

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/article/10.1007/s10270-013-0371-3

http://hdl.handle.net/10251/40223

Springer Verlag (Germany)

Serral Asensio, E.; Valderas Aranda, PJ.; Pelechano Ferragud, V. (2013). Addressing the
evolution of automated user behaviour patterns by runtime model interpretation. Software
and Systems Modeling. doi:10.1007/s10270-013-0371-3.

Addressing the Evolution of Automated User Behaviour

Patterns by Runtime Model Interpretation

Estefanía Serral, Pedro Valderas, Vicente Pelechano

Centro de Investigación en Métodos de Producción de Software (ProS)

Universidad Politécnica de Valencia

C/ Camí de Vera S/N, Valencia, 46022, Spain

{eserral, pvalderas, pele}@dsic.upv.es

ABSTRACT

The use of high-level abstraction models not only can facilitate and improve system

development but also runtime system evolution. This is the idea of this work, in which

behavioural models created at design time are also used at runtime to evolve system behaviour.

These behavioural models describe the routine tasks that users want to be automated by the

system. However, users' needs may change after system deployment, and the routine tasks

automated by the system must evolve to adapt to these changes. To facilitate this evolution, the

automation of the specified routine tasks is achieved by directly interpreting the models at

runtime. This turns models into the primary means to understand and interact with the system

behaviour associated to the routine tasks as well as to execute and modify it. Thus, we provide

tools to allow the adaptation of this behaviour by modifying the models at runtime. This means

that the system behaviour evolution is performed by using high-level abstractions and avoiding

the costs and risks associated to shutting down and restarting the system.

Keywords: System behaviour evolution, routine task automation, models at runtime, runtime

interpretation of models.

1. Introduction

The defining characteristic of Model Driven Development (MDD) is that software

development’s primary focus is models rather than computer programs. Traditionally, the key

premise behind MDD has been the use of these models during development activities to

improve software development, or even to systematically generate a concrete implementation of

the modelled software system. However, the need for fast runtime adaptation required for newer

generations of software systems has led a growing number of MDD researchers to also explore

the use of models at runtime. Models can provide a richer semantic base than the system code

for runtime decision-making. Thus, the idea is to use models at runtime to represent the part of

the system that should be dynamically evolved during system execution.

In this work, we propose the use of models at runtime to evolve the behaviour of Ambient

Intelligence (AmI) systems. AmI is a computer paradigm that tries to make real the vision of

Mark Weiser [1] where environments are electronically enriched to make them sensitive to user

needs. One of the most important goals of building such environments is to serve people in their

everyday lives and free them to a large extent from tedious routine tasks. To achieve these

goals, AmI systems must automate these routine tasks when needed. Routine tasks, which are

also known as user behaviour patterns, are characterized by habitual repetition in similar

contexts. Some examples of user behaviour patterns are reactions to things happening around

us, such as closing windows and lowering every blind when it starts to rain; others are

determined by our lifestyle, such as reading electronic mail and opening certain web pages as

soon as we have access to internet; others are determined by our timetable, such as getting up at

8:00 a.m., having a shower, having breakfast and going to work; etc.

Note that many of these behaviour patterns can be known at design time. Thus, we proposed in

[2] a context model and a context-adaptive task model in order to describe them at a high level

of abstraction. Some of these behaviour patterns might never change in a user’s lifetime;

however, most of them will. Users’ context and circumstances usually change over time and

behaviour patterns must evolve to adapt to these changes. Although the proposed models

specify the patterns to be automated in such a way that their execution adapts to context,

changes in the user behaviour patterns cannot be anticipated at design time; therefore, the

evolution of user behaviour pattern is an aspect that must be considered in order to properly

automate them.

Considering the environments where AmI systems are deployed (e.g. homes, hospitals,

educational centres, etc.), this evolution should be done in a non-traumatic way for users, i.e.,

without requiring stopping the system to reinstall it. In this work, we face this problem by

reusing the proposed models at runtime. We developed a Model-based behaviour pattern

Automation Engine (MAtE) [2] that is in charge of automating the behaviour patterns by

directly interpreting the models. MAtE uses a context monitor for detecting changes in the

system context. Thus, when context changes, MAtE interprets the models at runtime and

executes the functionality required to support the user behaviour patterns. Note that this strategy

turns models into the only representation of user behaviour patterns. Therefore, if models are

evolved at runtime, MAtE immediately reinterprets them making the system behaviour evolve

automatically. This is the premise in which the evolution proposed in this paper is based:

The evolution of the system behaviour is achieved by updating the models at runtime.

In the particular case of this work, we focus on evolving the system behaviour that is in charge

of automating user behaviour patterns. This is achieved by confronting two of the most

important challenges identified in software evolution:

1) Supporting evolution at high levels of abstraction (e.g. design models) [3–5].

2) Supporting post-deployment runtime evolution [6], [7].

It is worth noting that evolution can be handled either automatically by the system itself (it is

the system who detects changes in user behaviour and who adapts the automated behaviour

patterns to those changes), or manually by humans (the automated behaviour patterns are

evolved by humans after analysing the new automation requirements). In this work, we focus on

the last possibility due to the fact that an automatic evolution of behaviour patterns in AmI

systems may be very intrusive if there is a mismatch between end-users’ expectations and

system behaviour. Therefore, we present two tools for facilitating the manual evolution of the

system: 1) a tool for designers, which allows them to analyse and evolve the patterns by

graphically modifying the models; 2) a tool for end-users, which allows them to evolve the

automated behaviour patterns by using intuitive graphical interfaces that guide the end-users

step by step.

To sum up, the contributions of this paper are the following:

 A novel approach that makes it easier the evolution of the user behaviour patterns that

are automated by an AmI system. To achieve this, patterns are automated by

interpreting behavioural models at runtime.

 Mechanisms and tools for allowing the runtime evolution of the automated behaviour

patterns at a high level of abstraction.

The remainder of the paper is organized as follows. Section 2 introduces the AmI system

concept and motivates and characterizes the evolution that we confront in this work. Section 3

presents an overview of our approach. Section 4 introduces the proposed models for specifying

behaviour patterns. Section 5 explains how the models are used at runtime to automate the

specified behaviour patterns. Section 6 describes the provided high level mechanisms for

evolving the automated behaviour patterns at runtime. Section 7 presents the tools developed for

allowing the AmI system behaviour to be evolved at a high level of abstraction after

deployment. Section 8 evaluates the presented approach. Section 9 discusses the related work.

Section 10 presents the most important benefits of the proposal. Finally, Section 11 explains the

conclusions and the further work.

2. Motivation: Evolution of User Behaviour Patterns

AmI systems are focused on providing smart environments to users. According to Weiser [1], a

smart environment is a “physical world that is richly and invisibly interwoven with sensors,

actuators, displays, and computational elements, embedded seamlessly in the everyday objects

of our lives, and connected through a continuous network". In this context, several terms are

used in the published literature for talking about similar concepts. The main differences depend

on the context of use: Academy vs Industry and USA vs Europe. While researchers in the

United States were working on the vision of ubiquitous computing, the industry, leaded by IBM,

coined the term pervasive computing. At the same time, the European Union began promoting a

similar vision for its research and development agenda through the notion of Ambient

Intelligence. Although subtle differentiations could be done between these terms according to

their etymological meanings (neither ubiquitous implies intelligence, nor intelligence implies

pervasiveness, etc.), we can state, in general terms, that the main idea or vision behind them is

the same. Thus, in this work are considered equivalent concepts.

In a nutshell, AmI systems’ main goal is to control devices in order to provide users with

complex behaviours. To achieve this, an AmI system provides a set of services. There are

services in charge of interacting with devices to provide the environment with an active

behaviour (such as those to turn lights on, raise blinds, play a movie on a television, or activate

an alarm); and there are other services in charge of interacting with devices to sense the

environment state (such as those to get the light intensity, to detect people’s presence, or to

obtain climatological information).

It is important to note that in AmI, services are not considered in an isolated manner, but in

conjunction with the rest of services provided to control the existing devices. In our approach, a

behaviour pattern can be seen as a specific coordination of these services that starts when

specific conditions are fulfilled in order to provide the user with an automated behaviour. Thus,

each user behaviour pattern that must be supported by the system is designed as a coordination

of services’ execution. Figure 1 represents this notion in a graphical way.

Figure 1 AmI system architecture

As a motivation example, we present a set of AmI services that are in charge of interacting with

different objects of a Smart Home. In order to better understand them, we avoid presenting

technology implementations and show the services from a conceptual point of view, by means

of a UML class diagram, as shown in Figure 2. In this example, we consider pervasive services

as classes with operations that allow interaction with the physical environment. Note, however,

that other strategies such as considering them as web services or distributed components could

be used.

Figure 2 Example of pervasive services

The service operations presented in Figure 2 allow us to individually interact with different

objects, for instance: we can turn the radio on and off; switch the light of the bedroom on and

off; or know if a person has been detected in the kitchen. However, theses service operations

must be executed in a coordinated way in order to support user behaviour patterns.

Figure 3 shows an example of a pseudo-code representation of the execution of a behaviour

pattern that supports the waking up of a user. As shown, at 7:50 a.m. on a working day, the

system switches on the bathroom heating; ten minutes later, when the user must get up, the

system turns the radio on; then, if it is a sunny day, the system raises the bedroom blinds;

otherwise, the system switches on the bedroom light; afterwards, when the user enters the

kitchen, the system makes a coffee.

when Calendar.getCurrentTime()==7:50 and Calendar.isWorkingDay():

 if BathroomHeating.getTemperature()<28 then

 BathroomHeating.turnOn();

 wait(10);

 Multimedia.turnTheRadioOn();

 if WeatherStation.isSunny() then

 BedroomBlindController.raise();

 else BedroomLighting.switchOn();

 when KitchenPresentDetector.isaPersonDetected():

 CoffeeMaker.makecoffee();

Figure 3 Example of behaviour pattern in pseudo-code

Let’s suppose now that the user’s preferences change after deployment and s/he prefers orange

juice for breakfast rather than coffee; or users prefer to raise blinds when it is not raining rather

than only on sunny days; or users prefers to apply this behaviour pattern on weekends rather

than on working days. These simple changes require stopping and redeploying the system if ad-

hoc solutions, such as the shown in Figure 3, are used. To avoid this, we require engineering

solutions that allow us to perform this type of post-deployment evolution without stopping the

system.

2.1. Evolution Characterization

In this section, we characterize the evolution supported in this work by following the

taxonomies published in [8][9].

Lientz and Swanson classify software evolution by answering to the question why. They

describe three intentions for software evolution: to perfect the system (perfective), to adapt the

system (adaptive) and to correct the system (corrective). Buckley et al. complete the taxonomy

of Lientz and Swanson by answering the questions: when, where, what, how, and who. The

when dimension characterizes evolution from two main aspects: (1) the phase of the software

life-cycle of which it is performed, which delimitates three types of evolution: at compile-time

(static), at load time, and at run-time (dynamic); and (2) the anticipation of the required

evolution, which delimitates two types of evolution: anticipated, if evolution can be foreseen at

design time; and unanticipated, if evolution needs arise from using the system. The where

dimension characterizes the software artefacts where changes are made (requirements,

architecture, design, source code, documentation or test suites). The what dimension

characterizes evolution from the point of view of the system attributes that may have

conditioned it. These attributes properties can be availability (whether the software system has

to be permanently available or not), activeness (evolution is either reactive if system changes

must be driven by an external agent or proactive if the system is able to self-change by using the

information received from monitors), openness (whether or not the system must allow for

extensions), and safety (whether or not safety aspects must be considered at compile time and/or

at runtime). The how dimension characterizes evolution from the point of view of the degree of

automation and formalism that is introduced in the mechanisms provided to support it. Finally,

although the who dimension does not have a concrete taxonomy due to its great variety, it

delimitates the stakeholders involved in software evolution.

In this work, we propose designing user behaviour patterns in models, and interpreting the

models at runtime. Thus, user behaviour patterns are evolved by evolving the models. Taking

into account the above-introduced dimensions, this evolution is characterized as follows:

 Why: user behaviour patterns need to be evolved to adapt to new users’ needs and

circumstances. Thus, this evolution has to be adaptive.

 When: it is dynamic and unanticipated. It is dynamic because user behaviour patterns

should be evolved at runtime, without stopping the system. It is unanticipated because

the way in which user behaviour patterns must change cannot be foreseen at design

time. These changes can be produced by modifications in users’ habits due to personal

reasons, bad experiences with the system behaviour, unplanned alterations of the

physical environment, and so on.

 Where: the only runtime artefacts that represent user behaviour patterns are the models.

Thus, models are where changes are made to evolve the user behaviour patterns.

 What: AmI systems must be always available in order to evolve user behaviour patterns.

Note that users may need it at any time. In addition, user behaviour patterns should be

evolved in a proactive way. Note that AmI systems can be self-adapted by analysing

user behaviour and predicting a required evolution. However, it is desirable to confirm

the predicted evolution with users before applying it in order to not result intrusive [10].

AmI systems can be considered as open systems because they are developed in such a

way that new services can be plugged-in to support new devices. Finally, user

behaviour evolution must provide behavioural safety in order to avoid a system

behaviour that is not desired by users.

 How: the mechanisms proposed to evolve the system are the models. Models are

formalized by meta-models. Thus, the evolution is driven by the restrictions defined in

the meta-models. In this sense, the mechanisms to perform evolution present a high

degree of formalism. User behaviour patterns must be evolved on demand, when users

require. Thus, evolution is not automated.

 Who: the evolution of the automated behaviour patterns should be driven by developers

and by the end-users themselves. Note that some AmI environments such as hospitals or

educational centres require a flexible evolution that can be done in a non-traumatic way

by the end-users.

3. Approach Overview

In this section, we introduce an overview of how behaviour pattern automations are evolved at

runtime by using our approach.

 First of all, we have to consider that behaviour patterns are described in a task model and a

context model (both presented in the next section). These models are interpreted at runtime by a

Model-based behaviour pattern Automation Engine (MAtE), which executes the corresponding

behaviour patterns according to the current context (see Figure 4). When a context changes (e.g.

a user enters a room), MAtE checks whether there is any pattern that has to be executed. If so,

MAtE retrieves the pattern instance from the models and executes the corresponding pervasive

services as specified in the pattern, taking into account the context conditions defined over

properties of the context model.

Figure 4. Evolution overview

Thus, the evolution of automations can be done by just updating the models. This evolution is

applied next time the modified information is interpreted from the models, resulting in the

evolved system behaviour. For instance, if a new behaviour pattern is added, it is executed the

next time that a context change triggers the execution of the pattern; if a behaviour pattern is

modified, next time it is executed, the changes are considered; if a behaviour pattern is deleted,

it is not executed anymore.

In order to update models at runtime we provide two different tools aimed to be used by

designers and end-users. These tools abstract the Java implementations required to update

models providing interfaces that allow evolving pattern automations in a graphical way. Thus,

the process followed in order to evolve the behaviour patterns is as follows:

1. Designers or end-users use the provided graphical tools to update the models. With

these tools, behaviour patterns can be added, updated or deleted from models.

2. When context changes, MAtE reinterprets the models (considering the changes made in

the previous step) and loads the patterns that must be executed.

3. MAtE searches for the pervasive services that must be executed to carry out each

pattern, and executes them according to the pattern descriptions.

4. Pervasive services are executed considering the changes performed in Step 1. Thus,

modifications in models result in the evolution of the system behaviour at runtime,

without stopping the system.

It is important to note that when a behaviour pattern is being executed, its current execution

cannot be modified; the changes performed to a pattern will be applied next time the pattern has

to be executed.

Although this work is focused on AmI environments, note that the approach proposed to evolve

system behaviour can be generalized to other domains. To do so, we need models that describe

the behaviour to be evolved, tools for editing them, an engine that interprets the models, and

mechanisms that allow the engine to look up the functionality that supports the behaviour

described in models.

Finally, it is worth remarking that the contribution of the presented work is the adaptation of

system behaviour by directly evolving the models at runtime. We combine the research areas of

models at runtime, user task automation and AmI systems to build an approach for automating

behaviour patterns by interpreting at runtime the models where the patterns are specified. As

Section 5 will show, this approach makes easier the evolution of the behaviour patterns at

runtime and at a high level of abstraction: since MAtE interprets the models and executes the

routines as specified, the routines can be evolved by directly modifying the models at runtime.

To facilitate this evolution, we present, in Section 6 and 7, appropriate mechanisms and tools

for developers, designers and end-users.

4. Modelling User Behaviour Patterns

To specify the user behaviour patterns that users want to be automated, we proposed a Doman

Specific Modelling Language (DSML) composed by two models: a context model, to specify the

context on which the behaviour patterns depend, and a context-adaptive task model, to specify the

behaviour patterns according to the context described in the context model.

4.1 The Context Model

A suitable model for handling, sharing and storing context is essential for automating user

behaviour patterns in an unobtrusive manner. Different context models have been proposed to

capture context in Pervasive Computing. Some of the most important examples are: object-

oriented models such as the ones proposed by the projects CORTEX [11] and Hydrogen [12];

key-value models such as the one used by Dey in the Context Toolkit [13]; graphical models

such as ContextUML [14] and CML [15]; etc. However, several studies [16–18] state that the

use of ontologies to model context is one of the best choices. Therefore, we use the context

ontological model proposed in [2] to semantically describe the required context. The concepts,

and their main attributes and relationships provided by this model are shown in Figure 5. This

model allows representing users, locations, enviroment properties, policies, temporal

properties, system services and events (which could be, for instance, context changes or task

execution).

The model is specified in the Ontology Web Language (OWL) [19]. OWL is an ontology

markup language that greatly facilitates knowledge automated reasoning and is a W3C standard.

Thus, the classes of the ontology are defined as OWL classes, the attributes as data properties

and the relationships as object properties. The context specific to the system is defined as OWL

individuals, which are instances of these classes. Figure 5 shows also some context instances of

the example explained in Section 2. For instance, Bob is defined as an individual of the User

class, Kitchen is defined as an individual of the Location class, Temperature is defined as an

individual of the EnviromentProperty class, etc.

Figure 5 A context model example

To easily create the context model, we used the EODM plugin1 of the Eclipse

platform, which allows an OWL model to be visualized and edited using a tree

graphic editor (as shown in Figure 5), as well as using OWL code. 4.2 The Context-

adaptive Task Model

The proposed context-adaptive task model is based on the Hierarchical Task Analysis (HTA)

technique [20], which breaks down tasks hierarchically into other tasks. We chose a HTA-based

model instead of other task models because it provides us with more facilities to describe user

behaviour patterns [2]. In particular, we proposed defining a task hierarchy for each behaviour

pattern. The root task (depicted by an ellipse, see Figure 6) represents the behaviour pattern and

has an associated context situation (depicted with a note associated to the root task), which

defines the context conditions whose fulfilment enables the execution of the behaviour pattern.

This root task can be broken down into composite tasks (which are intermediate tasks) and/or

system tasks (which are leaf tasks). Composite tasks (depicted by ellipses, see Figure 6) are used

for grouping subtasks that share a common behaviour or goal. System tasks are depicted by

ellipses with a blue border and are associated to pervasive services that are in charge of

implementing the functionality that perform them. These services can be developed by using

any development method; the only restriction is that they must be implemented in Java/OSGi2 in

order to be used by the infrastructure presented in the following sections. Additional

information about service implementation can be found in [21].

Both composite and system tasks can have a context precondition, which is depicted between

brackets within the task ellipse (see Figure 6, tasks turn on bathroom heating, raise bedroom

blinds and switch bedroom lights on). This precondition defines the context situation that must

be fulfilled so that a task is performed (if the precondition is not fulfilled, the task will not be

executed). Child tasks inherit the context preconditions of their parent task.

Figure 6 An example of behaviour pattern modelling

In order to break down a behaviour pattern or a composite task into simpler tasks, we propose

two task refinements: the exclusive refinement (represented by a solid line) and the temporal

1 EODM plugin - http://www.eclipse.org/modeling/mdt/eodm/docs/articles/EODM_Documentation/

2 Open Service Gateway Initiative (OSGi) - www.osgi.org

refinement (represented by a broken line). The exclusive refinement decomposes a task into a

set of subtasks in such a way that only one subtask will be executed (disabling the others). The

temporal refinement also decomposes a task into a set of subtasks; however, this refinement

provides constraints for ordering the execution of these subtasks. These constraints are depicted

by means of arrows between the related tasks. A complete description of these operators can be

found in [2].

As example, Figure 6 shows the modelling of the WakingUp pattern3. It is initiated at 7:50 a.m.

on a working day (see context situation associated to the root task). The root task is refined into

four tasks by temporal refinements in such a way that they must be executed following the

specified constraints. According to the first task (the one situated at the left side), the system

starts by turning on the bathroom heating. Ten minutes later (see temporal association between

both tasks), the system must turn on the radio. This second task is related with the lighting task

by means a concurrent task temporal operator (|=|), which indicates the execution order of the

turn on the radio and lighting tasks is not relevant.

The Lighting task is a composite task that is refined in two tasks (raise bedroom blinds and

switch bedroom light on) by exclusive refinements in such a way that only one of these tasks

will be executed (depending on whether it is a sunny day or not). After the lighting task is

executed, the system completes the behaviour pattern by making coffee when the user is in the

kitchen (see temporal restriction between tasks).

To conclude this section, we formalize the elements that can appear in the task model (i.e., its

abstract syntax) by defining its metamodel, which is shown in Figure 7. The main element of

this metamodel is the Task class, which can be System or Composite. The composite tasks can

be refined using a Temporal Refinement or an Exclusive refinement into more specific tasks

until they can be considered System tasks (i.e., executable tasks), which are related to a service

that can execute it. This service is specified by its identifier and the name of the method that

should be specifically executed for carrying out the task. When a composite task has been

refined by using the temporal refinement, its subtasks are related by means of a Temporal

Relationship. A Behaviour Pattern is defined as a subtype of composite task. Each Behaviour

Pattern has to be related with a Context Situation element, which is a Context Condition that

must be fulfilled to activate the behaviour pattern. Temporal relationships can also be related to

a context condition. In the same way, tasks can also have a Context Precondition, which is a

subtype of Context Condition. Additional information about the model and its metamodel can

be found in [2].

3 This pattern is used as a running example along the rest of the paper. Other different examples of
behaviour patterns can be found in http://www.pros.upv.es/art/

Figure 7 Overview of the task model metamodel

5. Automating User Behaviour Patterns through Model Interpretation

In this section, we present a software infrastructure that interprets the above presented models at

runtime in order to automate the specified behaviour patterns. To do this, first, we justify why

model interpretation has been chosen; next, the developed software infrastructure is explained

discussing the architectural decisions taken; finally, we introduce an overview of some

implementation issues.

5.1 Why Model Interpretation?

The models presented in the previous section describe the behaviour patterns that have to be

automated in order to satisfy users’ needs. These models are not only abstract representations of

the behaviour patterns, but they are also machine-processable artefacts with enough precision to

be used as executable models [2], [22]. In order to turn executable models into a reality two

strategies can be applied: code generation, in which models are executed by means of

translating them into an equivalent system code (such as in [23], [24]), and model interpretation,

in which models are executed by using an interpreter/engine that directly executes what is

specified (such as in [25], [26]).

 Code generation is usually better, for instance, when the use of system resources is critical for

the system: code generation usually needs less system memory (in model interpretation models

are managed in memory, which produces a higher usage of it), and provides a better system

response time (in model interpretation, the interpreter needs to analyse the models, which may

impact on the response time).

However, the objective of this work is automating behaviour patterns in smart homes in such a

way that the patterns can be evolved after system deployment, even by end-users. In this

context, the use of system resources is not critical: system performance and memory usage are

not a problem for the size of the models managed in this domain (see Section 8.2 for more

detailed). In addition, with a focus on facilitating this evolution at runtime, model interpretation

provides more benefits than code generation [28]. These benefits are the following ones [27]:

 It enables faster changes: changes in the model do not require an explicit regeneration,

rebuild, retest, and redeploy step. This will lead to a significant shortening of the

turnaround time.

 It enables changes at runtime: because the model is available at runtime it is even

possible to change the model without stopping the part of the system that provides the

functionality that is changed.

 It is easier to update and scale: it is easier to change the interpreter and restart it with the

same model. It is not needed to generate the code again using the updated generator.

The same can hold for scaling: scaling an application means initializing more instances

of the interpreter executing the same model, in this way, parallel behaviour could be

performed. For instance, parallel instances of MAtE may be needed to be applied in

health care applications, where many behaviour patterns should be performed at the

same time, context is changing quickly and the time response is critic.

 It is more secure: The model interpreter provides an additional layer of security when

modifications should be done in aspects captured by models. When applications are

generated from models they are deployed in a specific system and modifications may

require accessing the file system or other system resources. When models are

interpreted, modifications are made by updating models and the rest of the system is

abstracted by the interpreter. In this way, the interpreter provides an additional layer on

top of the infrastructure and everything underneath is abstracted away. This also makes

it possible that the automation infrastructure (OSGi environment, interpreter and

pervasive services) is deployed in a different system than the models, similar to the idea

of Platform as a service (PaaS). Thus, any user could have a pervasive system that

automates his/her behaviour patterns by deploying his/her models (i.e., context-adaptive

task model and context model) in the cloud, without the cost of developing the software

required to automate the patterns.

For these reasons, we have applied a model interpretation strategy. The automation of behaviour

patterns is carried out by an engine that directly interprets the models at runtime. This allows the

models to become into the only representation of the automated behaviour patterns, which

enables that the automated behaviour patterns are evolved by directly updating the models at

runtime.

Finally, it is important to note, that at the end, the use of one technique or another will depend

on the system domain and its requirements. We have chosen model interpretation because it

provides us with more benefits for dealing with evolution in smart home systems..

5.2 Software Infrastructure

AmI systems are deployed into active environments whose context properties are continuously

changing. These properties constitute the context in which the system is executed and become a

key element to decide when to execute one behaviour pattern or another. Thus, to carry out the

behaviour patterns as specified in the models, two important things have to be considered: 1) the

opportune context in which each behaviour pattern has to be triggered; and 2) the tasks to be

executed in each behaviour pattern taking into account their execution order and the context in

which they have to be executed.

The context properties in which each behaviour pattern has to be triggered are specified in the

task model as a context situation related to each behaviour pattern (see Section 4.2).

Thus, in order to automate a behaviour pattern as specified in the models, the following steps

must be performed:

1. Detect if the context properties specified in the context model change. To do this,

context should be continuously monitored.

2. When context changes (i.e., a sensor detects a change or a service is executed), the

context model must be properly updated.

3. The context-adaptive task model must be interpreted to detect if the new context

satisfies the context situation of some behaviour pattern.

4. If the context situation of a behaviour pattern is fulfilled, the behaviour pattern must be

performed. To do this, the corresponding behaviour pattern instance stored in the

context-adaptive task model must be retrieved. The retrieved information must be

interpreted and the appropriate system tasks of the pattern must be executed according

to its specification and the current context stored in the context model.

Therefore, considering the service-orientation of AmI system architecture (see Section 2), where

a compound of services is provided to control the devices that exist in the environment, we

provide two additional architectural elements in order to automate user behaviour patterns

through model interpretation (see Figure 8):

1. A context monitor, which is in charge of monitoring the execution of services in order

to capture context changes (step 1). When a change in context is detected, the monitor

adds the corresponding Event instance to the context model and updates its

corresponding context properties at runtime (step 2). Once the context model has been

updated, the context monitor informs the engine described below about this change

(step 3).

Figure 8: Architectural elements of the software infrastructure

2. Model-based Automation Engine (MAtE), which is in charge of executing the

specified behaviour patterns in the appropriate context. To do this, when the context

monitor informs MAtE about a context change, MAtE checks the context situations

specified in the task model (step 4). If the context situation of a behaviour pattern is

fulfilled, MAtE automatically executes that pattern (step 5). To do this, MAtE executes

the appropriate system tasks of the behaviour pattern by taking into account its tasks’

relationships, its refinements, and the current context. To execute a system task, MAtE

executes the pervasive service that is associated to the task.

Thus, the architecture of our proposal is made up of the following elements: (1) the physical

environment in which a set of devices (sensors and actuators) are installed; (2) the services that

are in charge of controlling these devices; (3) the context and context-adaptive task models that

are in charge of describing how the AmI services should the automated in order to satisfy user’s

needs; (4) a context monitor, which is in charge of monitoring the service execution in order to

detect changes in the environment properties, and update the context model accordingly; and (5)

the MAtE engine, which is in charge of interpreting the context-adaptive task model in order to

execute AmI system’s services according to the desired user behaviour patterns.

5.3 Implementation Issues

Both the Context Monitor and MAtE have been developed using Java/OSGi technology. We

have chosen OSGi, because it is widely used for developing AmI systems due to the numerous

important benefits that it presents: (1) it provides a service-oriented architecture; (2) it allows

device discovery using low level protocols such as EIB, Lonworks or UPnP; (3) it provides

dynamic bundle loading and updating, and service lookup; (4) it acts as a bridge to the final

device drivers in order to provide a software representation of devices; (5) there is a dynamic

coupling of services and devices guaranteeing a high level of robustness; etc.

The OSGi framework allows registering services by publishing their interfaces using the

framework's service registry. This registration makes the services discoverable through the

registry so that a certain service can be searched when needed. The framework also manages

dependencies among services to facilitate coordination among them. These dependencies are

implemented using Wire objects. A Wire object acts like a communication canal between a

Producer service and a Consumer service. When a wire is created, the producer service can

produce information to be used by the Consumer service. To achieve this, the Producer service

must implement the OSGi Producer interface, while the Consumer service must implement the

OSGi Consumer interface. Wire objects implement methods to store and manage the

interchanged values. The Consumer interface contains methods to add Wire objects to the

consumer and to retrieve them, while the Producer interface contains methods to add Wire

objects to the producer, to update the Wire values, and to notify changes to consumers.

Thus, the components of the software infrastructure have been connected as follows (see Figure

9): MAtE and the context monitor are developed as Java OSGI services. They are connected by

an OSGi wire. In this wire, the context monitor plays the role of producer, because it informs

MAtE about context changes, while MAtE plays the role of consumer, because it needs to know

the context changes detected by the context monitor. The context monitor is also connected with

each one of the services of the AmI system by a wire. In these wires, the services act as

producers because they provide the context monitor with information about context, while the

context monitor acts as a consumer, because it uses the information produced by the services to

update the context model and notify MAtE. In addition, all services provided by the AmI system

are published in the OSGi registry so that MAtE can discover them when they must be

executed. To execute a service, MAtE uses the Java reflection capabilities.

Figure 9. The software infrastructure in the OSGi server

Thus, when context changes, a service detects it and notifies the Context Monitor. The Context

Monitor updates the context model and notifies MAtE about the context changes. When this

happens, MAtE interprets the context-adaptive task model to check if some context situation is

fulfilled and carry out the behaviour patterns whose context situation is fulfilled. To carry out a

behaviour pattern, MAtE searches for the services that need to be executed using the service

registry, and executes them as specified in the task model.

6. High-level Mechanisms for Evolving the Behaviour Patterns

As said, the models are the unique representation of the automated behaviour patterns. These

models are directly interpreted at runtime to execute the behaviour patterns as specified. For this

reason, when the models are changed, next time they are interpreted by MAtE, the changes will

be applied. Thus, in order to allow developers to evolve the automated behaviour patterns, we

provide them with high-level mechanisms to manage the models at runtime. We next present

these mechanisms and analyse the different types of evolution that can be performed using

them.

6.1 Mechanisms for Managing the Models at Runtime

We designed and developed the following mechanisms for managing the models at runtime:

OCean, which allows the context model to be updated at runtime; MUTate, which allows the

task model to be updated at runtime; and a concurrency module, which ensures that the

evolutions are performed in a consistent manner. OCean and MUTate are developed as java

APIs so that they provide the same vocabulary defined in the ontology and the task model

metamodel respectively. This facilitates that they can be used by third party systems in any

software platform. These APIs provide the same high-level abstraction concepts used in the

modelling language, achieving that the models can be managed using the same concepts. In

addition, these APIs ensure that the changes are syntactically correct because they have to be in

accordance with the context ontology and the task metamodel definition. To develop these APIs

we have applied the best practices on API development recommended in the literature [28],

[29].

Ontology-based Context model management mechanisms: OCean

OCean allows the management of the context model respecting the vocabulary established in

the context ontology. Since context is captured in the context model as OWL individuals, the

OCean API allows creation, retrieval, modification, and deletion of any individual of the

context model. To achieve this, the API provides a Factory class for creating new individuals in

the context model and getting those that have already been created. Also, the API provides an

implementation class (and its corresponding Java interface) for each one of the OWL classes

defined in the context ontology. Each class allows its individuals to be obtained, modified, and

deleted. To achieve this, each of these classes provides:

 An attribute for each one of the properties and relationships of its OWL class; e.g., the

Person OWL class has Name and preference as attributes.

 Get and set methods for each one of these attributes; e.g., getPreference, setName.

 Add and remove methods for the attributes whose type is a List. These methods allow an

element to be directly added to the list; they also allow one to remove all the elements of

the list; e.g., addPreferences, removePreferences method.

To generate this API from the context ontology we have used the Jastor4 tool. We have

extended this generated API with a Model class that allows a context model to be opened and

saved. To make easier the update of the context model according to context changes, this class

also provides a more generic API that allows us to manage the individuals of the ontology

independently of its class. Specifically, this Model class provides methods such as setProperty

or getProperty to update and obtain a property of any individual; or addRelatedInstance, to

relate an individual to another individual. Furthermore, this Model class provides facilities for

querying the model using SPARQL5 , which is a graph-matching query language recommended

by the W3C that allows queries to be built to search for certain individuals in the context model.

Specifically, the class provides the method checkCondition to check whether a context condition

is fulfilled or not.

To implement this class, we used Jena 2.46, the OWL API 2.1.17, and the Pellet reasoner 1.5.2.

[30]. Jena is a Java framework for building Semantic Web applications that provides a

programmatic environment for OWL and SPARQL and includes a rule-based inference engine.

4 http://jastor.sourceforge.net/
5 http://www.w3.org/TR/rdf-sparql-query/
6 http://jena.sourceforge.net/
7 http://owlapi.sourceforge.net/

We used Jena to open the OWL model and save the performed changes in it. The OWL API is

an open-source API that provides facilities for creating, examining and modifying an OWL

ontology. We have used the OWL API to access and modify the individuals of the context

model. Pellet is an open-source tool that provides reasoning services for OWL ontologies. Pellet

facilitates accessing the information stored in the ontology and allows us to launch a SPARQL

query against the context model using Jena.

Model-Based User Task management mechanisms: MUTate

Similar to OCean, MUTate must allow the management of the task model respecting the

vocabulary established in the task model metamodel.

In particular, we have used the Eclipse Modelling Framework (EMF) plugin of the Eclipse

Platform, which provides us with many benefits for managing an XMI model at runtime. From the

metamodel of the task model in Ecore (see Figure 7), we use EMF to generate the MUTate API

for managing a task model. This API provides a Factory class for creating new instances of the

task model metamodel elements and getting those that have already been created. In addition,

MUTate provides a Java interface and an implementation class for managing the instances of

each one of the classes of the metamodel (e.g. BehaviourPattern class, Task class,

TemporalRelationship class, etc. See Figure 7). Each of these classes provides:

 An attribute for each one of the properties and relationships of the metamodel element that

the class represents; e.g., the BehaviourPattern class has name and subTasks as attributes.

 Get and set methods for each one of these attributes; e.g., getName.

 An add method for the attributes whose type is a list. This method allows an element to be

directly added to the list; e.g., addSubTask method.

Some of these Java classes represent context conditions, such ContextSituation or

ContextPrecondition. These classes provide the checkCondition method as well, which queries

the context model to check the corresponding context condition by using OCean.

In order to get additional information about these two APIs, their complete specification can be

downloaded from http://www.pros.upv.es/art/.

Concurrency Management: MUTate and OCean can be used for managing the models at

runtime. However, to do this at the same time that MAtE and the context monitor interpret the

models, concurrency mechanisms are needed for maintaining the consistency of the models. For

instance, at the same time that we are evolving the models, MAtE can be interpreting the task

model to automate some behaviour pattern (or the Context Monitor can be updating the context

model). Therefore, during partial modifications, MAtE or the Context Monitor could access an

inconsistent model. Note that one of the objectives of this work is to evolve the configured

automations without stopping the system. Thus, in order to deal with this problem, we have

integrated MUTate and OCean with a module that controls the access to models by following a

strategy typically used in the management of concurrency in databases: Multiversion

Concurrency Control (MCC) [31]. The main advantage of using the MCC model of concurrency

control is that reading operations or reading and writing operations do not lock among them.

Basically, the MCC strategy proposes the use of multiple versions of the models, although only

one is considered the master copy. As shown in Figure 10, when the models have to be updated,

the concurrency module makes a dirty copy where the changes will be made. When all the

changes are finished, the concurrency module updates the master copy accordingly. This is done

in a transactional environment in order to guarantee the isolation of this action with respect

others. To do this, we use the transaction facilities provided by EMF for the task model and the

transaction facilities provided by Jena for the context model. Thus, we achieve that the models

that are interpreted are always consistent.

Figure 10. Model evolution architecture

6.2 Supported Evolution

Using these high-level mechanisms, any change that respects the task metamodel and context

ontology syntaxes can be performed to evolve the automated user behaviour patterns. These

mechanisms allow new behaviour patterns to be created, and also to modify or delete those that

are already specified. According to the model interpretation process (see Section 5.2.), when a

behaviour pattern is changed, these changes are applied the next time it has to be executed.

Next, we show how these mechanisms can be directly used to perform different types of

evolution. These mechanisms can be also used to build graphical tools that facilitate to perform

these evolutions. In Section 7 we will explain two different tools and show how the same

evolutions can be performed by using them.

In order to show the effects that evolving the context-adaptive task model has in the runtime

system behaviour, we show a trace of the executed services. To do that, we use the WakingUp

user behaviour pattern presented along the paper. In order to simulate a real interaction with

sensors, we have used a device infrastructure made up for simulation purposes. This

infrastructure contains several devices such as presence detectors, light intensity sensors,

weather stations, blind controllers, and so on. This infrastructure is shown in Figure 11. In order

to simulate the interaction with devices that are difficult to have in an academic environment

(e.g. a smart coffee maker) we have used a device simulator. This simulator was presented in

[24] and allows developers to define virtual devices and control them using an intuitive user

interface.

Figure 11 Device infrastructure with simulation purposed

Evolving the executed services. New tasks may be required to be automated in a behaviour

pattern, other tasks may not be needed anymore, and some tasks may need to be slightly

modified. For instance, in the WakingUp pattern, the user may want that the system informs

them about the weather when s/he is in the kitchen. The user may also want that the lights of the

bedroom are not automatically switched on and instead of waking up with the radio he may

want to be woken up with relaxing music. To perform this type of evolutions, the tasks of a

behaviour pattern can be changed.

Figure 12 Evolving which services are executed using OCean and MUTate

Figure 12 shows how to modify which services are executed in the Waking Up behaviour

pattern using OCean and MUTate. As shown, the turn on the radio task has been modified to

turn on relaxing music. The lighting task and its subtasks have been removed; therefore, it will

not be executed anymore in the pattern. And a new task named inform about the current

weather has been created in the pattern and has been related to the make coffee task using a

temporal relationship of the enabling type.

Modifying context conditions. The conditions where the services must be executed may

change over time. For instance, the user may want to be woken up a half an hour later (his

timetable may change) and may want the heating to be turned on in the bathroom for 15 minutes

instead of 10 (so that the bathroom is warmer when he takes a shower). To perform this type of

evolution, the context conditions used in the specification of a behaviour pattern can be

changed. Figure 13 shows how to change the context conditions of the Waking Up behaviour

pattern using OCean and MUTate. As shown, the context situation of the pattern has been

changed to be enabled at 8:15 and the temporal restriction of the relationship between the two

first tasks of the pattern has been changed to 15 min.

Figure 13 Modifying context conditions using OCean and MUTate

Evolving the service execution plan. The user may want that the services of a behaviour

pattern are carried out in another order. For instance, the user may want to have breakfast before

taking a shower and that the coffee is made just before the radio is turned on, thus, the coffee

would not be so hot when he takes it. To perform this type of evolution, the relationships

between the tasks of a behaviour pattern can be changed. Thus, the first task to be automated

should be the make coffee task, then the user must be woken up and after this, the bathroom

heating must be switched on (the time for having breakfast is enough so that the bathroom is

warm).

Figure 14 shows how to change the execution sequence of the services executed in the Waking

Up behaviour pattern using OCean and MUTate. As shown, the first task is moved to be

executed as the last task and the last task is moved to be executed as the first task. The

relationships of these tasks have also been changed. In addition, the context situation of the

pattern has also been changed because the pattern must start when the user must be woken up.

Figure 14 Evolving the service execution plan using OCean and MUTate

7. Tools for Evolving the Automated Behaviour Patterns

We present two tools that, using the mechanisms presented in the previous section, allow user

behaviour patterns to be graphically evolved at a high level of abstraction and without stopping

the system after deployment. The former is developed for being used by designers, while the

latter is developed for being used by the end-users of the system. Both tools can be downloaded

from http://www.pros.upv.es/art/. Finally, we analyse the different types of evolution that can be

performed with these tools.

7.1 Tool for Designers

In this section, we present a tool that allows designers to graphically update the context-adaptive

task model. This tool can be seen as a realization of the task model concrete syntax (presented in

Section 4.2.) that corresponds to the abstract syntax defined in the task model metamodel (see

Section 4.2.). The tool implements a model-view-controller architecture and has been developed

using the EMF and GMF plugins of the Eclipse platform8. From the metamodel of the context

adaptive task model specified in Ecore format (that is included in the EMF framework), we have

generated java reusable classes for building an editor for the model. Using these classes and the

facilities provided by GMF, the view and controller parts of the tool have been implemented.

8 Eclipse Platform: www.eclipse.org

Figure 15. Snapshot of the graphical evolution tool

This tool is integrated with the mechanisms presented in the previous section. They constitute

the model part of the model-view-controller architecture. Thus, the changes performed

graphically by designers using this tool are automatically reflected in the models at runtime.

They ensure that the changes are syntactically correct because these changes have to be in

accordance with the metamodel definition. Note that designers can also use this tool to create

the models at design time. Figure 15 shows a snapshot of the developed tool.

7.2 Tool for End-Users

In this section, we present a tool that allows end-users to evolve the automated behaviour

patterns. Specifically, this tool allows users to perform the following actions in a user friendly

way:

- Context Specification: the tool shows users the context information for which they have

permission. It also allows a user to add new individuals corresponding to his/her information,

modify them, or delete them if they are not used in the task model.

- Pattern Specification: the tool allows users to add, modify, or delete behaviour patterns by

facilitating the information necessary to do this. In addition, if users do not want certain patterns

to be executed during a period of time, the tool also allows enabling or disabling them.

The concrete syntax used in this tool is based on wizards for end-users. These primitives used in

the wizards are in accordance to the abstract syntax defined in the context model ontology and

the task model metamodel. To be used by end-users, the wizards are built following the

guidelines of Visual Programming approaches Visual Programming approaches [32], [33] and

good-practices in End-user Development [34–37]. In order to develop these wizards, we have

designed graphical interfaces, using the SWT (Standard Widget Toolkit) library. All the

interfaces (see examples in Figures 16 and 17) share a similar structure and are displayed using

a grid layout to facilitate user interpretation of the information shown. At the top of the

interface, the different steps that should be performed in order to achieve the corresponding goal

are shown. Thus, the user has an overview of all the steps and is guided step by step until the

goal is completed. This design and the provided guidance improve the learning and

memorization of the steps to be performed and keeps users from missing important ones [36].

The rest of the interface is divided into three frames:

1) The instruction area, which is shown at the top and provides users with instructions to

help them to complete each step;

2) The working area, which is the area where users perform the corresponding step. The

information that users need to be able to complete the step are popped-up s forms when

needed. Thus, end-users just need to complete the information asked in the forms. These

forms provide auto completion to reduce errors and user effort. Moreover, the working

area also provides warning messages to warn users about errors committed when

introducing the information (e.g. the user sets a text value rather than a numeric value) or

to warn them about necessary information that has not been introduced.

3) The information area, which is shown at the bottom and provides users with feedback

information in natural language about what the user is doing.

Following this design, we have developed interfaces for context specification and for pattern

specification.

Figure 16 End-user interface for defining the context situation of the behaviour pattern

As representative examples, Figures 16 and 17 show the two steps that have to be accomplished

to create a new behaviour pattern: context situation specification and task specification. Figure

16 shows the interface to specify the context situation whose fulfilment will trigger the

execution of the pattern. Specifically, the figure shows a snapshot of the building of the context

situation of the WakingUp behaviour pattern. The working area shows the specification of the

first condition: the WorkingDay property is equal to true. Once the user has specified the

context situation of the pattern, the user must navigate to the task specification step which is

shown in Figure 17. The working area allows users to specify the tasks that the pattern must

execute. It shows the tasks that must be executed in the WakingUp pattern. The information

area shows an explanation about the created tasks.

Figure 17 End-user interface for defining the tasks of the behaviour pattern

By using these interfaces, end-users can carry out the changes that they need. However, to

preserve software quality characteristics, these changes are validated before they are applied to

the system. We have developed a prototypical tool that validates the consistency of the

performed changes. Up to date, this tool validates the concordance of types, that all the system

tasks have an associated service, that all the composite tasks have subtasks, etc. If any error is

detected, the tool notifies the user about the possible mistakes so that they can be corrected. In

the future, we plan to extend this tool to also check that there are no loops in the execution of

the patterns and there are no inconsistencies with other patterns. To check if the execution of the

services of a behaviour pattern can cause a loop (e.g., by making the context situation of the

same pattern (or other patterns) to be satisfied again), the services provided by the AmI system

should provide information about which operations perform contradictory tasks and also which

context properties are modified by each service operation . Furthermore, we plan to provide the

end-user tool with simulation capacities so that users can simulate the execution of the changed

behaviour patterns to check beforehand if these patterns actually do what they want.

7.3 Supported Evolution

Using these tools, any change that respects the task metamodel and context ontology syntaxes

can be performed to evolve the automated user behaviour patterns. Thus, new behaviour

patterns can be created, and also those that are already specified can be modified and deleted.

Using the same examples described in Section 6.2, we next show how the user behaviour

pattern can be modified using these tools. Evolutions for creating new behaviour patterns or

deleting them are performed in an analogous way.

Evolving the executed services. Figures 18 and 19 show how the executed services of the

WakingUp behaviour pattern are changed: a new task named inform about the current weather

has been created; the lighting task and its subtasks have been removed; and the turn on the radio

task has been modified to turn on relaxing music.

Figure 18 Evolving the executed services using the designer tool

Figure 19 Evolving the executed services using the end-user tool

Figure 20 shows how the behaviour pattern is executed before and after performing these

evolutions.

Figure 20 Execution traces before and after evolving the executed services

Modifying context conditions. Figure 21 and 22 show how the context situation of the

specified behaviour pattern is changed to be enabled at 8:15 and how the temporal restriction of

the relationship between the two first tasks of the pattern has been changed to 15 min.

Figure 21 Modifying the context conditions using the designer tool

Figure 22 Modifying the context conditions using the end-user tool

Figure 23 shows how the behaviour pattern is executed after performing these evolutions.

Figure 23 Execution trace after modifying the context conditions

Evolving the service execution plan. Figure 24 and 25 show how the service execution plan of

the specified behaviour pattern is changed: the last task is now executed as the first task, and the

first task as the last task; the context situation of the pattern has been changed to start at 8:00.

Figure 26 shows how the behaviour pattern is executed after performing these evolutions.

Figure 24 Evolving the service execution plan using the designer tool

Figure 25 Evolving the service execution plan using the end-user tool

Figure 26 Execution trace after evolving the service execution plan

8. Evaluation of the Proposal

We have performed several evaluations in order to consolidate our proposal. First, we have

tested the completeness and correctness of the automation and evolution of user behaviour

patterns. Next, we have evaluated the performance of the system when using our approach in

terms of time response and memory usage. Afterwards, we have performed and experiment to

compare our MDD approach with an ad-hoc solution. Finally, we have evaluated the

impressions of end-users when they used the end-user tool within several case studies.

8.1 Completeness and Correctness

To do these validations, we used computers with the following features: Intel Core 2 Duo

P8400, 2.26 GHz processor and 4 GB RAM with Windows 7 Enterprise and Java 1.5 installed.

In addition, we used an Equinox distribution as the implementation of OSGi.

In order to evaluate the completeness of the architecture we need to check that MAtE executes

all the services required by a behaviour pattern before and after evolving it. In the same way, we

must evaluate that all the behaviour patterns that must be triggered when a context situation is

fulfilled are triggered before and after their evolution. In order to evaluate the correctness of the

approach we need to check that the services required by a behaviour pattern are all executed in

the correct order and in the correct conditions. In the same way, we need to check that

behaviour patterns are triggered if and only if the proper context situation is fulfilled.

To perform this, we based on the fact that the Context Monitor registers in the ontology each

execution of the service associated to a system task (see Section 4 and 5.2), storing a history of

the service executions. Thus, the proposed validation consists in: (1) simulating the fulfilment of

specific context conditions in order to trigger the execution of several behaviour patterns, and

(2) checking that the context monitor properly registers the execution of all the services that

must be executed (completeness) and in the correct order (correctness) before and after an

evolution. It is clear then, that we must previously validate other aspects: that MUTate and

OCean properly retrieve and save data, and that the Context Monitor registers service execution

in a proper way.

In order to perform all these evaluations we used JUnit9 tests. We developed a set of JUnit that

allows us to evaluate: the proper behaviour of Ocean and MUTate; the correct behaviour of the

context monitor; and the completion and correctness of MAtE. For instance, Figure 27 shows

the JUnit method that evaluates the completeness of a behaviour pattern execution as a

representative example. To perform this evaluation, we obtained the execution plan derived

from the leaf tasks of the behaviour pattern according to the current state of the ontology. To do

this, we use the getExecutionPlan() method that constitutes one of the EMF facilities

provided by MUTate. Next, we executed the behaviour pattern through the method

executeBehaviourPattern(bp). Afterwards, we retrieved the last registered automated

operations from the ontology (i.e. we retrieved the individuals of the AutomaticOperation

class) by interacting with OCean. We retrieved as many automated operations as the tasks the

plan contained. Finally, we created an equal assertion to check if the automated operations

retrieved from the ontology were the same as the tasks that the plan contained.

public void executeBehaviourPattern(BehaviourPattern bp){

 List<Task> executionPlan=bp.getExecutionPlan();

 executeBehaviourPattern(bp);

 List<Operation> automatedOperations=

 ContextProvider.getLastAutomaticOperation(executionPlan.size());

 ArrayList<String> plannedTasks, executedTasks;

 for(Task t: executionPlan) planedTasks.add(t.getName());

 for(Operation o: automatedOperations) executedTasks.add(o.getName());

 assertEquals(plannedTasks, executedTasks);}

9 www.junit.org

Figure 27. JUnit test example

These JUnit tests were applied to different user behaviour patterns and different scenarios. First,

we evaluated that the behaviour patterns, triggered independently, were correctly automated;

next, we evolved them; for each evolution, we applied again the JUnit tests and checked the

correct execution of the evolved patterns. Then, we evaluated several scenarios combining the

execution and evolution of several patterns (an example of these scenarios is shown in

http://www.pros.upv.es/art). By analysing the results of the tests that failed, we identified and

corrected some mistakes. For instance, we realized that the behaviour patterns dependent on

time were executed repeatedly during one minute. This was because the system updated time

every second and the smallest time unit considered in the behaviour patterns was minutes. Thus,

the context situation of these patterns was continuously fulfilled until a minute went off. To

solve this problem, we needed to use the same time unit in both cases. Considering that

updating each second the context model could overload the system, we updated the context

monitor so that time was updated every minute.

8.2 System Performance

Models are manipulated at runtime by MAtE. This manipulation is subject to the same

efficiency requirements as the rest of the system. In particular, we evaluated how model

operations impact overall system performance in terms of system response and memory usage.

System response. Model operations have to be efficient enough so that the system response is

not drastically affected. In order to validate whether our approach scales to large systems, we

quantified the temporal cost of the operation performed with randomly generated large models.

To test these operations we used the context model presented in Section 4.1 and an empty task

model to be randomly populated by means of an iterative process. The context model was

populated with 100 new context individuals in each iteration, while the task model was

populated with one new pattern whose task structure formed a perfect binary tree, varying its

depth and the width of the first level each iteration.

For each iteration, we tested all the model operations of MAtE 20 times and calculated the

average temporal cost of each one. As an example, the operation of OCean with the highest

temporal cost was the operation to get a context individual, which took 7 milliseconds with 100

individuals and 10 milliseconds with 6000 individuals. This operation has an initial cost caused

by the access to the ontology (which explains the small time difference between 100 and 6000

individuals) and executes a SPARQL query whose time depends on the number of individuals.

Figure 28 shows the temporal cost of the model operations with the highest cost. At the top of

the figure, we show the time required to add a behaviour pattern according to the number of

tasks. This operation took less than 50 milliseconds to add a pattern of 2296 tasks. At the

bottom, we show the temporal cost of the operations for getting, updating and deleting a task.

These costs are very similar since all of them run the same query to obtain the corresponding

task. Even with a model population of 45612 tasks, these model operations provided a fast

response (250 milliseconds). These results show that the response time is not drastically

affected as the size of the models grows.

Figure 28 Temporal cost of accessing the task model at runtime

Memory usage. In order to interpret user behaviour patterns, MAtE needs to load them into

memory. Thus, we measured the usage of memory in order to demonstrate that it is not

excessive. To do so, we followed a strategy similar to the one used in the previous evaluation:

we randomly generated behaviour patterns with a task structure that formed a perfect binary

tree, varying its depth and the width of the first level. Next, we made MAtE to load them, and

using the YourKit Java Profiler10 tool, created memory snapshots to measure the size of the

created behaviour patterns.

We measured the memory needed by behaviour patterns with a width from 1 to 10 and a depth

from 2 to 6. We selected these values after evaluating different case studies developed during

our research. Note that the larger pattern (width 10 and depth 6) includes 311 tasks, 159

temporal relationships and 320 refinements. This pattern is extremely large and very unlikely to

be created in a smart home system. In particular, in the case studies that we have developed in

this domain, we have created patterns with a maximum width of 6 and a maximum depth of 4.

Figure 29 shows the memory usage of the patterns with different width and depth. As an

example, the larger pattern (width 10 and depth 6) measures about 110 Kbs. In a system with 50

patterns of this size, less than 5Mb of memory is needed to manage the task model at runtime.

10 http://www.yourkit.com/

We found this result acceptable considering that all smart home systems analyzed and

developed as case studies needed models that contain, on average, 15 patterns with a width of 5

and a depth of 3. In addition, note that smart home systems are currently deployed in powerful

gateways that have from 256Mb to 1Gb of RAM memory, making the memory needed to

manage task models to be a non-critical aspect for this domain.

Figure 29 Memory usage for managing behaviour patterns at runtime

Finally, it is worth nothing that performance evaluation has been focused in the area of smart

home systems. The performance of our approach in other domains may be different and may

require some improvements as it is further stated in Section 10.2.

8.3 Usefulness of our MDD Approach

This section introduces the experiment that we have performed to show the usefulness of our

MDD method in the development and evolution of automated user behaviour patterns. The aim

of the experiment was to compare the usefulness measure obtained by our MDD proposed

approach over the traditional development (i.e., hand-coding development). In this experiment

we asked participants to develop and evolve user behaviour patterns by using both our MDD

approach and ad-hoc development in Java/OSGi technology. Thus, the evaluation was focused

only on computer engineers, since most end-users have not the knowledge and the skills

required to use the Java/OSGi technology.

To do this experiment, we followed the guidelines presented by Kitchenham et al. [38] and

Wohlin et al. [39]. Next, we present each experimental element.Objectives. According to the

Goal/Question/Metric template [40] the objective of the experiment was to:

Analyse: Our MDD approach

For the purpose of: Evaluating its usefulness

With respect to: The traditional development (hand-coding)

From the viewpoint: Of designers

In the context of: Computer science developers

From this objective, the following hypotheses were derived:

 Null hypothesis 1, H10. The usefulness of our MDD approach for developing and evolving

automated user behaviour patterns is the same as the traditional development.

 Alternative hypothesis 1, H11. The usefulness of our MDD approach for automated user

behaviour patterns is greater than the traditional development.

Identification of variables. We identified two types of variables:

 Dependent variables: Variables that correspond to the outcomes of the experiment. In this

work, usefulness was the target of the study, which was measured in terms of the following

software quality factors: learning time, development time; deployment time; correcting

errors time; and maintenance and evolution time [41].

 Independent variables: Variables that affect the dependent variables. The development

method was identified as a factor that affects the dependent variable. This variable had two

alternatives: (1) our MDD approach and (2) the traditional development.

Experimental context. The context of the experiment is the following:

 Experimental subjects. Ten subjects participated in the experiment, all of them being

researchers in software engineering. Their ages ranged between 25 and 40 years old. The

subjects had an extensive background in Java programming and modelling tools; however,

they did not have experience in task modelling. Some subjects had knowledge about OSGi

technology.

 Objects of study. The experiment was conducted using a case study similar to the running

example used throughout the paper, i.e., the WakingUp user behaviour pattern (see Fig. 6).

In order to shorten the evaluation process for both development approaches and to achieve

similar implementations from user to user, we provided the subjects with a behaviour

pattern example to guide the development of the WakingUp routine. Specifically, we

provided them with a traditional implementation of a behaviour pattern to support the

shopping as well as its modelling using our MDD approach. The principal aim of this

routine is to improve the everyday life of the users either by 1) addressing the shopping

automatically if home delivery service is available, or 2) by providing users with

information about the items that are needed and about the supermarket where the items can

be bought otherwise. In addition, we provided the subjects with the drivers for the devices

and services that they needed for developing the routines.

 Instrumentation. The instruments that were used to carry out the experiment were:

o A demographic questionnaire: a set of questions to know the level of the users’

experience in Java/OSGi programming, modelling tools, and task modelling.

o Work description: the description of the work/activities that the subjects should carry

out in the experiment by using our MDD approach and the traditional one. These

activities were the following: (1) the development of the WakingUp routine; and (2)

the modification of the Shopping routine (evolving the executed services by adding a

new one, modifying the service execution plan, and changing the context

conditions).

o A form: a form was defined to capture the start and completion times of each

activity. Some space was left after the completion time of each activity for additional

comments of the subjects about the performed activity. If some activities were

performed with interruptions, subjects wrote down the times every time they started

and stopped carrying out the activity; thus, the total time was derived using these

start and completion times.

Validity evaluation. The various threats that could affect the results of this experiment and the

measures that we took were the following:

 Conclusion validity: This validity is concerned with the relationship between the treatment

and the outcome. Our experiment was threatened by the random heterogeneity of subjects.

This threat appears when some users within a user group have more experience than others.

This threat was minimized with a demographic questionnaire that allowed us to evaluate

the knowledge and experience of each participant beforehand. This questionnaire revealed

that most users had experience in Java programming and modelling techniques. This threat

was also minimized by providing the subjects with the Shopping behaviour pattern, which

helped and guided them in the development of the WakingUp behaviour pattern. Also, our

experiment may be threatened by the reliability of our measures; however, we used time

measures, which are objective measures that are more reliable than subjective measures. In

addition, the precision of the measures may have been affected because the activity

completion time was measured manually by users using the computer clock. To reduce this

threat, we observed subjects while they were performing the different activities in order to

guarantee their exclusive dedication in the activities and supervise the times that they wrote

down.

 Internal validity: This type of validity concern is related to the influences that can affect the

factors with respect to causality, without the researcher’s knowledge. Our evaluation had

the maturation threat: the effect that users react differently as time passes (because of

boredom or tiredness). We solved this threat by dividing the experiment into different

activities.

 Construct validity: Threats to construct validity refer to the extent to which the experiment

setting actually reflects the construct under study. Our experiment was threatened by the

hypothesis guessing threat: when people might try to figure out what the purpose and

intended result of the experiment are and they are likely to base their behaviour on their

guesses. We minimized this threat by hiding the goal of the experiment.

 External validity: This type of validity concern is related to conditions that limit our ability

to generalize the results of the experiment to industrial practice. Our experiment might

suffer from interaction of selection and treatment: the subject population might not be

representative of the population we want to generalize. To deal with this threat, we used a

confidence interval where conclusions were 95% representative. This means that if

conclusions followed a normal distribution, results would be true for 95% of the times the

evaluation is repeated.

Experimental design and procedure. We follow a within-subjects design where all subjects

were exposed to every treatment/approach (MDD and traditional development). The main

advantage of this design was that it allowed statistical inference to be made with fewer subjects,

making the evaluation much more streamlined and less resource heavy [39]. In order to

minimize the effect of the order in which the subjects applied the approaches, the order was

assigned randomly to each subject. However, in order to have a balanced design, the same

number of subjects was assigned to start with each approach. In this way, we minimized the

threat of learning from previous experience.

The study was initiated with a short presentation in which general information and instructions

were given. Next, the experiment started with a demographic questionnaire to capture the user’s

backgrounds. Afterwards, the work description and the form were given to the subjects and they

started to develop the WakingUp behaviour pattern following the two kinds of development

(MDD and traditional) in the indicated order for each user. For each activity of the

development, the users filled in a form to capture the development times. Once the users

developed the WakingUp behaviour pattern, they started to modify the Shopping behaviour

pattern to evaluate the maintenance and evolution. For these activities, they also filled in the

form to capture the maintenance time. Specifically, the activities carried out in each part were

the following:

 Traditional development: Prior to implementing the case study, we provided the subjects

with the necessary tutorials and tools to learn the basics of the OSGi technology needed to

develop the case study. The subjects also participate in a session where they implemented

some guided examples in order to gain experience with the technology. Then, from the case

study description, they started the implementation of the WakingUp routine taking the

Shopping routine as example. Generally, they implemented the classes to support the

routine functionality and the context management (sense the context from the devices and

check context conditions). Then, the subjects deployed the system in the OSGi server.

Once they achieved the execution of the code, they spent some time detecting and

correcting code errors. Finally, we provided a set of requirement changes for the Shopping

routine in order to evaluate the maintenance and evolution. In this activity, the subjects

changed the provided implementation to support the new requirements. Then, the subjects

deployed the changed routine and corrected the errors.

 Our MDD approach. Prior to implementing the case study, we provided the subjects with a

tutorial where the modelling language and the designer tool were explained. The subjects

also worked with some examples in order to gain experience with the model and the tool.

Following the model-driven development presented in this paper, the subjects first

designed the WakingUp behavior pattern according to the case study description. Then,

they linked each task with the appropriate pervasive service. Then, the subjects saved the

created models in the specific folder of the OSGi server where the software infrastructure

was deployed. Once they achieved the execution of the models, they detected and corrected

some modelling errors. Finally, the subjects applied the required changes into the design of

the Shopping routine. To perform the changes, they opened the provided models with the

designer tool and performed the changes according to the new requirements.

Analysis and interpretation of results. In this subsection, we analyse and compare the

usefulness of both approaches based on the time used for learning, development, deployment,

correcting errors, and maintenance. The results have been studied based on a time mean

comparison and the standard deviation. Table 1 presents the descriptive statistics for each of the

studied quality factors and Figure 30 shows the means comparison of the obtained measures for

each approach.

Quality factor Dev. method Mean (hours) Number of

Subjects
Std. deviation

(hours)

Learning time Traditional 20.75 10 2.45

Learning time MDD 11.24 10 1.64

Development time Traditional 4.21 10 0.52

Development time MDD 1.18 10 0.44

Deployment time Traditional 0.92 10 0.65

Deployment time MDD 0.24 10 0.17

Correcting errors time Traditional 4.29 10 1.13

Correcting errors time MDD 0.29 10 0.14

Maintenance time Traditional 3.05 10 0.69

Maintenance time MDD 0.24 10 0.05

Table 1. Descriptive statistics for each quality factor.

Fig. 30. Time mean comparison for development method usefulness.

Next, we provide a further analysis of the results for each measured software quality factor:

 Learning time. The learning activity in the traditional development took users between 18

and 25 h (distributed in several days). The subjects commented that having the

implementation of the Shopping behaviour pattern helped them in this learning activity.

Nonetheless, they needed to continue learning throughout the development of the case

study. This activity following our MDD approach took the subjects from 10 to 14 h (also

distributed in several days). Having the Shopping behaviour pattern modelling as an

example also helped them to understand the modelling language. Thus, the learning time

was significantly higher in the traditional development. This is because technologies like

OSGi are complicated and learning them takes longer than learning our modelling

language. The MDD approach provides technology-independent, high-level primitives to

specify the system. Also, more dispersion was found in the learning time following the

traditional development (std. deviation = 2.45), because the subjects that had knowledge

about OSGi took much less time than the subjects without this background. It is worth

noting that this activity was performed with interruptions since it took a significant amount

of time for some subjects.

 Development time. The development time following the traditional development differed

according to the users implementation experience, ranging from 3.25 (the most experienced

subject) to 5 h. Following the MDD approach, the development activity ranged from 75

min to 2.20 h. The difference between the two approaches was high since developing the

routine traditionally was more complex and difficult for the subjects (because they had to

hard-code all the user behaviour logic manually). The MDD approach allowed subjects to

focus on satisfying user behaviour requirements instead of solving technological problems.

Note that by following this approach, none of the subjects had to implement anything to

manage the context information since it is automatically managed by our software

infrastructure and the context ontology. Regarding the standard deviation, it was low for

both development approaches (see Table 1) indicating that development times tended to be

close for each development approach.

 Deployment time. In this activity, the subjects deployed the system in the OSGi server. In

the traditional development, the subjects that had already worked in OSGi deployed the

routines in a few minutes (from 5 to 10 min). However, for the rest of subjects, the

deployment took more time (from 40 to 70 min). Although they had work with this issue in

the preliminary workshop, they still had little expertise to package the code into bundles

and start them in the OSGi server in the appropriate order. The standard deviation was

(0.65), The deployment of the system using the MDD approach consisted on saving the

models and pressing the run button. For this reason, the standard deviation was very low

(0.17).

 Correct errors time. In the traditional development, the subjects spent from 3 to 6 h to detect

and correct errors in the code. The common errors were having infinite loops or wrong

conditions in the temporal operators of a task. For example, one subject specified that the

WakingUp pattern should start when WorkingDay was false. The right condition was

WorkingDay=true but it took him quite long time to detect this error. Conversely, with the

MDD approach, the subjects spent from 15 to 30 min to detect and correct some modelling

errors. Five subjects had problems in the creation of the task hierarchy because they created

more tasks than needed. Eight subjects had errors in the context conditions associated to the

tasks and the temporal relationships. This was because the names of the context properties

have to be the same as the names specified in the context ontology. However, most of the

subjects commented that the correction of faults and the performance of changes in the user

behaviour patterns could be carried out more easily using the graphical models than

analysing the code, since they could intuitively locate what to change. The obtained

standard deviation shows more dispersion following the traditional development (see Table

1), indicating that some subjects had more difficulties than others for correcting the errors.

 Evolving time. With regard to the traditional development, most of the users commented

that it was not easy to modify the code that they had not implemented. This activity took

them from 2 to 4h. Changing the models following the MDD method was easier and

quicker for the subjects since they already knew the semantics of the models. This activity

took less than 15 min for all the subjects (very low standard deviation obtained). This is

because updating a user behaviour pattern (such as adding, modifying or deleting tasks or

context information) is as easy as modifying the specified pattern in the graphical tool to

make it fit the new requirements.

With our MDD approach, the subjects took 1.95 h to develop the case study (without

considering the learning time), whereas with the traditional development the subjects took 12.47

h. Therefore, the process for automating and evolving user behaviour patterns is more efficient

using our MDD approach than using the traditional one. In order to verify whether we can

accept the null hypothesis, we performed a statistical study called paired T-test using the IBM

SPSS Statistics V2011 at a confidence level of 95% (α = 0.05). This test is a statistical procedure

that is used to make a paired comparison of two sample means, i.e., to see if the means of these

two samples differ from one another. For our study, this test examines the difference in mean

times for every subject with the different approaches to test whether the means of the traditional

development and our MDD approach are equal. When the critical level (the significance) is

higher than 0.05, we can accept the null hypothesis because the means are not statistically

significantly different. For our experiment, the significance of the paired T-test for the total time

means is 0.000 (calculated using the IBM SPSS Statistics), which means that we can reject the

null hypothesis H10 (the usefulness when using our design method for designing behaviour

patterns is the same as when using the traditional design). Based on this test, we have given

strong evidence that the kind of development influences the usefulness. Specifically, the

usefulness using our MDD approach is significantly better than using the traditional one, i.e.,

the mean values for all the measures are lower when using the MDD approach; thus, the

11 Statistical analyses using spss, http://www.ats.ucla.edu/stat/spss/whatstat/whatstat.htm#1sampt

alternative hypothesis H11 is fulfilled: the usefulness when using our approach for designing

behaviour patterns is greater than when using the traditional design.

8.4 End-User tool evaluation

This evaluation consists in measuring the satisfaction of using the end-user tool presented in

Section 7. We proposed to 18 users (10 men and 8 women, which ranged from 26 to 57 years of

age) to participate in the evaluation of the end-user tool presented in Section 7.2. All these end-

users had actively participated as clients in the model specification of the case studies used in

the previous evaluation. These participants covered a wide variety of professions including

engineers, an administrative staff, teachers, housewives, nurses, a farmer, and students. 10 of

them had a medium-high level of computer knowledge and 8 had basic computer knowledge.

In order to evaluate the end-user tool, we used the Post-Study System Usability Questionnaire

(PSSUQ) published by IBM in [42]. This questionnaire is a 19-item instrument for assessing

user satisfaction with system usability. In addition, the items of the questionnaire ask users: if

the tool was easy to learn to use, which allows us to measure the learnability of the tool, i.e.,

how easy is to learn to use the tool; and if they were able to efficiently complete the tasks and

scenarios using this tool, which allows us to evaluate the applicability of the tool (i.e., how easy

is to evaluate the models once one knows how to use the tool).

The participants evaluated the prototype developing a series of scenarios previously designed

using the end-user tool. These scenarios included the following tasks:

 enable/disable a behaviour pattern;

 delete a behaviour pattern;

 add a new preference and change its value;

 modify the context situation of a behaviour pattern;

 modify the tasks of a behaviour pattern (service in charge of executing them, waiting

time between tasks, etc.);

 add a new simple behaviour pattern (without composite tasks): create the context

situation and specify the tasks to be executed;

 add a new complex behaviour pattern (with composite tasks): create the context

situation and specify the tasks from more complex to simpler.

For instance, users were asked to carry out the scenarios described in Section 6.2 and 7.3. We

arranged several sessions in which the users first explored the tool to get a feel for its

functionality and then carried out these scenarios under our supervision. Once the users

completed the scenarios, they filled out the PSSUQ. According to the questionnaire, whose

scores were on a scale of 1 (the highest score) to 7 (the lowest score), the main results obtained

from this evaluation were the following:

- With regard to the learnability of the tool, the participants of the experiment commented

that the tool was easy to learn to use. Specifically, 55.55% of the participants gave the

tool a 1 (the highest score) and the rest a 2. They said that the structure of the interfaces

organization and the guided steps helped them to easily learn how to perform the

activities.

- Concerning the applicability, 66.67% of people involved in the evaluation perceived the

evolution of the automated patterns as very easy, giving this item a 1. However, from

the participants with basic computer knowledge, 22.22% gave this item a 3 and the rest

a 4. These participants commented that modifying a pattern was not very difficult

because they had participated in the modelling of the behaviour patterns and they knew

them. However, they found difficult the activity of creating a new complex behaviour

pattern because it took them a lot of effort to organise the task hierarchy using context

conditions. Also, during the development of the scenarios, we also observed that

designing the context conditions was more difficult for some users than what we had

previously expected. In spite of this, the interface design helped them to correctly

specify the conditions.

- Regarding tool usability, the PSSUQ revealed that the tool was clear enough. Most

users found the interface to be friendly and easy to use. The worst score obtained from

the questionnaire was for the questions that determine the information quality of the

message errors. Users commented that the help messages that were shown in the

interfaces helped them to complete the tasks; however, when they committed an error,

the error messages were not clear enough to correct them. To improve this aspect, we

are currently working to make these messages clearer for users by showing examples of

solutions to correct the possible errors. Regarding what users did not like or they would

change, some users, essentially those with basic computer knowledge, commented that

designing the context conditions was still difficult for them. They commented that they

would like to have a list of predefined conditions in which they could change some

parameters (i.e., when it is -day of week-, at -time-, in a working day, when nobody is at

home, etc.). After explaining them how a condition is formed in depth, we observed that

the interface design helped them to correctly specify the conditions since it provided all

the context properties and the operators that they could use and helped the users to fill

the values. However, we plan to extend the tool to support predefined conditions. In

addition, some users commented that they preferred forms instead of filling out tables,

because they said that forms would facilitate to change the behaviour patterns. We plan

to support this aspect in further work.

- Regarding the overall satisfaction of the tool, it had a result for average of 2.158

according to the questionnaire, which is a quite acceptable mark.

9. Related Work

In this section, we revisit some of the most popular and relevant related works found in the

literature and compare them with our approach. We present two kinds of related works:

proposals to automate and evolve user behaviour patterns, and proposals that perform evolution

by using models at runtime.

9.1. Behaviour Pattern Automation Research

In this work, we have presented an approach for automating and evolving user behaviour

patterns by using context-adaptive task descriptions. Previous approaches for dealing with this

challenge can be grouped into: machine-learning approaches, rule-based context-aware systems,

and task-oriented computing systems.

Machine-learning approaches use algorithms to infer user behaviour patterns from historical

data and to automate them. Some outstanding examples are: MavHome [43] and iDorm[44].

The MavHome project, extended by the CASAS project [45], uses prediction algorithms to

identify common sequential patterns from data captured from the sensors of a smart home. From

this learning, Mavhome and CASAS built a Markov model of user behaviour in which patterns

are specified through a series of states linked by transitions with certain probabilities. If changes

in user behaviour are detected by the algorithms or user feedback, the Markov model can be

extended with new states or the system can be rebooted to obtain an improved Markov model

using a new set of observations. The iDorm project predicts user behaviour by learning fuzzy

rules that map sensor state to actuator readings representing inhabitant action. If changes in the

user behaviour are detected by the algorithms, rules can be added, modified, and deleted as

necessary. Thus, the evolution of these models is performed by rebooting the system or at a low

level of abstraction. In contrast, in this work, the evolution can be performed at runtime and at

the modelling level using concepts of a high level of abstraction, such as task or behaviour

pattern, instead of adding states or rules as the approaches presented above. In addition, these

approaches present some limitations:

1) They require a great amount of training data (the cold-start problem) [46–48];

2) Lack of knowledge about user performed tasks and user desires may lead to automating

tasks for which the users may not want automation or reach generalizations in such a

way that the automation becomes a burden on the user;

3) They can only reproduce the actions that users have executed in the past in the same

way users executed them.

In our approach, we tackle these problems. We provide the system with a set of tasks that are

automated since it starts to run, providing a solution for the cold-start problem (see [48] for

more detailed information). In addition, tasks to be automated are analyzed previously by

analysts with user participation. Therefore, only those tasks that users do want are automated.

Moreover, both users’ desires as well as time and energy concerns can be taken into account;

and tasks can also be automated regardless of whether or not the users have performed them in

the past.

Rule-based context-aware approaches program rules to automate user actions when a certain

context condition arises. Some outstanding examples are [49] and [50]. In [49], the system is

composed of independent agents, each of which comprises a set of rules that encode reactions to

context states. Each rule follows the template When <triggers>, if <conditions>, then

<action>. In [50], the authors propose situation and preference abstractions that are used by

ECA rules to automatically trigger certain actions. Both works allow users to configure the

specified rules by modifying user preferences; however, these approaches do not support the

evolution of the rules or favour user participation in the design of the rules. In contrast, in our

approach, the automated routine tasks are described and managed by using the task model. This

model facilitates the participation of users in its design and evolution by using concepts close to

them [51]. Also, rule-based techniques generally require large numbers of rules which have to

be manually programmed [52] and are not appropriate for automating user complex tasks as the

behaviour patterns described in Section 4.2.

Task-oriented computing systems use task modelling to facilitate the interaction of users with

the system since the concept of task is more understandable for end-users [51]. These systems

have proved that task modelling is effective in several fields such as user interface modelling

[53–55], and assisting end-users in the execution of tasks through service provisioning and

resource allocation [56–58]. These works show the growing usage of task modelling and its

remarkable results and possibilities to model system behaviour. However, they do not attempt to

automate user behaviour patterns. Therefore, the proposed task models do not provide enough

expressiveness (such as specific relationships between tasks, context situations, etc.) or runtime

support for their execution and evolution.

9.2. Software Evolution by Using Models at Runtime

In our approach, we confront system behaviour evolution by evolving models at runtime. In this

section, we study some of the most important works that use models at runtime for software

evolution.

Oreizy et al. [59] were pioneers in their adoption of an architecture-based model to support

runtime software evolution. Their approach emphasizes the role of software connectors in

supporting runtime change in the system configuration. Connectors are explicit architectural

entities that bind components together and act as mediators between them. The runtime

architectural model describes the interconnections between components and connectors as well

as their mappings to implementation modules. Thus, to perform system reconfiguration (adding,

removing, or reconnecting a component), they alter the connector bindings that mediate

component communication, maintaining the correspondence between the model and the

implementation.

Floch et al. [60] promote the use of architecture models to support the development of adaptive

mobile applications. They use adaptation policies expressed as high-level goals to be achieved.

At runtime, the configuration of the system is optimized with respect to these goals. This

reconfiguration is determined by comparing the actual running system with new architectural

variant models based on a utility function.

Morin et al. [61] propose a combination of model-driven and aspect-oriented techniques to

support dynamic runtime reconfiguration. They dynamically compose aspects to produce a set

of configuration models and then use these models to generate the scripts needed to adapt a

running system from one runtime configuration to another.

Cetina et al. [62] propose the reuse of design variability models at runtime for supporting the

self-configuration of systems when triggered by changes in the environment. A context monitor

checks if certain context conditions are fulfilled. If so, the models are interpreted to generate the

needed reconfiguration actions to modify the system architecture. Afterwards, the variability

models are updated accordingly to reflect the changes in the system architecture.

Garlan and Schmerl [63] use architecture-based models during runtime for system monitoring,

problem detection, and repair. Their approach monitors the runtime behaviour of an executing

system. The extracted information is abstracted and related to architectural properties and

elements in an architectural model. Thus, if there are changes in the architectural model, a rule

evaluation is triggered to determine whether the system is operating within an envelope of

acceptable ranges. Violations of rules are handled by a repair mechanism that adapts the

architecture. Finally, architectural changes are propagated to the running system.

Blumendorf et al. [64] focus on the development of adaptive user interfaces and their adaptation

at runtime combining multiple models. These models are self-contained to ensure executability.

This approach allows developers to monitor, maintain, manipulate and extend interactive

applications at runtime and thus manage the continuously changing requirements of user

interface development.

None of the above approaches deal with the evolution of behavioural models. In addition, to be

able to evolve the system, most of these approaches need either to synchronize models and the

code that implements these models, or to synchronize different models by performing model to

model transformations. In contrary, we support the evolution of the automated behaviour

patterns through the evolution of the task model and context model at runtime. Since these

models are the only representation of the automated behaviour patterns, we do not need to

synchronize any other software artefact.

Contrary to the above approaches, MOCAS [65] deals with building self-adaptive component-

based systems. It specifies the structure of the components using a UML profile whereas their

behaviour is specified using UML state machines that are also used to describe adaptation

policies. A MOCAS component embeds at runtime the state machine describing its behaviour,

which is executed by the MOCAS engine, a Java library. The components are installed in a

state-based container to become adaptive. The container intercepts and mediates adaptation to

its wrapped component. This approach is specific for component-based systems whose

behaviour and adaptation can be described by UML state machines. In addition, it is more

focused on self-adaptation, and therefore, does not provide evolution tools that allow designers

or end-users to evolve the system behaviour.

In [66], authors present a Graph-based Runtime Adaptation Framework (GRAF) to facilitate

software behaviour adaptation by using runtime models that reflect the current state of the

adaptable software’s source code. This approach also takes advantage of model interpretation

for facilitating adaptation; however, the main purpose of this approach is to provide runtime

adaptation to Java applications already implemented, which differs from the purpose of the

presented work, in which the adaptive components (the behaviour patterns), are only

represented in the models (not in source code). In contrary to our work, this approach makes

necessary reification and reflection capabilities for modifying compiled code at runtime in order

to synchronize it with models.

10. Discussion

The use of models at runtime [67] is an emerging paradigm within Model Driven Development

that promotes the use of models as runtime software artefacts. Models are proposed to be used

at runtime to monitor and verify particular aspects of runtime behaviour, implement self-*

capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing

systems), and support human-driven adaptation. In this work, we use models at runtime in order

to adapt the execution of AmI services to user behaviour patterns.

To be able to use models at runtime, we must provide software infrastructures that interact with

them at runtime. To achieve this, we have developed MAtE, which is in charge of interpreting

models and executing services accordingly. Along the paper, we presented some tools that show

how MAtE allows us to evolve AmI system’s behaviour by evolving models at runtime. Next,

we summarize the main benefits of this approach and the challenges that the use of the

execution of models raises.

10.1. Advantages of the Presented Approach

The approach presented in this work provides the following main advantages:

Evolution at a high level of abstraction. As we can see in previous sections, the system

behaviour that is in charge of automating the execution of AmI services can be evolved by using

concepts such as user behaviour patterns, tasks, or context situations. For instance, in order to

make sure that an automated behaviour pattern executes one service instead of another we just

need to replace the corresponding task; in order to change the order in which services must be

executed we just need to modify temporal relationships; in order to change the situations in

which services must be executed we just need to change a context condition. By following ad-

hoc solutions, this evolution must be done by re-encoding complex logic structures, which

constitutes a time-consuming and error-prone activity.

Post-deployment evolution without stopping the system. The proposed models are the only

runtime artefacts that represent the user behaviour patterns to be automated. This ensures that as

soon as models are evolved the system behaviour is evolved. We have shown in this paper how

this aspect facilitates the creation of tools that allow us to evolve the models (and then the

system behaviour) at runtime, without stopping the system. In addition, models are decoupled

from the pervasive services’ implementation since the models just use identifiers for reference

the services. This also facilitates the evolution of the implemented services since the models are

independent of their internal implementation.

Controlled evolution. The software evolution proposed in this paper is performed at the

modelling level. This means that any evolution that can be done must satisfy the restrictions

defined in the metamodels, i.e. we can evolved the coordination of AmI services according to

the actions that are allowed by the metamodels. For instance, we cannot create a task that does

not belong to a behaviour pattern. This provides a valuable mechanism to guarantee that

evolution is done in a safe way according to specific restrictions. It is true that they are

syntactical restrictions and they do not control semantic restrictions. As it is explained in the

future work section, we are working on developing simulation tools in order to check that

evolutions produce the results that are expected to obtain.

Support to develop evolution tools. We have presented MUTate and OCean, which provide

high level Java constructors that facilitate the evolution of the context model and the context-

adaptive task models at runtime. These mechanisms, together with the presented concurrency

module, facilitate the development of tools to evolve user behaviour patterns.

End-user evolution. This benefit is closely related to the previous one. As a proof of concept,

we have developed an application that makes use of MUTate and OCean in order to evolve the

system behaviour. This tool is focused on allowing the end-users to perform the evolution by

themselves.

10.2. Challenges

Throughout the development and validation of the proposed architecture, we detected some

challenges that arise to correctly support system behaviour evolution at runtime.

Model checking and validation. The use of model-based techniques provides great facilities

for evolving system behaviour at runtime. However, to achieve the evolution of the system

ensuring consistent system behaviour, the changes that have to be applied should be validated

before performing them.

To perform these validations in our approach, model checking techniques can be applied. For

instance, the developed tools already apply model checking by validating constraints that the

models should fulfil, such as the following one (a full description of the model constraints that

are checked can be found in [22]): when a task is refined only one type of refinement can be

used to obtain child tasks. In OCL:

Context CompositeTask
Inv: self.refinements -> forAll(t1, t2 |t1.type = t2.type)

However, it is important to note that the presented task models are adaptive models, which

makes their behaviour more complex to validate since it changes at runtime in response to

context changes. Therefore, more complex validations are needed. For instance, it would be

necessary to check that the modelled patterns do not produce loops when they are executed or

that a simultaneous execution of two patterns does not produce undesired behaviour. To verify

and validate these aspects, other model-checking approaches specifically proposed for such

models, such as the presented in [68], can be applied.

Model-based Simulation. Although model-checking techniques are very powerful tools for

validating the syntactic correctness of the changes applied to models, other validation

techniques are needed to validate the semantic correctness, i.e., to check beforehand if the

changed patterns actually do what the users want. To achieve this, model-based simulations can

be performed: they can allow end-users to observe the behaviour without taking any risks.

As explained in Section 7.2., we plan to provide the end-user tool with simulation capacities so

that users can simulate the execution of the changed behaviour patterns. An outstanding

example that could be applied with that purpose in our work is the one presented in [26]. It uses

workflows to control the device operations and the interactions among the devices of a

household. These workflows are executed by a workflow engine, in a similar way as MAtE

executes the context-adaptive task models. Each workflow, the devices involved in it, and their

environmental effects are modelled using Petri Nets. These Petri Nets are updated with

environmental parameters obtained via real sensors and/or interrogating devices for their

observable states at run-time. Thus, the Petri Nets act as mirror models for reasoning and

predicting the effects of the workflow execution. Users or designers can run the Petri Net

simulation to predict environmental effects before (or while) a workflow is (being) executed.

Performance Improvements. In the evaluation of our approach we have validated that the

performance of model manipulation is acceptable when compared to the performance of the

devices and communication networks usually found in the Smart Home domain. However, we

may need to improve this performance if the approach is applied in other domains that require

faster system response or less usage of memory, such as industrial systems or larger systems.

With regard to system response, parallelism techniques can be applied to improve it, so that

multiple instances of MAtE can be executed to interpret behaviour patterns in parallel.

However, this should face the problem of accessing models by two or more engines in a

concurrent way. The concurrency module presented in this work should be improved to

consider this point.

With regard to memory usage, a lazy load strategy can be implemented if memory is a critical

resource. With this strategy, user behaviour patterns should not be completely loaded into

memory. Only the root tasks, which represent the behaviour pattern, and the context situations,

which indicate when a behaviour pattern should be executed, are required to be initially loaded.

When a behaviour pattern has to be executed the rest of its tasks, refinements and temporal

relationships can be loaded, interpreted and executed. Once it has been executed its definition

can be removed from memory.

11. Conclusions and Future Work

In this work, we have presented and evaluated a novel approach for confronting the challenge of

evolving automations related to user behaviour patterns. This approach is based on model

interpretation at runtime, which allows us to evolve system behaviour based on the premise that

the automated user behaviour patterns are evolved by evolving the models.

This way of facing the problem of system evolution allows us to provide mechanisms to: (1)

evolve automations by means of high level concepts at runtime and (2) allowing designers and

end-users to perform the required evolution.

To achieve this, we have proposed a context model and a context-adaptive task model that allow

behaviour patterns to be specified in an abstract way. These models are interpreted at runtime by

MAtE, an engine capable of executing the behaviour patterns as specified in the models. To

evolve these automations we provide:

(1) High level mechanisms that allow models to be evolved by using their own modelling

language.

(2) A toolkit that allows designers to specify and evolve the automated behaviour patterns

by graphically modifying the models.

(3) A toolkit that allows end-users to evolve their automated behaviour patterns by using

user-friendly interfaces. Thus, if user behaviour patterns undergo changes after system

deployment, end-users can evolve them by themselves without having to stop the

system.

As future work, we plan to work on extending our approach to support the use of machine-

learning algorithms. We believe that these algorithms can considerably automate the evolution

process. When the system is running, the context monitor stores the user actions in the context

model. Machine-learning algorithms can use this information to automatically infer new

behaviour patterns. To achieve this, we are extending the context monitor to provide an

adequate Java interface that allows these algorithms to properly obtain this information from the

context model. For not being disruptive for users, we also plan to extend the end-user tool so

that it periodically shows users the inferred behaviour patterns and allows them to simulate the

patterns’ execution. Thus, users can modify the patterns and add them to the system if they so

desire.

Regarding the application domains, our approach can be applied in a wide variety of smart

environments, because our software infrastructure is implemented using Java and OSGi. We are

currently developing a case study for automating and improving the irrigation and fertilization

in an orange field. Using our approach, these tasks could be performed automatically and in a

more efficient way. Some of the behaviour patterns that have been identified to be automated

are the following: periodicIrrigation and periodicFertilization to periodically irrigate and

fertilize the land according to its humidity and the season; and frostSecurity, to irrigate the land

when a frost has been predicted in order to prevent the oranges from freezing.

References

[1] M. Weiser, “The Computer of the 21st Century,” Scientific American, vol. 265, pp. 66–75, 1991.
[2] E. Serral, P. Valderas, and V. Pelechano, “Context-Adaptive Coordination of Pervasive Services

by Interpreting Models during Runtime,” The Computer Journal, vol. 56, no. 1, pp. 87–114,
2013.

[3] S. A. Ajila and S. Alam, “Using a Formal Language Constructs for Software Model Evolution,”
Third IEEE International Conference on Semantic Computing (IEEE-ICSC 2009). Berkeley, CA,
USA, pp. 390–395, 2009.

[4] K. Bennett and V. Rajlich, “Software Maintenance and Evolution: A Roadmap,” 22nd
International Conference on Software Engineering (ICSE 2000). Limerick, Ireland, pp. 75–87,
2000.

[5] T. Mens, “The ERCIM Working Group on Software Evolution: the Past and the Future,”
Proceedings of the joint international and annual ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol) workshops. ACM, 2009.

[6] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, and R. Hirschfeld, “Challenges in Software
Evolution: Report of the ChaSE 2005 workshop organised by the ERCIM Working Group on
Software Evolution,” IWPSE-05. Lisbon, Portugal, pp. 13–22, 2005.

[7] R. Hirschfeld, K. Kawamura, and H. Berndt, “Dynamic Service Adaptation for Runtime System
Extensions,” Wireless On-Demand Network Systems. Springer Berlin Heidelberg, Madonna di
Campiglio, Italy, pp. 227–240, 2004.

[8] B. P. Lientz and E. B. Swanson, Software maintenance management: a study of the maintenance
of computer application software in 487 data processing organizations. Addison-Wesley, 1980.

[9] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards a taxonomy of software
change,” Journal of Software Maintenance and Evolution: Research and Practice, vol. 17, no. 5,
pp. 309–332, 2003.

[10] B. Hardian, J. Indulska, and K. Henricksen, “Balancing Autonomy and User Control in Context-
Aware Systems - a Survey,” Comorea, PerCom Workshops 2006. IEEE, 2006.

[11] G. Biegel and V. Cahill, “A framework for developing mobile, context-aware applications,” the
2nd IEEE Conference on Pervasive Computing and Communication (PerCom), pp. 361–365 ,
2004.

[12] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, and J. Altmann, “Context-awareness on
mobile devices – the hydrogen approach,” The 36th Annual Hawaii International Conference on
System Sciences, pp. 292–302, 2002.

[13] A. K. Dey, “Understanding and Using Context,” Personal Ubiquitous Computing, vol. 5, no. 1,
pp. 4–7, 2001.

[14] Q. Z. Sheng and B. Benatallah, “ContextUML: a UML-based modelling language for model-
driven development of context-aware web services.,” Proceedings of the International
Conference on Mobile Business (ICMB’05), pp. 206–212, 2005.

[15] K. Henricksen and J. Indulska, “A Software Engineering Framework for Context-Aware
Pervasive Computing,” Proceedings of the Second IEEE Annual Conference on Pervasive
Computing and Communications (PerCom 2004). IEEE, Orlando, FL, USA, pp. 77–86, 2004.

[16] M. Baldauf, S. Dustdar, and F. Rosenberg, “A Survey on Context-Aware Systems,” International
Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263–277, 2007.

[17] J. Ye, L. Coyle, S. Dobson, and P. Nixon, “Ontology-based models in pervasive computing
systems,” The Knowledge Engineering Review, vol. 22, no. 4, pp. 315–347, 2007.

[18] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive computing
environments,” Special Issue on Ontologies for Distributed Systems, Knowledge Engineering
Review, vol. 18, no. 3, pp. 197–207, 2004.

[19] C. Welty and D. L. McGuinness, “OWL Web Ontology Language Guide,” vol. W3C Recomm.
W3C Recommendation 10 Feb 2004, 2004.

[20] A. Shepherd, “HTA as a framework for task analysis,” ERGONOMICS, vol. 41, pp. 1537–1552,
1998.

[21] E. Serral, P. Valderas, and V. Pelechano, “Towards the Model Driven Development of context-
aware pervasive systems,” Special Issue on Context Modelling, Reasoning and Management of
the Pervasive and Mobile Computing (PMC) Journal, vol. 6, no. 2, pp. 254–280, 2010.

[22] E. Serral, “Automating Routine Tasks in Smart Environments. A Context-aware Model-driven
Approach,” Technical University of Valencia, 2011.

[23] S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for Model Driven Architecture.
2002.

[24] J. Muñoz and D. V. P. Ferragud, “Model Driven Development of Pervasive Systems. Building a
Software Factory,” Universidad Politécnica de Valencia, Valencia, 2008.

[25] M. B. Juric and P. Sarang, Business Process Execution Language for Web Services: BPEL and
BPEL4WS. 2006.

[26] S. W. Loke, S. Smanchat, S. Ling, and M. Indrawan, “Formal Mirror Models: an Approach to
Just-in-Time Reasoning for Device Ecologies,” International Journal of Smart Home, vol. 2, no.
1, pp. 15–32, 2008.

[27] “Code Generation conference - http://www.codegeneration.net/cg2010/,” 2010. .
[28] M. Guy, “Report 2: API Good Practice Good practice for provision of and consuming APIs,”

UKOLN, 2009.
[29] J. Bloch, “How to Design a Good API and Why it Matters,” 2005, pp. 506–507.
[30] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical OWL-DL

reasoner,” Journal of Web Semantics, 2007.
[31] P. Bernstein, “Multiversion Concurrency Control - Theory and Algorithms,” ACM Transactions

on Database Systems, vol. 8, no. 4, pp. 465–484, 1983.
[32] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-D tool for introductory programming concepts,”

in Journal of Computing Sciences in Colleges, 2000, vol. 15, pp. 107–116.
[33] F. Pérez and P. Valderas, “Allowing End-users to Actively Participate within the Elicitation of

Pervasive System Requirements through Immediate Visualization,” Fourth International
Workshop on Requirements Engineering Visualization (REV). IEEE, Atlanta, Georgia, USA, pp.
31–40, 2009.

[34] H. Lieberman, F. Paternó, and V. Wulf, End User Development. Springer, 2006.
[35] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1993.
[36] M. Van Welie and H. Trætteberg, “Interaction Patterns in User Interfaces.” pp. 13–16, 2000.
[37] Galitz and W. O., The Essential Guide to User Interface Design: An Introduction to GUI Design

Principles and Techniques. New York, NY, USA: John Wiley & Sons, Inc., 2002.
[38] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for method and tool evaluation,”

Software, IEEE, vol. 12, no. 4, pp. 52–62, 1995.
[39] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, “Experimentation

in Software Engineering,” Springer, 2012.
[40] J. V Jones, Applied sofware measurement: assuring productivity & quality (2nd ed’97). McGraw-

Hill, 1997.
[41] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in First International Workshop

on Advanced Context Modelling, Reasoning And Management at UbiComp 2004, 2004.
[42] J. R. Lewis, “Psychometric Evaluation Of An After-Scenario Questionnaire For Computer

Usability Studies : The ASQ,” SIGCHI Bulletin, 1991.
[43] D. J. Cook, M. Youngblood, I. I. I. E. O. Heierman, K. Gopalratnam, S. Rao, A. Litvin, and F.

Khawaja, “MavHome: An agent-based smart home,” In First IEEE International Conference on
Pervasive Computing and Communications (PerCom’03),. pp. 521–524, 2003.

[44] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish, and H. Duman, “Creating an
Ambient-Intelligence Environment Using Embedded Agents,” IEEE Intelligent Systems, vol.
19(6), pp. 12–20, 2004.

[45] P. Rashidi and D. J. Cook, “Keeping the Resident in the Loop: Adapting the Smart Home to the
User,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 39, no. 5, pp. 949–959, 2009.

[46] G. I. Webb, M. J. Pazzani, and D. Billsus, “Machine learning for user modeling,” User modeling
and user-adapted interaction, vol. 11, no. 1–2, pp. 19–29, 2001.

[47] L. G. Valiant, “A theory of the learnable,” Communications of the ACM, vol. 27, no. 11, pp.
1134–1142, 1984.

[48] E. Serral, P. Valderas, and V. Pelechano, “Improving the cold-start problem in user task
automation by using models at runtime,” in Information Systems Development, 2011, vol. , 2011.,
pp. 671–683.

[49] M. García-Herranz, P. A. Haya, A. Esquivel, G. Montoro, and X. Alamán, “Easing the Smart
Home: Semi-automatic Adaptation in Perceptive Environments,” Journal of Universal Computer
Science, vol. 14, no. 9, pp. 1529–1544, 2008.

[50] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Using context and preferences to implement
self-adapting pervasive computing applications,” Sofware: Practice and Experience, vol. 36, no.
11–12, pp. 1307–1330, 2006.

[51] P. Johnson, “Tasks and situations: considerations for models and design principles in human
computer interaction,” HCI International. Munich, Germany, pp. 1199–1204, 1999.

[52] D. J. Cook and S. K. Das, Smart environments: technologies, protocols, and applications, vol. 43.
Wiley-Interscience, 2005.

[53] F. Paternò, “ConcurTaskTrees: An Engineered Approach to Model-based Design of Interactive
Systems,” in The Handbook of Analysis for Human-Computer Interaction, 2002, pp. 483–500.

[54] C. Pribeanu, Q. Limbourg, and J. Vanderdonckt1, “Task Modelling for Context-Sensitive User
Interfaces,” Interactive Systems: Design, Specification, and Verification (DSV-IS). Springer-
Verlag Berlin Heidelberg 2001, Glasgow, Scotland, UK, pp. 49–68, 2001.

[55] N. Souchon, Q. Limbourg, and J. Vanderdonckt., “Task modelling in multiple contexts of use,” in
Interactive Systems: Design, Specification, and Verification (DSV-IS), 2002, pp. 59–73.

[56] R. Huang, Q. Cao, J. Zhou, D. Sun, and Q. Su, “Context-Aware Active Task Discovery for
Pervasive Computing,” International Conference on Computer Science and Software
Engineering. IEEE, Wuhan, China, pp. 463–466, 2008.

[57] J. P. Sousa, V. Poladian, D. Garlan, and B. Schmerl, “Task-based Adaptation for Ubiquitous
Computing,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 36, 3, pp. 328–340,
2006.

[58] R. Masuoka, B. Parsia, and Y. Labrou, “Task Computing—The Semantic Web Meets Pervasive
Computing,” 2nd Int’l Semantic Web Conf on The Semantic Web (ISWC 2003), vol. LNCS 2870.
Sanibel Island, FL, USA, pp. 866–881, 2003.

[59] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,
D. S. Rosenblum, and A. L. Wolf, “An architecturebased approach to self-adaptive software,”
IEEE Intelligent Systems and Their Applications, vol. 14(3) , pp. 54–62, 1999.

[60] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjørven, “Using Architecture
Models for Runtime Adaptability,” IEEE Software, 2006.

[61] B. Morin, J.-M. Jézéquel, F. Fleurey, and Arnor Solberg, “Models at Runtime to Support
Dynamic Adaptation,” IEEE Computer Society, pp. 46–53, 2009.

[62] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Using Feature Models for Developing Self-
Configuring Smart Homes,” Fifth International Conference on Autonomic and Autonomous
Systems. IEEE, Valencia, Spain, pp. 179–188, 2009.

[63] D. Garlan and B. Schmerl, “Using Architectural Models at Runtime: Research Challenges,”
Proceedings of the European Workshop on Software Architectures. Springer Berlin Heidelberg,
St Andrews, UK, pp. 200–205, 2004.

[64] M. Blumendorf, G. Lehmann, S. Feuerstack, and S. Albayrak, “Executable Models for Human-
Computer Interaction,” In Interactive Systems. Design, Specification, and Verification Workshop
(DSV-IS 2008). Springer Berlin Heidelberg, Kingston, Canada, pp. 238–251, 2008.

[65] C. Ballagny, N. Hameurlain, and F. Barbier, “MOCAS: a State-Based Component Model for
Self-Adaptation,” Third IEEE International Conference on Self-Adaptive and Self-Organizing
Systems. IEEE , San Francisco, California, pp. 206–215, 2009.

[66] M. Amoui, M. Derakhshanmanesh, J. Ebert, and L. Tahvildari, “Achieving Dynamic Adaptation
via Management and Interpretation of Runtime Models,” Journal of Systems and Software, vol.
85, no. 12, pp. 2720–2737, 2012.

[67] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” IEEE Computer, vol. 42, pp. 22–
27, 2009.

[68] J. Zhang and B. H. C. Cheng, “Model Based Development of Dynamically Adaptive Software,”
International Conference on Software Engineering (ICSE’06). ACM, Shanghai, China, pp. 371–
380, 2006.

