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Pricing reverse mortgages in Spain.

Abstract

In Spain, as in other European countries, the continuous ageing
of the population creates a need for long-term care services and their
financing. However, in Spain the development of this kind of services
is still embryonic. The aim of this article is to obtain a calculation
method for reverse mortgages in Spain based on the fit and projec-
tion of dynamic tables for Spanish mortality, using the Lee and Carter
model. Mortality and life expectancy for the next 20 years are pre-
dicted using the fitted model, and confidence intervals are obtained
from the prediction errors of parameters for the mortality index of the
model. The last part of the article illustrates an application of the re-
sults to calculate the reverse mortgage model promoted by the Spanish
Instituto de Crédito Oficial (ICO) (Spanish State Financial Agency),
for which the authors have developed a computer application.

Keywords: Reverse Mortgage, Lee-Carter model, Remaining Life-
time.

1 Introduction

A reverse mortgage is a real estate guaranteed credit, a product that provides
a person who owns real estate with a monthly income, determined by several
factors. Upon the death of the debtor, the heirs are required to pay off the
loan, or the creditor, as a last resort, proceeds to execute the guarantee, which
can mean selling the real estate to liquidate the debt, paying the inheritors
the balance from the sale of the property, if any.

A reverse mortgage is not the only financial product that transforms real
estate assets into income. Other formulas and products exist that can pro-
vide seniors with additional income, as is the case of the so-called housing
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pension, mortgage pension or the cession for rent of the principal residence to
a third party. Details of these alternatives can be found in Herranz-Gonzalez
(2006), who also considers similar products that exist in other countries, such
as home-equity reversion in the United Kingdom or the Home Equity Con-
version Mortgage (HECM) program in the United States, commented on in
more detail in Taffin (2006). For an in depth review of principal formulas
and variables used in the HECM program, interested readers can consult
Skarr (2008), who also compares several possibilities for their calculation.
Although they may be less popular, similar products also exist in other de-
veloped countries such as Australia, Canada, Denmark, Finland, Ireland,
Japan, Netherlands, Norway and Sweden. The expected remaining lifetime
at the age of contracting and the periodic incomes are determining factors
when it comes to evaluating the income to be received (Herranz-Gonzalez,
2006). This is why the reverse mortgage can be considered a double ap-
plication of life tables. On the one hand, the expected remaining lifetime
estimated for each age limits the theoretical term of the financial income.
On the other hand, the calculation of a life annuity to complement the finan-
cial income (annuity-certain) requires obtaining the necessary commutation
symbols, which depend on life tables to determine the present actuarial value
of the income. Life annuities are contingent on the death of the annuitant,
while an annuity-certain is independent of any life event and is therefore a
purely financial operation. If the life tables are not well calibrated, we can
predict higher mortality probabilities than is actually the case among policy-
holders, the latter will have been undercharged and the insurance company
will make a loss.

The correct evaluation of all these quantities requires well calibrated life
tables, meaning that they adequately reflect the evolution of mortality with
over the course of time, which returns us again to our interest in dynamic
life tables.

The aim of the present article is to obtain a calculation method for reverse
mortgages in Spain based on the fit and projection of dynamic tables for
Spanish mortality, using the model proposed by Lee and Carter (Lee and
Carter, 1992). For these reasons, the paper has three steps:

1. To model the behavior of Spanish mortality during the period 1980-
2005 using Lee-Carter’s model

2. To predict the probability of death and residual life expectancy for
future years for a range of ages that includes the most advanced ones
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3. To price reverse mortgages in Spain.

Section 2 consists of a review of different international studies on reverse
mortgages. Sections 3 and 4 present the methodology for the construction
of dynamic life tables for the Spanish population, commenting on the ad-
vantages, disadvantages and adaptation of the Lee-Carter model. Section 5
is dedicated to the procedure used for the calculation of reverse mortgages
according to the conditions established by the Instituto de Crédito Oficial
(ICO1). Section 6 is devoted to a computer application allowing the simula-
tion of incomes for this type of mortgage. The last Section, 7, presents the
conclusions that are reached.

2 A general perspective of reverse mortgages

Reverse mortgages are the object of study of Costa-Font (2009), who consider
them to be an interesting option for the Spanish population. The authors
study the preferences of the population in relation to complementary financial
instruments for personal care associated with advanced ages, such as housing
pensions, reverse mortgages and life annuities. They conclude that a reverse
mortgage is useful essentially for those that wish for “ageing at home” (the
option preferred by Spanish people), alone or with the assistance of hired
caregivers, and the need to complement a modest pension to increase their
quality of life. Another study (Blay-Berrueta, 2007) analyses the dependent
Spanish population and proposes the reverse mortgage as an alternative to
long-term case insurance. In the context of Spain, Costa-Font (2012) con-
cludes that private pension schemes are comparatively undeveloped.

In general, this instrument combines two types of traditional risks: the
risk of the homeowner’s longevity, managed by the insurance companies, and
the interest rates risk, very familiar to credit firms. There is also a third risk,
probably the least identified and understood (Taffin, 2006), associated with
the value of the property once the loan is paid off. The borrowed capital
depends, principally, on the borrower’s age, interest rates and assumptions
about the increase in housing prices. Given the lifelong nature of reverse
mortgages, the lower the borrower’s age, the lower the capital granted, the

1Instituto de Crédito Oficial is a State-owned corporate entity attached to the Ministry
of Economy and Finance through the Secretariat of State for the Economy. It has the
status of the State’s Financial Agency in Spain. www.ico.es
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consequence being that this type of loan is granted preferentially to older
people. The average borrower’s age is estimated to be around 75. There is
a theoretical minimum threshold which in the USA is set at 62, while in the
United Kingdom it is set at 60, sometimes even at 55, below which reverse
mortgages should not be granted.

Wang et al. (2008) propose a method to transfer and finance the wide
range of risks inherent to reverse mortgages from a lender’s point of view.
The article deals with what the literature calls crossover risk, which occurs
when the outstanding balance on the loan exceeds the home equity value
before the loan is settled. According to the authors, this risk is a combina-
tion of other risks, which include the above-mentioned ones of occupation
or longevity, interest rates and house prices. An occupation time that sur-
passes the foreseen time will increase the value of the loan and could surpass
the value of the property. The increase in life expectancy in recent decades
makes this risk increasingly plausible. On the other hand, and given that the
payment of the loan must be covered by the value of the property, an envi-
ronment with high interest rates and a real estate market in crisis increases
the risk of crossover. As a consequence of these risks, securitization emerged
in the U.S. financial market in the 1970s.

To these risks the authors add other less important ones, but worth taking
into account. In particular they mention maintenance and expenses. The
first occurs when the borrower does not carry out the necessary repairs for
the correct maintenance of the property, resulting in depreciation. Articles
by Miceli and Sirmans (1994), Shiller and Weiss (2000) and Davidoff and
Welke (2007) deal with this in detail. The second is a consequence of an
increase in expenses associated with the management of reverse mortgages
in situations of inflation. An in depth study of the risk of crossover can be
found in Chinloy and Megbolugbe (1994).

An important contribution to the literature on reverse mortgages is that
of Kutty (1998), who focuses on this product as a way of alleviating poverty,
given that the elderly population is poor in earnings but own their homes
and, therefore, are “House rich and cash poor”. In the Spanish case we have
already quoted the work of Blay-Berrueta (2007), which presents the reverse
mortgage as an alternative to private insurance for the joint financing of
long-term care in Spain. After a detailed survey of long-term care, including
a calculation of its cost, the author makes a comparative review of reverse
mortgages in the USA, the UK and Spain. With respect to reverse mortgages
in Spain he describes and calculates the reverse mortgages already offered by
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some financial entities and compares their results. Sánchez-Álvarez et al.
(2007) also deal with the design of reverse mortgages in the Spanish market.
In this paper, we describe in detail the characteristics and calculation method
of reverse mortgages designed by the Instituto de Crédito Oficial in Section
5.

3 Construction of projected life tables

In 1992, Lee and Carter proposed their famous model for obtaining dynamic
life tables, and studied project mortality rates in the USA. Since then, many
authors have used the model to study mortality in other developed coun-
tries such as: Canada (Lee and Nault, 1993), Chile (Lee and Rofman, 1994),
Japan (Wilmoth, 1996), Belgium (Brouhns et al., 2002), Austria (Carter and
Prkawetz, 2001), England and Wales (Renshaw and Haberman, 2003a), Aus-
tralia (Booth and Tickle, 2003) and Spain (Guillen and Vidiella-i-Anguera,
2005; Debón et al., 2008b).

Lee and Carter (1992) accepted that their model would be better if it
were used for projecting aggregate measures like life expectancy rather than
fundamental measures like individual age-specific mortality rates. In addi-
tion, demographers have traditionally centered their work on the study of life
expectancy but, as Booth et al. (2006a) indicate, it is difficult to establish
a direct relationship between the precision with which this measure of mor-
tality is predicted or estimated and the relative precision of mortality rates,
the measurement that is being modeled. Hence, that author puts special em-
phasis on indicating that while it is important to achieve precise predictions
of life expectancy, the evaluation of error in estimated mortality rates and
predictions is essential.

On the other hand, the ever increasing longevity of populations in more
developed countries requires research that pays special attention to mortality
at advanced ages. Poor fit and predictions for these ages suppose a serious
risk for the insurer due to the possibility of not being able to pay the annu-
ities, as well as for the policyholder, who can see the danger of not receiving
payment.

The analysis pays special attention to the study of errors in the predictions
of both measurements of mortality, by obtaining confidence intervals. In
order to simplify the procedure and reduce the computational time as much
as possible, the confidence intervals were obtained following a suggestion by
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Lee and Carter (1992), who suggest that the main source of uncertainty
induced in predicting comes from the temporal component of the model, kt.

3.1 Lee-Carter’s Model

Unlike other models (Heligman and Pollard, 1980; Forfar et al., 1988), de-
signed to graduate static life tables, Lee-Carter’s model was developed exclu-
sively for the graduation of dynamic life tables. Since its publication it has
enjoyed wide acceptance in the actuarial and demographic world due to its
simplicity and good results. The model expresses the measure of mortality
as an exponential function that depends on age and time,

mxt = exp(ax + bxkt + ǫxt), (1)

or equally
ln(mxt) = ax + bxkt + ǫxt. (2)

With respect to the interpretation of the parameters, it should be noted that:

1. the ax coefficients describe the average shape of the age profile,

2. the bx coefficients describe the pattern of deviations from this age profile

when the parameter kt varies

(

d lnmxt

dt
= bx

dkt
dt

)

,

3. the values of kt represent the trend of mortality throughout the period
studied.

The errors ǫxt, with average zero and variance σ2
ǫ , reflect historic fluctuations

that are not captured by the model.
Expressions (1) and (2) are in fact reduced versions of Lee-Carter’s model.

The more general form applied to the probability of death qxt, is

ln(qxt) = ax +
r

∑

i=1

bixk
i
t + ǫxt, (3)

where r is the range of the matrix ln(qxt) − ax. Some authors, see Debón
et al. (2008b), prefer to model the logit(qxt) instead of its logarithm,

logit(qxt) = ln

(

qxt
1− qxt

)

= ax +

r
∑

i=1

bixk
i
t + ǫxt. (4)
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The reasons for this change are two-fold: first is the remark in Lee (2000),
where the author points out that nothing ensures that estimations obtained
from (3) will not exceed 1, and this problem can be avoided by modelling
the logit death rates. On the other hand, by adding terms to (1) or (2),
interactions between age and time can be better captured, as Booth et al.
(2002) and Renshaw and Haberman (2003b) indicate.

The structure of the model is invariable under any of the following trans-
formations of the parameters, (ax, b

i
x/c, ck

i
t) or (ax+ cbix, bx, k

i
t− c), ∀c, which

requires their normalization,
∑

x

bix = 1 and
∑

t

ki
t = 0, in order to get one

single solution. The model cannot be fitted by normal regression techniques
as the values of the index kt are not observable. The estimation of parame-
ters in (4) can be carried out by singular value decomposition (SVD) of the

matrix ln
(

qxt
1−qxt

)

− âx (Lee and Carter, 1992), conditional generalized linear

models (GLM) (Currie et al., 2004), or the method of maximum likelihood
(Brouhns et al., 2002). Details on the estimation of parameters according to
these three methods can be found in Debón et al. (2008b). The SVD method
normally includes a second stage adjustment to the estimated values of kt
that ensures an equality of observed deaths and predicted deaths within the
fitting period. A further method that was proposed by Wilmoth (1993) is
weighted least squares.

The prediction of future mortality values requires a last step, the fitting
of a time series to the values of the estimated mortality index, k̂t. Substi-
tuting the prediction k̂tn+s in Lee-Carter’s model, the q̂x,tn+s, s = 1, 2, . . . , is
obtained, by means of

ln

(

q̂x,tn+s

1− q̂x,tn+s

)

= ax + b̂xk̂tn+s, s > 0. (5)

An alternative prediction method is proposed by Lee (2000) and Renshaw
and Haberman (2003b) using the final data as a starting point. They suggest
obtaining projected mortality rates by aligning them with the final crude
rates of mortality. To this end, (Renshaw and Haberman, 2006) propose the
expression,

ln

(

q̂x,tn+s

1− q̂x,tn+s

)

= ln

(

q̇xtn
1− q̇xtn

)

+ b̂x(k̂tn+s − k̂tn), s > 0.

Some authors have proposed modifications to this method, including
Carter and Lee (1992), Wilmoth (1993) and Lee (2000) himself in an ar-
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ticle where he compares his method to other alternatives such as that of
McNown and Rogers (1989, 1992). Modifications are also proposed in Booth
et al. (2002), Li and Lee (2005) and Debón et al. (2011), these proposing
modifications to the Lee-Carter method to forecast mortality for a group of
countries, taking into account their membership of a group instead of con-
sidering them individually. More recently, Czado et al. (2005) and Pedroza
(2006) introduced a Bayesian estimation of the parameters, the latter by
means of state-space models.

The principal criticism of the Lee-Carter model is that the parameters ax
and bx depend only on age and that the prediction of future values of mortal-
ity are only based on kt, which supposes that no interaction exists between
age and time. Its advantages are, among others, the easy interpretation of
its parameters and its parsimony (Lee, 2000; Booth et al., 2002). The model
at present enjoys a considerable popularity due to its good results and to its
simplicity, which is why there is a growing literature devoted to it.

3.2 Treatment of ages above 85 years

The crude rates of mortality for advanced ages yield unreliable results due to
the low number of subjects exposed to risk. The pattern for advanced and
very advanced ages is highly influenced by random fluctuations due to the
scarcity of data. Cossette et al. (2007) consider a large number of studies
in which demographers and actuaries suggest diverse techniques to calculate
and complete the measurement of mortality for advanced ages. Studies by
Coale and Guo (1989), Coale and Kisker (1990), Thatcher et al. (1998),
Lindbergson (2001) and Thatcher et al. (2002) deserve mentioning due to
their great influence. An extensive and complete list of studies referring to
this subject can be consulted in Booth (2006). An adaptation of the model
proposed by Denuit and Goderniaux (2004) is used here, varying only in the
fitting method. The starting point in the original method is a constrained
log-quadratic regression model of the form

ln(qxt) = at + btx+ ctx
2 + ǫxt, (6)

with ǫxt i.i.d., N(0, σ2). The model is fitted separately to each calendar year
t and for ages x ≥ 75. We fix two constraints, the first one is q130t = 1, ∀t,
and the second ∂qx(t)

∂x
|x=130 = 0. These two restrictions lead to the following

relation between the coefficients,

at + btx+ ctx
2 = ct(130− x)2, ∀t. (7)
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Substituting (7) in (6) produces the equation

ln(qxt) = ct(130− x)2. (8)

The proposed adaptation consists of fitting the previous equation using a
GLM with log link, as we have considered a Binomial distribution for the
number of deaths, Dxt ∼ Bi(Ext, qxt). Therefore, we propose a small im-
provement to the fit of this model that consists of obtaining the estimators
of ct by maximum likelihood. This considerably improves the fit.

4 Application to Spanish mortality data

4.1 Description of data and preliminary analysis

The mortality data for men and women in Spain, corresponding to the period
1980 to 2005 and a range of ages from 0 to 125, are analyzed in this chapter.
As indicated in the previous section, the special interest in ages over 99
justifies such a wide range of ages, even at the risk of appearing excessive.

The crude estimations of the mortality rates, qxt, that are the necessary
input for dynamic models, were obtained with the procedure used by the
Spanish Instituto Nacional de Estad́ıstica (INE2),

q̇xt =
1/2(dxt + dx(t+1))

Pxt + 1/2dxt
, (9)

where dxt is the number of deaths in year t at age x, dx(t+1) is the number of
deaths in year t+ 1 at age x, and Pxt the population that on December 31st

of year t is x years old. Formula (9) can be applied to all ages between 1 and
99 years, but age 0, due to the concentration of deaths in the first months of
life, requires an alternative expression,

q̇0t =
0.85d0t + 0.15d0(t+1)

P0t + 0.85d0t
. (10)

It can be seen that in both (9) and (10), the denominator is an estimation
of Ext, those initially exposed to risk.

The data set with which the subsequent analyses will be carried out is
formed by the original values of q̇xt for x = {0, 1, . . . , 85}, and for x =

2National Institute of Statistics, www.ine.es.
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{86, . . . , 125}, q̇xt from the fit of a quadratic regression in (8). The compar-
ison of both groups of values can be seen in Figures 1 and 2, in which the
effect of smoothing in the advanced ages is evident.
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Figure 1: Probabilities of death for men for ages from 0 to 99 (left) and for
ages from 0 to 130 (right).
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Figure 2: Probabilities of death for women for ages from 0 to 99 (left) and
for ages from 0 to 130 (right).

Once the data was completed, a model allowing a sufficiently smooth
mortality surface to be obtained, which could also be used to project the
long-term probability of death, was designed. Starting from the fitted model,
projections of mortality rates for the following 20 years were obtained, that
is, from 2006 to 2025.
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The data for population and deaths were obtained from the official data
produced by the INE. For the period 1991-2005, population figures are pub-
lished on the INE’s web page (www.ine.es) for ages from 0 to 100 and
beyond. For those pertaining to the previous period, 1980-1991, the range
ends at age 85 or more, the remaining ages (from 85 to 100 and beyond) were
requested from the INE.

4.2 Application of the Lee-Carter model

Several authors have studied Spanish mortality with dynamic models. Felipe
et al. (2002), use Heligman-Pollard’s law (Heligman and Pollard, 1980) to
evaluate the way in which calendar year (1975-1993) affects mortality pat-
terns in the Spanish population for a range of ages from 0 to 90. Guillen
and Vidiella-i-Anguera (2005), use a Poisson log-bilinear version of the Lee-
Carter model, proposed by Wilmoth (1993) and Brouhns et al. (2002), to
analyze Spanish mortality data corresponding to the period 1975 -1998 and
ages from 0 to 105. In Debón et al. (2008b), the authors apply Lee-Carter’s
model with one or two terms to data for the period 1980-1999 and ages from
0 to 96, improving on the results obtained by the previous authors due to
the better adaptability of the model to mortality observed at intermediate
ages. Finally, in Debón et al. (2008a), mortality is analyzed from a new
perspective by introducing geostatistical techniques, designed for the analy-
sis of spatio-temporal data, which improve on all of the previously obtained
results, although increasing the model complexity and computation time. It
appears to be a promising new approximation but very complex for use in the
context of work of a practical nature. For these same reasons the simplest
Lee-Carter model, the one with only one term, was chosen to develop the
analysis whose results are summarized below. The R code used for the fit
can be found in Debón et al. (2009).

4.2.1 Fitting results

Due to the large number of parameters estimated in this model, 126×2+26 =
278 for each sex, the presentation of numerical results would require long
tedious tables, which is why it is preferable to present it in the form of a
graph in Figure 3, which also has the advantage of making its evolution with
age or time easier to understand.

A first general comment regards the different behavior of ax according
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Figure 3: Estimated Values for Lee-Carter’s model.

to gender, Figure 3(a) showing that mortality for women is lower than for
men. On the other hand, the increase in mortality that the graph shows
for men between 15 and 40 could be explained by deaths due to accidents,
which some authors call the accident hump. The positive values of bx at
all the ages, see Figure 3(b), indicate that mortality diminishes over time.
Nevertheless, some authors (Debón et al., 2008b) have found negative values
of bx for intermediate and advanced ages, which would indicate an increase
in mortality with each calendar year. The ages range from 24 to 40, showing
a relative increment in mortality that can be explained (Felipe et al., 2002;
Guillen and Vidiella-i-Anguera, 2005) by the effect of the AIDS epidemic
during the period of time studied. Finally, due to the structure of the data,
for yearly series for a range of ages without grouping, the values of bx show an
irregular pattern that makes smoothing necessary to avoid certain anomalies
localized in specific elderly groups (Renshaw and Haberman, 2003c,b), an
undesirable effect from an actuarial point of view. Cubic splines were used
for the smoothing.

For the values for the rate of death kt, Figure 3(c) shows an obviously
decreasing tendency, which is more pronounced for women than men. Tul-
japurkar et al. (2000), investigating the G7 countries (Canada, France, Ger-
many, Italy, Japan, UK, and US) find that mortality at each age has declined
exponentially at a roughly constant rate in every country over this period.
For a more recent multi-country comparison of various stochastic mortality
models, see Booth et al. (2006b). Our results are similar to those obtained
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by these studies.

4.2.2 Goodness-of-fit

In order to carry out a diagnosis of the fitted model, Figures 4 and 5 show
the deviance residuals for both sexes against age, calendar year and cohorts.

The residuals would have a true satisfactory behavior if they varied be-
tween [−2, 2], which does not happen between ages 20 to 40 for the period
1990-1995 or for the cohorts corresponding to those born between 1950 and
1975. In these intervals the residuals are much greater than in the rest of
the graphs. In addition, the better quality of fit for women is evident, which
is because the logit of their mortality rates has less variability and a more
linear behavior.

4.2.3 Prediction and confidence intervals

For the fit of the time series to the mortality indexes and their forecasts,
the application of (5) is required. We used the auto.arima and forecast func-
tions from the R forecast package (Hyndman, 2008), which returns the best
ARIMA model according to Akaike information criterion (AIC). AIC is a
measure of the relative goodness-of-fit of a statistical model. Hence, AIC not
only rewards goodness-of-fit, but also includes a penalty that is an increas-
ing function of the number of estimated parameters. The best-suited models
turned out to be ARIMA(2, 1, 1) for men and ARIMA(0, 1, 0) for women.
The general expression for an ARIMA(p, d, q) is,

φ(B)(1−B)dk̂t = p+ θ(B)ut,

where φ(B) and θ(B) are polynomials in B with p and q degrees, respec-
tively, B is the backward shift operator and ut is a white noise. So, for
ARIMA(2, 1, 1) we have

k̂t + (φ1 − 1)k̂t−1 + (φ1 − φ2)k̂t−2 + φ3k̂t−3 = p+ ut − θ1ut−1,

and for ARIMA(0, 1, 0)
k̂t − k̂t−1 = p+ ut.

The values of kt were predicted for t = 2006, . . . , 2025 and once substituted in
(5) they provide the logit(qxt) projections. The projection surfaces obtained
for men and women are shown in Figure 6.
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Confidence intervals should be obtained to measure the uncertainty of the
mortality forecasts (Pedroza, 2006). Koissi et al. (2006) and Brouhns et al.
(2005) describe two possible methods to obtain confidence intervals, the first
by means of parametric bootstrap techniques and the second by nonpara-
metric techniques. Later, Renshaw and Haberman (2008), who point out
the problems with the Monte Carlo approach, reviewed the three approaches
suggested in the literature to boot-strapping. The narrow amplitude of the
confidence intervals obtained attracts the attention of the aforementioned au-
thors who provide some explanations for this fact. Li et al. (2009) attribute
the phenomenon to the rigidity of the structure of the Lee-Carter model,
and to avoid it they relax the structure by incorporating the heterogeneity
of each age-period cell. Therefore, as the confidence intervals obtained by
means of bootstrap techniques are computationally more costly, we resorted
to the method originally proposed in Lee and Carter (1992). Those authors
proposed obtaining the intervals from the prediction errors for the kt param-
eters projected by the ARIMA models. This approximation assumes that
the principal source of uncertainty is kt.

Mortality predictions need to be accompanied by prediction intervals for
the estimations obtained. One way to combine all sources of uncertainty is
to use bootstrapping procedures as Brouhns et al. (2005) and Koissi et al.
(2006) do. In the case of Spain, this method was used by Debón et al.
(2008b), who obtained prediction intervals for the predictions provided by
the Lee-Carter model with one or two terms. Parametric and non-parametric
bootstrap techniques are used, in both cases based on the binomial distribu-
tion assumption, as distinct from the work by Brouhns et al. (2005), Koissi
et al. (2006) and Renshaw and Haberman (2008), who employ the Poisson
distribution. Another difference to point out is the residuals sampled in the
non-parametric case. While Debón et al. (2008b) sample over the logit resid-
uals given, Koissi et al. (2006) and Renshaw and Haberman (2008) sample
over the deviance residuals. The narrow prediction intervals obtained by clas-
sical bootstrap techniques have attracted the attention of other researchers
in this field (Lee and Carter, 1992; Lee, 2000; Booth et al., 2002; Koissi
et al., 2006), who provide different explanations. In the case of spatial (two-
dimensions: age, time) dependence of residuals, ordinary bootstrap is not
valid (Liu and Braun, 2010). Therefore, Liu and Braun (2010) propose pre-
diction intervals by using a residual-based block-bootstrap. More recently,
D’Amato et al. (2012) have introduced a tailor-made bootstrap instead of
an ordinary bootstrap to improve the methodology for forecasting mortal-
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ity in order to enhance model performance and increase forecasting power
by capturing the dependence structure of neighboring observations in the
population.

4.2.4 Prediction of qxt for the period 2006-2025

The fit of the model for 1980 to 2005 and the forecasts obtained for the
probabilities of death from 2006 to 2025 are shown in Figure 7. To facilitate
interpretation only some of the ages, the five ten-year periods from 10 to
50, are shown. The figure shows that the model presents reasonable future
tendencies without inconsistencies for the ages shown and also for the rest of
the ages, meaning that the decreasing tendency predicted for some ages does
not cross the predictions for higher ages. In part, this good behavior is due
to the smoothing of the estimated values of bx, which was referred to before.
Figure 7 shows the confidence intervals of logit(qxt) for predictions beyond
2005.

In the case of advanced ages, which for the reasons mentioned before are
of greater interest, five year periods between 70 and 95 years, both inclusive,
are shown. Figure 8 shows that all of them present unremarkable future
tendencies. The deceleration in the probability of death as the years pass
can be explained by the selective survival of healthier individuals to older
ages (Horiuchi and Wilmoth, 1998).

The narrow amplitude of the confidence intervals should be emphasized,
even if the ones shown here have been obtained following the method pro-
posed by Lee and Carter. This fact is more evident in the case of men, as
the fluctuations of male mortality for the ages in the accident hump in the
period of time considered are difficult to perceive, such that the parameters
bx reflect little decrease in mortality rates, thus reducing the amplitude of
intervals given by bx(k

sup
t − kinf

t ). In the case of women the evolution of
mortality is more linear and homogeneous, which implies greater values for
bx (see Figure 3(b)) and wider intervals. This, which seems contrary to logic,
is a consequence of not having incorporated the uncertainty of the estima-
tions for bx into the calculation of confidence intervals, which constitutes a
weakness of the method, and calls for the search for alternatives. An addi-
tional reason to explain the narrow amplitude of confidence intervals should
be sought in the process of smoothing used for ages over 85 years old, which
eliminates fluctuations that result in low values for bx. Therefore, the use of
bootstrapping is recommended to capture parameter error better.
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It should be noted that Delwarde et al. (2007) propose a version of Lee-
Carter’s model whose parameters are estimated by means of a penalized
log-likelihood, directly obtaining smoothed estimations for bx.

4.2.5 Prediction of ext for the period 2006-2025

An indicator of the evolution of mortality over time, widely used by actuaries,
is the residual life expectancy at age x in year t, ext, whose expression is given
by

ext =
Txt

lxt
,

where lxt and Txt represent, respectively, the total number of people that have
reached x years in the calendar year t and the sum of years that all of them
expect to live. Its interest is evident in financial and actuarial contingent
claims that depend on the remaining age of the party contracting them.
Reverse mortgages are a paradigmatic example of such contracts.

Figure 9 shows the life expectancy for ages 70, 75, 80, 85 and 90, estimated
in the period 1980-2005 and projected for the period 2006-2025, as well as
their confidence intervals.

The increase in life expectancy over time, clear for both sexes, is greater
for women. The narrow amplitude of the confidence intervals is also clear
here, and is more acute for women for the reasons outlined in the previous
section. Debón et al. (2008b) calculated confidence intervals by applying
parametric and nonparametric bootstrap techniques, obtaining very similar
results.

Life expectancy at age x, ext, can be obtained for a specific period t
or for the corresponding cohort t − x, definitions being available in Denuit
(2007). Computation of life expectancy and annuities by cohort generates
greater risk than computation by period, manifested in the respective wider
confidence and prediction intervals (Renshaw and Haberman, 2008). In this
paper we use period-based definitions and calculations.

5 ICO program for reverse mortgages

A reverse mortgage is a loan used to release the home equity of the main res-
idence in order to generate an income for the beneficiary over an established
period of time. In Spain it is regulated in a generic form by Law 41/2007.
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The reverse mortgage model proposed by the ICO is more restrictive
than the generic model regulated by this law, as it is a model designed for
the disabled or people over 70 years of age who receive a low monthly income.
This mode of reverse mortgage is a complement to Law 39/2006, known as
the Ley de Dependencia (Long-Term Care Law). Its principal characteristics
are described below:

The borrowers must have resided in Spain for at least the previous 5 years,
with an age equal to or above 70 and who are owners of their principal
residence, which can be mortgaged.

The principal limit of the loan is 70% of the present appraisal value of the
property plus the premium corresponding to life insurance.

The expected duration of the operation is ext + 5, ext being the residual life
expectancy of the borrower.

The maximum monthly income for the borrower is calculated by equaling
the present net value of the monthly income during the residual life ex-
pectancy, ext, with the financing granted, with a monthly limit of 2,000
Euros. This monthly income is increased every year by a percentage of
approximately r = 3%.

The borrower is obliged to subscribe to:

• An insurance policy, as a single premium, that covers the monthly
income in case of survival beyond the expected duration of the
operation, as well as the interest in favor of the financial entity for
the outstanding of the account.

• A multi-risk home insurance policy for the property under guar-
antee.

The mathematical analysis of the financial operation requires the calcu-
lation of all the terms involved by application of the equivalence principal.
This supposes that the total loan has to be equal to all the earned income,
both being evaluated at the same time, in this case at the beginning of the
contract. That is,

VA(1 + i)n = VT +G,

where
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VA is the present value of the property,

VT is the appraised value of the property,

G is the total sum of initial expenses which, given the conditions of the
program, are estimated as 1, 06% of VT ,

i is the annual interest,

n is the duration of the contract in years, whose expected value is
n = ext + 5.

The total sum of the actual loan granted, PR, from which the value of the
monthly income to be received is determined for the financial part of the
operation, whose duration is n years, as well as the actuarial part. The
lifelong income if n years are exceeded, is

PR = VA −G− UI , (11)

where UI represents the single premium of interests in favor of the borrowing
entity in the case of survival of the beneficiary beyond the foreseen n years.
It is a constant deferred monthly income whose value is obtained with the
expression

UI = 12VT im

(

Nx+n+1

Dx

+
11

24

Dx+n

Dx

)

,

where im is the monthly financial interest rate,

im = (1 + i)1/12 − 1.

The usual mathematics in this type of financial-actuarial operation lead
to the following expression for y, the monthly sum to be received in the first
year by the borrower and updated annually with interest r

y =
PR

a12|im
(1+i)[1−rn(1+i)−n]

1+i−r
+ 12rn−1

(

N∗

x+n+1

D∗

x

+ 11
24

D∗

x+n

D∗

x

) ,

where the symbols with an * are calculated with the technical interest i2 =
(1 + i− r)/r, and

a12|im =
1− (1 + im)

−12

im
.
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6 A reverse mortgage simulator

As a complement to what has been set out in the previous sections, the au-
thors have developed a computer tool. It permits the simulation of the most
relevant data of a reverse mortgage in accordance with the method devel-
oped by the ICO, starting from the personal characteristics of a theoretical
borrower. The package also provides the fitted dynamic tables for Spanish
mortality using the data corresponding to the period 1980-2005, the most
recent published by the Instituto Nacional de Estad́ıstica, for ages 0 to 125,
as well as its projection over the next 20 years.

The data to be introduced for the simulation of the monthly sums for the
reverse mortgage are:

the year of inception of the reverse mortgage in a range between 2007
and 2026,

the age and sex of the borrower,

the financial and actuarial interest,

the appraised value of the property and, optionally,

the initial expenses, as a percentage, and the yearly growth rate, fixed
by default as 1, 06% and 3%, respectively.

The result of the application is a table, which includes, for all the years
of the mortgage’s duration, the value of the monthly income to be received
every month, the multi-risk insurance premium and the resulting net income.
Incomes and premiums are updated year by year according to the rate of
growth that has been fixed. Table 1 shows the effect of changes in financial
and interest rates on the net income by means of a simulation of a mortgage
contracted in 2010 for a 70 year old man, and a property with an appraised
valued of 100,000 Euros, for yearly financial rates of 8, 6 and 4% and actuarial
interest rates of 3.5, 2.5 and 1.5%.

7 Conclusions

As a final comment, it is worth highlighting three distinctive features of the
methodology presented here in relation to the work of other authors.
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financial interest 8% financial interest 6% financial interest 4%
year 3.5 2.5 1.5 3.5 2.5 1.5 3.5 2.5 1.5
1 98.68 90.41 80.57 139.63 132.68 124.32 185.31 179.47 172.41
2 101.64 93.13 82.98 143.82 136.66 128.05 190.87 184.86 177.58
3 104.69 95.92 85.47 148.14 140.76 131.89 196.59 190.40 182.91
4 107.83 98.80 88.04 152.58 144.98 135.85 202.49 196.12 188.39
5 111.06 101.76 90.68 157.16 149.33 139.92 208.57 202.00 194.04
6 114.39 104.81 93.40 161.87 153.81 144.12 214.82 208.06 199.87
7 117.83 107.96 96.20 166.73 158.42 148.44 221.27 214.30 205.86
8 121.36 111.20 99.09 171.73 163.18 152.90 227.91 220.73 212.04
9 125.00 114.53 102.06 176.88 168.07 157.48 234.74 227.35 218.40
10 128.75 117.97 105.12 182.19 173.11 162.21 241.79 234.17 224.95
11 132.61 121.51 108.28 187.66 178.31 167.07 249.04 241.20 231.70
12 136.59 125.15 111.52 193.29 183.66 172.09 256.51 248.44 238.65
13 140.69 128.91 114.87 199.08 189.17 177.25 264.21 255.89 245.81
14 144.91 132.77 118.32 205.06 194.84 182.57 272.13 263.56 253.18
15 149.26 136.76 121.87 211.21 200.69 188.04 280.30 271.47 260.78
16 153.74 140.86 125.52 217.54 206.71 193.68 288.71 279.62 268.60
17 158.35 145.09 129.29 224.07 212.91 199.49 297.37 288.00 276.66
18 163.10 149.44 133.17 230.79 219.29 205.48 306.29 296.64 284.96
19 167.99 153.92 137.16 237.72 225.87 211.64 315.48 305.54 293.51
20 173.03 158.54 141.28 244.85 232.65 217.99 324.94 314.71 302.32

Table 1: Simulation of a reverse mortgage under different financial and ac-
tuarial interest rates

1. Our methodology allows us to obtain estimations of qxt for the range
of ages 0-130 by maximum likelihood.

2. As far as we know, the Lee-Carter model has not been used in the
graduation of Spanish mortality data to the full range of ages 0-125.

3. The models used in this paper have been fitted for the full range of
ages. Many authors achieve better fits by eliminating the early ages,
which they justify by arguing that actuarial operations begin at a more
advanced age. Contrary to this criterion, we have decided to include
them as we consider that their influence on the fit should not be un-
derestimated.
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Our model for pricing reverse mortgages is of additional interest for being
applicable to mortality data for a wide range of ages from other countries.

A future line of work would be a comparative study of simulation strate-
gies for assessing risk in mortality rate predictions and associated estimates
of life expectancy and annuity values in both period and cohort frameworks.
The previous methods for the calculation of a reverse mortgage (Table 1) are
sensitive to the particular choice of parameters. The work by Renshaw and
Haberman (2008) go in this direction, quantifying the effect of mortality pro-
jections on life expectancy and annuity values through the computation of
prediction intervals. Another possibility is to answer, in the context of Spain,
the Davidoff (2012) question: Can “High Costs” Justify Weak Demand for

the Home Equity Conversion Mortgage?
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Figure 4: Deviance residuals for men.
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Figure 5: Deviance residuals for women.
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Figure 7: Predictions for certain age groups for men (left) and women (right).
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Figure 8: Predictions for advanced ages for men (left) and women (right).
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Figure 9: Residual life expectancy for advanced ages for men (left) and
women (right).
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