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Abstract

The hyperbolic bioheat equation (HBE) has been used to model heating applications

involving very short power pulses. This equation includes two mathematical distributions

(Heaviside and Delta) which have to be necessarily substituted for smoothed mathemat-

ical functions when the HBE is solved by numerical methods. This study focuses on

which type of smoothed functions would be suitable for this purpose, i.e. those which

would provide provide solutions similar to those obtained analytically from the original

Heaviside and Delta distributions. The logistic function was considered as a substitute

for the Heaviside function, while its derivative and the probabilistic Gaussian function

were considered as substitutes for the Delta distribution. We also considered polynomial

interpolation functions, in particular, the families of smoothed functions with continuous

second derivative without overshoot used by COMSOL Multiphysics. All the smoothed

functions were used to solve the HBE by the Finite Element Method (COMSOL Multi-

physics), and the solutions were compared to those obtained analytically from the original

Heaviside and Delta distributions. The results showed that only the COMSOL smoothed

functions provide a numerical solution almost identical to the analytical one. Finally, we

demonstrated mathematically that in order to find a suitable smoothed function (f) must

adequately substitute any mathematical distribution (D) in the HBE, the difference D−f

must have compact support.

Keywords: Dirac distribution, numerical method, Heaviside distribution, hyperbolic bio-

heat equation, non-Fourier heat, wave heat, radiofrequency ablation.
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I Introduction

Mathematical modeling is widely used to study temperature distributions in different

medical procedures such as radiofrequency (RF) thermal ablation [1]. Most modeling

studies use the bioheat equation (BE), which is based on Fourier’s Law [2]:

−∆T (x, t) +
1

α

∂T

∂t
(x, t) =

1

k
S(x, t), (1)

where T (x, t) and S(x, t) are respectively the temperature and the internal heat sources at

point x at time t, k is thermal conductivity and α is thermal diffusivity (α = k
ηc , η being

density and c specific heat). When the BE is used to study thermal therapies, the source

term S(x, t) usually includes a heat source produced by an external energy source Ss(x, t)

(e.g. laser, microwave, ultrasound or radiofrequency) and a blood perfusion term Sp(x, t).

The BE assumes an infinite thermal energy propagation speed, i.e. any local temperature

disturbance causes an instantaneous perturbation in the temperature at every point in

the medium [3]. Although the BE can be valid in most heat modeling, under certain

circumstances, such as very fast heating with short power pulses, a model which considers

a finite thermal energy propagation speed has been found to be more accurate [4]. For this

reason, some modeling studies ([3]-[15]) employed the hyperbolic (non-Fourier or wave)

bioheat equation (HBE) which has a double-derivative term (called the wave term) that

changes BE to a hyperbolic partial differential equation [4]:

−∆T (x, t) +
1

α

(
∂T

∂t
(x, t) + τ

∂2T

∂t2
(x, t)

)
=

1

k

(
S(x, t) + τ

∂S

∂t
(x, t)

)
, (2)

in which there is a new parameter τ , which is the thermal relaxation time of the tissue.

This equation therefore assumes a finite heat conduction speed [16], which is inversely

proportional to τ .

We previously developed mathematical models using HBE to study the temperature

distributions in RF ablation (RFA) [17, 18]. To achieve an analytical solution, we con-

sidered the simplest geometry, consisting of a spherical active electrode with a radius of

r0 completely embedded in the biological tissue. The tissue was considered homogeneous

with infinite dimension and the dispersive electrode placed at infinity. For this geometry

model we used spherical coordinates, and since the model presented radial symmetry, a

one-dimensional approach was possible, r being the dimensional variable. Consequently,

the model domain was restricted to the biological tissue, i.e. the electrode body was not

included.
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From the point of view of the HBE model, Equation (2) in spherical coordinates

constitutes the governing equation, where k, η, c and τ are assumed to be constants. The

source term for the RFA is the Joule heat produced per unit volume of tissue, (Ss(r, t)),

which can be expressed as [19]:

Ss(r, t) =
P r0
4 π r4

H(t), (3)

where P is the total applied power (W ) and H(t) is the Heaviside distribution, which

allows the constant power application to be modeled by means of a step at t = 0. The

blood perfusion term can be expressed as [2]:

Sp(r, t) = −ηbcbwb(T − T0), (4)

where ηb is blood density, cb is the blood specific heat, wb is the perfusion coefficient and

T0 is the blood temperature. Then, the internal heat source term is

S(r, t) =
P r0
4 π r4

H(t)− ηbcbwb(T (r, t)− T0),

and

S(r, t) + τ
∂S

∂t
S(r, t) =

P r0
4 π r4

(H(t) + τδ(t))− ηbcbwb
∂T

∂t
T (r, t) (5)

where δ(t) is the Dirac delta distribution. Accordingly, Equation (2) in spherical coordi-

nates is:

−α
(
∂2T

∂r2
(r, t) +

2

r

∂T

∂r
(r, t)

)
+ ζ

∂T

∂t
(r, t)+ τ

∂2T

∂t2
=

P α r0
4 π k r4

(
H(t)+ τδ(t)

)
−B(T −T0),

(6)

where B = αηbcbwb
k and ζ = 1 + τB.

The initial conditions are

T (r, 0) = T0,
∂T

∂t
(r, 0) = 0 ∀r > r0. (7)

The boundary condition at infinity is

lim
r→∞

T (r, t) = T0 ∀ t > 0. (8)

To write the boundary condition at r = r0 (interface electrode-tissue), we adopt a

simplification assuming thermal conductivity of the electrode to be greater than that

4



of the tissue, which is generally true (15 W/K·m in metal vs 0.5 W/K·m in tissue),

i.e. considering that the boundary condition at the electrode-tissue interface is mainly

governed by the thermal inertia of the electrode [19]. Thus, at each time t, the heat flux

along the electrode surface per unit time is inverted to produce a heat increment in the

mass electrode:

η0 c0
4 π r30

3

∂T

∂t
(r0, t), (9)

where η0 and c0 are respectively the density and specific heat of the active electrode. Using

the expression for the hyperbolic heat flux [4] we obtained

η0 c0
4 π r30

3

∂T

∂t
(r0, t) = 4 π r20

k

τ
e−

t
τ

∫ t

0
e
ψ
τ
∂T

∂r
(r0, ψ) dψ (10)

and by derivation with respect to t we obtained the remaining boundary condition

τ η0 c0 r0
3 k

(
1

τ

∂T

∂t
(r0, t) +

∂2T

∂t2
(r0, t)

)
=
∂T

∂r
(r0, t). (11)

The majority of heat transfer problems that arise from real situations either involve

complex geometries, are non-linear, or their boundary conditions lead us to use numerical

instead of analytical methods to solve them. For instance, the Finite Elements Method

(FEM) has been used to solve many RFA mathematical models [20]-[23]. In this respect, it

is crucial to note that prior using a numerical method to solve the HBE, it is necessary to

substitute the Heaviside and Dirac distributions (H(t) and δ(t)) for smoothed functions,

which can be addressed by FEM. It is also necessary to emphasize that the Heaviside

function H(t) is a non continuous function and that the Dirac’s Delta δ(t) is a distribution

but not a function, it is in fact a measure. The annex provides information about these

two distributions and the underlying theory, Schwartz’s Distributions Theory.

The aim of this study was to mathematically justify the type of smoothed functions

that can substitute the Heaviside and Delta distributions in the HBE and reach solutions

identical to those obtained with the original distributions. We consider that this informa-

tion is crucial when the HBE has to be solved by numerical methods, since substitution

is mandatory. As far as we know no previous studies have addressed this issue.

II Materials and methods

II.1 Analytical solution of the HBE and conditions of substitution

First we consider a general formulation of Equation (6):

−α
(
∂2T

∂r2
(r, t) +

2

r

∂T

∂r
(r, t)

)
+ ζ

∂T

∂t
(r, t) + τ

∂2T

∂t2
=

P α r0
4 π k r4

D(t)−B(T − T0), (12)
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with conditions (7)-(11) and where D(t) is any function of t.

The analytical solution of this problem is denoted by T (r, t,D(t)). Our goal is to

mathematically compare the analytical solutions T (r, t,H(t) + τδ(t)) and T (r, t, R(t)), in

which R(t) is a term like f(t) + τg(t), and where f(t) and g(t) are smoothed functions

which can substitute H(t) and δ(t), respectively.

The analytical solution of (12) is obtained by the Laplace transform. From previous

results ([17], [18]) this solution can be expressed as follows:

T (r, t,D(t)) = T0 +
P

4πkr0
V

(
r

r0
,
αt

r20
, d(

αt

r20
)

)
, (13)

with

V (ρ, ξ, d(ξ)) = F (ξ) ∗ d(ξ)) (14)

where ∗ is the convolution operator, d(ξ) is the dimensionless term of D(t), i.e. D(
r20ξ
α )

and

F (ξ) = L−1
s

 1

2 ρ

 ∞∫
ρ

e−
√

λ s2+ζs+b (u−ρ)√
λ s2 + ζs+ b

du

u3

+

ρ∫
1

e−
√

λ s2+ζs+b (ρ−u)√
λ s2 + ζs+ b

du

u3
−

∞∫
1

e−
√

λ s2+ζs+b (u+ρ−2)√
λ s2 + ζs+ b

du

u3

+

∞∫
1

6
√
λ s2 + ζs+ b

m (λs2 + s) + 3
√
λ s2 + ζs+ b+ 3

e−
√

λ s2+ζs+b (u+ρ−2)√
λ s2 + ζs+ b

du

u3

 (15)

λ = α τ
r20

being the dimensionless relaxation time, ρ = r
r0

the dimensionless variable r,

b =
Br20
α the dimensionless constant of the blood perfusion term and m = η0 c0

η c the dimen-

sionless electrode thermal inertia.

In order to reach a general conclusion about which smoothed functions could be can-

didates to substitute the Heaviside function and Dirac’s delta distribution, we first try to

compare two generic solutions T (r, t,D1(t)) and T (r, t,D2(t)), where D1(t) and D2(t) are

different distributions.

From the previous sections,

V (ρ, ξ, d1(ξ))− V (ρ, ξ, d2(ξ)) = F (ξ) ∗ (d1(ξ)− d2(ξ))

where d1(ξ) = D1(
r20ξ
α ) and d2(ξ) = D2(

r20ξ
α ). To quantify this difference we consider a

property of the convolution of two distributions of D′(R), if at least one of them has

compact support (see Annex).
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We denote the space of the indefinitely differentiable functions in R (endowed with its

“usual Fréchet topology”, i. e. metrizable and complete) by C∞(R). From Schwartz’s

Theory of Distributions [24] if D ∈ D′(R) has compact support and h ∈ C∞(R), the

convolution operator D ∗ h belongs to C∞(R). Moreover, if we set h ∈ C∞(R), the map:

D′(R) → C∞(R) such that D → D ∗ h is continuous in the sense that if {Dn, n ∈ N} is

a sequence of distributions with compact support which converges to D in D′(R), then

{Dn ∗ h, n ∈ N} converges to D ∗ h in C∞(R).

In other words, if the distributions D1(t) and D2(t) are “close enough” in D′(R) and

D1(t)−D2(t) has compact support, then the difference V (ρ, ξ, d1(ξ))− V (ρ, ξ, d2(ξ)) can

be “sufficiently small”, and hence T (r, t,D1(t)) − T (r, t,D2(t)) can also be “sufficiently

small”. This would be the condition necessary in order to consider D1(t) a good substitute

for D2(t) and viceversa.

In the case of the HBE, we can apply the above result taking:

a) h = F (ξ) ∈ C∞(R).

b) Gn(ξ) = H(ξ)−fn(ξ)+λ(δ(ξ)−gn(ξ)), choosing fn(ξ) and gn(ξ) such that (H(ξ)−

fn(ξ) + λ(δ(ξ) − gn(ξ)) is a distribution of D′(R) with compact support, the sequence

{fn(ξ);n ∈ N} converges to H(ξ) in D′(R) and the sequence {gn(ξ);n ∈ N} converges

to δ(ξ) in D′(R). Then {Gn, n ∈ N} is a sequence of distributions with compact support

which converges to zero in D′(R).

As the map D′(R) → C∞(R) such that G→ G ∗ h is continuous, then {Gn ∗ h, n ∈ N}

converges to zero in C∞(R). That is, {V (ρ, ξ,H(ξ)+λδ(ξ))−V (ρ, ξ, fn(ξ)+λgn(ξ)), n ∈ N}

converges to zero in C∞(R) for every ρ > 1. Hence {V (ρ, ξ, fn(ξ) + λgn(ξ)), n ∈ N}

converges to V (ρ, ξ,H(ξ) + λ(ξ)) in C∞(R) for every ρ > 1. Then for n ∈ N “large

enough”, the analytical solution T (r, t, fn(t) + τgn(t)) is “close” to the analytical solution

of the original HBE, T (r, t,H(t) + τδ(t)).

II.2 Smoothed functions

There are several smoothed functions which could be candidates to substitute Heaviside

H(t) and Dirac’s delta distribution δ(t) in the HBE. One of the simplest options could be to

use a logistic function f(t) = 1
1+e−pt as substitute for H(t) and its derivative g(t) = f ′(t)

as substitute for δ(t) (see Fig. 1A). Another option is to use a probabilistic Gaussian

function h(t) = 1
q
√
2π
e

−t2
2q2 , instead of the derivative function f ′(t), as a substitute for δ(t)

(see Fig. 1B).

Still other options could use polynomial interpolation functions built from pairs of
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values by means of the splines method. This would provide many candidate functions

f(t) = I H(t) and g(t) = I D(t) to substitute H(t) and δ(t) respectively. An example

of this kind of function are the families of smoothed functions with a continuous second

derivative without overshoot, denoted by flc2hs(t, p) and fldc2hs(t, q) (where p and q

are parameters), which are used by COMSOL Multiphysics (COMSOL, Burlington, MA,

USA), as approximations of H(t) and δ(t) respectively (see Fig. 2). This software is being

increasingly used to study the heating of biological tissue with the BE ([20],[22],[23]), .

II.3 Description of the numerical model

In order to put the above ideas into practice we considered a theoretical RFA model

using the HBE. The liver was chosen as the target tissue, with the following characteristics:

Density η = 1060 kg/m3, specific heat c = 3600 J/kg·K and thermal conductivity k =

0.502 W/m·K. The blood properties were density ηb = 1000 kg/m3 and specific heat

cb = 4148 J/kg·K. Electrode characteristics were radius r0 = 1.5 mm, density η0 = 21500

kg/m3 and specific heat c0 = 132 J/kg·K. The perfusion coefficient was wb = 0.01 s−1,

which is slightly higher than the maximum value proposed by Chang and Nguyen [21],

corresponding to a well-perfused organ. Blood temperature and initial tissue temperature

were T0 = 37◦C. There is a lack of experimental data regarding the thermal relaxation

time τ of biological tissue. In fact, although Mitra et al [26], found the value to be τ = 16 s

in processed meat, no values have been measured for non excised tissues. Here we assumed

that τ = 16 s. The applied power was P = 1 W.

In order to study the suitability of the different functions f(t) and g(t) mentioned

in Section II.2, we obtained the numerical solutions of the HBE using each one, i.e.

T (r, t, f(t) + τg(t)) by means of COMSOL. This numerical approximation is denoted by

NT (r, t, f(t) + τg(t)). We then studied the temperature evolution at r = 2r0 for 160 s of

RFA, and used Mathematica 7.0 (Wolfram Research, Champaign, IL, USA) to plot the

analytical solutions.

III Results

III.1 Logistic function and its derivative

We first conducted an analysis in order to choose the most suitable p parameter of

the logistic function. We plotted the logistic function for different p values ranging, from

0.05 to 5 (see Fig. 1A). The approximation of the logistic function towards H(t) improves
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when p increases. Thus, we chose p = 50, which was the greatest p value we used in Fig.

1A. However, we observed that for p ≥ 5 the approximation of the logistic function to the

Heaviside function was suitable. Fig. 3 shows the temperature evolution for p between

0.05 and 50. In this case p = 5 and p = 50 provided a temperature plot very similar to

that obtained with the analytical solution using H(t), as will be shown in Section III.4.

III.2 Logistic function and probabilistic Gaussian function

In this case we searched for the optimum value of q in the probabilistic Gaussian

function. We plotted the Gaussian function for different q values ranging, from 0.05 to

50 (See Fig. 1B). In this case, the approximation of the gaussian function towards δ(t)

improves when q decreases, however, for very small values the numerical method fails. We

then selected q = 0.05 which was the minimum q value we tested and the approximation

was suitable. Fig. 4 shows temperature evolution for different values of q, p = 50 being.

In this case q = 0.05 (solid line) provided a temperature plot very similar to that obtained

with the analytical solution using H(t), as will be shown in Section III.4.

III.3 Smoothed functions of COMSOL Multiphysics

The smoothed functions used by COMSOL to substitute H(t) and δ(t) also have a

couple of parameters p and q. We conducted a similar analysis to choose their optimum

values. We found that large variations in p did not give a noticeable differences in the

results, while they were highly influenced by variations in q. The optimum value of q =

0.035 was found; the numerical method always failed with values other than this one. Fig.

5 shows temperature evolution for different values of p, q = 0.035 being. Note that the

results did not vary much when p changed, even in a broad range.

III.4 Comparison between candidate functions

Fig. 6 compares the temperature evolution of all the candidate functions considered

and their optimum values for parameters p and q as obtained in the previous steps. Fig.

6 also includes (solid line) the analytical solution using H(t) and δ(t) directly, which can

be considered as the standard to check the suitability of each pair of candidate functions.

IV Discussion

This study was conducted to identify the types of smoothed functions that could be

possible candidates to substitute H(t) and δ(t) in problems involving the HBE. Several
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functions were considered and compared with the numerical HBE solutions. Only COM-

SOL smoothed functions provided a solution almost identical to the analytical one. Here

we provide a mathematical explanation for this.

The theoretical basis presented in the Annex proves that if f(t) and g(t) are “close to”

H(t) and δ(t) respectively and H(t)− f(t) and δ(t)− g(t) have compact support, then we

can ensure that T (r, t,H(t) + τδ(t)) is “close to” T (r, t, f(t) + τg(t)), i.e. f(t) and g(t)

are good candidates to substitute H(t) and δ(t) respectively. Otherwise if H(t)− f(t) or

δ(t) − g(t) does not have compact support, we are not able to reach a conclusion on the

suitability of the candidate functions.

It is necessary to emphasize the essential difference between the logistic function and

an interpolation function I H(t) as used in COMSOL. A properly calculated interpolation

function can be zero for t < −a and is 1 for t > a for some a > 0. In contrast, in the

logistic functions the lines y = 0 and y = 1 are asymptotes (see Fig. 1A). Likewise, the

main difference between the probabilistic Gaussian function or the derivative of the logistic

function, and I D(t) is that I D(t), properly calculated, can be zero for |t| > b, for some

b > 0, while in the others the line y = 0 is an asymptote (see 1B and C). In general, since

H(t) − I H(t) and δ(t) − I D(t) have compact support, NT (r, t, I H(t) + τI D(t)) is not

only a numerical approximation of T (r, t, I H(t)+τI D(t)) but also of T (r, t,H(t)+τδ(t)).

COMSOL functions flc2hs(t, p) and fldc2hs(t, q) ∈ D′(R), ∀p, q ∈ R+ and satisfy that

limp→0(H(t)−flc2hs(t, p)) = 0 and limq→0(δ(t)−fldc2hs(t, 0)) = 0 inD′(R).Moreover the

parameter p controls the value of a such that flc2hs(t, p) is zero for t < −a and it is 1 for

t > a. And likewise the parameter q controls the number b such that fldc2hs(t, q) is zero

for |t| > b. Consequently, we can affirm that the numerical solution NT (r, t, f lc2hs(t, p)+

τfldc2hs(t, q)) is not only an approximation of T (r, t, f lc2hs(t, p) + τfldc2hs(t, q)), but

also of T (r, t,H(t) + τδ(t)).

Otherwise, if f(t) is a logistic function and g(t) is the probabilistic Gaussian function

or the derivative of the logistic function, neither H(t)− f(t) nor δ(t)− g(t) have compact

support. Accordingly, NT (r, t, f(t) + τg(t)) is a numerical approximation of T (r, t, f(t) +

τg(t)), but we cannot say whether it is a numerical approximation of T (r, t,H(t) + τδ(t))

or is not.

It is also important to note that in the expression of the analytical solution of the HBE

V (ρ, ξ,H(ξ) + λδ(ξ)) = F (ξ) ∗ (H(ξ) + λδ(ξ)), (16)

neither F (ξ) nor H(ξ)+λδ(ξ) have compact support. This explains why Figure 6 presents
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a peak. In this case T (r, t,H(t) + λδ(t)) inherits the irregularity of H(t) + λδ(t), and

T (r, t,H(t) + λδ(t)) /∈ C∞(R).

The very simple geometry included in the modeling could be considered as a limitation

of the study. In fact, in problems with the same governing equation but with other

geometries, the convolution factor F (ξ) will be different. In spite of this, H(ξ) + λδ(ξ) is

implicit to the external energy source. Consequently, by choosing appropiate fn(t) and

gn(t), n ∈ N, the corresponding difference T (r, t,H(t)+τδ(t))−T (r, t, fn(t)+τgn(t)) tends

to zero in C∞(R) for every r > r0, so that the conclusion that the interpolation functions

are as suitable substitutes for H(t) and δ(t) in HBE is still valid.

In addition, the findings of this study open the way for other more general situations.

For instance, if a model of partial differential equations has a distribution D, in many

cases it can be suitably substituted by an approximate smoothed function h ∈ D′(R) of

D such that D − h has compact support.

V Conclusions

The numerical solutions of HBE showed that only the families of smoothed functions

with a continuous second derivative without overshoot used by COMSOL Multiphysics

provided solutions similar to those obtained analytically from the original Heaviside and

Delta distributions. With the other candidate functions, such as the logistic function as

substitute for the Heaviside function and its derivative, and the probabilistic Gaussian

function as substitute for the Delta distribution, we obtained approximate solutions to

the analytical, but not as satisfactory as the obtained with COMSOL. From the mathe-

matical analysis we concluded that in order to find a suitable smoothed function (f) to

substitute any mathematical distribution (D) in the HBE, the difference D − f has to

have compact support. In fact, of all the smoothed functions considered here, only the

smoothed COMSOL Multiphysics functions accomplish this requeriment.
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Annex

Dirac’s Delta was introduced to satisfy the need of Quantum Mechanics for a measure

of mass placed at a point x0 denoted here by δx0 . It is defined in the space of continuous

functions with compact support C0
0(R) such that,

i) < δx0 , f >= f(x0), ∀f ∈ C0
0(R).

ii) δx0(R) = 1.

A measure µ has a density function with respect to the Lebesgue measure if there is a

function ϕµ integrable in the compact subsets of R, such that:

i) < µ, f > =
∫
R ϕµ(x)f(x)dx.

ii) µ(A) =
∫
A ϕµ(x)dx, for all measurable set A ⊂ R.

In this case we identify the measure µ with its density function ϕµ, and then we say

that the measure µ is also a function.

For example, for every ε > 0, given the interval Iε = [0, ε] we can define the measure

µε such that µε(A) =
1
ε

∫
A∩Iε dx. We consider the function ϕε(x) =

1
ε if x ∈ Iε and zero if

x /∈ Iε. It is easy to see that ϕε is the density of µε. Moreover µε(R) = 1. In fact, we put

the constant factor 1
ε in the definition only because of this probabilistic requirement.

Sometimes Dirac’s Delta function is defined in x0 as the function x→ δ(x− x0), such

that it is infinity at x = x0 and zero if x ̸= x0. Then, on identifying the measure δx0 with

δ(x− x0); that is, as if δ(x− x0) was the density of the measure δx0 .

With this identification the following conditions should be accomplished:

i) < δx0 , f >= f(x0) =
∫
R f(x)δ(x − x0)dx, for every continuous function f of

compact support.

ii) 1 =
∫
R δ(x− x0)dx.

However, from the classical theory of real functions, the integral of a function which

is zero in all real numbers except in x0 must be zero, which contradicts i) and ii). In

consequence, δ(x−x0) is not a function. Then we conclude that Dirac’s Delta is a positive

measure without a density function, hence it is not a function. Furthermore, it is the

simplest example of measure which is not a function (without density).

Schwartz’s Distribution Theory provides theoretical support. We consider the space

D(R) of indefinitely differentiable functions with compact support, endowed with a “cer-

tain” topology. The distribution space in the sense of Schwartz is the topological dual of

D(R) (i.e., the space of linear and continuous forms defined in D(R) ) endowed with the

weak topology (denoted by D′(R)).
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Three facts have to be taken into account:

1) D′(R) contains functions (for example, measures with densities) and mathematical

objects which are not functions, for example, Dirac’s Delta. But a Schwartz’s distribution

is always a linear and continuous form defined in D(R).

2) Every integrable function f in the compact sets of R defines a distribution, and thus

can also be considered also as a distribution. For example, the Heaviside function Hx0 is

also a distribution.

3) In the space D′(R) it is possible to extend the notion of derivative, which coincides

with the derivation of functions if the distribution is a derivable function. And the deriva-

tive of a distribution T , denoted DT , is also a distribution. Bydefinition, if T ∈ D′(R),

DT is the element of D′(R) such that for every f ∈ D(R), < DT, f >:= − < T,Df > .

In particular, the Heaviside function Hx0 , as a function, is not derivable in x0, but as

distribution DHx0 = δx0 . Obviously this property has been used to obtain the source term

for the governing equation.
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Figure 1: (A) Three logistic functions f(t) = 1
1+e−pt as possible smoothed functions to

substitute the Heaviside function H(t) and (B) Three gaussian functions g(t) = 1
q
√
2π
e
− t2

2q2

as possible smoothed functions to substitute the Dirac distribution δ(t).

17



Figure 2: Representation of flc2hs(t, p) with p = 1 (left) and fldc2hs(t, q) with q = 1

(right). These smoothed functions are used by COMSOL Multiphysics as candidates to

substitute Heaviside and Dirac distributions, respectively.
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Figure 3: Temperature evolution at r = 2r0 for different values of p of the logistic function.

This function and its derivative were used as candidates to substitute Heaviside and Dirac

distributions, respectively.
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Figure 4: Temperature evolution at r = 2r0 for different values of q of the probabilistic

Gaussian function, p = 50 being in the logistic function. These functions were used as

candidates to substitute Dirac and Heaviside distributions, respectively.
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Figure 5: Temperature evolution at r = 2r0 for different values of p of the smoothed

functions used by COMSOL Multiphysics, q = 0.035 being. These functions were used as

candidates to substitute Dirac and Heaviside distributions.
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Figure 6: Temperature evolution at r = 2r0 for the different candidate functions to substi-

tute Dirac and Heaviside distributions. Solid line corresponds with the analytical solution

using directly H(t) and δ(t), which can represent the comparison standard. 1) COMSOL

smoothed functions, 2) Logistics and Gaussian probabilistic functions, and 3) Logistic

functions and its derivative.
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