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ABSTRACT 

The ultrasonic transmission through plates perforated with 2x2 or 3x3 square array of 

subwavelength holes per unit cell are studied by numerical simulations. Calculations are 

obtained by means of a theoretical model under the rigid-solid assumption. It is 

demonstrated that when the inter-hole distance within the unit cell is reduced, appear 

new transmission dips resulting from Wood anomalies that have influence on the 

second and the third order Fabry-Perot peak. When the inter-hole distance within the 

unit cell is reduced, the transmission spectrum of the multiple-sublattice holes arrays 

tends to the transmission spectrum of a plate perforated with only one hole in the unit 

cell. 
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1. INTRODUCTION 

 In recent years, the extraordinary optical transmission through metallic membranes 

perforated with subwavelength hole arrays [1] has attracted considerable attention. One 

important characteristic of periodic subwavelength hole arrays drilled on a metallic 

membrane is that they transmit much light than expected from Bethe’s theory [2]. A lot of 

discussion have raised in the literature for elucidating the mechanisms involved in the 

extraordinary optical transmission. Martin-Moreno et al. [3] and Barnes et al. [4] attributed 

this effect to surface plasmon resonances, Cao et al. [5] to cavity resonances, Porto et al. [6] 

to waveguide resonance and Takakura [7] to dynamical diffraction. Inspired by the studies 

in electromagnetic waves, investigation has been extended to acoustic waves, emphasizing 

the similarities between both cases, but taking into account the intrinsic differences 

between them, namely: acoustic waves can be transmitted through a single subwavelength 

hole [8] and, depending on the impedance contrast between fluid and solid, can penetrate 

into solid [9]. The so-called extraordinary acoustic transmission was reported 

experimentally by Lu et al. [10] and Hou et al. [11] for slit and hole arrays, respectively, 

and theoretically by Christiansen et al. [12]. It is widely accepted that Fabry-Perot 

resonances are the main responsible for extraordinary acoustic transmission. Estrada et al. 

[13] have shown that water-inmersed aluminium plates perforated with periodic 

subwavelength hole arrays exhibit not only full transmission peaks, but also extraordinary 

ultrasound screening over a frequency region around Wood anomaly [14]. It was also 

demonstrated that the position and width of transmission peaks and dips can be tuned by 

changing the filling fraction of holes [15] and the lattice geometry [16]. Estrada et al. [9] 

also demonstrated that Lamb and Scholte-Stoneley modes are strongly coupled to Fabry-

Perot and lattice resonances in a water-inmersed perforated plate. 
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 The aim of this paper is to study theoretically the interaction between the different 

resonances when multiple subwavelength holes arrays are arranged in a unit cell. The 

ultrasound transmission through plates perforated is calculated when the individual unit 

cells comprise 2x2 or 3x3 square array of subwavelength holes. The spacing between holes 

in unit cell is varied to examine its effect on the transmission spectra. 

 

2. BASIC THEORY 

Consider a plane ultrasound wave incident on a rigid plate of thickness h drilled 

with P cylindrical holes of radius 0r  in positions determined by their centres ir
r , as 

schematically shown in Figure 1. 

Assuming an incident plane wave ( ) ( )0

0
i k r tr e ωφ ⋅ −

=
r rr , the reflected and the 

transmitted ultrasound pressure fields can be expressed in terms of plane waves 

expansion. For simplicity, time harmonic excitation is assumed, thus the time 

component tie ω− can be omitted. By using the rigid-solid assumption, that is, there is no 

field inside the solid, the pressure field in the three regions can be written as follows 

[17,18]: 

  

 ( ) ( ) ( ) ( ) ( ) ( )0 || 0 || 2
0

i Q r q z i Q r qz
I Rr r r e Q e d Qφ φ φ β⋅ − ⋅ ++= + = + ∫∫

r rr rr rr r r , (1) 

 ( ) ( )( ) ( ) 0||
1 0 1

0

i

P
imi i

m mn i mn i
i m nII

J Q r r e z if r r r
r

otherwise

ϕ

φ

∞ ∞

= = =

 − Ψ − ≤= 


∑∑∑ r r r r
r , (2) 

 ( ) ( ) ( )( )|| 2i Q r q z h
III r Q e d Qφ β ⋅ − +−= ∫∫

r rr rr ,  (3)

  

where ( )0 0 0,k Q q=
r r

, 0k cω= , 2 2
0q k Q= − , 2 2

0
i i
mn mnq k Q= − , ( )...mJ  is the Bessel 
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function of the first kind and order m, and ( )i
mn zΨ  is defined as 

( ) i i
mn mniq z iq zi i i

mn mn mnz e eα α −+ −Ψ = + . 

As the plate is treated as a perfect rigid solid, zero normal velocity at the hole 

walls is assumed and the polar eigenfunctions inside the hole must 

satisfy ( )0 0i
m mnJ Q r′ = .  

 Repeating the P holes periodically throughout the whole plate, they can be 

considered as a lattice basis with a unit-cell area S and defined by the vectors ( )1 2,a ar r . 

In this way, the coefficients ( )Qβ ±
r

 can be expanded as Fourier series, giving discrete 

expressions [19] for equations (1) and (3) 

 ( ) ( ) ( ) ( )0 || ||

02 ·cos · G Gi Q r i Q r q z
I G

G

r e q z eφ β⋅ ⋅ ++= +∑
r r

r rr r

r
r

r , (4) 

 ( ) ( )( )||G Gi Q r q z h
III G

G

r eφ β ⋅ − +−= ∑
r r
r r

r
r

r , (5) 

where 0GQ Q G= +r
r r r

, G
r

 is the reciprocal lattice vector of ( )1 2,a ar r , and 2 2
0G Gq k Q= −r r .  

The objective is to determine the coefficients Gβ
+
r , Gβ

−
r , i

mnα +  and i
mnα −  by imposing the 

continuity of the normal velocity at 0z =  and z h= −  and imposing pressure continuity 

at 0z =  and  z h= − . Once mnα±  and Gβ
±
r  are obtained, the ultrasound power 

transmission coefficient can be calculated from the ultrasound power radiated by an 

infinite plate [20] ,  

( )
( )

2

0 0 , ,  
T G

G
G

q
Re

q
ω

τ β
ω θ ϕ

−Π  
= =  Π  

∑
r

r
r

. 

 

3. NUMERICAL RESULTS AND DISCUSSION 
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 The numerical calculations are made considering 2x2 and 3x3 multiple-

sublattice holes arrays placed in water. In each 2x2 and 3x3 squared holes arrays 

considered, the period of the unit cell, a, is fixed and the inter-hole distance within the 

unit cell, p, is varied. The values of p considered are a/2, 10a/24 and a/3 in the 2x2 

squared holes arrays and a/3, 3a/10 and 7a/30 in the 3x3 squared holes arrays. All the 

samples considered have a thickness h = 3 mm and a fixed hole filling fraction 0.25. 

The period of the unit cells, a, is 5 mm. Multiple-sublattice hole unit cells considered 

are showed in Figure 2. The transmitted ultrasound power coefficient, τ, as a function of 

frequency, f, in the fluid at normal incidence of the 2x2 multiple-sublattice holes arrays 

is calculated separately for samples with the inter-hole distance within the unit cell a/2, 

10a/24 and a/3 and are depicted in Figures 3(a)-(c), respectively. The sample with the 

inter-hole distance within the unit cell a/2 (Figure 3(a)) corresponds to a square lattice 

holes arrays with period a/2 = 2.5 mm. The full transmission peaks observed correspond 

to Fabry-Perot resonances of the holes cavities and modulated by the interaction among 

holes and the minimum transmission dips at frequencies around 590 kHz and 840 kHz 

correspond to the manifestation of Wood anomalies. The Wood anomaly for normal 

incidence is given by 
2 22 2m n

c l l
ω π π   = +   

   
, where l is the array period, n,m are 

called Miller indices and c is the speed of ultrasound in water. When the inter-hole 

distance within the unit cell is reduced to 10a/24 (Figure 3(b)), new transmission dips 

appears resulting from Wood anomalies corresponding to the period of the unit cell.  

The Wood minima associated to the period of the unit cell (296 kHz and 420 kHz) have 

effect in the appearance of the second order transmission peak while the first order 

Fabry-Perot peak is invariable. The calculated results for the sample with the inter-hole 

distance within the unit cell 7a/30 are shown in Figure 3(c). The prevalence of the first 
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order Fabry-Perot transmission peak is evident, while the amplitude of the second order 

transmission peak is reduced at half due the interplay with Wood anomaly minima 

associated with the period of the unit cell, which are more obvious. Figure 3(d) shows 

transmitted ultrasound power coefficient of a sample with one hole within the unit cell 

with period a = 5 mm and a hole filling fraction 0.25. The full transmission peak 

observed correspond to the first order Fabry-Perot holes resonances and the minimum 

transmission dips correspond to the manifestation of Wood anomalies. The existence of 

Wood anomalies is related to the geometrical structure factor of the lattice. Thus, 

Figures 4(a)-(d) are obtained by appliying a two-dimensional Fourier transform to the 

real space lattice. It can be clearly seen that for p values of 10a/24 (Fig.4(b)), a/3 

(Fig.4(c)), and single hole (Fig.4(d)), the structure factor is the same and only the 

relative amplitude between the peaks changes. 

In the case of the 3x3 multiple-sublattice hole arrays samples, the transmitted 

ultrasound power coefficient, τ, as a function of frequency, f, at normal incidence is 

calculated separately for the case where the inter-hole distance within the unit cell is 

a/3, 3a/10 and 7a/30 and are depicted in Figures 5(a)-(c), respectively. Figure 5(a) 

shows transmitted ultrasound power coefficient of the sample with the inter-hole 

distance within the unit cell a/3, that corresponds to a square lattice holes arrays with 

period a/3 = 1.67 mm. Like in the 2x2 case, the full transmission peaks observed 

correspond to Fabry-Perot holes resonances, but a new Fabry-Perot resonance arises due 

to the addition of extra holes in the unit cell. The minimum transmission dips at 

frequencies around 880 kHz and 1260 kHz correspond to the manifestation of Wood 

anomalies. When the inter-hole distance within the unit cell are reduced to 3a/10 

(Figure 5(b)) and to 7a/30 (Figure 5(c)) appear new transmission dips resulting from 

Wood anomalies corresponding to the period of the unit cell. The effect of Wood 
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minima associated with the period of the unit cell increase their effect in the appearance 

of the second and third order transmission peaks as distance of the holes within the unit 

cell are reduced while the frequency of the first order Fabry-Perot peak remains 

invariable. As showed in 2x2 case Figure 5(d) shows transmitted ultrasound power 

coefficient of a sample with one hole within the unit cell with period a = 5 mm and a 

hole filling fraction 0.25. The geometrical structure factor for the 3x3 multiple-

sublattice hole array samples shows the same behaviour observed in the 2x2 case, as 

can be seen in Figures 6(a)-(d). From Figures 3(a)-(d) and Figures 5(a)-(d) it can 

observed that the transmission spectrum of the multiple-sublattice holes arrays tends to 

one with only one hole in the unit cell. One remarkable feature shown in Figure 5(c) is 

that the first order Fabry-Perot resonance peak splits into two peaks. The transmission 

dip that gives rise to the splitting of the first order Fabry-Perot resonance peak arises 

from the interference between holes [21]. When the holes have the same area, the 

coupling between them is strong and when the phase difference between holes in a unit 

cell approaches π, as shown in Figure 7(a)-(c), the interference between them lead a 

destructive interference. In addition to the π phase shift linked to the resonance splitting 

of the first Fabry-Perot mode, other phase shift peaks can be observed at higher 

frequencies in Figures 7(b) and 7(c). However, these shift peaks are highly influenced 

by the lattice structure factor (see Figure 6(b), (c)). Thus, as the structure factor for both 

lattices is roughly the same, the difference observed in the transmission spectra can be 

attributed to the inter-hole distance p as it clearly modifies the inter-hole interaction. 

 

4. CONCLUSIONS 

Ultrasound transmission through periodically perforated plates with multiple-sublattice 

holes arrays has been studied theoretically. Ultrasound transmission spectrums were 
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calculated by using a model in the rigid-solid limit. The results show that, in both 2x2 

and 3x3 squared holes arrays, when the inter-hole distance within the unit cell is 

reduced, appear new transmission dips resulting from Wood anomalies corresponding to 

the period of the unit cell and the period of the holes within the unit cell.  The Wood 

minima associated with the period of the unit cell have effect in the appearance of the 

second order transmission peak while the first order Fabry-Perot peak is invariable. For 

the 3x3 squared holes arrays the first order Fabry-Perot resonance peak splits into two 

when the phase difference between holes in a unit cell approach π. As the inter-hole 

distance within the unit cell is reduced, the transmission spectrum of the multiple-

sublattice holes arrays tends to one with only one hole in the unit cell.  These results are 

expected to have applications in ultrasonic filters.  
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 FIGURES CAPTIONS 

 

Figure 1. Schematic representation of the (a) "xz" plane and (b) "xy" plane of the unit-

cell. Gray regions correspond to the rigid solid whereas the surrounding fluid is divided 

in 3 regions as indicated by the labels in a). The vector ( )||ir r−r r  in (b) represents the 

projection over the z=0 plane of the vector defined from the centre of each hole to the 

appropriate points in the fluid region 2. 

 

Figure 2. Diagrammatic sketch of the unit cells of the samples considered.   

 

Figure 3. Transmitted ultrasound power coefficient of the 2x2 multiple-sublattice holes 

arrays with the three different periodicities of the holes within the unit cell: a) a/2, b) 

10a/24 and c) a/3, d) sample with one hole within the unit cell with period a and hole 

filling fraction 0.25, where a = 5 mm.  

 

Figure 4. Structure factor of the 2x2 multiple-sublattice holes arrays with the three 

different inter-hole distances within the unit cell: a) a/2, b) 10a/24 and c) a/3, d) sample 

with one hole within the unit cell with period a and hole filling fraction 0.25, where a = 

5 mm. 

 

Figure 5. Transmitted ultrasound power coefficient of the 3x3 multiple-sublattice holes 

arrays with the three different periodicities of the holes within the unit cell: a) a/3, b) 

3a/10 and c) 7a/30, d) sample with one hole within the unit cell with period a and hole 

filling fraction 0.25, where a = 5 mm.  
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Figure 6. Structure factor of the 3x3 multiple-sublattice holes arrays with the three 

different inter-hole distances within the unit cell: a) a/3, b) 3a/10 and c) 7a/30, d) 

sample with one hole within the unit cell with period a and hole filling fraction 0.25, 

where a = 5 mm 

 

Figure 7. Phase differences of the fields between the central and the extreme holes 

(black) and between the central and the middle holes (gray) on the 3x3 multiple-

sublattice holes arrays. The periodicities of the holes within the unit cell are: a) a/3, b) 

3a/10 and c) 7a/30, where a = 5 mm. 
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