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To better understand the mechanisms that allow some animals to sustain their productive effort in harsh environmental
conditions, rabbit does from two selection lines (LP and V) were housed in normal (NC), nutritional (NF) or heat (HC) challenging
environmental conditions from first to third partum. The LP line (n = 85) was founded on reproductive longevity criteria by selecting
does from commercial farms that had a minimum of 25 partum with more than 7.5 kits born alive per parity. Line V (n = 79) was
constituted from four specialised maternal lines into a composite synthetic line and then selected by litter size at weaning for 36
generations. Female rabbits in NC and NF environments were housed at normal room temperature (18°C to 24°C) and fed with
control [11.6 MJ digestible energy (DE)/kg dry matter (DM)] or low-energy diets (9.1 MJ DE/kg DM). HC does were housed at high
room temperatures (25°C to 35°C) and fed the control diet. Female rabbits in the HC and NF environments ingested 11.5% and
6% less DE than NC does, respectively (P < 0.05). These differences between environments occurred in both lines, with the
differences being higher for LP than for V does (+6%;, P < 0.05). Milk yield responses followed those of energy intake also being
higher for LP does (+21.3 g/day; P < 0.05). The environmental conditions did not affect the perirenal fat thickness (PFT), but a
genotype by environment interaction was observed. In NC and HC, the PFT was higher for line V (+0.23 and +0.35 mm,
respectively; P < 0.05) than for LP does, but this was not the case at NF (—0.01 mm). Moreover, the PFT evolution was different
between them. In the NC environment, LP does used the accreted PFT in late lactation (—0.29 mm), whereas V does did not
(—0.08 mm). Conversely, in the HC environment, LP does showed a flat PFT evolution in late lactation, whereas V does
accumulated PFT. In the NF environment, LP and V does had a similar PFT evolution. There was also a litter size reduction for V
does of —2.59 kits total born in HC and —1.78 kits total born in NF environments, whereas this was not observed for LP does.
The results for LP does indicate a direct use of DE ingested for reproduction with little PFT change, whereas V does actively use

the PFT reserves for reproduction.
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Implications

Selection programmes considering longevity and functional
traits can contribute to the health status and fertility of the
herd. In rabbits, a maternal line established by selecting does
with a long productive lifespan has been characterised by a
greater reproductive robustness to environmental changes
compared with does from a line founded and selected
exclusively for reproductive traits. This study highlights the
role of body reserves in underpinning the reproductive
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stability of these robust female rabbits. It also helps understand
why they have a longer productive lifespan.

Introduction

In meat-producing rabbits, the high replacement rate of
does (e.g. >120%; Ramon et al,, 2004) does not seem to be
directly related to selection for reproductive intensity (Piles
et al., 2006). Indeed, negligible genetic correlations between
longevity and litter size traits were found in a line selected
for litter size at weaning (Sanchez et al., 2006). However,
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Rosell (2003) and Rosell et al. (2009) have described discrete
and seasonal factors (e.g. human and/or environmental)
associated with an increment in sanitary risks, especially in
young high reproductive does (Rosell and de La Fuente,
2009). If the selection for reproductive intensity does not
reduce longevity, but at the same time the environmental
factors increase the sanitary risks and thus the replacement
rate, the selection for reproductive intensity may have
adverse effects on other life functions related to robustness.

Strandberg and Sélkner (1996) indicated that the incre-
ment of herd health status, fertility and thus the reduction
in voluntary culling were all beneficial traits for the inclusion
of longevity in the selection index for dairy cows. Similarly,
Engblom et al. (2007) observed an overall better reproductive
performance and health status of sows culled at ‘old ages'.
Such information suggests that animals with long productive
lifespans were those that were more able to adapt to a wide
range of changing environmental factors (e.g. housing features,
climatic conditions and diet) while maintaining adequate
productive levels, that is, they are more robust.

This seems to be the case of a maternal rabbit line, called
LP, founded by selecting female rabbits of extremely long
longevity and a minimum acceptable litter size from a large
set of Spanish and Portuguese commercial farms (Sanchez
et al., 2008). Does from line LP were characterised by having
an extended lifespan (Sanchez et al,, 2008), a later reproductive
senescence (Theilgaard et al, 2007) and a greater adaptability
to maintain the productive level in the face of nutritional con-
straints (Theilgaard et al,, 2009), compared with a maternal line
exclusively founded and subsequently selected for reproductive
intensity (line V; Estany et al., 1989). The advantages of LP does
were dependent on specific conditions (environmental restric-
tion or high reproductive effort) and seem to be related to the
use of their greater soma (i.e. live weight and body reserves)
(Theilgaard et al,, 2007 and 2009).

However, it is also known that the rabbit lines selected for
growth rate, characterised by a high feed intake, growth rate
and adult live weight (Estany et al., 1992), and also by a
reduced reproductive performance (Mehaisen et al., 2004;
Vicente et al.,, 2012), showed an elevated disease incidence,
despite having a higher body condition score (Sanchez et al.,
2012). Therefore, robustness in female rabbits seems not to
be based solely on their greater body reserves or on their
ability to obtain resources (greater intake capacity owing
to larger size). It seems likely that the way in which such
animals allocate their resources to different life functions,
that is, their control of nutrient partition, is a major factor in
their robustness (Friggens et al., 2012). In this context, it is
noteworthy that Ferrian et al. (2013) observed a better
immunological response of LP female rabbits to a lipopoly-
saccharide challenge.

The above mentioned evidence suggests that the LP line
may be classified as robust (Theilgaard et al, 2007 and
2009). However, it is not clear how these animals alter their
nutrient partitioning in response to environmental constraints.
Therefore, the present study was designed to: (i) characterise in
restricted environments the changes in resource acquisition and
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allocation of female rabbits from a line recently founded on the
basis of hyperlongevity, compared with a line founded and
selected over 36 generations for litter size; (i) quantify the
consequences on productive performance; and (jii) thus improve
our understanding of the possible implications of selection on
reproductive intensity for robustness and lifespan.

Material and methods

The experimental proceedings were approved by the Universitat
Politécnica de Valéncia ethical committee on the protection of
animals used in experimentation and other scientific purposes,
as established by Royal Decree 1201/2005 (BOE, 2005).

Animals

Female rabbits from two lines differing in foundational
criteria and selection degree for litter size at weaning
were compared. A total of 164 rabbit females started the
trial, 85 from line LP and 79 from line V. The LP line was
founded on reproductive longevity criteria by selecting
females from commercial farms (indistinctively of its origin;
i.e. purebreed or crossbreed of synthetic lines) that had a
minimum of 25 partum with more than 7.5 kits born alive per
partum (more details of the LP line constitution are given
in Sanchez et al, 2008) and then selected by litter size
at weaning for the subsequent six generations. Line V was
constituted from four specialised maternal lines into a com-
posite synthetic line and then selected by litter size at
weaning (Estany et al., 1989) for 36 generations. Both lines
are used to produce crosshreed female rabbits destined to
commercial farms.

Environments

To evaluate the animal response to environmental changes,
three environmental conditions differing in room tempera-
ture and/or diet quality were set up. The control environment
(NC) was the combination of normal room temperatures [N;
95% confidence intervals of minimum (17.7°C; 19.3°C) and
maximum (23°C; 24.7°C) daily registered temperatures] and
a control diet (C), similar to commercial diets formulated to
cover the requirements of reproductive rabbit does [11.6 M)
DE/kg DM, 126 g digestible protein/kg DM and 168 g of
ADF/kg DM]. The heat challenging environment (HC) was
achieved by the combination of a high temperature room
(H; following a daily sinusoidal variation of 25°C to 35°C) and
diet C. Detailed information on the design and operating
system of the climatic chamber can be found in Garcia-Diego
etal. (2011). Finally, the nutritional challenging environment
(NF) was created by combining normal room temperatures
(N) with a low-energy fibrous diet (F), formulated to achieve
9.1 MJ DE/kg DM, 104 g digestible protein/kg DM and 266 ¢
ADF/kg DM, which is clearly below the recommendations for
lactating rabbit does (de Blas and Mateos, 2010). Ingredients,
chemical composition and apparent digestible coefficients of
the experimental diets used in the different environments and
the DE intake were calculated from digestibilities obtained
in each environment, as described at Savietto et al. (2012).



Therefore, the DE content of diets consumed by LP and V female
rabbits were 12.67 and 12.43 at HC, 11.65 and 11.54 at NC,
and 8.95 and 9.12 MJ DE/kg DM at NF, respectively.

Experimental procedure

Female rabbits were raised from birth until 63 days of age,
according to a standardised management schedule described
by Ragab and Baselga (2011), at which time they were
transferred to the experimental farm. During the rearing
period (from 63 days old to first partum), animals were
subject to standard management with a commercial rearing
diet (CP = 15.3%, ether extract = 2.5%, and crude fibre =23.1%
of fresh matter), supplied ad libitum and a daylight scheme
of 16 h light and 8 h dark. Young does were first artificially
inseminated at 125 days old, reaching the first partum with
an average live weight of 3636 + 294 g (mean =+ s.d.). At first
partum, the does from lines LP and V were randomly
assigned to one of the three environments (NC, HC or NF) in a
2 x 3 factorial design (LPNC=31, LPHC=26, LPNF=28,
VNC=25, VHC=29 and VNF=25 rabbit does). Because
the availability of animals was limited by the selection
nucleus, the initial number of does differed. During the
experimental period, which lasted from first until the third
partum, does followed a programmed reproductive interval
of 42 days, being inseminated at 11 days post-partum (dpp).
Non-pregnant does were re-inseminated 21 days later and so
on, until a maximum of three consecutive failures, when they
were culled for infertility. The number of kits total born and
born alive was recorded at each partum. Litters were stan-
dardised at birth to nine kits in the first lactation and to 10
kits in the second lactation. Subsequently, dead kits were not
replaced. Kits were 28 days old when weaned.

In both lactations, the female rabbit's live weight was mea-
sured at 0, 7, 14, 21 and 28 dpp, whereas perirenal fat thickness
(PFT) was measured at 0, 14 and 28 dpp using the ultrasound
method described by Pascual et al. (2004). Milk yield was
measured 4 days per week over a period of 4 weeks. In the first
3 weeks, the female rabbits were weighed before having an
access to the nest box and just after nursing their kits (i.e.
weigh-suckle-weigh method). In week 4, the kits were too big
to be confined to the nest space. The does were then placed in
new cages, being transferred daily to nurse their kits. Owing to
a limited number of cages in the HC environment, this practice
was not possible; the female rabbits and their kits shared a
common space, making it impossible to control the milk yield.
DM intake was monitored weekly during both lactation and
weaning to partum intervals.

Blood plasma parameters

Blood samples were collected from the central artery of the
ear using tubes with EDTA after a minimum fasting period of
3h on 0, 14 and 28 dpp. The samples were immediately
centrifuged (3000 g during 10 min at 4°C), and plasma was
separated and frozen at —40°C until further analysis. Samples
from 12 does per group [2 lines (LP and V) x 3 treatments (NC,
HC and NF)] with complete records (for each partum, artificial
insemination and weaning time) were analysed for total Ts,
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leptin, non-esterified fat acids (NEFA), g OH-butyrate, lactate
and glucose. Total T3 was analysed using the Beckman
Coulter ‘Total T3 RIAKIT' (IM1699-IM3287) (Immunotech AS,
Prague, Czech Republic), according to the manufacturer’s
guidelines. Intra-assay coefficient of variation (CV) was 7.1%
and inter-assay CV was 7.5%. Leptin was analysed by Multi-
species Leptin assays (RIA, XL-85K) (Millipore Corporation,
Billerica, MA, USA), according to the manufacturer’s guide-
lines. Intra- and inter-assay CV were 9.1% and 9.3%,
respectively. NEFA’s were determined using the NEFA C
ACS-ACOD assay method (Wako Chemicals GmbH, Neuss,
Germany). 8 OH-butyrate was determined as an increase in
absorbance at 340 nm owing to the production of NADH,
at slightly alkaline pH in the presence of B OH-butyrate
dehydrogenase. Sample blanks were included and the
method involved oxamic acid in the media to inhibit lactate
dehydrogenase as proposed by Harano et al. (1985). Glucose
and lactate were determined according to standard proce-
dures (Siemens Diagnostics® Clinical Methods for ADVIA
1650). Analyses of NEFA, 8 OH-butyrate, lactate and glucose
were performed using an auto-analyser, ADVIA 1650®
Chemistry System (Siemens Medical Solutions, Tarrytown,
NY, USA); in all instances, the intra- and inter-assay CV was
below 2% and 4%, respectively.

Statistical analysis

A mixed model with a repeated measure design (mixed
procedure of SAS, 2009) was used to analyse performance,
hormonal and metabolic data of rabbit does until third par-
tum. The model considered the variation between animals
and the covariation within them. The covariance structure
was modelled using the spatial power function, after objec-
tively comparing among other covariance structures, as
suggested by Littell et al. (1998). The spatial power covariance
function is a direct generalisation of first-order auto-regressive
covariance function, with the advantage of considering different
lag time between repeated measures (i.e. measures on the
same individual are continuous). This covariance function is
flexible, because for equally time-spaced measurements, the
covariance structure is equal to fit a first-order auto-regressive
covariance function. The model used to analyse reproductive
performance (Table 1) included the line (LP and V), the
environment (NC, HC and NF), partum (first, second and
third) and their interactions. The model used to analyse
performance traits (Table 2) and blood plasma parameters
(Supplementary Table S2) included the line, the environ-
ment, the reproductive cycle (first and second) and their
interactions. This model also included measurement day
(different in function of the variable studied; see experi-
mental procedure) and its interactions with line and
environment as fixed effects. Finally, the evolution of DE
intake, milk yield and PFT was analysed considering the
line, the environment, the lactation week and their interac-
tions. All models included the permanent effect of animal
[p ~ N(0,07)]and the error term [e ~ N(0,07)]
as random terms. The models for intake (both DM and DE)
and milk yield included the average litter size during lactation as
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a covariate. Serum concentrations of total T, leptin, NEFA,
B OH-butyrate and lactate did not follow a normal distribution;
hence, a logyo transformation was applied before analysis.
Variables were presented as least square means, and different
contrasts were computed to test the effect of the environmental
challenge [HC—NC: (LPHC + VHC)/2 — (LPNC+VNC)2 and
NF—NC: (LPNF +VNF)/2 — (LPNC+ VNC)/2] and of the line
[LP—V: (LPHC +LPNC+ LPNF)/3 — (VHC+ VNC + VNF)/3] at
each reproductive cycle.

Results

The number of does housed and the number of does reaching
the second and third partum are present in the Supplementary
Table S1 (available on line). Of the 164 does initially housed,
135 completed the experiment. In the normal temperature
room, 11 does fed diet C (five LP and six V) and five fed diet F
(four LP and one V) did not finish the experiment. In the HC
environment, 13 does (five LP and eight V) failed to reach the
third partum. Of these, seven LP (three, one and three at HC, NC
and NF, respectively) and two V does at NC were culled, and
another seven LP (three, three and one) and 13 V does (eight,
four and one at HC, NC and NF, respectively) died.
Independent of the environmental conditions, the con-
ception rate, the weaning to partum interval and the partum
to partum interval was similar between LP and V does
(Supplementary Table S1). The overall conception rates
at first, second and third partum were 89.1%, 59.6% and
67.1%, respectively. The overall interval between the
first weaning and second partum was 29.0+13.6 days
(mean +5s.d.), and between the second weaning and third
partum was 25.6 +12.6 days. The overall interval between
the first and second partum was 57.2+13.6 days, and
between second and third partum was 53.6 + 12.6 days.

Performance traits
The average number of kits total born and born alive is
presented in Table 1. At first partum, just before the random

allocation of female rabbits to different environments, the
average number of total born tended to be higher for V than
LP litters (mean difference £s.e.d.:4+0.80+0.47 Kkits;
P<0.10). At second partum, regardless of the environment,
no significant differences between LP and V were observed
either in the number of total born or in the number of born
alive. However, V litters had a higher average number of
stillborn (+0.74 + 0.36 kits; P< 0.05) than LP.

At third partum, V litters showed a higher number of total
born (+1.88+0.94 kits; P<0.05) than LP litters when
housed in NC, whereas the difference was not significant for
the number of born alive. In this parity, the constrained
environments (HC and NF) did not affect the number of
total born and born alive for the LP line, relative to NC.
However, for the V line, there was a significant reduction in
litter size in the constrained environments in terms of total
born (—=2.59+0.94 and —1.78 £0.92 kits for HC and NF;
P < 0.05) and born alive (—4.49 +1.11 and —2.56 + 1.08 kits
for HC and NF; P < 0.05), relative to NC.

In general, the HC environment limited the intake of DM
(=21%; P<0.01) and DE (—11.5%; P<0.01), and reduced
milk yield (—15%; P<0.01) compared with NC. However,
the negative effect of high environmental temperatures on
live weight was seen only in second lactation (—4%;
P<0.01). For does in NF, although the DM intake increased
(+16.5%; P<0.01) during the first cycle, a lower DE intake
was recorded (—8.9%; P<0.01), impairing both milk yield
(=11%; P<0.01) and PFT (—2.7%; P< 0.05) compared with
NC. During the second reproductive cycle, does in NF also
presented a higher DM intake (+24%; P< 0.01) than those
in NG, resulting in no significant differences between them in
DE intake (—3.4%). However, milk yield (—16%; P<0.01)
and live weight (—2%; P <0.10) of does housed in NF were
lower compared with NC. LP does were characterised by
higher feed intake and milk yield than V, both during the
first (+5% and +10%; P<0.10) and especially the second
reproductive cycle (+7% and +13%; P < 0.05). Despite their
greater live weight in the first cycle (+2%; P < 0.05), LP does

Table 1 The effect of environment and genetic line on reproductive performance of rabbit does at first, second and third partum

Environment HC NC NF P-values of contrasts
Line? LP Vv LP \" LP \" NC-HC NC-NF LP-V s.e.m.
Number of kits total born
First partum 9.52 10.66 9.15 10.60 9.68 9.48 0.71 0.61 0.09 1.40
Second partum 10.07 10.18 10.38 11.14 10.16 10.12 0.31 0.31 0.57 1.49
Third partum 10.08% 9.142 9.86% 11.74° 9.58% 9.96% 0.07 0.11 0.40 1.55
Number of kits born alive
First partum 8.94 9.62 8.88 9.44 8.86 8.88 0.86 0.67 0.44 1.65
Second partum 9.29 8.14 9.46 9.86 9.72 9.08 0.19 0.72 0.43 1.75
Third partum 8.56° 6.19° 948>  10.68° 8.96 813  <0.01 0.04 0.27 1.82

Parity order effect and parity order within environment and line not shown.

"Environment: HC: high room temperature (25°C to 35°C) and diet C (11.6 MJ DE/kg DM); NC: normal room temperature (18°C to 24°C) and diet C; and NF: normal room

temperature and diet F (9.1 MJ DE/kg DM).

2Line LP, founded on reproductive longevity criteria and then selected for litter size at weaning during six generations; and line V, founded on litter size at weaning and

then selected during 36 generations.
*Values within a row with different superscripts differ significantly at P<0.05.
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Table 2 The effect of environment and genetic line on average DM and DE intakes, milk yield, live weight and PFT of rabbit does during first and
second reproductive cycles

Environment! HC NC NF P-values of contrasts

Line? LP v LP v LP v NC-HC  NC-NF PV  sem.

First reproductive cycle (from first to second partum)
Feed intake (g DM/day) ~ 207.4°  204.0*  253.4°  250.9°  3085¢  279.2° <001  <0.01 008 16

(k) DE/day)® 2626  2534°  2957°  2901° 2773"  2563® <001  <0.01 010 18

Milk yield (g/day) 163.0®°  153.7° 18865  168.9°  170.2°  146.7° 001 <001 <001 177
Live weight (g) 3769 3783  3837° 3738  3828° 3688° 0.80 0.52 004 110
PFT (mm) 6.72° 6.97°  6.88°  7.06° 6.77°  6.80% 0.12 0.02 002 0.0

Second reproductive cycle (from second to third partum)
Feed intake (g DM/day) ~ 238.0°  221.0*  2873°  2732° 3640  333.1¢ <001 <001 <001 19

(k) DE/day)®  3018° 2751%  3349° 3153 3251¢ 3031° <0.01 025 <001 20
Milk yield (g/day) 175.8°  1457° 2071 188.7°°  1789°  1521°  <0.01 <001 <001 190
Live weight (g) 3763 3897°  3971®  3982° 3911P 3865  <0.01 0.06 040 114
PFT (mm) 6.75° 7.27¢ 6.96° 7.7 7.05" 6.94% 0.56 045  <0.01  0.21

DM = dry matter; DE = digestible energy; PFT = perirenal fat thickness.
Parity order effect and parity order within environment and line not shown.

"Environment: HC: high room temperature and diet C; NC: normal room temperature and diet C; and NF: normal room temperature and diet F.
2Line LP, founded on reproductive longevity criteria and then selected for litter size at weaning during six generations; and line V, founded on litter size at weaning and

then selected during 36 generations.

3DE concentrations (kJ/g DM): HCLP =12.67; HCV = 12.43; NCLP = 11.65; NCV = 11.54; NFLP = 8.95; NFV =9.12.

#dvalues within a row with different superscripts differ significantly at P<0.05.

showed a lower average PFT than V does in both reproduc-
tive cycles (—2% at first and —3% at second). The main
values of the productive traits of lactating rabbit does housed
in different environments during the first and second repro-
ductive cycles are shown in Table 2.

Figure 1 shows the evolution of DE intake of the LP and V
does in the different environments. Although there were
some minor differences, the intake curves for LP and V lines
were similar in each of the lactations in NC, HC and NF
environments but with the DE intake of the LP line being
systematically higher than that of line V in NC (+114.2 +
64.5 kliday; P<0.10), HC (+199.2 +60.1 kl/day; P<0.01)
and NF (+219.7 +61.4 kl/day; P<0.01).

The evolution of milk yield for LP and V does in the different
environments is shown in Figure 2. In NC, LP does always
yielded more milk than V, significant at weeks one
(+27.7 £9.5 g/day) and four (+25.2 + 9.5 g/day) of first lacta-
tion and three (+26.1 = 10.4 g/day) and four (+35.2 £10.4 ¢/
day) of the second. The higher milk yield of LP does was
also observed in the second lactation on HC (on average
+31.8 g/day; P<0.05), although it was similar for both lines
during first lactation. On NF, LP does also yielded more milk
than V does being significantly different at mid-lactation of the
first (29.5g/day; P<0.01) and second cycle (33.12 g/day;
P <0.01). The milk yield differences observed between LP and V
does during lactations followed the DE intake pattern.

The evolution of PFT is presented in Figure 3. Independent
of the environment, line or reproductive cycle, an accretion
phase was observed during the first 2 weeks of lactation,
whereas the evolution from this point to weaning, most
frequently a mobilisation of PFT, was more dependent on DE
intake and milk yield. Does of line V had greater PFT than LP

does in the NC environment (+0.23 +0.09 mm; P<0.01).
This difference was accentuated in the HC environment
(+0.35+0.08 mm; P<0.01), whereas in the NF environ-
ment the difference was reduced and became non-significant
(+0.01 + 0.08 mm).

Blood plasma parameters

The effect of environment and line on the concentrations of
serum parameters is presented in Supplementary Table S2
(available online). No significant differences between lines
were observed for any monitored plasma parameters of does.
Only the lactate concentration of LP and V does differed
during the second reproductive cycle on NF (2.61 and
3.40 mM, respectively; P<0.05). Although no significant
differences were observed between LP and V does in HC,
they showed a different response to this environment in
respect to NC. Whereas LP does in HC reduced both lactate
(at first cycle) and total T (at second cycle), line V increased
the levels of B OH-butyrate and NEFA (only at second cycle).
In a similar way, each line showed distinct responses to the
NF environment compared with NC. Thus, LP does in NF had
low levels of leptin in the first cycle, and low levels of NEFA in
both cycles. In contrast, the response of V does to the NF
environment was a reduction in lactate concentration during
the first cycle. Moreover, both lines responded to the NF
environment by increasing the g OH-butyrate levels.

Discussion

The designed environments aimed to produce different physio-
logical constraints on female rabbits. The direct consequence of
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Figure 1 Digestible energy intake (DE) of LP (A) and V (O) female
rabbits housed in: (a) normal [NC, normal room temperature (18°C to
24°C) and diet C (11.6 MJ DE/kg DM)], (b) heat [HC, high temperature
room (25°C to 35°C) and diet C] and (c) nutritional [NF, normal room
temperature and diet F (9.1 MJ DE/kg DM)] challenging conditions. Bars
represent the standard errors of least square means. WP is the weaning
to partum interval. *P<0.05 and 'P<0.10.

this was observed in the DE intake. Does subject to high
temperatures (HC) had a DE intake reduction of —12% and
—11% in the first two reproductive cycles, whereas the bulk
feed generated by the fibrous diet (NF) resulted in a DE intake
reduction of —9% and —3%, in first and second reproductive
cycle, respectively. These responses confirm, on the one hand,
the rabbit's capacity to avoid excessive heat load by reducing
the feed intake when exposed to high temperatures (Cervera
and Fernandez-Carmona, 2010), and on the other hand to
partially compensate for a low-dietary-energy density by
increasing the feed intake on feeds with an energy content
below 9.0 M) DE/kg DM (Fernandez-Carmona et al., 2003). It
is also important to note that does were allocated to harsh
environments just after first partum, a period of great energy
demand because of milk production and the need to recover
body reserves (Xiccato et al., 1999; Pascual et al., 2002). Thus,
in the first lactation, the constrained does have to cope with
the same litter size as non-constrained does (litters were
standardised at partum). The situation in second lactation is
different because the harsh environments were also applied
during that pregnancy.
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Genetic differences in NC environment

In the present study (i.e. with relatively few animals), just
before the allocation of animals to different environments
(i.e. after first partum), V does did not have significantly
bigger litters (+0.80 kits total born and +0.44 kits born alive)
than the LP does. However, the V does produced significantly
larger litters at third partum (+1.88 kits total born and
+1.20 kits born alive) in unconstrained conditions (NC).
These values are in agreement with a large-scale study
(>200 does per line; Sanchez et al., 2008) that reported
higher total born (+0.74 kits), born alive (+0.77 kits) and
weaned kits (+0.54) during the first three partum for V does
as compared with LP does.

The main differences between LP and V does in the NC
environment were observed in the evolution of DE intake,
milk yield and PFT. In both lactations, LP seemed to adapt the
DE intake and milk yield to the litter requirements, avoiding
the accumulation of PFT. Line V, in contrast, seemed to
adjust the DE intake and milk yield to ensure a higher PFT at
weaning. The effort of V does to accrete more PFT than LP
does was also observed by Theilgaard et al. (2009), but
cannot be clearly elucidated from Theilgaard et al. (2007).
However, Theilgaard et al. (2007) observed a tendency of V
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line to sustain the PFT level across parities, whereas the LP
line was more flexible. In addition, Theilgaard et al. (2007
and 2009) reported higher live weight of LP does compared
with V does. In the present study, LP and V does had similar
live weight. A likely reason for this difference between stu-
dies is the difference in the reproductive rhythm adopted in
each one. When the reproductive rhythm was less intense
(insemination at 25 or 30 dpp), the initial live weight differ-
ences between lines were maintained (Theilgaard et al.,
2007 and 2009), whereas when it was more intense (inse-
mination at 4 or 11 dpp) the live weight differences dis-
appeared (Theilgaard et al., 2009).

Genetic differences in HC environment

The reductions in DE intake observed during the whole
experimental period for does from lines LP and V were —12%
and —18%, respectively. This was less than the DE intake
reduction of —35% reported by Fernandez-Carmona et al.
(2003) in crossbreed rabbit does housed at a constant high
temperature (30°C). The lower DE intake restriction observed
in the present study may be related to the climatic chamber
programme, which was set up to produce a daily sigmoid
temperature curve from 25°C to 35°C, and thus allowed the

Environmental sensitivity of maternal rabbit lines

does to concentrate meals in periods of reduced temperature
(25°C), alleviating the effects of heat stress.

During the first lactation, the main differences between LP
and V does in DE intake and milk-yield profiles were reduced
relative to the differences between LP and V does in the NC
environment. LP does adjusted their milk production and PFT
use to the level of DE obtained, whereas does from line V
generally showed a linear PFT accretion pattern during the
whole lactation. This difference persisted even in the fourth
week of lactation in HC, despite the LP does having a greater
DE intake.

However, despite the above-mentioned differences, both LP
and V does had a similar number of kits total born and born
alive at second partum in HC environment. Thus, it seems that
even under constrained conditions, the V line was able to
sustain the reproductive effort by privileging body reserve
accretion in the second part of lactation, ensuring thus a high
reproductive performance in the subsequent partum. The LP
does had achieved similar results by increasing the DE intake.

The ability of LP does to increase the DE intake under high
temperatures may be associated with a reduced metabolic
rate evidenced by a reduction in the total T3 (—0.081 log,
nM; P<0.05) and lactate (—0.079log;o ng/ml; P<0.05)
levels at HC compared with NC. Moreover, a reduced meta-
bolic rate in the HC as compared with the NC environment
may explain the different responses of these two lines.

The different strategies used by the LP and V does to
ensure an adequate reproductive level in the first lactation
was confirmed at the second reproductive cycle. Does from
the LP line used the greater intake to ensure both milk yield
and litter size at third partum without increasing the PFT
levels, and also appeared to reduce the metabolic rate
compared with the LP does in NC (i.e. lower total Ts). The V
does seem to base their reproductive success on ensuring
they had ample body reserves (PFT). However, after an
intense accretion of PFT reserves during the first half of the
second lactation, a mobilisation period was established
ending at third partum. Indeed, compared with NC, the V
does in HC showed higher levels of NEFA and 8 OH-butyrate.
High NEFA serum concentration may be related to a reduc-
tion in the number of born alive (—2.1 kits in does submitted
to fasting until 2 h before insemination; Brecchia et al,
2006). The intense PFT mobilisation of V does throughout the
gestational period impaired their reproductive performance
(—4.5 kits born alive compared with NC), probably as a
consequence of subclinical ketosis.

Genetic differences in NF environment

Does eating a low-energy high-fibre diet could not fully
compensate for the decrease in DE feed content, despite
increasing their DM intake. Therefore, a lower milk yield and
PFT was observed during the first lactation, compared with
does in NC. However, there was an adaptation to this diet in
terms of DM intake capacity, so that the NF does increased
the intake by 26.6 g/day between the first and second
reproductive cycles. This almost allowed DE intake compen-
sation (—3.4% compared with NC) but not for milk yield
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(—16.4% compared with NC), because of the lower efficiency
for milk yield of the DE ingested coming from high-fibre diet
(Fernandez-Carmona et al., 1995). Does in NF had a similar
milk yield in both lactations, whereas the milk yield at NC
increased in the second lactation (+19.2 g/day).

Furthermore, the response to the NF environment seemed
to have a genetic component. This was evident in the
reproductive performance observed in NF. The higher feed
intake capacity of LP does allowed an ingestion of +219.7 kJ
DE/day more than V does in NF throughout the experimental
period. This higher DE intake allowed the LP does to sustain
the number of kits total born and born alive and an adequate
milk production to nurse the current litter, without affecting
the development of the future one. In fact, the LP does in NF
and V does in NC yielded a similar amount of milk, especially
during the first reproductive cycle. In contrast, the inability of
V does to acquire resources in the NF environment was
clearly seen by a lower milk yield (—22.1 g/day; P< 0.05) and
PFT (—=0.26 mm; P< 0.05) compared with NC, with the latter
perhaps negatively affecting the number of total born (—0.98
and —1.78 kits at second and third partum, respectively). As
the reproductive success of V line seemed to be based on the
accretion and use of fat reserves, their low PFT values on NF
led to a clear reduction in the number of total born at second
and, especially, third partum. This also affected the number
of born alive at second and third parity (—0.78 and —2.55
kits, respectively).

Environmental sensitivity reasons

Theilgaard et al. (2007) made two main observations, which,
together with the present results, give a new insight to better
understand and describe the relationship between body
reserves, reproduction and survival. They first observed that
the V does maintained their litter size during a stress period
but not after it, and contrary to LP does, they showed a
greater PFT mobilisation. Therefore, the hypothesis that
reproduction in V does depends more on the use of body
reserves than that in LP does that sustain it by increasing
intake and maintaining PFT seems plausible.

The variations that occur in the environments experienced
by rabbits on commercial farms have been described (Rosell
etal.,, 2009; Rosell and de La Fuente, 2009). These variations
were present in the commercial rabbit farms of Portugal
and Spain where female rabbits used to establish the LP line
came from (Sanchez et al, 2008). This may explain the
greater robustness (Theilgaard et al., 2007 and 2009) and
the extended reproductive lifespan of LP does (Sanchez et al.,
2008). This study emphasises the role of body reserve usage
in providing rabbits with adaptive capacity and are in
agreement with previous findings. Theilgaard et al. (2007)
and Séanchez et al. (2012) showed that any deviation from an
adequate body condition increases the health risks in rabbit
does. Ferrian et al. (2013) also observed that the maintenance
of body reserves under an immunological challenge with lipo-
polysaccharide provided an advantage for LP does compared
with V does. It should be noted that it is not just the level of
body reserves but also their rate of usage that is important.
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In this context, Rosell and de La Fuente (2009) reported
the greatest mortality risk to be at the end of gestation, the
period of greatest mobilisation of body reserves (Quevedo
et al, 2005 and 2006). Therefore, the ability of LP does to
sustain reproduction in the different environments without
presenting great deviations in PFT levels and its ability to use
reserves at the onset of constraints (Theilgaard et al, 2007)
seems to be a safeguarding factor to ensure both reproduction
and longevity.
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