until next multiple of T0

...

Slaves acquire measure
(k+1)T
Cycle repeats again

ri (kT)

0ms

1ms A D 20ms10ms5ms

15ms

Square mark each 5 ms indicates time when slave nodes perform periodic control task

Times A, B, C and D are variable anywhere between 5 and 15 ms

Time E is next multiple of 5 ms after D occurs

B C E

Fig. 7. Coordination and synchronisation cronogram (PROFIBUS implementation of Figures 5 and 6).
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Fig. 8. System’s sensitivity to additive uncertainty with different sampling
rates.

that can be satisfactorily used with the maglev isT0 = 5ms:
with larger sampling periods, accumulated error can become
too large, so it makes the one-maglev system unstable or on
the verge of instability.

Fig. 8 shows the additive uncertainty sensitivity analysis,
i.e., K/(1 + KG), when controller and plant (for a single
maglev) are sampled at 5 and 20ms. As sampling time in-
creases, uncertainty in model and sensitivity increases, making
the experimental system unstable.

All the local controllers are very similar, so the numerical
values of just one of them is presented below:

GR(z) =
u(z)

e(z)
=

10.845(z + 1)(z − 0.878)(z − 0.641)

(z + 0.93)((z − 0.54)2 + 0.272)
(31)

An additional set of controllers is designed adding an
(approximate) integral term. Defining the continuous inte-
grator as G(τs+1)

Gτs+1 , with large enoughG and small enough
τ , this continuous term is discretized atT0 sampling time
using Tustin discretization method. This discretized term
is included in the sensitivity weight (WI ) for calculat-
ing the new controller. In our case, the resulting weight

was WI(z) = 1.001z−0.9982
z−0.9997 . A new controller is designed

using this integrator term in the sensitivity weight (WI)
[K,CL,GAM,INFO]=MIXSYN(G,WI,0.2,0.6). As a result, the
new set of controllers are obtained. One of them is next
presented:

GR(z) =
10.74(z + 1)(z − 0.99)(z − 0.88)(z − 0.71)

(z − 1)(z + 0.94)((z − 0.56)2 + 0.282)
(32)

which, as expected, it is very similar to the above one (31)
except at low frequencies.

With these numerical results, a first preliminar single-
maglev experiment is developed, whose output appears in
Figure 9. The experiment begins activating the local con-
troller without integrator (see (31)). The system achievesan
equilibrium point with position error, as expected, but system
performance is suitable. At timet = 10.5s controller changes
adding the integral term (see (32)) and after a 2 second
transient, the system achieves the new equilibrium point with
no position error. This experiment is performed with only one
standalone maglev. After this experiment is concluded, the
platform is assembled with the tree maglevs, and the rest of
experiments below are carried-out.

In summary, this preliminary experiment demonstrates that
the chosen design parameters for the local controllers allow
an adequate SISO control performance for the real plant.

B. Experiment 1: 3-Maglev platform, no-network

This experiment is developed using the whole platform
and the set of local controllers previously developed without
integral action (31). Therefore, the network and the supervisor
level are not used yet. The experiment starts with platform
in equilibrium point, and at timet = 2.5s a load change is
applied to the platform depositing a 2-euro coin in the center
of the triangular aluminum structure. As seen in figure 10, the
system response seems to change to a new equilibrium point
(i.e., position error) but it barely keeps there and platform
becomes unstable and drops att = 5.5s.

This is the result of coupling between the different maglevs
in the whole platform system, as single-maglev controllers
worked perfectly when isolated.
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Fig. 9. A single maglev experiment
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Fig. 10. Platform position in the experiments 1 and 2.

C. Experiment 2: 3-Maglev platform, no-network, integral
action

This experiment is the same as the previous one but using
controllers with the integral action included (32). As in the
previous experiment, network and supervisor level are not used
yet.

Although the integrator tries to recover the reference posi-
tion, oscillations of increasing amplitude are generated due to
the load disturbance and, ultimately, the loop becomes unstable
and the platform falls.

With these two experiments (Experiment 1 and Experiment
2), coupling in platform is demonstrated to be significative,
and it must be taken into account when designing the control
system.

D. Experiment 3: 3-Maglev platform, hierarchical control,no
integrator

This third experiment is developed using the network and
an additional supervisor level controller. Each maglev on the
platform keeps his own local controller (no integral action) as
previously designed, i.e., the same set of controllers usedin
Experiment 1, see (31).
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Fig. 11. Figure results for experiments 3 and 4.

At higher level, in the remote side, a plant model is
developed following the results in previous sections, where the
considered process is the set composed by the three maglev
systems and the corresponding local digital control subsystems
with periodT0.

The resulting state feedback controller (25) obtained has a
gain matrix of dimensions 3x21 as shows (VI-D) depicted on
page 10

This supervisor controller is implemented on remote side,
jointly with the previously discussed observer.

The experiment starts with platform in equilibrium point, as
shown in Figure 11. At timet = 1.75s load is applied, and
after a transient, system acquires a new, stable equilibrium
point, but with position error (as expected). Compared to
experiment 1, now the supervisor control level compensates
the disturbances introduced by coupling between the three
maglevs of the platform.

In figure 11, the top figure shows the position error (center
of mass), the middle one shows the control signal applied
to maglev, and the bottom one shows the supervision signal
generated by the supervisor controller and sent through the
network to the local controller. For clarity, only one of the
three control and supervision signals are plotted.

E. Experiment 4: 3-Maglev platform, hierarchical control,
integrator (remote)

The results obtained with experiment 3 present position
error, so, for obtaining an stable plant without position error, a
new remote controller that includes accumulated error in state
system is developed. So the controller is designed considering
(

Ψ((k + 1)T )
s((k + 1)T )

)

=

(

A∗ 0
−C∗ I

)(

Ψ(kT )
s(kT )

)

+

+

(

B∗

−0

)

r(kT ) (34)

where the position error inC∗Ψ will be zero in steady state
[29].

Following this reasoning, the system state vector is ex-
panded adding the accumulated error for each one of the three
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F
∗
=





−5.36 383.2 −0.63 44.76 −0.001 −0.008 0.57 0.001 0 0.22 0.12 −0.013 ...

−4.75 349.4 0.29 −20.32 −0.5 35.34 −0.003 0.33 −0.0003 −0.003 −0.120 0 ...

1.963 395.7 −0.11 −23.14 −0.19 40.08 0.0004 −00002 0.06 0.0008 0.037 −0.0001 ...

... 0.001 0.044 0 0.001 0.012 0 0.104 0.0004 0

... 0.194 −2.45 −0.008 −0.001 −0.02 0 −0.001 0.06 −0.001

... 0.0001 0.007 0 0.042 −6.86 −0.004 0.001 0 −0.15



 (33)

maglevs on the levitated platform. According to this new plant
model, the feedback state controller is recalculated obtaining
a new state feedback gain, also with LMI gridding.

As the system model vector state has been increased with
the new states corresponding to the accumulated errors, the
new feedback gain increases their dimensions, being in this
case a matrix of size3× 24.

The new controller with the integral action can keep the plat-
form stable even with load variations. The integral component
is working at low rate because it is present in the supervisor
level, on the remote side of the controller. As figure 11 shows,
after the load is applied to the platform, the system keeps the
stable equilibrium point obtaining acceptable results in terms
of performance.

VII. C ONCLUSIONS

In this paper a practical Profibus-DP network-based control
application has been developed in order to coordinate an
unstable triangular maglev platform via a dual-rate controller
implementation.

Both local-only and network-only controllers were not able
to satisfactorily stabilise the platform. However, a hierarchical
control structure succeeded in the experiments: a simple stabi-
lization local control and a refined LMI-based+Kalman Filter
solution in the remote side allow to solve the problem caused
by limited network bandwidth and time-varying delays.

Even if a particular choice of controller/observer strategy
has been experimentally demonstrated, for more demanding
applications (out of the scope of this work), the results might
be ameliorated by including further theoretical developments
such as delay uncertainty (slight desyncrhonization), or delay-
dependent Lyapunov functions, even incorporating information
on the probabilistic distribution of the delays.
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[31] M. Mora, R. Pizá, and J. Tornero, “Multirate obstacle tracking and path
planning for intelligent vehicles,” inIntelligent Vehicles Symposium,
2007 IEEE, june 2007, pp. 172 –177.



11

TABLE II
MAGLEV PARAMETERS SUPPLIED BY THE MANUFACTURER.

Maglev 1 Maglev 2 Maglev 3
ResistanceΩ R1=4.6 R2=5 R3=4.2

Inductance mH L1=52 L2=73 L3=32
Em. transfer gain N/A K1

1
=-0.56 K2

1
=-0.7 K3

1
=-0.82

Position transfer gain N/m K
1

2
=98 K

2

2
=98 K

3

2
=98

Sensor transfer gain V/m K
1

3
=680 K

2

3
=700 K

3

3
=705

APPENDIX

A. Magnetic levitation model parameters

As previously mentioned, some of the maglev parameters
have been identified by manufacturer and are listed in the ma-
glev user’s manual. Those parameters, for the three maglev’s
here used, appear in Table II.

As a result of the experimental identification, the values
Q1 = Q2 = Q3=0.5 Vs/m have been assigned.

The length of the structure armL is 0.117 m (see Fig. 4),
and the total weight of platform, including load,M is 0.406
Kg. The inertia matrix:




Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz



 =





0.00293 0 0
0 0.00293 0
0 0 0.00541





has been obtained via CAD software (modeling the object with
solid geometry, assigning the weights and obtaining inertial
data from the CAD analysis module).

Noise matrices used in Kalman filterV andW are diagonal
matrices with values 0.0062 and 0.01 respectively. Measure
noiseW is deduced obtaining sensor measures with the still
platform, mechanically fixed. The variations measured about
mean value corresponds to noise and this value is used for
characterizing the matrix.V characterizes input noises and
modeling errors, and it has been adjusted experimentally to
obtain a suitable observer dynamics.


