Document downloaded from:

http://hdl.handle.net/10251/40163

This paper must be cited as:

Vasconcelos, PB.; D'almeida, FD.; Roman Molté, JE. (2013). A Jacobi-Davidson type

method with a correction equation tailored for integral operators. Numerical Algorithms.
64(1):85-103. doi:10.1007/s11075-012-9656-9.

The final publication is available at
http://link.springer.com/article/10.1007%2Fs11075-012-9656-9

Copyright
Pyng Springer Verlag (Germany)

A Jacobi-Davidson type method with a correction
equation tailored for integral operators*

Paulo B. Vasconcelos
Faculdade de Economia da Universidade do Porto,
rua Dr. Roberto Frias s/n, 4200-464 Porto, Portugal

pjv@fep.up.pt
Filomena D. d’ Almeida

Faculdade de Engenharia da Universidade do Porto,
rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
falmeida@fe.up.pt

Jose E. Roman
D. Sistemes Informatics i Computacid, Universitat Politecnica de Valencia,
Cami de Vera s/n, 46022 Valencia, Spain

jroman@dsic.upv.es

1/10/2012

Abstract

We propose two iterative numerical methods for eigenvalue computations of
large dimensional problems arising from finite approximations of integral opera-
tors, and describe their parallel implementation. A matrix representation of the
problem on a space of moderate dimension, defined from an infinite dimensional
one, is computed along with its eigenpairs. These are taken as initial approxi-
mations and iteratively refined, by means of a correction equation based on the
reduced resolvent operator and performed on the moderate size space, to enhance
their quality. Each refinement step requires the prolongation of the correction equa-
tion solution back to a higher dimensional space, defined from the infinite dimen-
sional one. This approach is particularly adapted for the computation of eigenpair
approximations of integral operators, where prolongation and restriction matrices
can be easily built making a bridge between coarser and finer discretizations. We
propose two methods that apply a Jacobi-Davidson like correction: Multipower
Defect-Correction (MPDC), which uses a single-vector scheme, if the eigenvalues
to refine are simple, and Rayleigh-Ritz Defect-Correction (RRDC), which is based

*This work was partially supported by European Regional Development Fund through COMPETE, FCT
- Fundagdo para a Ciéncia e a Tecnologia through CMUP - Centro de Matemadtica da Universidade do Porto
and Spanish Ministerio de Ciencia e Innovacién under projects TIN2009-07519 and AIC10-D-000600.

on a projection onto an expanding subspace. Their main advantage lies in the
fact that the correction equation is performed on a smaller space while for general
solvers it is done on the higher dimensional one. We discuss implementation and
parallelization details, using the PETSc and SLEPc packages. Also, numerical re-
sults on an astrophysics application, whose mathematical model involves a weakly
singular integral operator, are presented.

1 Introduction

The computation of eigenpairs of a compact Fredholm integral operator can be achieved
by discretizing it on a subspace, yet accurate solutions may require projections on a
space of large dimension. To reduce the computational costs, the projection can be per-
formed on a subspace of moderate dimension and the eigenelements of its representing
matrix can be computed using state-of-the-art methods. These can then be iteratively
refined, by a defect correction type procedure, still of moderate size, to yield a better
approximation to the spectral elements of the operator. This defect correction proce-
dure is similar to the expansion phase in Jacobi-Davidson type methods, except that
the former requires the solution of a moderate size problem instead of the large dimen-
sional one on the latter. This can be accomplished by introducing information from the
left eigenvectors of the moderate size problem and from the finer discretization through
matrix-vector operations only.
Let us consider the computation of the eigenpairs of the problem

Teo=0¢9, ¢#0, M
where the integral operator 7 : 2~ — 2 is defined on a Banach space with kernel g,

(ro)e) = [sllr-7Do()ar, e o) @

We are interested in the case where 8 is a non-zero simple isolated eigenvalue. A
generalization for the computation of a cluster of eigenvalues can be found in [4].
Discretization mechanisms, for instance (Kantorovich) projection onto a finite di-
mensional subspace, are usually used to solve the integral problem. Operator T is
approximated by 7, T,x = m,Tx, x € 2, its projection onto a finite dimensional sub-
space Z, of 2 spanned by an ordered basis e, = [e,,71, ...senn]. The projection is

characterized by
n

X = Z (x, e ;en.j, 3)
j=1
where e, = e, |,....¢,,]. €, ; € 27, j=1,...,n, is the adjoint basis of e, (2" is the
adjoint space of Z").
The spectral problem
T, On = 6, On “4)

is to be solved, where @, € 2" and the eigenvalue 6, is an approximation to 6. The
solution ¢, is normalized so that (@,, ¥,) = 1, where y,, € Z™* is chosen as an eigen-

function of 7, corresponding to 6,,

T”* Yp = énl//n- (5)

For n large enough there exists a 8, of T, in a given neighborhood of 6 such that
|6, — 6| < c|(T,—T)|| (convergence in norm) or, for 6 # 0, |6, — 0| < ¢|[(T, — T)T||
(v—convergence), ¢ constant independent of n. These convergence results can be found
in [2, ch. 2]. It is worth to note that this approach can be extended to deal with multiple
eigenvalues or finite clusters of eigenvalues.
The above formulation, for a finite and fixed n, leads to matrix eigenvalue problems
of dimension n
Antty = 6yu, and Alv, = 0,v,, (6)

where A, = (Te,,e!) represents the restriction of 7, to 2, and @, = e,u,, with u, =
ein (@n,e;) and v, = {(e,, ¥,) (further details can be seen in [4]). These spectral approx-
imations will be used as initial approximations for the refinement process.

The rest of the paper is organized as follows. Section 2 introduces the Multipower
Defect-Correction (MPDC) and the Rayleigh-Ritz Defect-Correction (RRDC) meth-
ods. Implementation details for both algorithms are given in section 3. The implemen-
tation is carried out by using PETSc and SLEPc, as explained in subsection 3.1. The
computation of initial approximations, a prerequisite for both methods, is done with
SLEPc as discussed in subsection 3.2. An important step of the methods is the correc-
tion equation, in the present case a resolution of a linear system of equations. This is
treated in detail in subsection 3.3. Also, the issue of matrix permutations for reduction
of parallel overhead is discussed in subsection 3.4. Section 4 shows the performance of
the methods in solving an astrophysics problem, in terms of parallel efficiency. Also,
the influence of some parameters of the algorithms are studied. Finally, some conclu-
sions are given in section 5.

2 The MPDC and RRDC methods

For a required precision we may need a large dimensional matrix, say A,,, or, alterna-
tively, as mentioned in the previous section, we can use an iterative refinement method
on the solution of an eigenvalue problem of dimension n < m, achieving the same pre-
cision as the one obtained with A,,. The methods proposed next share such a refinement
procedure, aiming at maintaining their computational costs moderate, differing only in
the accelerating mechanisms used.

Let F: 2 — Z be defined by

Fo)=To—(To,y)0, @cX, @)

where y, is the solution of Eq. (5). As for Davidson-type methods, the eigenvalue
problem is tackled as a Newton-type method by approximately solving F(¢@) = 0. Tt
is worth mentioning that being ¢ an eigenvector of T associated to the eigenvalue
0 # 0, normalized by (¢,y,) = 1, then (T, y,) = 6(¢,y,) = 6. The zeros of
Eq. (7) are approximated by a fixed slope Newton method starting with (p,(,o) = @y,
ol = @) — (DoF) ' F(oY), k=0,1,...., where (DoF)n =Tn — (T, Vi) 9u —
(TQu, Wu)M, N € 2, is the approximation of the Fréchet derivative of F at ¢,. Fur-
thermore, a perturbed fixed slope Newton method is obtained by replacing T by T,,,

(DoF)n = T,n — P,(T,n) — 6,M, where P, is the spectral projection of T, associated
to 6,
P =N Yu) P, NEZL. ®)

Since 7, and P, commute, (DyF)n = (T, — 6,1)n, imposing P, = 0. The perturbed
fixed slope Newton method gives rise to

o — ol 5,8, E=F(ol))

and the computation of 1 = S,& amounts to solve the following system (correction
equation)
(Th—6u1)n = (I - PF,)&
{ P =0 . (10)

The operator S, is indeed the reduced resolvent of 7, associated with 6,, that is, the
inverse of the restriction of 7,, — 6,1 to the range of I — P,. S, is defined in [7, p. 107]
as lim, g, (T, —zI)~'(I — B,) and it verifies (7, —zI)~'S, = (I — P,). Tt should be
mentioned that iteration (9) corresponds to a defect correction method applied to (7)
using S, + ¢, as approximate inverse (see [4]). Moreover, since we do not have access
to operator 7 when using F', T is replaced with T, corresponding to a much finer grid.

Under these assumptions the functions involved in Eq. (10) may be represented
by vectors of their m components in terms of the basis e, of the functional space Z;,.
When these functions are restricted to .2, we will use vectors of their n components in
terms of the basis e,, and in this case the names of the vectors will have the subscript
n. The operators T, restricted to 2, and T, restricted to 2, will be represented by
Ay = (Tem,el,) and A,. We will denote by R = (e, ¢);) and E = (e, e},), respectively,
the restriction and extension matrices required to map the representation of functions
from an m-dimensional space to an n-dimensional one, and vice-versa.

The MPDC method (Algorithm 1) interlaces the defect-correction stage (10) with
a certain number of power iterations as a cheap single-vector mechanism, whereas the
acceleration of the RRDC method (Algorithm 2) relies on a Rayleigh-Ritz procedure
applied to a search subspace of increasing dimension.

As an initialization to both algorithms, we have to solve a moderate size eigenprob-
lem (6) to get 6,, u, and the left eigenvector v,. The eigenvectors are normalized so
that vyu, = 1, and in the m-dimensional space, the approximate eigenvectors must be
normalized in the same way. The algorithms compute increasingly good approxima-
tions of the right eigenvector uﬁ,]f) but not for the left eigenvector, which is fixed and
computed as the prolongation of v, to the larger space: v,, = A, R*v,.

Algorithm 1 performs ¢ number of power iterations before the defect correction
phase to improve the accuracy of the approximation while Algorithm 2 performs an
orthogonal Rayleigh-Ritz projection of A,, onto the subspace whose orthonormal ba-
sis is expanded with the corrections obtained from the restricted space. Note that, for
efficiency reasons, matrix G can be computed incrementally, that is, one row and col-
umn in each iteration. Given g = A, 0., where Q. denotes the last column of the
expanding basis Q, the new column to be appended to G can be computed as Q7 g, and
similarly for the elements of the new row.

Algorithm 1: Multipower Defect-Correction method
normalize u, and v, so that viu, = 1

ul) = Eu, and normalize so that ||u£,?) =1
Vm = A R*v, and normalize so that ﬁfnu§,9)1
fork=0,1,2,...

0 =)

[Multipower stage:]

for j=1,2,...¢

. ; 1 .
ul) = ﬁ}*Amy,g{ ‘), yﬁ,{) = fAmy,(,{ l), with u) £ 0

u(])
compute the residual 7, = Amy%> - u(k)y%)
compute the correction t,,, = S, 1, according to Eqgs. (11)-(12)

update next iterate u,(,lf) _ y,(,(;) — t,, and normalize so that V' u,(,f) _ 1

[Defect-Correction stage:]

In both algorithms, the matrix version of the computation of #,, = S,r,, € R™ for a
given residual r,, € R™, corresponding to Eq. (10), is done by solving the following
system of linear equations of dimension (n+ 1) x n to get ,,

(Ay — 6,1)ty, = Rryy — Vi (Rrp)up

* an

Vit =0

To extend #, to R™ one must obtain a projection for 1 (see Eq. (10)) onto Z;,.

Plugging the second equation into the first one results in 7, — 6,1 = (I — B,)&. From
the definitions of 7, (3) and P, (8),

-

<Tnve;;.,j>en,j —6m=8— (5, v)Pu

j=1

Applying (-, ey, ;), i=1,...,m, it results

Z Te’h}’ ml n efl,j>_9n<n’ejrl,i>:<5 m1> <€ Wn><(pn7 ml>
j=1

=(&,em) — (&, 9* T, W) (@ns €y, ;) from (5)

(e - ein<Tné,wn><<pn,e;,i>
e~ g Y (en s Un)(TE €5) (@na):

j=1

Using matrix notation we obtain

1
EAntn - entm =TIm— aV;(Anrrl)uma

n

Algorithm 2: Rayleigh-Ritz Defect-Correction method

normalize u, and v, so that viu, = 1

initialize the basis Q = [u] with u = (Eu,)/||Eun||2, with ||Euy,lj2 # 0

Vm = A} R*v, and normalize so that V,u =1

fork=0,1,2,...
[Extraction stage:]
compute the projected matrix G = QT A,,Q
compute the most wanted eigenvalue L; and eigenvector z; of G
compute the Ritz vector u,, = Qz; and normalize it so that ¥},u,, = 1
[Defect-Correction stage:]
compute the residual r,, = Ay, — Wity
compute the correction t,, = S, 7,,, according to Egs. (11)—(12)
orthonormalize f,,, against the basis Q and expand the search subspace O = [0, 1]

bearing in mind that (1, e%) =1,,, (1, €5) = tm, (Qn, €) = tm, (§,€) =ryand (£, el) =
rm. That is
ty 1= 1 (EAntn + iv,’;(A,,rn)um — rm) . (12)
6 O
Thus, the expansion vector t,, is computed through the resolution of a linear system
of equations of moderate size n (11) to obtain #,, followed by a matrix-vector prod-
uct and a prolongation, according to (12). Algorithm 2 is very similar to the standard
Jacobi-Davidson method [15], see Algorithm 3. The main difference is the computa-
tion of the correction equation (penultimate line in both algorithms). In both cases,
an iterative linear solver is applied, the generic Jacobi-Davidson operating on a large
matrix (A,,) whereas our approach computes the correction more cheaply (on A,,). The
correspondence of the two algorithms makes it possible to incorporate advanced fea-
tures in RRDC as well, such as restarting (to keep the size of the search subspace
limited), locking (to search for further eigenpairs once the first one is converged) and
harmonic extraction (to enhance approximations in the case of interior eigenvalues).

Algorithm 3: Jacobi-Davidson method
initialize the basis Q = [u] with ||u|], =1
fork=0,1,2,...
[Extraction stage:]
compute the projected matrix G = QT A,,Q
compute the most wanted eigenvalue p; and eigenvector z; of G
compute the Ritz vector u,,, = Qz;
[Subspace expansion stage:]
compute the residual r,, = A, u;,; — Wikt
solve approximately (I — uy1ch,) (A — Wl) (I — umtly) tm = —Tm, B Lty
orthonormalize #,,, against the basis Q and expand the search subspace O = [0, #,]

It is also possible to relate Algorithm 1 to standard methods for eigenvalue prob-

lems such as the Rayleigh quotient iteration (RQI). In [14] it is shown that inexact RQI
is equivalent, under some conditions, to the Newton-Grassmann method. This latter
method can be seen as a single-vector version of Jacobi-Davidson, that is, the current
eigenvector approximation uﬁ,]f Vis replaced by u,(,f) +tm, where t,,, is computed with the
same correction equation as in Algorithm 3. This approach avoids the problem of iter-
atively solving a nearly singular linear system in RQI. Algorithm 1 does this as well,
but removing the singularity in the smaller space. Despite the viability of extending
Algorithm 1 for computing invariant subspaces, in a similar way as has been done for
RQI [1], this is beyond the scope of this paper.

As for the convergence of these methods, we prove (in [8]) the following theorem
in the context of functional analysis, for multiple or clustered eigenvalues of 7. This
theorem guarantees the convergence of an operator counterpart of Algorithm 1.

Theorem 1 Let (T,,), be a sequence of compact integral operators V—convergent to
T (v—convergence: ||T,| is bounded, ||(T, — T)T||) — 0 and ||(T, — T)T,||) — 0), as
in the case of Kantorovich approximations. For a fixed integer { (the number of power
iterations), for all k (the number of iterative refinement steps) and for n large enough,
there exist constants & and [independent of n, such that,

ot~ oll < all (T — T)T | BI(T, —)T - a3

This result is an extension of the one stated in [2, p. 144] where only a single power
iteration is used. The proof in [8] is, however, more difficult and not straightforward,
due to the interlacing of the ¢ power iterations with the defect correction iterative pro-
cess. As part of the proof we show that [u/)| >16/2| for j=1,...,¢, which guarantees
that the method has no breakdown.

For Algorithm 2, RRDC method, a proof is not yet developed, but a defect correc-
tion outer iteration is still used, completed with a richer search subspace (instead of a
single vector, compared with MPDC). Hence we can expect that its proof would fol-
low the previous ones. The RRDC method exploits the complete subspace constructed
so far, while MPDC only takes a simple linear combination of the last eigenvector
approximation yf,f) and the computed correction #,,. The computed eigenvalue approxi-
mations are different in both methods, so the correction t,, in RRDC is not the same as
in MPDC. However, we expect a convergence behaviour similar to Jacobi-Davidson,
since the Rayleigh-Ritz procedure is able to extract the best eigenvector approximation
available in the current subspace, which is not worse than in the case of MPDC.

3 Implementation Details

In this section, we provide details on how the defect correction algorithms described in
section 2 have been implemented, making use of the PETSc and SLEPc libraries.

3.1 The PETSc/SLEPc Framework

PETSc, the Portable Extensible Toolkit for Scientific Computation [6], is a software
framework for the parallel solution of numerical problems. Its design follows an object-

oriented approach in order to be able to manage the complexity of numerical methods
for very large and sparse problems on parallel computers. It is designed to provide
enough flexibility to make software reuse feasible in many different contexts, but also
with other goals in mind such as numerical robustness, computational efficiency, porta-
bility to different computing platforms, interoperability with other software, etc.

For solving linear systems of equations, PETSc provides a variety of iterative meth-
ods such as GMRES, that can be combined with different preconditioners such as Ja-
cobi or block Jacobi [13]. PETSc allows the use of external libraries that are seam-
lessly integrated in the framework, thus complementing the offered functionalities. An
example of such libraries is Hypre [9], which provides different preconditioners such
as the algebraic multigrid preconditioner (AMG) [10] and a parallel incomplete LU
with thresholding (PILUT).

SLEPc, the Scalable Library for Eigenvalue Problem Computations [11, 12], is a
software library for the solution of large, sparse eigenvalue problems on parallel com-
puters. It can be used for the solution of eigenproblems formulated in either standard
or generalized form (Ax = Ax or Ax = ABx), both Hermitian and non-Hermitian, with
either real or complex arithmetic, as well as other related problems such as the singular
value decomposition.

SLEPc is built on top of PETSc, and extends it with all the functionalities necessary
for the solution of eigenvalue problems. It provides uniform and efficient access to a
growing number of eigensolvers. Most of these solvers belong to the class of projection
methods, see [5], either Krylov methods or Davidson methods. In particular, SLEPc
implements several variants of the Arnoldi method, including the Krylov-Schur method
[17] that incorporates a very efficient restarting mechanism. An implementation of the
Jacobi-Davidson eigensolver [15] is also available. The user is able to easily switch
among different eigensolvers by simply specifying the method at run time. Apart from
the eigensolver, many other options can be specified such as the number of eigenvalues
to compute, the requested tolerance, or the portion of the spectrum of interest.

When implementing the proposed algorithms with PETSc and SLEPc, we can dis-
tinguish the following types of operations:

e Computation of initial approximations, that is, vectors u,, and v, satisfying equa-
tions (6). This is done by computing eigenvalues and the corresponding right and
left eigenvectors of matrix A,. This computation is carried out only once with
SLEPc, for instance with the Krylov-Schur eigensolver.

e Solution of linear systems of the form (11). This is carried out with PETSc.

e Matrix-vector multiplications. On one hand, it will be necessary to compute
matrix-vector products with matrices A, and A,,. On the other hand, restriction
and prolongation from one grid to the other can also be performed by matrix-
vector products with matrices R and E, or by direct algebraic implementation
with simple MatmulR and MatmulE routines. In PETSc, all these matrices are
represented as sparse matrices, and the MatMult operation can be invoked for
carrying out the matrix-vector product in parallel.

e Vector operations, including inner product, norm, addition and scaling, will be

performed with the VecNorm, VecAXPY and VecScale routines from PETSc,
respectively.

3.2 Computation of Initial Approximations

In our implementation, the user is able to select, at run time, the number of eigenpairs
to refine, nv. At the beginning, nv eigenvalues of matrix A,, and the corresponding
left and right eigenvectors, are computed with SLEPc. The method used, the requested
precision, and other parameters such as the maximum subspace dimension, can also be
set by the user. Among the available methods, Krylov-Schur was the best compromise
between performance and robustness.

The Krylov-Schur method [17] is a Krylov projection eigensolver for non-Hermitian
matrices, that incorporates an effective restarting mechanism. It uses the Arnoldi iter-
ation for building an orthonormal basis of the k-dimensional Krylov subspace defined
by the matrix, A,, and a given initial vector. This mechanism is based on two stages.
First, the space of approximants is reduced to a smaller dimension, taking care that the
relevant spectral information is retained (the wanted eigenvalues). Then, the space is
extended again to dimension k. This mechanism is equivalent to implicit restart [16],
but it is simpler to implement because it is not necessary to keep a Hessenberg form
throughout the computation. Additional details can be found in [17].

3.3 Defect-Correction Stage

We will now proceed to discuss how to solve system (11), that is,

(An_ enl)tn =7, (14)
with § = Rr,, — v} Rri,u, and t, satisfying
vity = 0. (15)

This system could be solved by an LU decomposition with partial pivoting, which
would safely compute a solution vector #, enforcing the constraint.

An alternative for solving Eq. (14) is to use an iterative solver. We first consider
unpreconditioned GMRES. Recall that without a preconditioner, after k steps GMRES
computes an approximate solution t,(,k) as t,(,k)

that the initial guess z,$°>

= tf,o) + Qyz. For simplicity, we assume
is zero, thus

i) = 0z, (16)

where Oy is an orthogonal basis of a certain Krylov subspace, and the components of z

are the coordinates of t,(,k) with respect to that basis. In our case, the Krylov subspace is

Hi(Ay — 6,1,7) = span {r<°>, (An— 6,170, (A — 6,1)F! r<0>} Can

with the initial residual being r0 = 3. In order to get a solution vector that satisfies the
constraint, Eq. (15), we must have

k)

S~

tn = (I —upvy)Okz, (18)

and this can be achieved by applying the projector I —u, v}, to all vectors g; subsequently
added to the basis. In our case, 0 already verifies the constraint (15).

An implementation of the above scheme requires a modification of GMRES, in
such a way that (A, — 6,/)g;, the candidate vector to be added to the basis, is pre-
multiplied by I — u,v;;. The new vector is thus computed as (I — u,v};)(A, — 6,1)q;. For
practical reasons, instead of I — u,,v}; we consider the projector I — v, V5, the orthogonal
projector onto Z(v,)*, where ¥, = v,/||v,||. This projector can be implemented very
easily in PETSc and it also guarantees Eq. (15).

It remains to analyze what happens when preconditioning is used. In the case of
GMRES preconditioned on the left, the analogue of Eq. (14) is

MY (A, — 8,11, =M, (19)

where M is a certain approximation of A, — 6,/. If at the beginning of the method the
initial residual is preconditioned and then projected with I — u, v, and the new basis
vectors are computed by GMRES as (I — u,v;)M~' (A, — 6,1)q,, then we end up with
an approximate solution

i = (1= uv?) Oz, (20)

where now the basis Oy corresponds to the preconditioned Krylov subspace .#; (M~Y(A,—
6,1),M ")), This solution will satisfy the constraint (15) as well.

From a more practical perspective, the implementation in PETSc has been done
as follows. A linear solver object (KSP) is created outside the defect-correction loop.
This is possible because the coefficient matrix of the linear system, A, — 6,1, is con-
stant throughout the computation. Therefore, the solver object is created and set-up
only once, and this is very important because some parts of this preparation can be
computationally very expensive, for instance the construction of an incomplete LU
preconditioner. Once the solver object is prepared, the function KSPSetNullSpace is
invoked in order to set vector 7, as the one that will constitute the projector used in all
linear system solves, as discussed above.

As mentioned at the beginning of this section, PETSc provides many iterative lin-
ear solvers. We have used GMRES, although other solvers could have been used as
well. Regarding the preconditioners, algebraic multigrid (AMG) showed a very good
behaviour in this application, but others can be considered also (see section 4 for a com-
parison in terms of performance). A final comment in relation to the solution of the
linear systems is that we have requested a similar accuracy (tolerance) to both the linear
solver and the outer defect correction iteration. A more relaxed tolerance is possible
for the linear solver, but in that case the overall computation is less robust.

All parameters concerning the solution of linear systems, such as tolerances or
preconditioners to be used, can be specified by the user in the command line.

3.4 Matrix Permutations

When developing parallel codes for distributed memory computer architectures, it is
important to distribute the data among processors in such a way that computational
work is equally balanced while communications are reduced as much as possible. For

10

our implementation, we use PETSc’s convention of distributing both matrices and vec-
tors in a block row-wise scheme, that is, each processor owns a contiguous sequence
of rows. In this subsection, we analyze the possibility of reducing the application’s
communications by a suitable permutation of the matrices.

We propose an algorithm to explore the relation between the patterns of the small
and large matrices. For simplicity of exposition, it is assumed that m is a multiple of
n. Then, we can view the fine computational grid as the result of interleaving m/n
shifted copies of the coarse grid. If we permute the rows and columns of A,, in such
a way that the indices of an embedded coarse grid are made consecutive, additionally
consider the parallel distribution of the small matrix A,, and renumber the unknowns
so that the local pieces of all the copies corresponding to the same processor are placed
contiguously, a block structured pattern results.

We have implemented the possibility of performing this permutation in both meth-
ods. If this option is selected, then the program works with matrices A,,(p, p), R(:, p),
and E(p,:), where we have used the colon notation in the Matlab sense. The permuta-
tion vector p is computed as p = perm(i,n,m,nloc) with Algorithm 4, where i is the
index corresponding to the natural ordering, n and m are the dimensions of the matrices
involved, and nloc is the number of rows of A, locally owned by each processor.

Algorithm 4: p = perm(i,n,m,nloc)

ratio="; pos = floor(._=) +rem(i,ratio) xn

ii = pos—floor(f’%) *n

p =ii+[floor(—i=)* (ratio— 1) + floor(£22)] x nloc

nloc

4 Numerical Results and Performance Analysis

For the numerical tests we consider an integral formulation of a radiative transfer prob-
lem in stellar atmospheres with integral operator

*

(T(p)(‘t'):%/r Ei([t—7)e(t)dt, 0<t<1, 21
Jo

defined on 2~ = L' ([0,7*]), where t* is the optical depth of the stellar atmosphere,
@ € 10,1 is the albedo and E is the first exponential integral function

o -7

Ei(7) :/ eXp(u“)du, T>0. (22)
1

This problem has a logarithmic singularity at T = 0 (a detailed description of this

problem can be found in [3]). Piecewise constant functions for e, were considered:

en,j(t) = 1if T €]7, 1, 7s,,[and O otherwise, determined by a grid of n+ 1 points

(not necessarily uniform): 0 = 7,0 < 7,1 < ... < Ty, = T*. With this choice of basis,

11

N

N\

Figure 1: Original sparsity pattern of matrix A,, (left) and pattern resulting from the
interleave permutation (right).

which is intended to absorb the singularity of the kernel, we have (e, j,e;, ;) = 6; ; and

T, j
()= — / x(t)dt, xe .
h Tn,j — Tn,j—1
Tn,j—1
For this example, the entries of matrix A, can be obtained by analytical integration (see
(3, 4D),
L 0) Tn,i ™ / / /
Anlis) = (Tenjser) = 5 / Ei(jT—7|)en(F)dTdr, (23)
n,i J Ty i1 /0
where hn,i = Tn,i — Tn,i—1>» i= 17 Lo, n.

In our tests, we have always used a tolerance of 10~!! for the refinement of eigen-
pairs, to show the performance of the methods, and consider a constant albedo of
o =0.75.

We begin by illustrating the impact of the use of the permutation of Algorithm 4
on the sparsity pattern of matrix A,,, see Figure 1 (left) (the pattern of A, is similar).
Figure 1 (right) shows the first permutation done by the algorithm, where one can easily
see m/n copies of the sparse pattern of A,, repeated both horizontally and vertically.
Of course, the resulting pattern is not yet appropriate for parallel computation with the
straightforward decomposition by blocks of rows. Finally, Figure 2 illustrates the final
result produced by the algorithm for the case of 4 and 8 processors, where a block
tridiagonal structure is obtained.

Before analyzing the behaviour and performance of both methods we will consider
the generation of the matrices A,,, A,, R and E. These computations are embarrass-
ingly parallel. The first two matrices are computed, for the example to be treated, by
formula (23) (for the finer grid just replace n by m). One could also have used other
discretization methods for integral operators that compute these matrices by numeri-
cal quadrature formulae, or, for other examples the formulae for the elements of A,,
and A, may be simpler. Here, these computations are very time consuming, partic-
ularly in the case of A,,. The other two, and for the basis choice made, are simply
E(k,j)=1if k € [(j—1)m/n+1, jm/n] and 0 otherwise and R(i,k) = hy, /hn; if
ke [(i—1)m/n+1,im/n] and 0 otherwise. More details can be found in [3, 4].

12

77774
7

Y 4 A AN

Figure 2: Sparsity pattern of matrix A,, after permutation with 4 processors (left) and
8 processors (right).

In order to optimize the generation of these matrices, our implementation makes
use of a small cache to store the most recently computed exponential-integral evalu-
ations. In this way, the computation of some entries of A, and A,, can reuse values
stored in the cache, thus reducing the computational cost significantly. It is difficult
to determine a priori which integral values were already computed, but, nevertheless,
there is a locality effect that makes reuse more likely in close matrix elements. In our
experience, a percentage of 25% cache hits is obtained in a typical run. In spite of
this optimization, matrix generation is still very expensive computationally, with times
of about two orders of magnitude larger than the computational times taken by the
eigensolution stage.

In the following, we are mainly concerned with the time required by the differ-
ent methods to compute one eigenpair, with a subspace dimension equal to 32 (when
applicable).

The machine used for the parallel computations was the Odin cluster, located at
Universitat Politecnica de Valencia. It consists of 50 dual-processor nodes, with 2.8
GHz Pentium Xeon processors and 1 GB of memory per node. The nodes are intercon-
nected with a high-speed SCI network with 2-D torus topology. Only one processor
per node was used in the tests. The software configuration includes PETSc 3.1, SLEPc
3.1, and Hypre 2.6.0b.

Our first tests aimed at determining whether the matrix permutation described in
subsection 3.4 achieves a performance gain or not with respect to the computation with
the original ordering. The conclusion is that for this application it seems to be no
significant benefit in using the permutation. The reason for this is that original pattern
of the matrices is already narrowly banded. However, this preprocessing phase may be
more beneficial when this code is applied to other integral operators.

Figure 3 shows a comparison of the time spent in the refinement stage of both the
RRDC method and MPDC with £ =1 and ¢ = 10, together with the corresponding par-
allel speedup achieved, for a non-symmetric problem of order m = 64000 with initial
approximations obtained from problem size n = 6400. It is clear from the time plot that
RRDC is better in terms of response time (almost an order of magnitude with respect
to MPDC), although it scales a bit worse. In the MPDC method we can appreciate
the impact of the ¢ parameter: a few inner power iterations are beneficial to accelerate

13

S — % RRDC ' ' '
MPDRCRID:? - MPDC (=1 —==-
100 Fao MPDC (=10 ---- | MPDC (=10 - - - -

Speedup

o

Execution time (s)

1 2 4 8 16 32 1 2 4 8 16 32
Number of processors Number of processors

Figure 3: Execution time (left) and speedup (right) for the refinement step for m =
64000, 7 = 6400 on up to 32 processors for RRDC and MPDC (with £ = 1 and ¢ = 10).
The speedup is referred to time per iteration.

convergence with a moderate added cost. Larger values for ¢ are possible, but there is a
trade-off that depends on the application. At some point one can expect a degradation
in the MPDC method: the cost becomes expensive without any further improvement.
In terms of parallel speedup (right plot), performing some power iterations is benefi-
cial from the parallel point of view because these iterations have less communication
overhead compared to the rest of the algorithm. An additional comment is that in all
cases the speedup for 32 processors is clearly decaying, since the problem size is not
large enough.

Now we want to compare the proposed approach with state-of-the-art methods that
operate only on the larger problem size (m = 64000 in this case), to demonstrate that
exploiting the reduced size approximations is really competitive. For this comparison,
it is necessary to take into consideration also the time required to compute the initial ap-
proximations (left and right eigenvectors of A,), apart from the refinement iterations. In
our case, we compute the eigentriples of A,, with inexact shift-and-invert Krylov-Schur,
that is, Krylov-Schur on matrix (A —@/)~! where the inverse is handled implicitly with
an iterative linear solver (GMRES with AMG preconditioning, see below for a discus-
sion on preconditioners). The cost of the initial approximations is directly related to
the value of #, that is, the dimension of A,. A good initial approximation (with larger
n) will result in less computational effort for the MPDC and RRDC methods, yet at
a higher initial cost. On the other hand, a cheap coarse initial approximation implies
a greater effort for the iterative refinement to achieve the required precision. Along
with the understanding of this trade-off;, it is also interesting to investigate whether the
behavior on one processor persists or not when using several processing elements.

Figure 4 shows the total execution time of RRDC (including the initial approxi-
mations) as well as Jacobi-Davidson and shift-and-invert Krylov-Schur on the large

14

RRDé _—
N Jacobi-Davidson ==—=—-
~o Krylov-Schur = - - -

Execution time (s)

1 2 4 8 16 32
Number of processors

Figure 4: Total execution time for m = 64000 and n = 6400 on up to 32 processors for
RRDC compared to Jacobi-Davidson and Krylov-Schur.

problem (m = 64000). From the figure, two conclusions can be drawn. First, the
RRDC method is much faster, thus confirming our hypothesis that solving the correc-
tion equation in the smaller space is competitive. We have to point out that in these tests
the tolerance used for the Jacobi-Davidson correction equation (solved with GMRES)
can be relaxed to 103 without compromising robustness, whereas for the refinement
in RRDC it is necessary to use a tolerance of 10712, Nevertheless, RRDC is still faster.
Second, in terms of parallel speedup, the behaviour of RRDC is worse than the meth-
ods that operate exclusively on the larger space. This can be attributed to the loss of
efficiency in the smaller space (where most of the computations are done in RRDC),
since n = 6400 is too small for such large number of processors. A more detailed
scalability analysis is included at the end of this section.

The results mentioned in the previous paragraph correspond to the computation of
just one eigenpair. The situation changes when more eigenpairs are required, being
more favorable for Krylov methods since they improve several approximations simul-
taneously whereas Davidson methods improve one at a time. For instance, the com-
putation of three eigenpairs with shift-and-invert Krylov-Schur takes about the same
time as one (243 seconds), but Jacobi-Davidson will require approximately three times
more. We do not report times for this setting because our implementation of RRDC
does not include locking, which is required for computing several eigenvalues, but we
anticipate a behaviour similar to Jacobi-Davidson. Regarding MPDC, it takes 364 sec-
onds with one processor (about 99, 120, and 145 seconds for the first, second and third
eigenvalue, respectively), so it is slower than Krylov-Schur. However, we must mention
that the refinement of each eigenvalue is totally independent, and therefore their com-
putation can be trivially distributed to different processes, or in a multi-communicator
scheme (two-level parallelism). In this case, the required time would be the maximum

15

élock Jacok;i
PILUT

AMG - - - -

Execution time (s)

1 1 1 1 1
1 2 4 8 16 32
Number of processors

Figure 5: Execution time for m = 64000 and n = 6400 on up to 32 processors for
several preconditioners to accelerate GMRES. The method used is MPDC with £ = 10.

of the three (145 seconds).

Several preconditioners were tested for the solution of Eq. (11) to accelerate GM-
RES: Jacobi, block Jacobi, PILUT, and AMG, see Figure 5. From the tested precon-
ditioners, all except Jacobi perform well. For increasing number of processors, both
PILUT and AMG show a steady decrease in computing time. Thus, their speedup
seems to be very good, at least up to 32 processors. In the case of block Jacobi, the
number of iterations required by the linear solver grows with the number of processors,
as expected since the effectiveness of this preconditioner decays with an increase in the
number of subdomains. Therefore, speedup stagnates starting after 8 processors. Both
PILUT and AMG have a very good performance, and PILUT is slightly faster in this
application. Jacobi is not shown in the plot due to excessively long computation times.
Some of the above mentioned preconditioners have a high set-up cost, but one should
notice that the computation of the preconditioner matrix is carried out only once, at the
beginning of the Defect-Correction iteration.

In order to better assess the scalability of the proposed methods, we need to use
a larger problem size. At the same time, we are going to analyze the impact of the
ratio between the large (/m) and small (n) dimensions. Figure 6 shows the times to
compute a refined solution for a symmetric problem of dimension m = 204800, from
initial approximations obtained for several values of n. Times include the computa-
tion of initial approximations and the refinement iterations. In the case of MPDC (left
plot) we can see that the smaller the ratio the better the performance, and this indi-
cates that MPDC has more difficulties when refining eigenvalues from coarse initial
approximations. Nevertheless, the scalability is good up to 32 processors. In contrast,
the RRDC method (right plot) seems to be more robust with respect to variations of
the ratio m/n. With a small number of processors, an intermediate value of the ratio is

16

' n= 40966 _— n= 40966 _—

n=20480 ——-- n=20480 ——--
[n=10240 ---- | L n=10240 ---- |
100 pre N=5120 sereeeer 100 N=5120 -weeeee
3 3
£ E
< c
2 S
5 5
& 10 & 10
> X
w w
1 1 1 1 1 1
1 2 4 8 16 32
Number of processors Number of processors

Figure 6: Total execution time for m = 204800 and for several values of 7 on up to 32
processors, for MPDC (left) and RRDC (right). The value of £ is 10 in this case.

best. But, as discussed previously, for large number of processors it is worthwhile to
set a sufficiently large value of n. Overall, MPDC scales better than RRDC.

5 Conclusions

With this work we provide two parallel codes for the computation of eigenpairs of inte-
gral operators. They are based on the defect correction principle and were implemented
on top of the software libraries PETSc and SLEPc. A brief description of the methods
to introduce the implementation details was presented. Several numerical tests were
done, using an astrophysics application as test problem, which requires the solution of
large dimensional eigenproblems.

Both the Multipower Defect-Correction and the Rayleigh-Ritz Defect-Correction
methods are able to refine eigenpairs from initial rough approximations. The fact that
they start with small dimensional eigenproblems is certainly an important feature when
approximations for large dimensional problems or for fine discretizations are required.
The methods are well suited and effective for the computation of a small set of eigen-
values. Although these methods are not general-purpose such as Jacobi-Davidson or
Krylov-Schur, they can be very effective for computing eigenvalues of integral oper-
ators. It is also worth mentioning that the proposed methods can be used to compute
eigenvalues in any part of the spectrum, not only in the rightmost extreme.

From the tests performed with the parallel implementation of both methods, we
can conclude that they showed good behavior on a distributed-memory parallel envi-
ronment. The methods showed good scalability and robustness. The test problem used
is numerically more difficult to solve as the problem size grows, since the eigenval-
ues tend to be closer to each other, that is why Krylov methods need to be used in
combination with a shift-and-invert technique to achieve convergence.

17

The subspace variant, RRDC, could be enriched with standard techniques that have
been well studied in iterative eigensolvers, such as restarting mechanisms, or harmonic
extraction.

Acknowledgements

We thank the two anonymous referees for their valuable comments and suggestions,
which greatly helped us improve this document.

References

[1] Absil PA, Mahony R, Sepulchre R, Dooren PV (2002) A Grassmann-Rayleigh
quotient iteration for computing invariant subspaces. SIAM Review 44(1):57-73

[2] Ahues M, Largillier A, Limaye BV (2001) Spectral Computations with Bounded
Operators. Chapman and Hall, Boca Raton, USA

[3] Ahues M, d’Almeida FD, Largillier A, Titaud O, Vasconcelos P (2002) An L!
refined projection approximate solution of the radiation transfer equation in stellar
atmospheres. Journal of Computational and Applied Mathematics 140(1-2):13—
26

[4] Ahues M, d’Almeida FD, Largillier A, Vasconcelos PB (2006) Defect correction
for spectral computations for a singular integral operator. Communications on
Pure and Applied Analysis 5(2):241-250

[5] Bai Z, Demmel J, Dongarra J, Ruhe A, van der Vorst H (eds) (2000) Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA

[6] Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley M,
MclInnes LC, Smith BF, Zhang H (2010) PETSc users manual. Tech. Rep. ANL-
95/11 - Revision 3.1, Argonne National Laboratory

[7] Chatelin F (2011) Spectral Approximation of Linear Operators. SIAM, Philadel-
phia

[8] d’Almeida FD, Vasconcelos PB (2012) Convergence of multipower defect cor-
rection for spectral computations of integral operators. Applied Mathematics and
Computation (http://dxdoiorg/101016/jamc201208001)

[9] Falgout RD, Yang UM (2002) Hypre: A library of high performance precondi-
tioners. In: Sloot PMA, Tan CJK, Dongarra J, Hoekstra AG (eds) Computational
Science - ICCS 2002, International Conference, Amsterdam, The Netherlands,
April 21-24, 2002. Proceedings, Part III, Springer, Lecture Notes in Computer
Science, vol 2331, pp 632-641

18

[10] Henson VE, Yang UM (2002) BoomerAMG: A parallel algebraic multigrid solver
and preconditioner. Applied Numerical Mathematics: Transactions of IMACS
41(1):155-177

[11] Hernandez V, Roman JE, Vidal V (2005) SLEPc: A scalable and flexible toolkit
for the solution of eigenvalue problems. ACM Transactions on Mathematical
Software 31(3):351-362

[12] Hernandez V, Roman JE, Tomas A, Vidal V (2010) SLEPc users manual. Tech.
Rep. DSIC-11/24/02 - Revision 3.1, D. Sistemes Informatics i Computacid, Uni-
versitat Politeécnica de Valéncia

[13] Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for
Industrial and Applied Mathematics, Philadelphia, PA

[14] Simoncini V, Eldén L (2002) Inexact Rayleigh quotient-type methods for eigen-
value computations. BIT Numerical Mathematics 42(1):159-182

[15] Sleijpen GLG, van der Vorst HA (2000) A Jacobi-Davidson iteration method for
linear eigenvalue problems. SIAM Review 42(2):267-293

[16] Sorensen DC (1992) Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM Journal on Matrix Analysis and Applications 13:357-385

[17] Stewart GW (2001) A Krylov—Schur algorithm for large eigenproblems. SIAM
Journal on Matrix Analysis and Applications 23(3):601-614

19

