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CLASSICAL OPERATORS ON WEIGHTED BANACH SPACES
OF ENTIRE FUNCTIONS

MARÍA J. BELTRÁN, JOSÉ BONET AND CARMEN FERNÁNDEZ

(Communicated by )

Abstract. We study the operators of differentiation and of integration and
the Hardy operator on weighted Banach spaces of entire functions. We esti-
mate the norm of the operators, study the spectrum, and analyze when they
are surjective, power bounded, hypercyclic and (uniformly) mean ergodic.

1. Introduction and notation

The aim of this paper is to study the following three operators on weighted
spaces of entire functions defined by means of sup norms: the differentiation op-
erator Df(z) = f ′(z), the integration operator Jf(z) =

∫ z

0
f(ζ)dζ and the Hardy

operator Hf(z) = 1
z

∫ z

0
f(ζ)dζ, z ∈ C. The continuity of the differentiation and the

integration operators between weighted Banach spaces of holomorphic functions
has been studied by Harutyunyan and Lusky [13]. The continuity of these two
operators on weighted Banach spaces of entire functions associated to a weight v is
determined by the growth or decline of v(r)eαr for some α > 0 in an interval [r0,∞[.
The surjectivity and the spectrum of the differentiation operator on weighted Ba-
nach spaces of entire functions were studied by Atzmon and Brive [2]. Although
there is a huge literature on the Hardy operator on different function spaces (see
e.g. [1]), it seems that it has not yet been studied in the context considered in our
paper. Bonet [8] (see also [9]) investigated when the operator of differentiation is
hypercyclic or chaotic on weighted Banach spaces of entire functions. It is our pur-
pose to continue this work by analyzing other operators as well as other properties
related to the dynamical behaviour of the operator, like being power bounded or
mean ergodic; thus complementing also work by Bonet and Ricker [10] about mean
ergodic multiplication operators.

A continuous and linear operator T from a Banach space E into itself is called
power bounded if the sequence of its iterates (Tn)n∈N is equicontinuous. By the
uniform boundedness principle this happens if and only if the orbit (x, Tx, T 2x, . . . )
is bounded for every x ∈ E. The operator T ∈ L(E) is called hypercyclic if there
is x ∈ E with a dense orbit. We refer the reader to the recent books by Bayart
and Matheron [3] and by Grosse-Erdmann and Peris [12] for linear dynamics. The
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operator T is said to be mean ergodic if the limits

Px := lim
N→∞

1
N

N∑
n=1

Tnx, x ∈ E

exist in E. A power bounded operator T is mean ergodic precisely when E =
Ker(I − T )⊕ Im(I − T ). Here I stands for the identity on E. If the convergence is
in the operator norm, the operator is called uniformly mean ergodic. Clearly, if T
is mean ergodic, then limn→∞ ||Tnx||/n = 0 for each x ∈ E, and if it is uniformly
mean ergodic, limn→∞ ||Tn||/n = 0. If this condition is satisfied, the operator T is
uniformly mean ergodic if and only if Im(I−T ) is closed [16]. An operator T is said
to be quasi-compact if Tn is compact for some n ∈ N . Quasi-compact operators
share some properties of compact operators, in particular the spectrum σ(T ) of
a quasi-compact operator T reduces to its eigenvalues and {0}. Our notation for
functional analysis and operator theory is standard. We refer the reader e.g. to [21]
and [23]. For ergodic theory of operators on Banach spaces, see [15].

In what follows H(C) and P will denote the spaces of entire functions and of
polynomials, respectively. The space H(C) will be endowed with the compact open
topology τco. It is easy to see that the three operators, D, J and H are continuous
on H(C).

Throughout the paper, a weight v is a continuous function v : [0,+∞[→]0, +∞[
which is non-increasing on [0,∞[ and satisfies limr→∞ rmv(r) = 0 for each m ∈ N.
For such a weight, the weighted Banach spaces of entire functions are defined by

H∞
v (C) := {f ∈ H(C) | ||f ||v := supz∈C v(|z|)|f(z)| < +∞},

H0
v (C) := {f ∈ H(C) | lim|z|→∞ v(|z|)|f(z)| = 0},

endowed with the sup norm ‖ · ‖v. Clearly H0
v (C) is a closed subspace of H∞

v (C)
which contains the polynomials. Both are Banach spaces and the closed unit ball
of H∞

v (C) is τco-compact. The polynomials are contained and dense in H0
v (C) but

the monomials are not in general a Schauder basis [19]. The Cesàro means of the
Taylor polynomials satisfy ||Cnf ||v ≤ ||f ||v for each f ∈ H∞

v (C) and the sequence
(Cnf)n is || ||v-convergent to f when f ∈ H0

v (C) [4]. Clearly, changing the value of
v on a compact interval does not change the spaces and gives an equivalent norm.
By [6, Ex 2.2] the bidual of H0

v (C) is isometrically isomorphic to H∞
v (C). When

v(r) = e−αr (α > 0) we write H∞
α (C) and H0

α(C) for the weighted Banach spaces
and denote their norm by || ||α. The spaces H∞

a,α(C) and H0
a,α(C), (α > 0, a ∈ R)

correspond to the following weights: v(r) = e−α, r ∈ [0, 1[, v(r) = rae−αr, r ≥ 1, if
a < 0 and v(r) = (a/α)ae−a, r ∈ [0, a/α[, v(r) = rae−αr, r ≥ a/α, if a > 0. In this
case the norm will be denoted by || ||a,α. Spaces of this type appear in the study
of growth conditions of analytic functions and have been investigated in various
articles, see e.g. [4, 5, 7, 11, 19, 20] and the references therein.

Our main Theorem summarizes our results for the spaces H∞
α (C) and H0

α(C),
where v(r) = e−αr, α > 0.

Theorem 1.1. (1) The differentiation operator D satisfies ||Dn||α = n!
(

eα
n

)n for
each n ∈ N, hence it is power bounded if and only if α < 1. The spectrum of D is
the closed disc of radius α. It is uniformly mean ergodic on H∞

α (C) and H0
α(C) if

α < 1, not mean ergodic if α > 1, and it is not mean ergodic on H∞
1 (C) and not

uniformly mean ergodic on H0
1 (C).
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(2) The integration operator J is never hypercyclic on H0
α(C) and it satisfies

||Jn||α = 1/αn for each n ∈ N. Hence, it is power bounded if and only if α ≥ 1.
The spectrum of J is the closed disc of radius 1/α. If α > 1, then J is uniformly
mean ergodic on H∞

α (C) and H0
α(C) and it is not mean ergodic on these spaces if

α < 1. If α = 1, then J is not mean ergodic on H∞
1 (C), and mean ergodic but not

uniformly mean ergodic on H0
1 (C).

(3) The Hardy operator H is compact and has norm 1, its spectrum coincides
with the set {1/n} ∪ {0}, and it is power bounded and uniformly mean ergodic on
H∞

α (C) and H0
α(C) for all α > 0. Therefore, it is not hypercyclic on H0

α(C).

It follows from [8, Corollary 2.6] that the differentiation operator on H0
α(C) is

not hypercyclic and has no periodic point different from 0 if α < 1, it is hypercyclic
and has a dense set of periodic points if α > 1 and it is hypercyclic but has no
periodic point different from 0 if α = 1.

2. Preliminaries

Our first result is inspired by [8, Proposition 1.1].

Lemma 2.1. Let T : (H(C), τco) → (H(C), τco) be a continuous linear operator
such that T (P) ⊂ P. The following conditions are equivalent:

(i) T (H∞
v (C)) ⊂ H∞

v (C),
(ii) T : H∞

v (C) → H∞
v (C) is continuous,

(iii) T (H0
v (C)) ⊂ H0

v (C),
(iv) T : H0

v (C) → H0
v (C) is continuous.

Moreover, if (i)-(iv) hold, then ||T ||L(H∞
v (C)) = ||T ||L(H0

v(C)) and σH∞
v (C)(T ) =

σH0
v(C)(T ).

Proof. The equivalences (i)-(ii) and (iii)-(iv) follow from the closed graph theorem.
(ii) ⇒ (iii) comes easily from the fact that the polynomials are dense in H0

v (C),
T (P) ⊂ P and H0

v (C) is closed in H∞
v (C). Clearly ||T ||L(H0

v(C)) ≤ ||T ||L(H∞
v (C)).

To show (iv) ⇒ (ii), observe that given f ∈ H∞
v (C), the sequence of the Cesàro

means of its Taylor polynomials (Cnf)n belongs to H0
v (C), therefore ||T (Cnf)||v ≤

||T ||L(H0
v(C))||Cnf ||v ≤ ||T ||L(H0

v(C))||f ||v. Hence, from the τco-compactness of the
closed unit ball and the τco-continuity of T, we conclude ||Tf ||v ≤ ||T ||L(H0

v(C))||f ||v.

The assertion about the spectra is clear as the bi-transpose T ′′ of T : H0
v (C) →

H0
v (C) is T : H∞

v (C) → H∞
v (C) by [4] and [6]. It is a well-known fact that

σ(T ) = σ(T ′) = σ(T ′′). ¤

As the three operators under consideration satisfy the hypothesis of the previous
result, in what follows we will write ||T ||v instead of ||T ||L(H∞

v (C)) = ||T ||L(H0
v(C))

and σv(T ) for the spectrum. The notation ||T ||a,α, ||T ||α, σa,α(T ) and σα(T ) refers
to the cases v(r) = rae−αr and v(r) = e−αr, respectively.

Lemma 2.2. J − λI is injective on H(C) for each λ ∈ C.

Proof. For λ = 0 this is trivial, since DJ = I. For λ 6= 0, the equation Jf −λf = 0
implies f − λf ′ = 0, hence f(z) = Cez/λ and, as f(0) = 1

λJf(0) = 0, we conclude
f = 0. ¤

Proposition 2.3. Let T = D or T = J and assume that T : H∞
v (C) → H∞

v (C) is
continuous. The following conditions are equivalent:
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(i) T : H∞
v (C) → H∞

v (C) is uniformly mean ergodic,
(ii) T : H0

v (C) → H0
v (C) is uniformly mean ergodic,

(iii) limN→∞
||T+···+T N ||v

N = 0.

Moreover, if 1 ∈ σv(T ), then T is not uniformly mean ergodic.

Proof. The implications (i) ⇔ (ii) and (iii) ⇒ (i) are clear from Lemma 2.1. We
show (ii) ⇒ (iii).

Suppose first that T = D is uniformly mean ergodic on H0
v (C). Since the

polynomials are dense and the sequence ( 1
N

∑N
n=1 Dn)N converges pointwise to

zero on P, we have that

lim
N→∞

1
N
||

N∑
n=1

Dn||v = 0.

For T = J , we only have to prove that limN
(J+···+JN )(f)

N = 0 for each f ∈ H0
v (C).

By assumption, the limit limN
(J+···+JN )(f)

N exists. Moreover, J(limN
(J+···+JN )(f)

N ) =

limN ( (J+···+JN+1)(f)
N+1

N+1
N − Jf

N ) = limN
(J+···+JN )(f)

N . By Lemma 2.2, the conclu-
sion follows.

If T is uniformly mean ergodic, since limN
||T+···+T N ||

N = 0, for N big enough the
operator I− 1

N

∑N
n=1 Tn is invertible, i.e., N /∈ σv(p(T )) for p(z) =

∑N
n=1 zn, which,

by the spectral mapping theorem, coincides with p(σv(T )). Thus, 1 /∈ σv(T ). ¤

The proof of the former proposition in fact shows that if J is mean ergodic on
H∞

v (C) or on H0
v (C), then limN

(J+···+JN )(f)
N = 0 for every f in the corresponding

space.
An operator T on a Banach space X is said to be Cesàro power bounded if the

sequence of the Cesàro means of its iterates is equicontinuous. By Lemma 2.1 and
the Banach-Steinhaus theorem, D is Cesàro power bounded on H∞

v (C) if and only
if it is Cesàro power bounded on H0

v (C). Since the polynomials are dense in H0
v (C),

the operator D is mean ergodic on H0
v (C) if and only if it is Cesàro power bounded.

In this case, P (f) = 0 for every f ∈ H0
v (C).

The norms of the monomials played an important role in the characterization of
hypercyclic differentiation operators in [8]. They are also important now.

Lemma 2.4. Let v be a weight such that the differentiation operator D and the
integration operator J are continuous on H0

v (C) and on H∞
v (C).

(i) If D is power bounded (resp. uniformly mean ergodic) on H∞
v (C), then

inf( ||z
n||v
n! )n > 0 (resp. ( ||z

n||v
(n−1)! )n tends to infinity).

(ii) If J is power bounded (resp. mean ergodic) on H∞
v (C), then ( ||z

n||v
n! )n is

bounded (resp. ( ||z
n||v

n!n )n tends to zero).

Proof. This follows easily from the inequalities

v(0)n! ≤ ||Dn||v||zn||v
and

v(0)||Jn||v ≥ ||Jn(1)||v =
||zn||v

n!
.

¤
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For weights v(r) = rae−αr (α > 0, a ∈ R) for r ≥ r0 for some r0 ≥ 0 we have

||zn||v ≈ (
n + a

eα
)n+a,

with equality for v(r) = e−αr, r ≥ 0. It is enough to estimate the maximum of the
function g(r) = rn+ae−αr and to have in mind that the weight v may change in a
compact interval.

3. Main Results

3.1. The integration operator.

Proposition 3.1. The operator J is never hypercyclic on H0
v (C) and it has no

periodic points different from 0 in H∞
v (C).

Proof. By the very definition Jf(0) = 0 for every f ∈ H0
v (C). Therefore, Im(J),

and a fortiori the orbit of an element, cannot be dense. Now suppose that Jnf = f
for some f 6= 0 and some n ∈ N. We have f −Dnf = 0, therefore f(z) = eλz for
some λ ∈ C with λn = 1. But then, Jnf(0) = 0 whereas f(0) 6= 0. ¤

Proposition 3.2. Let v be a weight such that v(r)eαr is non increasing for some
α > 0. Then, J is continuous with ||J ||v ≤ 1/α. In particular, σv(J) ⊂ (1/α)D.
Moreover, ||Jn||α = 1/αn for all n ∈ N0.

Proof. Fix f ∈ H∞
v (C). We have

v(|z|)|Jf(z)| ≤ |z|
∫ 1

0

v(t|z|)|f(tz)| exp (α(t− 1)|z|) dt ≤ ||f ||v 1
α

.

Therefore ||Jn||v ≤ 1/αn. The statement about σv(J) follows immediately.
On the other hand, for v(r) = e−αr, we have

||Jn||α ≥ sup
k∈N

||Jn(zk)||α
||zk||α ≥ sup

k∈N

k!
(k + n)!

||zk+n||α
||zk||α .

We can apply Stirling’s formula to conclude

||Jn||α ≥ sup
k∈N

k!
(k + n)!

(eα/k)k

(eα/(k + n))k+n
≥ sup

k∈N

(1 + n/k)k

αnen
≥ 1

αn
.

¤

Proposition 3.3. Let v be a weight such that J is continuous on H∞
v (C) and

assume that v(r)eαr is increasing. Then, σv(J) ⊃ (1/α)D.

Proof. To see that (1/α)D ⊂ σv(J) we show that J − λI is not surjective on
H∞

v (C) for |λ| < 1
α . For λ = 0, J is not surjective on any H∞

v (C) (without any
additional assumption) since Jf(0) = 0 for each f , hence the equation J(f) = 1
has no solution. Now assume that λ 6= 0 and that there is f ∈ H∞

v (C) such that
Jf − λf = 1. Then, f − λf ′ = 0 and, as ez/λ /∈ H∞

v (C), we have f ≡ 0, therefore
Jf − λf 6= 1.

¤

Corollary 3.4. The spectrum of J satisfies

σa,α(J) = (1/α)D.
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Proof. We can apply Proposition 3.2 to conclude that J is continuous on H∞
a,α(C)

and H0
a,α(C). By Proposition 3.3, σa,α(J) ⊃ (1/α)D. On the other hand, for each

β < α, the function v(r)eβr is decreasing in some interval [r0,∞[. Therefore, for
an equivalent norm, ||Jn|| ≤ 1

βn and thus the spectral radius r(J) of J satisfies
r(J) ≤ 1

β . Since β < α is arbitrary, the reverse inclusion holds. ¤

Theorem 3.5. (i) J is power bounded on H∞
v (C) and mean ergodic on H0

v (C)
provided that v(r)er is non increasing in some interval [r0,∞[. In particular, it is
mean ergodic on H0

a,1(C) for every a ≤ 0.

(ii) If rae−r = O(v(r)), with a > 1/2, then J is not power bounded on H∞
v (C).

(iii) J is uniformly mean ergodic on H∞
v (C) if for some α > 1, v(r)eαr is non

increasing.
(iv) J is not uniformly mean ergodic on H0

v (C) if for all β > 1, v(r)eβr is
increasing in some interval [r0,∞[. In particular J is not uniformly mean ergodic
on H0

a,1(C) for all a ∈ R.

(v) If r3/2e−r = O(v(r)), then J is not mean ergodic on H0
v (C). In particular, it

is not mean ergodic in H0
a,α(C) when α < 1, a ∈ R.

Proof. (i) The first statement follows from the estimates of the norm of Jn in
Proposition 3.2.

Moreover, for each k ∈ N,

||Jn(zk)||v =
k!

(n + k)!
||zn+k||v ≤

≤ v(0)er0
k!

(n + k)!
||zn+k||1 = v(0)er0

k!
(n + k)!

(
n + k

e

)n+k

.

By Stirling formula, this implies that the successive iterates tend to zero on the
polynomials. As J is power bounded and the polynomials are a dense subset,
(Jn(f))n converges to zero for each f ∈ H0

v (C). This implies that 1
N

∑N
n=1 Jn(f)

also converges to 0 for each f ∈ H0
v (C) and J is mean ergodic on H0

v (C).
(ii) As ||z

n||a,1
n! = O( ||z

n||v
n! ) and the sequence ( ||z

n||a,1
n! )n for a > 1/2 is unbounded,

we conclude that J is not power bounded by Lemma 2.4.
(iii) The sequence (||Jn||v)n tends to zero by Proposition 3.2, therefore

|| 1
N

N∑
n=1

Jn||v ≤ 1
N

N∑
n=1

||Jn||v → 0.

Hence, J is uniformly mean ergodic.
(iv) If for all β > 1, v(r)eβr is increasing in some interval [r0,∞[, σv(J) ⊃ D. In

particular 1 ∈ σv(J). The conclusion follows from Proposition 2.3.
(v) By Stirling formula, the sequence ( ||z

n||3/2,1

n n! )n does not tend to zero and
||zn||3/2,1 = O(||zn||v). By Lemma 2.4 (ii), J is not mean ergodic on H0

v (C). ¤

Corollary 3.6. The integration operator J is uniformly mean ergodic on H∞
α (C)

and H0
α(C) if α > 1, and it is not mean ergodic on these spaces if α < 1. If α = 1,

then J is not mean ergodic on H∞
1 (C), and mean ergodic but not uniformly mean

ergodic on H0
1 (C).
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Proof. All the statements but one follow from Theorem 3.5. It remains to show
that J is not mean ergodic on H∞

1 (C). The space H∞
1 (C) is a Grothendieck Banach

space with the Dunford-Pettis property since it is isomorphic to `∞ by Galbis [11]
or Lusky [20]. As ||Jn||1/n → 0, we can apply [17, Theorem 8] or [18, Theorem 5]
to conclude that J is not mean ergodic in H∞

1 (C) because it is not uniformly mean
ergodic by Theorem 3.5 (iv) and Proposition 2.3. ¤

3.2. The differentiation operator. For the differentiation operator we mainly
restrict our attention to the spaces H∞

a,α(C) and H0
a,α(C).

Proposition 3.7. The following holds for a > 0:

||Dn||a,α = O

(
n!

(
eα

n− a

)n−a
)

and

n!
(

eα

n + a

)n+a

= O(||Dn||a,α).

For a ≤ 0 :

||Dn||a,α ≈ n!
(

eα

n + a

)n+a

,

and the equality holds for a = 0.

Proof. In case a ≤ 0 the upper estimate follows from [2, Proposition 1]. For a >
0, we use Cauchy’s formula for the n-th derivative and the fact that (1 + r)a is
submultiplicative to get, for all n ∈ N,

|Dnf(z)|(1 + |z|)a ≤ n!
eα(R+|z|)(1 + R)a

Rn
||f ||a,α.

Taking the infimum over R > 0 we get the estimate.
For the lower estimate we use that

||Dn||a,α ≥ n!v(0)
||zn||a,α

≈ n!
(

eα

n + a

)n+a

.

¤

Proposition 3.8. The spectrum of D satisfies

σa,α(D) = αD.

Proof. If |λ| < α, the function eλ(z) := eλz belongs to H0
a,α(C) and satisfies Deλ =

λeλ. Therefore D−λI is not invertible, and thus, αD ⊂ σa,α(D). On the other hand,
the spectral radius r(D) of D satisfies r(D) = limn∈N ||Dn||1/n. Using the Stirling’s
formula and the upper estimates for the norms in Proposition 3.7, r(D) ≤ α. ¤

By [2, Proposition 4], D − λI is not surjective on H∞
a,α(C) or on H0

a,α(C) for
|λ| = α. On the other hand, we get the following:

Proposition 3.9. Let v be a weight such that D is continuous on H∞
v (C) and

that v(r)eαr is non increasing. If |λ| < α, then the operator D − λI is surjective
on H∞

v (C) and it even has a continuous linear right inverse. The same holds on
H0

v (C). In particular, if |λ| < α, D−λI has a continuous right inverse on H∞
a,α(C).
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Proof. Denote by eλ(z) := eλz and by Mλf(z) := (eλf)(z). We have

DM−λ = e−λ(D − λI)

and
MλD = (D − λI)Mλ.

Set Kλ = MλJM−λ. More precisely,

Kλf(z) = eλz

∫ z

0

e−λξf(ξ)dξ, f ∈ H(C).

We have

(D − λI)Kλ = (D − λI)MλJM−λ = MλDJM−λ = MλM−λ = I.

It remains to show that for |λ| < α, Kλ : H∞
v (C) → H∞

v (C) and Kλ : H0
v (C) →

H0
v (C) are continuous. Integrating along the segment between 0 and z we get

v(|z|)|Kλf(z)| ≤ |z|v(|z|)
∫ 1

0

e|λ||z|(1−t)|f(tz)|dt ≤

|z|
∫ 1

0

e|λ||z|(1−t)e−α(1−t)|z|v(tz)|f(tz)|dt ≤ ||f ||v|z|
∫ 1

0

e(|λ|−α)|z|(1−t)dt ≤ ||f ||v 1
α− |λ|

which finishes the proof for H∞
v (C).

Now, since Kλ : H0
v (C) → H∞

v (C) is continuous and the polynomials are dense
in H0

v (C) it is enough to show that Kλ(P) ⊂ H0
v (C). To this end,

Kλ(1) = − 1
λ

+
1
λ

eλz ∈ H0
v (C)

for |λ| < α. Integrating by parts

Kλ(zn) = − 1
λ

zn +
n

λ
Kλ(zn−1), n ∈ N,

from where the conclusion follows.
¤

Proposition 3.10. (i) For α > 1 or α = 1 and a < 1/2, D is not power bounded
on H∞

a,α(C).
(ii) If v(r) = o(e−r), then D is not mean ergodic on H0

v (C). Consequently, D is
not mean ergodic on H0

a,α(C) if α > 1 or if α = 1 and a < 0.
(iii) For α < 1, D is power bounded and uniformly mean ergodic on H∞

a,α(C).
(iv) D is not uniformly mean ergodic on H0

a,1(C), a ∈ R.

Proof. (i) It is enough to observe that ||Dn||a,α ≥ n!v(0)
||zn||a,α

which tends to infinity
by Stirling formula.

(ii) If D is mean ergodic on H0
v (C), for each f ∈ H0

v (C)

f ′ + f ′′ + · · · f (N)

N
→ 0,

which is not the case for ez ∈ H0
v (C).

(iii) By Proposition 3.7,

||Dn||a,α = O

(
n!

(
eα

n− |a|
)n−|a|)

.
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We apply Stirling’s formula to get

||Dn||a,α = O

(
(n)n−|a|

(n− |a|)(n−|a|) e
−|a|αn−|a|n|a|+1/2

)
.

Therefore, for α < 1, limn→∞ ||Dn||a,α = 0, hence

lim
n→∞

|| 1
n

n∑

k=1

Dk||a,α ≤ lim
n→∞

1
n

n∑

k=1

||Dk||a,α = 0.

(iv) In this case, 1 ∈ σa,1(D) and the conclusion follows from Proposition 2.3.
¤

Corollary 3.11. D is not mean ergodic on H∞
1 (C).

Proof. The space H∞
1 (C) is a Grothendieck Banach space with the Dunford-Pettis

property. In fact it is isomorphic to `∞ by Galbis [11] or Lusky [20]. Since the
operator of differentiation satisfies ||Dn||1/n → 0, we can apply [17, Theorem 8] or
[18, Theorem 5] to conclude that D is not mean ergodic on H∞

1 (C) because it is
not uniformly mean ergodic by Propositions 3.10 (iv) and 2.3. ¤

We do not know if the differentiation operator is mean ergodic on the space
H0

1 (C). Related partial results can be seen in [7].

3.3. The Hardy operator.

Theorem 3.12. Let v be an arbitrary weight. The Hardy operator H : H∞
v (C) →

H∞
v (C) is well defined and continuous with norm ‖H‖v = 1. Moreover, H2(H∞

v (C)) ⊂
H0

v (C) and H2 is compact. If the integration operator J : H∞
v (C) → H∞

v (C) is
continuous, then H is compact.

Proof. For every f ∈ H∞
v (C) and z ∈ C we have

v(|z|)
∣∣∣1
z

∫ z

0

f(ω)dω
∣∣∣ ≤ v(|z|) sup

|ω|=z

|f(ω)|.

Hence, ‖H‖v ≤ 1. On the other hand, since H(c) = c for every c ∈ C, taking
g := 1/v(0) ∈ H0

v (C), ‖g‖v = 1, we obtain ‖H‖v = 1.
Given f =

∑∞
k=0 akzk ∈ H∞

v (C), the Cauchy inequalities imply |ak|‖zk‖v ≤
‖f‖v for every k ∈ N0. Then, as H2(f)(z) =

∑∞
k=0

ak

(k+1)2 zk, one has

(3.1) ‖H2(f)−
N∑

k=0

ak

(k + 1)2
zk‖v ≤

∞∑

k=N+1

|ak|‖zk‖v

(k + 1)2
≤ ‖f‖v

∞∑

k=N+1

1
(k + 1)2

Therefore, H2(f) belongs to the closure of the polynomials, and thus, to H0
v (C).

The argument above also shows that the finite rank operators H2
N (

∑∞
k=0 akzk) :=∑N

k=0
ak

(k+1)2 zk are bounded on H∞
v (C) and that

||H2 −H2
N ||v ≤

∞∑

k=N+1

1
(k + 1)2

,

from where the compactness of H2 follows.
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Finally, suppose that the integration operator J : H∞
v (C) → H∞

v (C) is continu-
ous. Then the Hardy operator H : H∞

v (C) → H0
v (C) is well defined, since for every

z ∈ C, z 6= 0,

v(|z|)|H(f)(z)| = v(|z|) 1
|z| |J(f)(z)| ≤ ‖J‖

|z| ‖f‖v.

From here we also conclude that given a bounded set B ⊆ H∞
v (C) and ε > 0, there

exists R > 0 such that, for every f ∈ B and |z| > R, v(|z|)|H(f)(z)| < ε, and the
conclusion follows by [22, Lemma 2.1]. ¤

By the work of Harutyunyan and Lusky [13], the integration operator J is not
continuous on H∞

v (C) for v(r) = exp(−(log r)2). Moreover, by Lusky [19, Theorem
2.5.], the monomials constitute a basis of the space H0

v (C) and the norm of H∞
v (C)

is equivalent to ||∑∞
k=0 akzk||v = supk |ak|||zk||v. Moreover, H0

v (C) is isomorphic
to c0. In this example the Hardy Operator H maps H∞

v (C) into H0
v (C) (just look

at the Taylor expansion of the function). As H∞
v (C) is canonically isometric to the

bidual of H0
v (C) by [4] or [6], H is weakly compact as an operator on both spaces

H∞
v (C) and H0

v (C). Since H0
v (C) is isomorphic to c0, H is compact on H0

v (C) (see
e.g. [14, Corollary 17.2.6]). As H on H∞

v (C) coincides with the bi-transpose, it
follows that it is also compact.

Corollary 3.13. The operator H is power bounded and uniformly mean ergodic
on H∞

v (C). Moreover, its spectrum is σ(H) = { 1
n}N ∪ {0}.

Proof. As H is quasi-compact σ(H) = {λ : λ is an eigenvalue ofH} and the eigen-
values of H are { 1

n : n ∈ N}. Clearly H is power bounded. The compactness of H2

implies that Im(I −H) is closed. Now the conclusion follows from a criterion due
to Lin [16] (see also [15, Theorem 2.2.1]).

¤

Observe that contrary to what happens for the operators of integration J and
of differentiation D, the Hardy operator H is mean ergodic and 1 belongs to the
spectrum of H on the space H0

v (C). In this case, the Cesàro means of the iterates
of H do not converge to zero on the polynomials. Being power bounded, H cannot
be hypercyclic on H0

v (C). In fact, since δ0(Hnf) = f(0) for each f ∈ H(C), H is
not hypercyclic on H(C).
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1. A.G. Arvanitidis, A.G. Siskakis, Cesàro operators on the Hardy spaces of the half-plane,
arXiv:1006.1520v1.

2. A. Atzmon, B. Brive, Surjectivity and invariant subspaces of differential operators on weighted
Bergman spaces of entire functions, Bergman spaces and related topics in complex analysis,
27-39, Contemp. Math., 404, Amer. Math. Soc., Providence, RI, 2006.

3. F. Bayart, E. Matheron, Dynamics of linear operators. Cambridge Tracts in Mathematics,
179. Cambridge University Press, Cambridge, 2009.

4. K.D. Bierstedt, J. Bonet, A. Galbis, Weighted spaces of holomorphic functions on balanced
domains, Michigan Math. J. 40 (1993), no. 2, 271-297.

5. K.D. Bierstedt, J. Bonet, J. Taskinen, Associated weights and spaces of holomorphic functions,
Studia Math. 127 (1998), 137-168.

6. K.D. Bierstedt, W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J.
Austral. Math. Soc. Ser. A 54 (1993), no. 1, 70-79.

7. O. Blasco, A. Galbis, On Taylor coefficients of entire functions integrable against exponential
weights, Math. Nachr. 223 (2001), 5-21.



CLASSICAL OPERATORS ON WEIGHTED BANACH SPACES OF ENTIRE FUNCTIONS 11

8. J. Bonet, Dynamics of the differentiation operator on weighted spaces of entire functions,
Math.Z. 261 (2009) 649-657.

9. J. Bonet, A. Bonilla , Chaos of the differentiation operator on weighted Banach spaces of
entire functions, Complex Anal. Oper. Theory, DOI: 10.1007/s11785-011-0134-5, to appear.

10. J. Bonet, W.J. Ricker, Mean ergodicity of multiplication operators in weighted spaces of holo-
morphic functions, Arch. Math. 92, (2009),428-437.

11. A. Galbis, Weighted Banach spaces of entire functions, Archiv Math. 62, (1994), 58-64.
12. K.G. Grosse-Erdmann, A. Peris, Linear Chaos, Springer, Berlin, 2011.
13. A. Harutyunyan, W. Lusky, On the boundedness of the differentiation operator between

weighted spaces of holomorphic functions, Studia Math. 184 (2008), 233-247.
14. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
15. U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
16. M. Lin, On the Uniform Ergodic Theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
17. H.P. Lotz, Tauberian theorems for operators on L∞ and similar spaces, Functional Analysis:

Surveys and Recent Results III, K.D. Bierstedt and B. Fuchssteiner (Eds.), North Holland,
Amsterdam, 1984, pp. 117-133.

18. H.P. Lotz, Uniform Convergence of Operators on L∞ and Similar Spaces, Math. Z. 190
(1985), 207-220.

19. W. Lusky, On the Fourier series of unbounded harmonic functions, J. London Math. Soc. 61
(2000), 568-580.

20. W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomophic func-
tions, Studia Math. 175 (2006) 19-45.

21. R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
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