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Abstract 

 
Despite the huge potential benefits offered by genetically modified (GM) citrus, field 

releases raise concerns about their potential environmental impact and the possibility to show 

unexpected deleterious effects from an agronomic view. The main concerns raised by the use 

of genetic transformation to improve this long-lived crop, of vegetative propagation and complex 

reproductive biology are: (1) the transfer of transgenes via pollen to compatible varieties of 

Citrus and relatives; (2) the stability of the transgenes in the long-term; (3) the occurrence of 

adverse pleiotropic effects derived from the integration and expression of the transgenes on the 

main agronomic and phenotypic crop characteristics. All these issues have been extensively 

studied in other annual GM crops that are already commercial or non-commercial yet. However, 

since the use of genetic transformation in improving fruit trees is still in its infancy, currently 

there is very little information on biosafety and transgene stability for these crops. Therefore, the 

future of transgenic trees in commercial agriculture remains uncertain, though we already have 

the technology to produce them. On the other hand, in the case of citrus, there are neither 

commercial transgenic varieties nor unequivocal evidence that this tool could be really useful to 

deal successfully with specific improvement goals. Achieving improvement goals so important 

as improving the nutri-functional quality of citrus fruits through genetic engineering could 

contribute to a wider acceptance of this technology by the public, since it is an improvement 

addressed to the consumer first.  

 

In this work, we have faced some of the aspects which are greatly limiting the 

acceptance and marketing of GM citrus, by (1) conducting a field release experiment with GM 

citrus to assess their environmental safety and the lack of adverse agronomic effects (2) 

addressing an objective to improve the nutri-functional quality of orange fruit through metabolic 

engineering in order to strengthen their healthy properties. 

 

The field experiment consisted of a planting of transgenic citrus trees carrying only the 

uidA and nptII marker genes, and its purpose was to study the feasibility of genetic 

transformation in improving commercially important citrus genotypes. This experimental orchard 

allowed us to estimate the maximum frequency of transgenic pollen dispersal under conditions 

of open pollination and to study genetic, phenological and environmental factors that 

determined it, in order to propose appropriate transgene containment measures for future GM 

citrus plantings. It also served as a first approach to address basic issues as the study of the 

stability of transgene expression in the long term (after 7 years of establishment in the field) 

under real agricultural conditions and its potential impact on the morphology, phenology and 

fruit quality of transgenic citrus. These studies, though do not solve all concerns regarding GM 

citrus, provide crucial information about environmental biosafety and behaviour in the field, so 

far non-existent, which can serve as a basis to design future field trials with GM citrus and to 

guide case-by-case regulatory policies for new plantings. 
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Moreover, in this work we have succeeded in developing a strategy to induce early fruit 

production and increase the content of β-carotene (pro-vitamin A, with high antioxidant capacity) 

in the pulp of a sweet orange variety by metabolic engineering. This strategy consisted of RNAi-

mediated silencing of a β-carotene hydroxylase gene from orange (CsβCHX), involved in the 

conversion of β-carotene into xanthophylls, combined with overexpression of the FLOWERING 

LOCUS T gene from orange (CsFT) in juvenile transgenic plants of Pineapple sweet orange. 

Subsequent tests with the animal model Caenorhabditis elegans demonstrated that the 

enriched orange exerted an in vivo antioxidant effect 20% higher than isogenic control oranges. 

This is the first successful example of metabolic engineering to increase the content of β-

carotene (or any phytonutrient) in orange and demonstrates the potential of genetic engineering 

for nutritional enrichment of woody fruit crops. 
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Resumen 

 
A pesar de los enormes beneficios potenciales que ofrecen los cítricos genéticamente 

modificados (GM), su liberación en campo suscita preocupaciones acerca de su potencial 

impacto ambiental y posibilidad de que muestren efectos deletéreos inesperados desde un 

punto de vista agronómico. Las principales preocupaciones que plantea el uso de la 

transformación genética para la mejora de este cultivo de vida larga, propagación vegetativa y 

compleja biología reproductiva son: (1) la transferencia de los transgenes vía polen a 

variedades compatibles de especies de Citrus y afines; (2) la estabilidad de los transgenes a 

largo plazo; (3) la aparición de efectos pleiotrópicos adversos derivados de la integración y la 

expresión de los transgenes sobre las principales características agronómicas y fenotípicas del 

cultivo. Todas estas cuestiones han sido ampliamente estudiadas en otros cultivos anuales GM 

que ya son o no comerciales. Sin embargo, puesto que el empleo de la transformación genética 

en la mejora de árboles frutales todavía se encuentra en sus inicios, actualmente se dispone de 

muy poca información al respecto para estos cultivos. Por todo ello, el futuro de los arboles 

transgénicos en el ámbito comercial permanece aún incierto, aunque actualmente se dispone 

de la tecnología para producirlos. Por otro lado, en el caso concreto de los cítricos, no existen 

variedades transgénicas comerciales ni evidencias inequívocas de que esta herramienta sea 

realmente útil para afrontar con éxito objetivos de mejora concretos. Lograr cumplir objetivos de 

mejora tan importantes como la mejora de la calidad nutri-funcional de los frutos cítricos 

mediante ingeniería genética podría contribuir a una mayor aceptación de esta tecnología por 

parte del público, puesto que se trata de una mejora dirigida primeramente al consumidor. 

 

En este trabajo nos hemos planteado afrontar parte de los aspectos que en gran 

medida limitan la aceptación y comercialización de cítricos GM, mediante (1) la realización de 

un experimento de campo con cítricos GM para evaluar su seguridad ambiental y la ausencia 

de efectos agronómicos adversos (2) el abordaje de un objetivo de mejora de la calidad nutri-

funcional de la naranja concreto mediante ingeniería metabólica con la finalidad de reforzar sus 

propiedades saludables. 

 

El experimento de campo consistió en una plantación de cítricos transgénicos que 

portaban únicamente los genes marcadores uidA y nptII cuya finalidad fue estudiar la viabilidad 

de la transformación genética en la mejora de genotipos cítricos comercialmente importantes.  

Este huerto experimental nos sirvió para estimar la frecuencia máxima de dispersión de los 

transgenes por polen bajo condiciones de polinización abierta y estudiar los factores 

ambientales, genéticos y fenológicos que la determinan, para así poder proponer medidas de 

contención apropiadas en futuras plantaciones de cítricos GM. También sirvió como primera 

aproximación para abordar cuestiones básicas como el estudio de la estabilidad de la 

expresión de los transgenes a largo plazo (tras 7 años de establecimiento en campo) bajo 

condiciones reales de cultivo y su potencial impacto sobre la morfología, fenología y calidad de 
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la fruta de los cítricos transgénicos. Los estudios realizados, aunque no resuelven todas las 

preocupaciones concernientes a los cítricos GM, aportan información crucial relativa a su 

seguridad y comportamiento en campo, inexistente hasta el momento, que puede servir como 

base para futuros ensayos de campo con cítricos GM y como guía para las políticas de 

regulación de su plantación (caso-a-caso). 

 

Por otro lado, en este trabajo se ha logrado desarrollar una estrategia para inducir 

producción temprana de fruta e incrementar el contenido de b-caroteno (pro-vitamina A, con 

elevada capacidad antioxidante) en la pulpa de una variedad de naranjo dulce mediante 

ingeniería metabólica. Dicha estrategia consistió en el silenciamiento mediado por RNAi del 

gen de una β-caroteno hidroxilasa de naranjo (CsβCHX), implicada en la conversión de b-

caroteno en xantofilas, combinado con la sobreexpresión del gen FLOWERING LOCUS T de 

naranjo (CsFT) en plantas transgénicas juveniles de naranjo dulce cv Pineapple. Posteriores 

ensayos con el animal modelo Caenorhabditis elegans demostraron que la naranjas 

enriquecidas ejercían un efecto antioxidante in vivo un 20% mayor que las naranjas control 

isogénicas. Este es el primer ejemplo exitoso de ingeniería metabólica para incrementar el 

contenido de β-caroteno (o cualquier fitonutriente) en naranjas y demuestra el potencial que 

tiene la ingeniería genética para el enriquecimiento nutricional de cultivos frutales leñosos. 
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Resum 

A pesar dels enormes beneficis potencials que ofereixen els cítrics genèticament 

modificats (GM), el seu alliberament en camp suscita preocupacions sobre el seu potencial 

impacte ambiental i la possibilitat que mostrin efectes deleteris inesperats des d'un punt de 

vista agronòmic. Les principals preocupacions que planteja l'ús de la transformació genètica per 

a la millora d'aquest cultiu de vida llarga, propagació vegetativa i complexa biologia 

reproductiva són: (1) la transferència dels transgens via pol·len a varietats compatibles 

d'espècies de Citrus i afins; (2) l'estabilitat dels transgens a llarg termini; (3) l'aparició d'efectes 

pleiotròpics adversos derivats de la integració i l'expressió dels transgens sobre les principals 

característiques agronòmiques i fenotípiques del cultiu. Totes aquestes qüestions han sigut 

àmpliament estudiades en altres cultius anuals GM que ja són o no comercials. No obstant 

això, ja que l'ús de la transformació genètica en la millora d'arbres fruiters encara es troba en 

els seus inicis, actualment es disposa de molt poca informació al respecte per aquests cultius. 

Per tot això, el futur dels arbres transgènics en l'àmbit comercial roman encara incert, encara 

que actualment es disposa de la tecnologia per produir-los. D'altra banda, en el cas concret 

dels cítrics, no existeixen varietats transgèniques comercials ni evidències inequívoques que 

aquesta eina sigui realment útil per afrontar amb èxit objectius de millora concrets. Aconseguir 

complir objectius de millora tan importants com la millora de la qualitat nutri-funcional dels fruits 

cítrics mitjançant l'enginyeria genètica podria contribuir a una major acceptació d'aquesta 

tecnologia per part del públic, ja que es tracta d'una millora dirigida primerament al consumidor. 

 

En aquest treball ens hem plantejat afrontar part dels aspectes que en gran mesura 

limiten l'acceptació i comercialització de cítrics GM, mitjançant (1) la realització d'un experiment 

de camp amb cítrics GM per avaluar la seva seguretat ambiental i l'absència d'efectes 

agronòmics adversos (2) l'abordatge d'un objectiu de millora de la qualitat nutri-funcional de la 

taronja concret mitjançant enginyeria metabòlica amb la finalitat de reforçar les seves propietats 

saludables. 

 

L'experiment de camp va consistir en una plantació de cítrics transgènics que portaven 

únicament els gens marcadors uidA i nptII, quina finalitat va ser estudiar la viabilitat de la 

transformació genètica en la millora de genotips cítrics comercialment importants. Aquest hort 

experimental ens va servir per estimar la freqüència màxima de dispersió dels transgens per 

pol·len baix condicions de pol·linització oberta i estudiar els factors ambientals, genètics i 

fenològics que la determinen, per així poder proposar mesures de contenció apropiades en 

futures plantacions de cítrics GM. També va servir com a primera aproximació per abordar 

qüestions bàsiques com l'estudi de l'estabilitat de l'expressió dels transgens a llarg termini 

(després de 7 anys d'establiment en camp) en condicions reals de cultiu i el seu potencial 

impacte sobre la morfologia, fenologia i qualitat de la fruita dels cítrics transgènics. Els estudis 

realitzats, encara que no resolen totes les preocupacions concernents als cítrics GM, aporten 

informació crucial relativa a la seva seguretat i comportament en camp, inexistent fins al 
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moment, que pot servir com a base per a futurs assajos de camp amb cítrics GM i com a guia 

per les polítiques de regulació de la seva plantació (cas-a-cas). 

D'altra banda, en aquest treball s'ha aconseguit desenvolupar una estratègia per induir 

producció precoç de fruita i incrementar el contingut de β-carotè (provitamina A, amb elevada 

capacitat antioxidant) a la polpa d'una varietat de taronger dolç mitjançant enginyeria 

metabòlica. Aquesta estratègia va consistir en el silenciament mediat per RNAi del gen d'una β-

carotè hidroxilasa de taronger (CsβCHX), implicada en la conversió de β-carotè en xantofilas, 

combinat amb la sobreexpressió del gen FLOWERING LOCUS T de taronger (CsFT) en 

plantes transgèniques juvenils de taronger dolç cv Pineapple. Posteriors assajos amb l'animal 

model Caenorhabditis elegans van demostrar que la taronges enriquides exercien un efecte 

antioxidant in vivo un 20% major que les taronges control isogèniques. Aquest és el primer 

exemple exitós d'enginyeria metabòlica per incrementar el contingut de β-carotè (o qualsevol 

fitonutrient) en taronges i demostra el potencial que té l'enginyeria genètica per a l'enriquiment 

nutricional de cultius fruiters llenyosos. 
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1. Citrus improvement by genetic transformation 
 

1.1. Citrus 
 

1.1.1. Taxonomy, origin, and distribution  

 
The genus Citrus is one of the 33 genera in the subfamily Aurantoideae of the family 

Rutaceae. Within this subfamily, most taxonomists recognize that “true citrus fruit trees” belong 

to the tribe Citreae, subtribe Citrinae, being three genus of economic importance: Poncirus, 

Fortunella and Citrus. Among them, the genus Citrus is by far the most important, but Fortunella 

and Poncirus are also playing a relevant role in citriculture. 

Fortunella is a genus with several genotypes known as kumquats, all being small trees 

with a later flowering time than Citrus species, relatively cold tolerant and resistant to citrus 

canker and Phytophthora spp. They bear small fruits with sweet tasting rind. Kumquats have 

been cultivated extensively in China for long time and are recently used as parents in citrus 

breeding programs. Poncirus includes only the Poncirus trifoliata (L.) Raf. species. It is used 

exclusively as a rootstock in many areas and as parent in rootstock breeding programs, due to 

its resistance to Citrus Tristeza Virus, the citrus nematode Tylenchulus semipenetrans, 

Phytophthora parasitica and Phytophthora citrophthora and its cold tolerance. Its derived 

hybrids with sweet oranges, [mainly `Carrizo´ and `Troyer´ citranges (C. sinensis x P. trifoliata)] 

are the main rootstocks used in Spain; a cross between Poncirus and grapefruit known as 

Swingle citrumelo (C. paradisi x P. trifoliata) is also used as a rootstock by many citrus 

industries. 

The taxonomy of the genus Citrus is controversial. The system most commonly used 

comes from the classification of Swingle with modifications provided by the much more complex 

Tanaka’s classification. While Swingle recognizes 10 and 6 species, respectively, in the two 

subgenera Citrus and Papeda (Swingle and Reece, 1967), Tanaka identifies up to 162 species 

in different groups and subgroups (Tanaka, 1954, 1977). From the ten Citrus species 

designated by Swingle, eight are of commercial importance: C. sinensis (L.) Osb. (sweet 

oranges), C. reticulata Blanco (mandarins), C. paradisi Macf. (grapefruits), C. grandis (L.) Osb. 

(pummelos), C. limon (L.) Burm. f. (lemons), C. aurantifolia (Christm.) Swing. (limes), C. 

aurantium L. (sour oranges), and C. medica L. (citrons). Tanaka´s system is better adapted to 

horticultural traits paying also special consideration to cultivated species. This concerns to 

Citrus genotypes that are widely cultivated and of high economic importance, such as 

clementine mandarins (C. clementina Hort. ex Tan.), satsuma mandarins (C. unshiu (Mak.) 

Marc.), or Rangpur lime (C. limonia (L.) Osb.) among others, for which most citrus researchers 

use the Tanaka’s classification (Krueger and Navarro, 2007). From an agronomical point of 

view, Tanaka’ s classification is better adapted to the characteristics of the different agronomic 

groups, and it is widely used to manage germplasm collections (Krueger and Navarro, 2007). 

The area of origin of Citrus is believed to be southeastern Asia, including south China, 

the Indo-Chinese peninsula, northeastern India and Burma (Webber, 1967). This is a wide area, 
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but attempts to localize more precisely the centers of origin of the most important Citrus types 

are still now controversial. It has become clear in recent times that only citron (Citrus medica), 

mandarin (C. reticulata), and pummelo (C. grandis) are “true species” within genus Citrus, being 

other important Citrus types, as sweet orange, sour orange, lemon, lime, grapefruit and other 

mandarins originated from hybridization between these ancestral species followed by 

subsequent frequent somatic mutations (Davies and Albrigo, 1994; Ollitrault, et al., 2012). This 

view was convincingly supported by classical (Mabberley, 1997) and molecular (Nicolosi, et al., 

2000; Xu, et al., 2013; Wu, et al., 2014) phylogenetic studies. Since the three ancestral species 

only reproduce sexually and are original from the same geographical area, several generations 

of hybridization among these species would generate the highest levels of genetic diversity 

within the genus Citrus and sexually-compatible relatives. Therefore, southeastern Asia would 

not only be the site of origin of most important Citrus types but also its major center of diversity. 

Domestication could have started in this area and expanded progressively in all directions 

(revised by Webber (1967)). In the case of genus Fortunella and Poncirus all authors coincide in 

ascribing their origin to central China, since both genera are most cold-hardy than Citrus and 

are reported as growing wild in the Yellow river area in ancient Chinese literature. 

Due to their apomictic character (ability of nucellar cells from seeds to develop embryos 

that are genetically identical to mother plant), most Citrus varieties were propagated as 

seedlings during many centuries. In the case of monoembryonic genotypes (that is, genotypes 

producing seeds that only develop sexual embryos), propagation by seeds led to generation of 

a lot of genetic variation and horticultural diversity, as it is exemplified by the high number of 

different mandarin types that have been grown in China and Japan during many years. 

Although there are ancient Chinese references reporting the graft of mandarins onto Poncirus 

trifoliata, grafting only became a common practice in citriculture from the mid-19
th
 century, after 

sweet orange seedlings grown in Europe were seriously affected by Phytopththora epidemics. 

Nowadays, the citrus industry relies on trees composed of two different genotypes: a mature 

fruit-producing Citrus scion grafted onto a highly apomictic juvenile rootstock. 

 

1.1.2. Citrus biology: some clues on growth and development 

 

1.1.2.1. Vegetative development 

 

Seed and seedling 

Sowing is practiced mainly with rootstock cultivars which are grown in nurseries and 

prepared for grafting. The rate of seedling development varies considerably among cultivars 

and is greatly dependent upon genetic characteristics such as nucellar embriony rate and vigor, 

and environmental conditions, including temperature, soil type, irrigation, and particularly, 

nitrogen fertilization. Citrus seedlings are juvenile, much more so than rooted cuttings or other 

vegetatively propagated plants. The period from seed to first fruiting is known as the juvenile 

period. Its length in citrus is often four to six years, but it could be much longer, highly 



Introduction 

 

5 

 

depending on the genetic and the environmental context for each citrus type. Juvenility is 

generally associated with inability to flower, but the juvenile growth habit is revealed also in 

upright, unbranched growth, abundance of thorns, and in certain cultivars (e. g. Shamouti 

orange) by very large leaves (Spiegel-Roy and Goldschmidt, 1996). Moreover, even with the 

advent of fruiting, some of its characteristics, such as thorniness and undesirable fruit shape, 

often persist. While there is a definite genetic component on the length of the juvenile period – 

oranges are slow to come into bearing compared with most mandarins – environmental 

conditions are also highly influential, being juvenility shorter in tropical areas. 

 

Shoot development 

Shoot growth occurs in most types of citrus in several well-defined waves (flushes). 

Citrus trees have a sympodial growth habit, that is, a lateral growth pattern in which the apical 

meristem is terminated (with either the abortion of apical meristem or its conversion into a 

flower, inflorescence or a specialized structure), and growth is continued by expanding shoots 

from a lateral meristem, which repeats the process (Lord and Eckard, 1987). Under cool climatic 

conditions only two flushes appear annually, while three to five flushes occur in warmer, 

subtropical regions. Under wet, tropical conditions shoot growth occurs uninterruptedly, 

throughout the year. Lemons, citrons and acid limes retain their tropical nature even in cooler 

climates and new shoots emerge year-round. In most citrus areas, the spring flush is the most 

important one containing both vegetative and reproductive shoots. The midsummer and 

subsequent flushes are generally vegetative, with fewer but longer, vigorously growing shoots 

and larger leaves. As trees get older, the spring flush comprises mainly short, reproductive 

shoots (leafy and leafless inflorescences). For its vegetative growth the tree is dependent upon 

the summer flushes (Spiegel-Roy and Goldschmidt, 1996). 

An axillary bud occurs in the axil of each citrus leaf. The axillary bud consists of an 

apical meristem, covered by several prophylls (bud scales). Accessory buds develop in the axis 

of the prophylls; thus, multiple buds are present in the axis of leaves. Axillary thorns may 

subtend the buds, occurring opposite the first prophyll. Thorns are particularly prominent in 

juvenile, vigorously growing shoots (Spiegel-Roy and Goldschmidt, 1996). All Citrus types are 

evergreen and do not show winter dormancy but just a bud resting period. However, the 

Poncirus relative is deciduous, showing winter leaf abscission and bud dormancy (Peña, et al., 

2008). 

Leaves are unifoliate and in most species the petioles are winged. Poncirus shows 

trifoliolate leaves, reminiscent of other Aurantoideae genera with composite leaves. Elongated 

leaf shape and larger petiole wings are considered juvenile characters (Spiegel-Roy and 

Goldschmidt, 1996). 

 

1.1.2.2. Reproductive development/biology 

 
The Flowering 
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The transition of the vegetative, leaf producing meristem into the reproductive floral 

meristem is the initial event in the long chain of developmental processes leading to seed and 

fruit production. The environmental and endogenous control of flower bud differentiation is quite 

complex and varies considerably from one species to another. Citrus trees, like other fruit trees, 

are polycarpic plants undergoing repeated cycles of flowering and fruiting. Fruit trees never 

commit all their buds to flowering – a certain number of buds must be retained under the 

vegetative, non-differentiated state to ensure the tree’s future. Flower bud differentiation is 

induced photoperiodically in subtropical areas when the day becomes shorter during winter 

months. Cold temperatures are also important in floral induction. In the deciduous Poncirus, 

flower bud induction is initiated during late summer. In tropical areas, without photoperiod 

changes, water stress is the major flower-inducing signal. 

In Citrus, blooming usually occurs in spring, following flower development. As 

evergreen, reproductive and vegetative developments are intimately related, and four main 

shoot types can be distinguished: vegetative shoots, leafy inflorescences, leafless 

inflorescences and solitary flowers. Poncirus and Fortunella also flower in spring but usually 

sooner and later than Citrus, respectively. Dates and duration of bloom are highly variable even 

for the same cultivar – differences of up to 40 days in the commencement of anthesis from one 

year to the next are not uncommon. Slight climatic differences between locations also affect the 

date of blooming. The rate of flower development from budbreak to anthesis is rather closely 

dependent upon the accumulation of heat units above a minimum threshold temperature 

(Lomas and Burd, 1983). The duration of the flowering period is also largely dependent upon 

the prevailing temperatures. Warmer than usual weather will bring about opening of flowers 

within a few days, resulting in a concentrated wave of bloom, petal fall and fruit set. Cool spring 

weather, on the other hand, may lead to an extended period of diffuse flowering. Such seasonal 

differences may have important consequences for the chances of pollination and fruit set, 

particularly in self-incompatible cultivars (e. g. mandarin hybrids) where overlapping with 

pollination is critical. 

 

Hybridization and parthenocarpy 

Citrus flowers are attractive to insects due to abundant pollen, nectar, typical perfume, 

and the conspicuous corolla. Most citrus species are valuable honey-producing plants. While 

thrips and mites also abound on flowers, honey bees are the main agent in natural cross 

pollination. Wind is a minor, irrelevant factor in citrus pollination. Self-pollination may occur in 

self-compatible genotypes. Self-pollination usually takes place in the unopened or opening 

flower, often allowing pollination before anthesis. Temperature has considerable effect on 

pollination efficiency, affecting the rate of pollen-tube growth as well as bee activity. Pollen 

viability and ovule fertility are also influenced by temperature. 

Absolute or a high degree of gametic sterility is encountered in numerous citrus 

cultivars. The percentage of functional pollen varies among species and cultivars. Some of the 

most widely used commercial cultivars are deficient in this respect. Navel orange produces no 
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viable pollen; satsuma mandarin and Marsh grapefruit very little; lemons and most orange 

cultivars often have low amounts. Most cultivars of mandarin and pummelo produce largely 

functional pollen. Cultivars with a problem of non-functional pollen very often show comparable 

ovule abortion; thus the pollen-sterile Washington Navel and, more so, satsuma mandarins 

have (few) functional ovules. Degeneration before meiosis is also encountered. In addition to 

absolute gametic sterility, self and, to some extent, cross incompatibility are also present in 

citrus. Incompatibility is widespread in pummelos. Self-incompatibility is a genetically controlled 

phenomenon preventing seed set in self-pollinated plants producing functional gametes. Nagai 

and Tanikawa (1928) found that some self-incompatible accessions produced seedless fruits 

when they were self-pollinated. Almost all pummelos, some mandarins and several natural or 

artificial hybrids are self-incompatible (Hearn, 1969). The list of self-incompatible cultivars is 

extensive (including accessions such as Clemenules clementine, Imperial mandarin, Sukega 

grapefruit, Siames pummelo, Ellendale tangor, Orlando and Minneola tangelos, etc.) and is on 

the increase. Seedlessness and pollen sterility have been reviewed (Iwamasa, 1966; Nicolosi, 

2007). 

Fertilization leading to seed formation is generally a prerequisite for fruit set and lack of 

fertilization will inevitably end up in drop of the ovary. There are, nevertheless, numerous plants 

which produce seedless fruit. Production of fruit without seeds is parthenocarpy (Frost and 

Soost, 1968). The setting of fruit without any external stimulation is defined as autonomic 

parthenocarpy. The term stimulative parthenocarpy is used to describe the cases in which some 

kind of stimulus is required. In stimulative parthenocarpy, pollination, pollen germination and 

pollen tube growth, unaccompanied by fecundation, provide sufficient stimulation to for set of 

seedless fruit. Thus, self-pollination may exert a sufficient stimulus in self-incompatible 

genotypes for the setting of seedless fruit. In some cases of parthenocarpy, fruit with occasional 

fruit seeds can be found as a result of incomplete female sterility (Washington Navel orange, 

Marsh seedless grapefruit). Parthenocarpic tendency and ovule sterility may vary 

independently. Some usually seeded cultivars may be capable of a variable degree of 

parthenocarpy, especially self-incompatible ones. Vary, et al. (1988) state that the potential for 

pollen-stimulated parthenocarpic fruit is rather widespread in citrus. Ovule fertility and the 

presence of compatible pollen mask stimulative parthenocarpy. In natural and induced 

seedlessness, the seedless condition is generally accompanied by irregularities of meiosis. In a 

few cases in citrus, a phenomenon resembling stenospermocarpy (fecundation followed by 

post-zygotic abortion) has been noted. For a cultivar incapable of seed production to be 

horticultural acceptable, a high parthenocarpic tendency is essential. 

 

Poliembriony/apomixis 

Polyembryony, a feature widespread in citrus (Koltunow, et al., 1996), is the 

development of two or more embryos in one seed. Extra embryos are commonly produced 

apomictically from cells of the seed parent (nucellar embryony). Nucellar embryos develop 

asexually by ordinary mitotic division of cells of the nucellus. The apomictic process thus 
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generates seeds containing embryos of a purely maternal genetic constitution. In apomictic 

citrus genotypes, sexual and apomictic processes occur within the same ovule. Nucellar 

embryos are initiated from the nucellar tissue in the region around the developing sexual 

embryo sac (Koltunow, 1993; Chiancone and Germana, 2013). The growth of the zygotic 

embryo is often slower when compared with that of the nucellar embryos. The zygotic embryo 

may also not complete its development. 

A good summary on citrus biology can be found in Spiegel-Roy and Goldschmidt 

(1996). 

 

1.2. The citrus fruits 
  

1.2.1. Commercialization and socio-economic importance 

 

Because of their preferred flavor, delightful taste, affordable economic reach, and 

consumer awareness of their increasingly recognized potential health properties, the 

commercial production, processing, and global trade of citrus have significantly increased in the 

last several decades, placing citrus as the most important fruit tree in the world (Ting, 1980; 

UNCTAD, 2004). In 2012, the global citrus acreage was 8.7 million hectares and citrus 

production was about 131 million tons. Citrus is grown in more than 140 countries in tropical, 

subtropical and Mediterranean climates. Major producing countries include China, Brazil, USA, 

India, Mexico, Spain, Egypt, Nigeria, Turkey, Italy, Iran, Argentina, South Africa, Pakistan, 

Morocco, Indonesia, Thailand, Colombia, Argelia, Peru, and Japan, from major to minor. The 

first three countries account for about 50% of the citrus world production. Production trends 

indicate that oranges constitute about 60% of the total citrus output, followed by the group 

formed by mandarins, clementines, satsumas, and tangerines, which comprise about 20% of 

the output. The group of lemons and limes constitutes 11–12%, and grapefruit and pummelos 

comprise roughly 5–6% (FAO statistics, 2012). Brazil and USA (Florida and California) were 

leading producers of sweet oranges. USA is the primary producer of grapefruit. China, Spain 

and Japan produce 65% of the tangerines grown in the world. Lemons are produced primarily in 

Argentina, Spain and USA, while Mexico is the largest producer of small fruited limes. Lime is 

also a traditional crop in South Asia and the Middle East (FAO statistics, 2012). Many citrus 

species have industrial significance as a raw material for cosmetic and pharmaceutical 

products. 

Although many citrus fruits, such as oranges, tangerines, and grapefruits can be eaten 

fresh, about a third of citrus fruit worldwide is utilized after processing, and orange juice 

production accounts for nearly 85% of total processed consumption (USDA, 2006). Among the 

86 million metric tons (valued at $9.3 billion) of citrus products traded in 2012, sweet orange 

accounted for more than a half of citrus production for both fresh fruit and processed juice 

consumption. According to 2008-2012 data from the Food and Agriculture Organization of the 

United Nations (FAO), about 40% of sweet orange produced yearly in the world is processed. 
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Traditionally, oranges were consumed as fresh fruits but in the last 50 years consumption of 

processed oranges (mainly as concentrated fruit juice) has increased extraordinarily all over the 

world, and especially in Europe and USA. It represents the primary force supporting expanded 

world consumption and is the basis of Brazilian and Florida citrus industries. 

Citrus cultivation not only is remunerative, but it also generates employment, and as 

detailed bellow (in the paragraph 3 of the introduction), fruits have nutritive and therapeutic 

value.  

 

1.2.2. Morphology/anathomy, development and maturation  

 

The fruits can have different forms (for example, round, oblong, or elongated) and 

various sizes from 3.8 to 14.5 cm in diameter (Ranganna, et al., 1983). The citrus fruit is a 

hesperidium, namely a berry arising from growth and development of the ovary, consisting of 

fleshy parts divided by segments, the whole being surrounded by a separable skin. It is 

composed of two major regions: the pericarp, commonly known as the peel, and the endocarp, 

often called the pulp. The pericarp is composed of external colored peel known as flavedo (with 

oil sacs producing aromatic oils), and the internal usually white layer known as albedo (a 

spongy layer below the flavedo, source of flavanones) (Spiegel-Roy and Goldschmidt, 1996). 

The inner flesh or pulp consists of segments surrounding the central axis of the fruit, the ovarian 

locules, enclosed in a locular membrane in which seeds and juice sacs (vesicles) grow (Agustí, 

et al., 2003). Juice vesicles are elongate multicellular structures, each attached to the endocarp 

through a filament and which are oriented towards the interior of the locule. Mature vesicles are 

formed by highly vacuolated cells containing juice (Tadeo, et al., 2003). Structural and 

physiological differences between peel and pulp of citrus fruit have already been pointed out in 

the foregoing discussion of fruit development. During maturation peel and pulp behave in most 

respects as separate organs, although some coordination does exist (Spiegel-Roy and 

Goldschmidt, 1996). 

Growth and development of citrus fruit follows a typical sigmoid growth curve, divided 

into three clear-cut stages (Bain, 1958). The initial phase, or phase I, encompasses from 

anthesis until the end of the physiological fruit drop, and is characterized by rapid growth of the 

fruit caused by cell division, thus increasing the number of cells in all developing tissues except 

the central axis. During this period, the increase in fruit size is due primarily to the growth of the 

peel. Thereafter, in the rapid growth period (phase II), which extends from the end of the 

physiological drop until the start of the color break, fruit experiences a huge increase in size by 

cell enlargement and water accumulation. During this period, fruit growth is largely due to 

accumulation of juice in the vesicles and all tissues reach their maximum size. Finally, in phase 

III or maturation period, growth is mostly arrested and fruits undergo a non-climacteric process 

while maintained in the tree. This phase comprises most of the external and internal changes 

associated with maturation. On one hand, the dark green, photosynthetically active flavedo 

transforms its chloroplasts in to carotenoid-rich chromoplasts, resulting in the color break of the 
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fruit. On the other hand, maturation of the pulp is generally characterized by a decline in acidity 

and an increase in sugars. As Koch (1984) demonstrated, many organic acids are synthesized 

in the fruit during Phase I and, generally, they are reduced during phases II and III of fruit 

development -except for lemons, where level of acids remains high (Bain, 1958). Despite this 

reduction, mature citrus fruits have an elevated concentration of organic acids, being citric acid 

the most abundant by far, and among which is noteworthy the ascorbic acid (vitamin C) 

because of its nutritional relevance. Although citrus fruits are not the single supplier of vitamin 

C, they are particularly rich and a popular dietary source among vegetables and fruits, providing 

average vitamin C concentration ranging from 23 to 83 mg/100 g fresh weight (Koch, 1984), the 

variability of vitamin C content in fresh citrus fruits and their commercial products is greatly 

influenced by variety, maturity, climate, handling, processing, and storage conditions (Nagy, 

1980; Lee and Kader, 2000). 

 

1.2.3. Quality attributes of fruit and juice 

 

The fruit quality attributes are classified into two groups: 1) internal quality attributes, 

including texture/mouthfeel, seed number, juice percentage, juice color, flavor (governed by the 

balance sugar:acid content plus the concentration of certain volatile compounds); recently, there 

is a tendency to provide also toxicological and nutritional attributes, giving consumers more 

information on the characteristics of citrus fruits and juices; and 2) external quality attributes, 

related to the appearance and especially important for fruit intended for fresh consumption, 

such as size, shape, rind color, presence of alterations and defects on the surface (blemishes, 

puffing,…), etc.; this also includes attributes related to post-harvest shelf life of the fruit (such as 

antifungal wax treatments, cold storage time and conditions). 

The quality attributes have a strong economical relevance since they are related to 

consumer perception and ultimately determine marketability, price and use of fruits. They may 

eventually constrain the success of the citrus industry. Therefore, their evaluation is necessary 

and there exist many measurement methods to accomplish it. Many quality attributes can be 

evaluated by subjective methods. The organoleptic quality or sensory evaluation is subjective 

and based on the response of human senses to external and internal fruit quality. On the other 

hand, quality attributes can be measured by objective methods that could be grouped into three 

categories: physical, chemical, and physiological, on the basis of analytical process and 

principles involved. Moreover, microbial quality is routinely evaluated in processed citrus fruit 

(Ladaniya, 2008). 

Citrus production faces diverse problems in different regions of the world, and fruit 

quality varies with agro-climatic conditions. In subtropical regions, under arid conditions with low 

humidity, fruit quality is excellent, with very few blemishes on the fruit’s surface, and pack-out 

can be as high as 95 percent if fruit meets the size requirements. In tropical climates with high 

humidity, however, pack-out can be less (50 percent of the produce harvested) because of 

blemishes on the fruit’s surfaces. This is evident from the differences in the produce of Florida 
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and California, two well-known citrus-growing regions. In tropical areas of India and many other 

Southeast Asian countries and Brazil, the incidence of fruit surface blemishes is high, and fruit 

rind color remains green even when the fruit is internally mature. In the cool climates 

(subtropical) and arid conditions of northwestern India, fruit quality is excellent with respect to 

color, size, and taste. For fresh citrus fruits, there are certain fixed standards of internal and 

external quality, based on which its grade, utility, and marketability is decided. But, due to the 

variation in fruit quality among producing regions, fruit grades and internal standards differ 

among the domestic markets of many countries. The draft codex standards of Food and 

Agricultural Organization (FAO) are being evolved through discussions and consensus for world 

trade. Similarly, rules and regulations under sanitary and phytosanitary (SPS) treaties have 

been finalized and are being discussed under the new World Trade Organization (WTO) regime 

(Ladaniya, 2008). 

 

1.2.3.1. Quality standards for fresh citrus fruits 

 

Internal Standards (Indices of Maturity)  

Sweet oranges, mandarins, grapefruits, and pummelos are considered mature when 

their juice content and total soluble solids:acidity ratio have attained certain minimum limits for 

palatability. Total soluble solids (TSS) comprise 10-20% of the fresh weight of the fruit and 

consist mainly of sugars (75-85%), of which, fructose, glucose and sucrose are the most 

abundant (Agustí, et al., 2003; Tewari, et al., 2008). Thus, the content of TSS, usually 

measured by a refractometer and expressed as º Brix, serves as an estimate of the sugar 

content of the juice. The acidity of the juice of citrus fruits is largely due to high contents of citric 

acid, being malic acid and fumaric acid the next in abundance (Feryal, 2003). The total acidity 

or titratable acidity (TA) of the juice is usually determined by titration with NaOH and expressed 

as the percentage of anhydrous citric acid by weight. In citrus fruits, maturity is determined 

mainly on the basis of the ratio of TSS to TA. This ratio is called the maturity index (MI) and it is 

closely related with taste. However, the reliance on this ratio alone can be deceptive. A 

minimum sugar or TSS content is required for palatability, thus, these parameter should also be 

the part of maturity indices. Likewise, juice content is also an accepted criteria for judging 

maturity (Sites and Reitz, 1949), and it is usually determined as a percentage by weight or 

volume of fruit. Lastly, although in most citrus fruits color break (i., e., change of fruit color from 

light green to yellow-orange) is generally related to the degree of maturation, this parameter 

cannot be considered a maturity index in tropical areas, where the flavedo remains green after 

maturation. 

 

External Standards (Fruit Grades) 

Citrus fruit grades are mostly related to size, appearance, extent of defects, shape, and 

color of the fruit. European citrus-growing countries, South Australia, California, and other 

places with Mediterranean-type climates (cool winter nights, bright days, and low rainfall) can 
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rely almost entirely on external standards to sell their fruit. As Grierson and Ting (1978) put it, 

the real basis for fresh citrus fruit grades and standards is economics. What is economically 

justified under one situation may not be so in another. Hence almost all the countries have their 

own standards for domestic markets and these standards also vary as per early-, mid- and late-

season crop fruit. The same variety of citrus also performs differently in different climatic 

conditions and this also leads to setting of different standards. The grade standards of citrus 

fruits are published by international bodies and national governments of different countries. The 

Organization for Economic Cooperation and Development (OECD) introduced standards for 

marketing fruit between countries. The Economic Commission for Europe (ECE) also publishes 

standards for grades of fruits and vegetables including citrus. For fruit to be palatable, all grades 

of fruit must meet minimum internal maturity standards. Besides international standards 

published by the FAO Codex committee, several countries have their own fruit-quality 

standards.  

 

1.3. Genetic improvement of citrus 

 

1.3.1. Needs for genetic improvement: special focus on scion 

breeding goals 

 
The vast majority of citrus rootstocks and varieties grown commercially nowadays arose 

by budsport mutations and chance seedlings that were selected directly by growers due to their 

excellent fruit quality, performance and stress resistance (Peña, et al., 2008). However, as with 

most agricultural crops, many factors are known to limit the production and processing of citrus. 

Most are dependent on problems related to scion and rootstock deficiencies. Major constrains 

to citrus production involve management inefficiencies, susceptibility to pests and diseases, and 

environmental challenges. Many different citrus genotypes are commercially grown in a wide 

diversity of soil and climatic conditions, implicating that trees are subjected to important abiotic 

and biotic stresses that limit the production and, in some instances, the use of certain rootstocks 

and varieties. There are pests and diseases that additionally cause quarantine restrictions for 

the movement of fresh fruit from affected areas (Graham, et al., 2004). At the same time, there 

is an increasing (and changing) consumer interest for fruit (and juice) quality attributes, and 

competition in international markets is growing tremendously. Even in domestic markets, citrus 

fruit quality and price have to be competitive with other fruits. Thus, new and improved scion 

and rootstocks cultivars aimed at controlling these production and marketing constrains have 

been the primary breeding efforts. Since the last century, several citrus improvement programs 

have been performed using both traditional breeding techniques (e. g., hybridization, selecting 

clones from spontaneous or induced mutations) as new biotechnological tools (based on in-vitro 

cell, protoplast, tissue and organ culture, and genetic transformation). The specific breeding 

goals addressed in these programs were, in principle, different depending on whether improved 

rootstocks or scions would like to be generated. 
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Major current goals of rootstock breeding are resistance to Citrus tristeza virus (CTV) 

and Phytophthora sp., cold-hardiness in citrus areas as Japan, Florida or New Zealand, scion 

size-controlling abilities, higher tolerance to calcareous and saline soils in areas with poor-

quality water, and resistance to the citrus and the burrowing nematodes, particularly in Florida. 

On the other hand, scion breeding is mainly focused in resistance against major pests 

and diseases that limit fruit commercialization, and in fruit quality aspects. Regarding pests, 

some of them directly affect the tree and/or produced fruit, as the Mediterranean fruit fly 

(Ceratitis capitata), spider mites (Tetranychus urticae) and the California red scale (Aonidiella 

aurantii), and others are vectors of diseases such as the psyllid Diaphorina citri, transmitting the 

bacteria Candidatus Liberibacter spp., or the aphid Toxoptera citricidus, a very effective vector 

of CTV. At the present, measures used to control pests of citrus are fundamentally aggressive 

agrochemical treatments, and they do not pose a lasting solution, neither economically or 

ecologically sustainable at medium-term. Diseases that cause considerable damage in orchards 

include Huanglongbing (HLB, ex citrus greening) in Asia, South Africa and recently in North and 

South America, Citrus canker in most tropical and subtropical areas and Citrus black spot in 

tropical and subtropical climates (NRC 2000, 2010). Moreover, post-harvest diseases also 

affect fruit commercialization, being Green mold the most widespread on citrus. All these 

diseases cause important economic losses and the lack of efficient means of control against 

some of them poses a serious threat to the current citrus industry. In this context, resistance to 

biotic stresses becomes a major goal on genetic improvement of citrus varieties. 

Improving fruit quality is also an important objective in scion breeding programs. In 

relation with specific market demands, the main goal of breeding may vary between the 

production areas. However, some general trends can be outlined. For juice processing, prime 

goals are high productivity, high juice content of the fruit, good juice color, lack of bitterness, 

and availability of juice along the whole year (Ollitrault, et al., 2007; Peña, et al., 2008). For the 

fresh fruit market, major goals include improvement of organoleptic qualities (attractive color 

and taste/aroma, compensated acid/sugar content) and pomological qualities (easy peeling, 

seedlessness, external appearance, adequate size, good storage and shipment) of fruits 

(Roose, et al., 2002; Navarro, et al., 2005; Aleza, et al., 2010). Besides this interest on new fruit 

varieties with improved functional attributes in the form of organoleptic, chemical, and physical 

properties, recently, more attention has been paid to the improvement of the nutri-functional 

quality of citrus fruits. As a result of World Health Organization recommendations, nowadays, 

consumers demand high sensory, nutritional and health-related qualities of fruit and their 

derivative products. The health benefits of fresh citrus fruit have been the subject of extensive 

research and it is well established that some of their phytonutrients promote health and 

protection against chronic diseases. The protective effects of citrus fruit have been mainly 

attributed to the high concentrations of bioactive compounds which have antioxidant properties, 

such as vitamin C, phenolic compounds and carotenoids (Knekt, et al., 2002; Franke, et al., 

2005; Dauchet, et al., 2006; Tripoli, et al., 2007). Therefore, it is no wonder that nutritional 
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quality based on vitamin C, carotenoid and polyphenol contents are now considered as 

breeding criteria in some citrus breeding projects (Alquézar, et al., 2009; Sdiri, et al., 2012). 

 

1.3.2. Rationale of transgenic breeding 

 

Conventional breeding by hybridization has important limitations. Citrus species have a 

complex reproductive biology (see paragraph “citrus biology: some clues on growth and 

development”). Most genotypes are facultative apomictic, and this feature seriously limits the 

recovery of sexual progeny populations in breeding programs. Some important genotypes have 

total or partial pollen and/or ovule sterility and cannot be used as parents in breeding programs; 

for example most Navel oranges are male sterile while satsuma mandarins and most Navel and 

Valencia oranges are female sterile. There are many cases of cross- and self-incompatibility. 

Clementines, grapefruits and certain important lemons are self-incompatible, and many hybrids 

between self-incompatible cultivars are also cross-incompatible. They have a long juvenile 

period and most species need at least 5 years to start flowering in subtropical areas, and 

usually several years more to achieve fully mature characteristics. Citrus have high 

heterozigosity, there is a lack of basic knowledge about how the most important horticultural 

traits are inherited, and they show quantitative inheritance of important characters, as many 

related to fruit quality and maturity time. All these features together with their large plant size 

have greatly impeded genetic improvement of citrus through conventional breeding methods 

(Peña, et al., 2008). Moreover, sources of efficient resistance against important pathogens such 

as Candidatus Liberibacter asiaticus (causal agent of Huanglongbing) have not been found in 

the citrus germplasm (NRC, 2010). 

Genetic transformation offers excellent alternatives for genetic improvement of citrus 

because it is based in the introduction of specific traits into known genotypes without altering 

their genetic elite background. Therefore, theoretically, it should be possible to create desired 

phenotypes with greater precision and efficiency than with other breeding methods. Further, the 

transgene of interest could come from another Citrus species or relatives, from another plant 

species, or from another organism as a bacterium, an insect or a virus, widening the 

possibilities for genetic improvement. Moreover, genetic transformation allows overcoming the 

heterozygosis, inbreeding depression, linkage drag and genetic incompatibility barriers 

associated to hybridization. Facultative apomixis, in the context of genetic transformation, is an 

advantage because it could be possible to use vigorous juvenile material genetically identical to 

the elite mature germplasm as source of plant tissue for transformation. More important, sweet 

orange was the first fruit tree from which adult material was transformed (Cervera, et al., 1998) 

providing the only biotechnology-based system able to overcome the juvenility obstacle of citrus 

breeding. 
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1.3.3. Potential applications of genetic engineering in the 

improvement of citrus scions 

 

The development of viable genetically-modified (GM) citrus varieties could be a slow, 

expensive, and time-consuming process, but its advantages are many. Although there are 

technical, economic, regulatory, and market hurdles in the use of genetic engineering in citrus 

culture, the potential is tremendous, particularly for generating disease- and insect/pest-

resistant GM citrus varieties. In this sense, it would be of great interest to obtain HLB-resistant 

varieties because of the threat that this disease poses to the citrus industry worldwide, and the 

use of genetic transformation is one of the strategies proposed by the National Research 

Council to accomplish it (NRC, 2010). But, to date, as for defense against biotic stress is 

concerned, the most promising results are those achieved by Rodríguez, et al. (2011). In this 

study, D-limonene production, which represents up to 97% of total volatile organic compounds 

(VOCs) in orange fruit peel, has been successfully downregulated in mature sweet orange 

plants (C. sinensis, cv. Navelina) by overexpressing an antisense construct of a D-limonene 

synthase gene. Transgenic orange fruit peels with up to 85 times reduced D-limonene 

accumulation were less attractant to males of the citrus pest medfly (Ceratitis capitata, 

Diptera: Tephritidae) and strongly resistant to fungal and bacterial pathogens (in concrete to 

Penicillium digitatum and Xanthomonas citri subsp. citri). This work illustrates how fruit VOCs 

emissions can be manipulated in citrus cultivars providing novel strategies for pest and disease 

management without altering important agronomic traits (Figure 1). Soler, et al. (2012) have 

used RNAi to block the expression of the three silencing suppressor protein from Citrus tristeza 

virus and thus get strong resistance in Mexican lime transgenic scions. 

Regarding fruit quality aspects, genetic transformation can be very helpful in improving 

existing fresh and processed citrus varieties in a number of ways. Recent developments in the 

fields of biotechnology, biochemistry, and molecular genetics have opened up avenues for 

creating genetically modified citrus cultivars with better organoleptic qualities (appearance, 

flavor, seedless, and firmness), higher nutritive value (vitamin content), and physiological 

benefits (reduced respiration rate or increased wax deposition for reduced water loss) 

(Koltunow, et al., 2000; Ikoma, 2001; Sanchez-Ballesta, et al., 2001; Wong, et al., 2001; Costa, 

et al., 2002; Li, et al., 2002, 2003; Alquézar, et al., 2008). 

Seedlessness is one of the most important economic traits relating to fruit quality for 

fresh-fruit marketing oranges and mandarins, and it is also desirable for the juice industry 

because of the unfavourable aromatic compounds associated with the presence of seeds in the 

fruit (Ollitrault, et al., 2008). The presence of a large number of seeds in citrus fruits greatly 

decreases consumer acceptability, even in fruits with high organoleptic quality (Navarro, et al., 

2005). Inducing parthenocarpy by genetic engineering and a seed-ablated strategy by 

expressing the cytotoxin gene (Barnase) are the major methods of molecular breeding of 

seedless citrus. Li, et al. (2002, 2003) reported the generation of ‘Ponkan’ and ‘Valencia’ sweet 

orange transgenic plants, respectively, through Agrobacterium-mediated transformation of 
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embryogenic calluses with a chimeric ribonuclease gene (barnase) derived from Bacillus 

amyloliquefaciens under the control of an anther tapetum-specific promoter (pTA29). The aim of 

the work was to produce pollen sterile transformants, and subsequently seedless fruit. More 

than 20 lines from each genotype were generated. Since transformants were juvenile, several 

years of cultivation are needed to evaluate possible male sterility. The same can be applied in 

part for (Koltunow, et al., 2000), who produced juvenile transgenic Mexican limes containing 

genes for decreased seed set. But, although the juvenile period of Mexican lime is one of the 

shortest among citrus types, to our knowledge, there are not published data on the phenotype 

of the mature plants and their fruits. 

The quality of citrus fruits can also be substantially improved through the enhancement 

of levels of certain secondary metabolites, such as carotenoids. For many years, the interest of 

food researchers and biotechnologists in carotenoids resided largely in the fact that they 

imparted the yellow, orange or red colors of many foods and in the provitamin A activity 

exhibited by some of them. Recently, interest in these isoprenoid pigments has grown 

considerably because of their probable relation to the prevention and/or protection against 

serious human health disorders such as cancer, heart disease and macular degeneration, 

among others, which may be somehow linked to their probable antioxidant properties (Ziegler, 

1989; Krinsky, 2001; Fraser and Bramley, 2004; Krinsky and Johnson, 2005; Meléndez-

Martínez, et al., 2007). In addition, some of the apocarotenoids, which are products of the 

catabolism of carotenoids, contribute to the flavor and aroma of flowers and fruits (Auldridge, et 

al., 2006). The citrus fruits and their products in general are a complex source of carotenoid 

pigments, with the largest number of them reported for any fruit (Alquézar, et al., 2008). Orange 

juices undoubtedly stand out among them all for being one of the most globally accepted fruit 

products and because their consumption is increasing worldwide (Mouly, et al., 1999; Mouly, et 

al., 1999). Carotenoid engineering is expected to contribute to the development of better-

colored citrus fruits/juices with increased nutri-functional attributes by purposely accumulating 

specific desirable carotenoid compounds (such as β-carotene and/or lycopene). In 2002, Costa, 

et al. introduced several carotenoid biosynthetic genes under the control of constitutively 

expressed promoters into juvenile Duncan grapefruit and few PCR-positive plants were 

obtained. Authors noticed that transgenic plants appeared to have increased pigmentation in 

the leaves compared to controls, but other than that plants were not analysed further. This work 

constitutes the only attempt to modify carotenoid content in citrus reported to date and no data 

has been published on fruit production from these plants. However, recent advances in the 

identification and isolation of the genes responsible for carotenogenesis in citrus fruits (Kato, et 

al., 2004; Alquézar, et al., 2008) and the development of genetic transformation procedures for 

this crop type (Peña, et al., 2008) enable the production of novel and improved carotenoid-

enriched citrus fruits via metabolic engineering of carotenoid biosynthesis. 

Resistance against abiotic stresses could also be addressed in citrus varieties by 

transgenic approaches. For example, studies to understand the molecular mechanisms and 

changes underlying resistance to chilling injury in some citrus fruits after certain treatments may 
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lead to developing genetically engineered, low temperature-resistant cultivars (Sanchez-

Ballesta, et al., 2006). Similarly, the study of molecular changes and the mechanisms of 

maturation and senescence may lead to developing genetically modified cultivars with slower 

maturation and better qualities (Yang, et al., 2011). For example, the enzymes involved in 

depolymerization of cell wall components could be theorically modulated. Polygalacturonase 

(PG) is the major enzyme responsible for the depolymerization of cell walls and the softening of 

fruit tissues. Inhibition of the expression of an endogenous gene encoding PG, by antisense or 

RNAi mechanisms, in transgenic citrus might be useful for that. 

Furthermore, some metabolic pathways can be modified to get rid of certain problems 

related to fruit flavor and/or physico-chemical properties of juices. Research on the creation of 

transgenic citrus trees that produce fruits free of the limonoid bitterness problem (Manners, 

2007), and the attempts to preventing juice cloud separation by modifying the expression of a 

pectin methylesterase gene (Cs-PME4) (Guo, et al., 2005) are good examples to illustrate this. 

These are only a few examples of potential applications of genetic engineering in 

improving citrus varieties. The potential is great but its realization depends on our 

understanding of these (and others) desirable traits at the biochemical and genetic level. The 

modern tools of molecular biology are expected to throw more light on the functions of 

enzymes, their pathways, and the genes controlling them, broadening the range of possibilities 

for improvement. Moreover, despite that a consumers’ reluctance to buy genetically modified 

foods has been reported (Vardi, et al., 2008), recent market studies showed that a higher-

quality fruit bringing tangible value to the consumer could improve the market acceptance of 

biotech citrus crops (Rommens, 2010; Cressey, 2013). The cost/benefit ratio will be the 

determining factor as to whether transgenic or GM citrus is going to be a commercial reality. 

Therefore, although there are no commercial GM citrus crops yet, genetic transformation is 

considered an essential tool in many current improvement programmes. 

 

Figure 1. Incresed defense against biotic stresses achieved by D-limonene downregulation in 

transgenic orange fruits (AS) compared to the control oranges (EV) A, B: Representative total ion chromatograms 

of the volatile profile for orange fruit flavedo from EV (A) and AS transgenic plants (B). Peaks number one and IS 

correspond to limonene and the internal standard (2-octanol), respectively. C-J: Empty vector and antisense transgenic 

fruits challenged with medfly (C-F) in wind tunnel assays (C, D) and in the orchard (E, F), Penicillium digitatum (G, H) 

and Xanthomonas citri subsp. citri (I, J) infection. Rodríuez et al., 2011. 
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2. Risk and concerns related to the field-release and commercialization of 

GM trees 

 

Although the commercial production of transgenic annual plants is a reality, 

commercialization of GM fruit trees is still uncommon (Petri and Burgos, 2005). Currently about 

20 different fruit tree species have been modified through modern biotechnology, mainly 

through the insertion of transgenes, and have been introduced into the environment for field 

trials (Verwer, et al., 2010). However, only very few of these are the objects of commercially-

relevant research and development. The majority of these GM fruit trees are commonly planted, 

commercial species, which were modified in an attempt to improve traits related to growth rates, 

flowering, resistance to pests and diseases, or abiotic stress tolerance. GM apples, citrus, and 

papaya make up most of the fruit trees approved for field trials (it should be mentioned that the 

papaya is a woody annual plant, not a tree in a strict sense, but many authors consider it as 

such due to similarities in many aspects) (Hanke and Flachowsky, 2010). Two diferent types of 

fruit trees, virus-resistant papaya and plum, have been approved for commercialization (in the 

United States - see http://www.isb.vt.edu/search-petition-data.aspx). GM papaya has been used 

for more than a decade in the USA, where it makes up approximately 90% of trees grown in 

Hawaii, the main producing region. 

Despite the fact that the advances provided by genetically engineered fruit trees may be 

significant (Peña and Séguin, 2001), their release and commercialization still raises concerns 

about their safety and validity. On the one hand, some key issues of concern to biotechnologists 

such as transgene efficacy and its stability over the time, as well as presence of undesired 

alterations in the tree performance (other than those related with the target trait) must be 

addressed in GM trees to validate its commercialization. On the other hand, the potential 

environmental risks that GM trees may pose are also matter of concern. Of all biotechnology 

methods, genetic engineering has received the most attention and scrutiny by regulators and 

the general public (often unjustifiably).  Consequently, GM trees (and all transgenic plants) are 

required to undergo thorough and rigorous safety and risk assessments before 

commercialization. Regulatory justifications for these assessments differ between countries, 

although they usually require similar tests. In the US, for example, the process is based on the 

determination of substantial equivalence, whereas Europe has passed regulations based more 

on certification of the process rather than of the product, and Canada regulates the product 

itself, irrespective of the process used to generate it. In the US and Europe no such formal 

assessment is required for products obtained with conventional methods. In Europe, transgenic 

plants are subject to special regulations including a horizontal directive (EC, 2001) that 

commences from research and development through release onto the market, and vertical rules 

governing specific areas including food safety and traceability (EU Regulation 1829/2003).  

A risk can be defined as a function of the probability of a negative effect occurring and 

its seriousness (Burdon and Walter, 2004). A generally accepted methodology for biotechnology 

risk assessment has been outlined in several easily accessible documents including the 

http://www.isb.vt.edu/search-petition-data.aspx
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International Technical Guidelines for Safety in Biotechnology (UNEP, 1996), the Cartagena 

Protocol on Biosafety to the Convention on Biological Diversity, and EC Directive 2001/18/EEC 

(EC, 2001). Each of these include the following steps that, together, identify potential impacts 

and assess the risks: 1) Identify potential adverse effects on human health and/or the 

environment; 2) Estimate the likelihood of these adverse effects being realized; 3) Evaluate the 

consequences should the identified effects be realized (the risk); 4) Consider appropriate risk-

management strategies; 5) Estimate the overall potential environmental impact, including a 

consideration of potential impacts that may be beneficial to human health or the environment. 

To accomplish the first step of the risk assessment process it is necessary to identify potential 

differences of transgenic plants with their non-engineered counterpart(s) by performing a 

comparative analysis (substantial equivalence). Then, the risk assessment process requires 

clear identification of any differences between the transgenic and non-transgenic crop(s), 

including management and usage, and is meant to focus on the significance and implications of 

any differences (EFSA, 2004). 

Cultivation of fruit trees is in many aspects different from cultivation of crop species and 

such differences should be taken into consideration for risk assessment. Trees can be 

distinguished from annual crop plants by their long lifespan and delayed onset of reproduction. 

However, these characteristics are also shared with a number of non-trees such as perennial 

grasses and shrubs, which can also live for many years and may delay reproduction for one or 

several years. The juvenile phase of a tree, on which only vegetative propagation is possible, 

may extend from a few years to several decades. Due to their large size, trees often have high 

fecundity (in biology, fecundity is defined as the potential reproductive capacity of an individual 

or population, measured by the number of gametes (eggs), seed set, or asexual 

propagules).Trees from highly seasonal climates often show seed dormancy, and most trees, 

as well as many annual and perennial herbaceous species, can spread by vegetative 

reproduction. Cloning of trees through vegetative reproduction enables “instant domestication”, 

in that unique genotypes, hybrids, or mutants can be immediately grown on a large scale even if 

they have low sexual fertility (White, et al., 2007). With the exception of effectively sterile crops 

such as banana, all cultivated plant species, including fruit trees, can establish in both cultivated 

and wild environments either via pollination of wild relatives or naturalization of seedlings 

(Ellstrand, 2003). 

Thus, in broad terms, the main risks and concerns related to GM fruit trees are their 

potential environmental impact of transgene dispersal, the long-time transgene stability and the 

occurrence of unintended effects of the transgene in the long period they are going to be grown 

in the field under variable environmental conditions (Wolfenbarger and Phifer, 2000). However, 

it is important to note that the specific risks may vary dramatically depending on the gene and 

trait inserted, the fruit tree species, and the environment the tree is living in, so field trials are 

essential for (case-by-case) evaluation of the value and environmental safety of GM trees. 

 

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Gamete
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2.1. Transgene dispersal 

 

Although vegetative reproduction is the most common way of propagation of fruit trees 

in agriculture, these species are generally also able to reproduce and disseminate via pollen 

and seeds Trees often produce large amounts of pollen and seed per individual that are often 

designed to spread far and wide (e.g., Williams, 2010). All fruit tree species are entomophilous, 

and some studies on pollinator foraging range have reported the (ocasional) occurrence of long-

distance flights. In addition, a number of fruit trees, as well as many species of annual and 

perennial plants, have developed seeds that are capable of remaining dormant for a very long 

period of time (Roloff, 2004). Seeds inside fruits may travel as commodities around the globe 

and be released at the place of consumption such as road margins, railways or touristic areas, 

as well as in farmers’ fields and local gardens (OECD, 2010). However, movement of seedy 

fruits into natural areas (mediated by frugivores) is the most common way of seed dissemination 

and, whether soil and environmental conditions are the adequate, it may lead to the 

naturalization of the cultivated species (a phenomenon widely spread, mostly in fruit trees and 

shrubs). 

For tree species relying on pollinators and frugivores as dispersal vectors, reported 

dispersal patterns are dominated by short-distance movements (Levin, 1981). However, 

pollinators and frugivores can remove large amounts of pollen and fruits, a fraction of which 

may be deposited several hundreds of meters away from the source tree (Handel, 1983; Godoy 

and Jordano, 2001; Jordano, et al., 2007; Pasquet, et al., 2008). In GM crops, such undesired 

long-distance gene flow has already caused legal problems in bentgrass, alfalfa, and sugar 

beets. In recent litigation involving alfalfa and sugar beets, courts have ruled that failure to 

intensively consider economic impacts associated with gene dispersal violates the National 

Environmental Policy Act (e.g., Endres and Redick (2008)). Thus, a precedent exists for similar 

controversies due to gene flow in annual GM crops. But, it is important to mention that in those 

specific cases there exist the risk of hybridization with wild species already present in the 

specific areas of cultivation of the GM crop, and this fact explains the specific concern and the 

special regulation. 

According to the Cartagena Protocol, risks associated with GMOs or products thereof 

should be considered in the context of the risks posed by the non-modified recipients or 

parental organisms in the likely potential receiving environment. However, the identification and 

characterisation of likely potential receiving environment will be highly dependent on the species 

in question and its mechanisms for dispersal. As detailed below, some aspects of the 

reproductive biology of a given GM tree species are critical to determine the extent of dispersal 

of transgenes (e.g., fertility, cross-compatibility with sympatric tree species, degree of selfing, 

date and amount of bloom, viability and longevity of pollen and/or seeds, etc.) (Poppy and 

Wilkinson, 2005). Additionally, the level of dependence on human intervention for their survival 

heavily influences their invasive capacity. Regarding the mechanisms of dispersal, the different 

possibilities and points to consider in each case are detailed below. 
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2.1.1. By seeds 

 

Many different dispersal agents of seeds exist depending on the fruit tree species in 

question. As the kind of dispersal agent greatly influences on the degree of transgene dispersal 

(understood as the maximum distance and frequency of dispersal) (Jordano, et al., 2007), it 

should be taken into account when designing appropriate containment measures. 

With respect to the risk assessment of GM fruit trees, seed-mediated crop-to-crop 

transgene flow is not relevant. In the incidental case that transgenic seedlings could germinate 

in a commercial plantation, they would be removed by farmers (as it is usually done with any 

adventitious seedling/weed) before flowering because of the long juvenile period of trees. On 

the contrary, seed-mediated crop-to-wild transgene flow from GM fruit trees could be relevant in 

terms of environmental safety. The main risk is that a GM tree becomes naturalized as 

consequence of the successful establishment of volunteer populations in the wild. But, for this to 

happen, movement of transgenic seeds is not enough; seeds must remain viable, find a suitable 

environment to germinate and, later, to establish in an effective manner over other organisms 

that are already present in the invaded ecosystem.  

Therefore, there are some points to consider regarding dispersal of seed when 

assessing risks of GM trees: 

- Frugivores consuming the fruit and dispersing the seed 

- Seed viability and seedling rusticity 

- Surrounding biotic and abiotic environment 

 

2.1.2. By pollen 

 

There are several risks arising from pollen-mediated crop-to-crop transgene flow from 

GM fruit trees. On the one hand, the adventitious presence of transgenic seeds in the fruit of 

other commercial plantations (as a result of efective cross-pollination with the GM pollen source) 

poses an environmental hazard because it creates new "uncontrolled" GM material that could 

expand the possibility of dispersion of transgenes to the wild by seeds (if this were an issue; 

addressed in the previous section). On the other hand, in the specific case of fruit tree crops, 

the ocurrence of GM seeds in non-GM trees could cause problems related to consumer 

acceptance, and it may have implications on the marketability of the fruit, especially if organic 

fruit-growing orchards are exposed (Bock, et al., 2002). 

Pollen-mediated crop-to-wild also posses an environmental risk. The possibility that 

transgenic plants would hybridize with wild-type plants, is one of the most frequently mentioned 

risks among genetically modified plants (Mathews and Campbell, 2000; Conner, et al., 2003). 

But, it should be noted that the pollen movement per se does not constitutes a gene flow. There 

must be a set of circumstances to hybridization occurs. A prerequisite is the existence of 

sympatric wild-relatives that are cross-compatible and flowering-synchronized. This condition is 

not always given, for example, in almost all citrus-production areas of the world there are 
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virtually no wild sympatric citrus species and relatives (Peña, et al., 2008). Moreover, there are 

many other different factors affecting pollen dispersal and cross-pollination, such as type of 

dispersal agent (e.g. animal vectors), size and density of pollen source and sink, environmental 

factors (weather, local environment, physical barriers), pollen viability and competitive ability, 

and level of outbreeding in the specific plant and its wild and cultivated relatives (Wilcock and 

Neiland, 2002; Poppy and Wilkinson, 2005). As all these parameters ultimately determine the 

extent of pollen-mediated gene flow, they should be considered when assessing risk of 

hybridization of GM trees with other fruit tree species/relatives in the wild.  

 

2.1.3. Containement measures 

 

The propensity for gene dispersal in fruit trees has prompted considerable effort to 

develop containment strategies on GM trees aimed at prevent the escape of transgenes into 

natural ecosystems and surrounding orchards from cross-compatible crops. 

Risk management strategies designed for GM trees will vary significantly depending on 

whether the GM tree under consideration is a forest/plantation tree or a fruit tree. On the one 

hand, risk management for forest or plantation trees may rely on strategies for delaying or 

avoiding flowering (e.g. fast-growing trees for lumber production being cut before reaching the 

reproductive phase) and bioconfinement (e.g. induction of male sterility or flower ablation) 

where dispersal poses serious legal or ecological risks. On the other hand, fruit trees may have 

to rely on different strategies for confinement than those indicated, since flowering and 

pollination are crucial for fruit production. For fruit tree species, only crop management 

estrategies are posed for transgene containment, including careful site selection before 

planting, use of buffer tree rows or spacings with other crops, cultivation under screehouses, 

use of flower bags to avoid bee pollination, etc.. However, some of the containment strategies 

are unrealistic (Traynor, et al., 2002). They often lack scientific foundation and/or are impractical 

from an agronomic point of view (i. g., excesive safety distances). Therefore, in these cases, 

conducting field trials aimed at studying factors that influence transgene flow is essential to 

design suitable case-by-case containment measures. 

Another important aspect to consider when designing containment strategies is the 

effect(s) of the introduced trait. The biological effect(s) of a given new trait (either target effects 

or unintented effects -theme developed in the next section-) influences the biological 

consequences of dispersal. For example, transgenes conferring resistance to abiotic or biotic 

(pests, diseases, and herbicides) stresses could provide enhanced fitness, survival and spread 

to the GM crop and hybrids, making them more prone to naturalization (Ellstrand, 2001; 

Strauss, et al., 2010). However, in this regard, it is important to note that the creation of new 

traits in crop plants is an inherent feature of plant breeding, irrespective of the method of 

improvement used. Nevertheless, unlike plants created by other improvement methods, 

transgenic crops are carefully assessed for biosafety, nutritional equivalence and environmental 
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impact prior to allowing field release on a commercial scale (EFSA, 2004; NRC, 2004 

Rommens, 2010). 

Finally, the value (benefits) of the introduced trait, and the characteristics of the test 

environment (e .g., proximity and weediness of wild relatives), are also important in decisions 

about regulation and data collection (Strauss, 2003).  

 

2.2. Unintended effects of transgenes. Importance of pleiotropic effects 

 

Genetic engineering introduces novel or modified traits that could have unintended 

effects. The occurrence of unintended effects is not a phenomenon specific to genetic 

engineering. In classical breeding programmes, extensive backcrossing procedures are applied 

in order to remove unintended effects. Multiple mutations with diverse pleiotropic (that is, 

collateral) effects can be induced by irradiation or chemical mutagenesis, providing ample 

opportunity for unexpected consequences to occur (NRC, 2004). Other intensive breeding 

methods that are routinely used, such as intervarietal hybrids, wide interspecies crosses, 

inbreeding, ploidy modification and tissue culture, produce abundant pleiotropic effects on gene 

structure and trait expression in plants (Ozcan, et al., 2001). In these cases, subsequent 

selection has been almost entirely made on the basis of phenotypic characteristics, generally 

without any knowledge of the underlying genomic changes causing the phenotype. 

However the occurrence and implications of potential unintended effects of the 

transgene(s) are often cause for concern, and their study is an essential part of the risk 

assessment of GM fruit trees (and GM plants in general). According to their nature, unintended 

effects of transgenes can be classified into two main classes: locus-dependent (also called 

event-specific) and locus-independent (commonly known as pleiotropic). 

 

2.2.1. Event-specific unintended effects: Position and insertion 

effects 

 

During transformation, foreign DNA integrates randomly into the plant genome (Puchta 

and Hohn, 1996). Some insertions might inactivate or alter the expression of endogenous genes 

or interact with different genetic backgrounds (Taylor, 1997; Kappeli and Auberson, 1998), 

thereby resulting in unexpected consequences (phenomenon commonly known as insertion 

effect). In addition, different insertion events often vary in transgene expression levels, patterns 

or stability, which constitutes the so called position effect (Meyer, 1995; Kumar and Fladung, 

2001; Schubert, 2004). 

In a commercial transgenic variety development program, the event-specific unintended 

effects are routinely eliminated through phenotypical screening. During the development of 

transgenic plant varieties and for any given trait(s), a large number of transformants/clones that 

do not perform up to the required expectations will be discarded through assessment in the 

laboratory, glasshouse, and small scale field trials. In all cases, new cultivars produced by 
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genetic engineering are extensively tested and screened prior to commercial release. 

Evaluations of plant vigour, growth habit, yield, crop quality, and insect and disease 

susceptibility would be performed.  

 

2.2.2. Pleiotropic effects 

 

Pleiotropy, the condition in which the expression of a single gene affects multiple traits, 

can cause changes in plant characteristics that are, in most cases, difficult to predict. Pleiotropic 

changes in plant characteristics such as vegetative and flower development as a result of the 

transformation process have been reported in several studies (Elkind, et al., 1990; Ahuja and 

Fladung, 1996; Romero, et al., 1997; Donegan, et al., 1999; Gutiérrez-Campos, et al., 2001; 

Lemmetyinen, et al., 2004). The pleiotropic effects caused by a specific transgene are locus-

independent, thus creating challenges to the risk assessment of genetically modified organisms. 

There are pleiotropic effects with relevance in terms of environmental impact, which are 

carefully considered in experimental field trials, as for example the effect of incorporated 

resistance to pests and diseases on non target organisms. Sometimes, the biological relevance 

of unintended effects resulting from genetic modification refers to the implications of these 

effects on the agronomic performance of the plant. Several examples exist showing that, 

following genetic modification, unintended effects can have an impact on potential agronomic 

performance (Cellini, et al., 2004). Some of those phenotypes are obviously detrimental to any 

further commercial development of the transgenic lines in question. For example, the capacity 

for fructan biosynthesis, when introduced into the cytoplasm of potato tuber cells, results in 

transformants with impaired carbohydrate transport and perturbed tuber development (Dueck, 

et al., 1998; Turk and Smeekens, 1999). Some other pleiotropic effects do not completely 

prevent the commercialization of the crop, but they reduce their marketability to some extent. 

For example, attempts to increase food quality through metabolic engineering often compromise 

the yield potential of the targeted crop (Tanaka and Ohmiya, 2008; Ufaz and Galili, 2008). In the 

case of GM trees, several detrimental pleiotropic effects with agronomic relevance have been 

reported. Constitutive expression in apple of genes encoding a strongly antifungal 

endochitinase from the mycoparasitic fungus Trichoderma harzianum resulted in some level of 

resistance against the fungus Venturia inaequalis (causal agent of apple scab), but also in a 

reduction in plant vigor/growth (Bolar, et al., 2000). Another study showed that the 

overexpression of floral homeotic genes from forest tree species, as a strategy to genetically 

induce male or female sterility, caused adverse pleiotropic alterations to vegetative 

development of transgenic trees (Rottmann, et al., 2000). Obviously, these traits would never 

enter the commercialization phase. 

The possible ocurrence of pleiotropic effects with biological relevance (in terms of 

enviromental concerns or agronomic performance) must be taken into account when assessing 

risk and validity of the GM trees. Moreover, in some cases, pleiotropic effects are only 

manifested under determinated environmental conditions (Zeller, et al., 2010). Then, the only 
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way to study the possibility of unintended effects on the environment derived from GM plantings 

in the open, and evaluate transgenic trees under agronomic conditions, is through field trials. 

 

2.3. Transgene stability over time 

 

Some frequently mentioned issues of GM plants that are closely related to their validity 

on a commercial basis include the instability of transgene expression, especially in long-lived 

species (Van Frankenhuyzen and Beardmore, 2004). Several studies on transgenic trees have 

found that the transgenic traits can be less stable than originally thought (Petri and Burgos, 

2005). Fluctuations in transgene expression in trees have been observed and often correspond 

to the metabolic state of the cells and tissues (Levée, et al., 1999; Cervera, et al., 2000). In 

many cases, transgene silencing has also been reported. For example, introduction of 

transgenes encoding caffeic acid O-methyltransferase in aspen and poplar plants sometimes 

resulted in a loss of expression of the transgene and the homologous endogenous gene by the 

silencing phenomenon of cosuppression (Jouanin, et al., 2000). Consequently, transgene 

instability including those causing gene silencing and variable expression levels during the long 

lifespan of trees an important consideration (Ahuja, 2009; Harfouche, et al., 2011). There is also 

evidence that gene/environment interactions play an important role for expression level of the 

transgenes (Strauss, et al., 2004), which stresses again the importance of assessing trait 

efficacy under field conditions similar to real cultivation. 

Although some cases of transgene instability have been reported (Dominguez, et al., 

2002), the level of molecular and phenotypic instability has been shown to be quite low in a 

number of multi-year studies with GM trees (reviewed by Walter, et al. (2010); Brunner, et al., 

(2007)); see also four publications (Li, et al., 2008; Li, et al., 2009). Recent studies have shown 

a high stability of the transgenes expression in trees during a short period of time (2 to 4 years) 

in plants cultivated in vitro, the greenhouse or in the field (Charity, et al., 2005; Flachowsky, et 

al., 2008). Short-term and mid-term studies with reduced lignin, herbicide and insect resistance 

GE trees, in particular poplars, have been encouraging with regard to stability of transgene 

expression under field conditions (Lachance, et al., 2007). Further, long-term transgene stability 

has also been reported in transgenic prunus (Maghuly, et al., 2006) and apple (Borejsza-

Wysocka, et al., 2010) trees. In this last work, Borejsza-Wysocka et al. demonstrated the stable 

integration and expression of a transgene (attacin E) in apple for more than 12 years under 

orchard conditions. Expression of this gene resulted in an increase in resistance to fire blight 

throughout these years and had no effect on tree morphology, fruit morphology or internal fruit 

quality characteristics. 

 

2.4. Conclusion and future prospects 

 
Possible benefits of transgenic fruit trees are associated with increasing economic 

efficiency of agriculture, and they can also provide important benefits such as reduced use of 



Introduction 

 

26 

 

pesticides and improved quality of the fruit. The commercialization of GM trees is still in the 

distant future because the GM research has not progresses as far as that on crop plants, and 

there are a number of unresolved biosafety, environmental and regulatory obstacles (Jaffe, 

2004; Hoenicka and Fladung, 2006; Finstad, et al., 2007; Groover, 2007; Sederoff, 2007). 

These concerns are based on the endogenous behavior of the transgene (stability, and 

interaction with other genes in the host genome in space and time), and exogenous effects of 

the transgene (dispersal of pollen and seed) on the ecosystem. These biosafety and regulatory 

concerns must be addressed before commercialization of GM trees. Moving beyond a 

greenhouse to outdoor studies is essential to understand the ecological impact and agricultural 

value of newly inserted genes and traits. In this regard, design of field trials and whether these 

would be conducted for a period that is long enough to reveal the differences in the GM trees as 

compared to the non-modified trees (e.g. after exposure to multiple biotic and abiotic stresses) 

are important considerations. These should logically follow the periods of time and practices of 

conventional breeding programs for the unmodified species. 

 

3. The contribution of plants in promoting human health 

 

3.1. Citrus and health: nutri-functional attributes of oranges 

 

Besides for its pleasant flavor, citrus fruits are prized by consumers for its nutritional 

value and healthy properties. Citrus fruit or juice can be an excellent source of macro- and 

micro- nutrients, as well as other health-promoting substances (Economos and Clay, 1999). The 

amount of these compounds varies depending on the specific citrus variety. Other factors that 

influence citrus fruit composition are rootstock, fruit size, maturity, storage, horticultural 

conditions, and climate (Kefford and Chandler, 1970). In addition, different processing 

procedures with capabilities to adjust extraction and homogenization pressures as well as 

pasteurization affect juice composition (Betoret, et al., 2012). The recommended dietary 

allowance for average adults in terms of nutrients available in oranges is given in Table 1. From 

a nutritional standpoint, it is noteworthy the low content in fat (and in overall dietary energy) of 

orange fruit, in part due to its high water content. This is a major consideration given the 

increasing rate of obesity in developed countries in both adults and children. As well as being 

low in fat and energy, orange fruits are free of sodium and cholesterol, and contain a wide range 

of naturally occurring vitamins, minerals and non-nutrient phytochemicals that have been shown 

to have beneficial effects on health. Notable amongst these active ingredients are vitamin C, 

carotenoids, folate, potassium, calcium, fibre, polyphenols, coumarins and monoterpenes and, 

to a lesser extent, phytosterols (Liu, et al., 2012). These substances are necessary for proper 

functioning of the body but some may confer additional protection against chronic disease over 

and above basic nutrition (Silalahi, 2002; Knekt, et al., 2002; Liu, 2003; Yao, et al., 2004; Key, 

2011). 
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Table 1. Nutrient content of orange fruit  

Nutrient 

Nutritional value per 100 g 

of edible portion % RDA
 

Energy 197 kJ (47 kcal)  

Carbohydrates 11.75 g  

- Sugar 9.35 g  

- Dietary Fiber 2.4 g  

Total lipid (fat) 0.12 g  

Protein 0.94 g  

Water 86.75 g  

Vitamins   

Vitamin C 53.2 mg 60%  

Thiamin (vit. B1) 0.087 mg 8%  

Riboflavin (vit. B2) 0.04 mg 3%  

Niacin (vit. B3) 0.282 mg 2% 

Pantothenic acid (B5) 0.25 mg 5%  

Vitamin B6 0.06 mg 5%  

Folate (vit. B9) 30 µg 8%  

Choline 8.4 mg 2%  

Vitamin A equiv. (RAE) 11 µg 1%  

β-carotene 71 µg  

α-carotene 11 µg  

β-cryptoxanthin 116 µg  

Vitamin E 0.18 mg 1%  

Minerals   

Calcium, Ca 40 mg 4%  

Iron, Fe 0.1 mg 1%  

Magnesium, Mg 10 mg 3%  

Phosphorus, P 14 mg 2%  

Potassium, K 181 mg 4%  

Sodium, Na 0 mg 0% 

Zinc, Zn 0.07 mg 1%  

Manganese, Mn 0.025 mg 1%  

Non-nutrient phytochemicals   

Carotenoids (non provit. A)   

Lutein + zeaxanthin 129 µg  

Flavanones   

-    Hesperetin 27.2 mg  

-    Naringenin 15.3 mg  

Source: Nutrient data for this listing was provided by USDA SR-26 (Oranges raw, all commercial varieties). 

Percentages of RDA are roughly approximated using US recommendations for adults. Each "~" indicates a 

missing or incomplete value.  

 

 

Indeed, the health benefits of fresh citrus fruit, including oranges, have been the subject 

of extensive research (epidemiological studies and other investigations) and it is well 

established that its consumption promotes health and protection against chronic and 

degenerative diseases (Franke, et al., 2005). In particular, the inhibition of breast cancer cell 

proliferation (So, et al., 1996), decrease of colon tumorigenesis (Miyagi, et al., 2000) and 
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antimutagenic properties (Franke, et al., 2006) have been evidenced in cell culture and animal 

models. Moreover, orange consumption has been associated with a lower risk of acute coronary 

events and stroke (Johnsen, et al., 2003; Dauchet, et al., 2004). Clinical results indicate that 

consumption of orange juice reduces oxidative DNA damage in blood cells (Guarnieri, et al., 

2007) and improves plasma concentrations of markers of inflammation and oxidative stress 

(Johnston, et al., 2003; Sánchez-Moreno, et al., 2003; Ghanim, et al., 2010). Consumption of 

orange juice also improves lipemia in patients who have undergone coronary bypass surgery 

(Kurowska, et al., 2000). In addition, eating oranges can ward off age-related macular 

degeneration (Gale, et al., 2003) and cataracts (Taylor, et al., 2002; Zhou, et al., 2011). 

The protective effects of citrus fruit have been mainly attributed to the presence of 

bioactive compounds which have antioxidant properties. The antioxidant and antiradical 

activities of citrus fruit are mainly due to the hydrosoluble fraction containing polyphenols and 

vitamin C and also to the apolar fraction including carotenoids, leading to their protective effects 

against chronic disorders, especially in at-risk populations with low antioxidant status 

(Gorinstein, et al., 2001; Franke, et al., 2005; Tripoli, et al., 2007). However, in some cases, the 

beneficial effects of orange intake were not explained by the sole presence of certain bioactive 

compounds alone (Guarnieri, et al., 2007). Then, it is likely that the different components of this 

particular food matrix influence their health-promoting qualities, either through synergistic 

interactions or through effects on bioavailability (Liu, 2003). 

 

The main components of orange fruits and their nutritional and/or therapeutic value are 

detailed below: 

 

Vitamins 

 

Contrary to many other sources of vitamins, a fresh orange or a glass of freshly 

extracted orange juice provides many vitamins in abundance without any loss by cooking. 

Vitamin C (also known as L-ascorbic acid or ascorbate) is the most abundant nutrient found in 

citrus fruit, and it was this component that first raised the health profile of citrus. It is estimated 

that a glass of orange juice (177.4 ml) or a standard-size orange fruit (corresponding to 180-

gram edible portion) provides about 100 percent of the recommended daily allowance of vitamin 

C to the average human diet (Araujo, 1977) (Table 1). Vitamin C, in addition to preventing 

scurvy (Kaur and Kapoor, 2001) and being an important component of human nutrition, is 

considered one of the most prevalent antioxidative components of fruits that exert substantial 

chemopreventive effects without apparent toxicity (Drake, et al., 1996; Lee, et al., 2003). Recent 

reports suggest that the chemopreventive effects of vitamin C are linked to its protective effects 

against epigenetic mechanisms such as the inflammation and inhibition of gap-junction 

intercellular communication as well as its antioxidant activities (Bowie and O’Neill, 2000; Lee, et 

al., 2002; Wu, et al., 2002). 
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Other vitamins present in fresh citrus fruits are compounds of the vitamin B complex. 

Folic acid, folate, and folacin are interchangeable forms of the chemical compound pteroyl 

glutamic acid; its deficiency is known to cause a type of anemia, being growing children and 

pregnant women the more sensitive. Folate also reduces neural tube birth defects by up to 75 

percent when taken by pregnant women and has been associated with a reduced risk of heart 

disease by lowering blood serum homosystine levels (Widmer and Stinson, 2000). A standard-

size orange fruit (180 g) provides more than 10 percent of the US RDA (United States 

Recommended Daily Allowances) of 400 µg (Table 1). Folacin contains at least one molecule of 

glutamic acid. As far as absorption is concerned, monoglutamate forms are more absorbable. 

Since citrus fruits contain monoglutamate forms, they are likely to provide a more absorbable 

vitamin species than other sources. Folic acid is prone to oxidation and is generally protected in 

fresh fruit because of the antioxidant property of ascorbic acid (Streiff, 1971). Thiamin (Vitamin 

B1) content in 100 g of orange fruit is 0.087, which constitutes about 8 percent of the US RDA 

(Table 1). Thiamin increases from about 0.5–0.6 g to about 0.75–0.8 g per gram of juice with 

maturity in oranges. Similarly, niacin content also increases (Ting, 1977). Citrus fruits are also a 

source of the B6 vitamins known as pyridoxal, pyridoxamine, and pyridoxine. These are 

interchangeable in the body. The coenzyme form of the vitamin, i.e. pyridoxal phosphate, is 

required for the metabolism of amino acids, proteins, and fats in the body. Some types of 

stomatitis and a type of anemia have been shown to be cured by the administration of 

pyridoxine. The B6 requirement varies depending on the amount of protein eaten, since this 

vitamin has a role in protein metabolism. The US RDA has been set at 1.3 mg per day, and 

orange intake (100 mg) provides about 5% of this nutritional requirement (Table 1). 

Vitamin A is also present in orange fruits through pro-vitamin A carotenoids, though 

oranges are not considered a particularly rich source of this vitamin. Vitamin A (retinol, retinal, 

retinoic acid) has multiple functions: it is important for growth and development, for the 

maintenance of the immune system and good vision (Combs, 2008; Tanumihardjo, 2011). It can 

be ingested directly as retinol from animal food sources or in the form of carotenoids with 

provitamin A activity from plants. The carotenoids β-carotene, α-carotene, γ-carotene, and β-

cryptoxanthin (all them containing beta-ionone rings), but no other carotenoids, function as 

provitamin A in herbivores and omnivore animals which possess the enzyme 15-15'-

dioxygenase. This enzyme cleaves provitamin A-carotenoids in the intestinal mucosa and 

converts them to retinol (Biesalski, et al., 2007). The efficacy of this conversion in vivo has been 

established for each provitamin A carotenoid and it is expressed as Retinol Activity Equivalent 

(RAE) units. Each μg RAE corresponds to 1 μg retinol, 2 μg of β-carotene in oil, 12 μg of 

"dietary" beta-carotene, or 24 μg of the three other dietary provitamin-A carotenoids. Orange 

fruit contains (per 100 g) 71 μg of β–carotene, 11 μg of α-carotene, and 116 μg of β-

cryptoxanthin, which is equivalent to 11 μg RAE in total. That amount of vitamin A barely covers 

1% of the US RDA (Table 1). 

Similarly, Vitamin E, or α–d–Tocopherol has been reported to be present in oranges but 

in small amounts (Newhall and Ting, 1965) (Table 1). 
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Minerals 

 

Orange fruits have very high potassium content (181 mg per 100 g of fruit), while the 

sodium content is very low (virtually zero). The ratio of K and Na in oranges plays an important 

role in maintaining electrolyte balance. Sodium is understood to play a role in water retention 

and edema. Citrus juices also provide minerals that are part of the vital enzyme system of the 

human body. Calcium, magnesium, and phosphorus are supplied by oranges, providing about 

the 4%, 3% and 2% of de US RDA respectively (Table 1). Other important minerals such as Fe, 

Mn and Zn are also provided by oranges, but to a lesser extent. Despite the amounts of these 

compounds in citrus fruit are relatively low, ascorbic acid and citric acid, both present in large 

amounts in oranges, can increase the bioavailability of some of them. For example, the citric 

acid in orange juice may act as chelating agent and thus increase calcium absorption by 

preventing the formation of insoluble salts. Moreover, a study conducted by Ballot, et al. (1987) 

showed a close correlation between iron absorption and ascorbic acid content, and a weaker 

but still significant correlation with the citric acid content. Therefore, the presence of citrus fruit is 

expected to increase iron absorption markedly in diets low in iron (Nair and Iyengard, 2009). 

 

Dietary Fiber and Pectin 

 

Dietary fiber is the edible part of plants or analogous carbohydrates that are resistant to 

digestion and absorption in the human small intestine, with complete or partial fermentation in 

the large intestine. Dietary fibers promote beneficial physiologic effects including laxation, 

and/or blood cholesterol attenuation, and/or blood glucose attenuation. An average-size orange 

(7–8 cm diameter) can provide 0.8 g of fiber in the diet. Drinking of a cup of fresh orange juice 

provides 0.3 g of fiber (Church and Church, 1970). Fiber has its own importance for the people 

of industrialized nations who eat high-fat, low-fiber diets full of highly refined and processed 

carbohydrates that move slowly through the intestines. In fresh citrus fruit, fiber contains 

cellulose, hemicellulose, lignin, and pectin – all found in citrus segments, membranes, and other 

parts of the albedo. Most of these are carbohydrates, except lignin, which is a complex polymer 

of aromatic compounds linked by propyl units. Cellulose, hemicellulose and lignin, which are 

water-insoluble fibers, prevent digestive disorders by easing the motion and rapid passage of 

food through the gastrointestinal tract (Anderson, 1990; Lattimer, 2010). Insoluble fiber is also 

associated with reduced diabetes risk, but the mechanism by which this occurs is unknown 

(Weickert, 2008). In addition, evidence exists that fermentable fiber sources improve absorption 

of minerals, especially calcium (Nishimura, et al., 1992). Lemons, grapefruits, tangerines, and 

oranges are rich in pectin content. This type of fiber dissolves in water to form a gel-like material 

that can help decrease blood cholesterol (McCready, 1977). Viscous soluble fibers may also 

attenuate the absorption of sugar, reduce sugar response after eating, normalize blood lipid 

levels and, once fermented in the colon, produce short-chain fatty acids as by-products with 
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wide-ranging beneficial physiological activities (Bolton, 1981; Roth, 2001; Bandera, 2007; Du, et 

al., 2010). Pectin has been found to significantly inhibit the binding of fibroblast growth factor 

(FGF-1) to fibroblast growth factor receptor (FGFR1) in the presence of 0.1 μg/ml heparin (Liu, 

2001). Kinetic studies have revealed a competitive nature of pectin inhibition with heparin, which 

is a crucial component of the FGF signal transduction process. Thus, pectins can be effectively 

utilized as anti-growth factor agents in fibroblasts. 

 

Other non-nutrient phytochemical/nutraceutical compounds: Carotenoids 

 

Carotenoids are lipid-soluble pigments found in all photosynthetic organisms, 

responsible of the red, yellow and orange colors of a wide number of flowers and fruits of many 

different plant species (Hirschberg, 2001; DellaPenna and Pogson, 2006). Among the naturally 

occurring plant pigments, carotenoids (which are isoprenoid compounds) are widely distributed, 

with a high degree of structural diversity and large variations in biological functions (Schoefs, 

2002). There are >600 carotenoids found in nature, with 40 dietary carotenoids regularly 

consumed in the human diet (Rao and Rao, 2007). The most common carotenoids in North 

American diets are α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, and lycopene 

(USDA, 2008). As mentioned above, one of the most important physiological functions of 

(some) carotenoids in human nutrition is to act as vitamin A precursors. Apart of this nutritional 

role, other health benefits attributed to carotenoids include prevention of certain cancers 

(Seifried, et al., 2003; Tang, et al., 2005), cardiovascular diseases (Granado, et al., 2003) and 

age-related ocular diseases (Johnson, et al., 2000), as well as enhanced immune system 

functions (Hughes, 1999; Garcia, et al., 2003; Krinsky and Johnson, 2005). These beneficial 

effects of carotenoids mainly derive from their potent antioxidant activity, since carotenoids are 

known to function as free-radical scavengers (Yeum and Russell, 2002). Nevertheless, other 

non-antioxidant mechanisms (such as induction of gap junctional communication) have been 

linked to the biological effects of carotenoids (Hanusch, et al., 1997; Bertram, 1999). 

Citrus fruits are, in general, a rich and complex source of carotenoids in which up to 110 

different carotenes and xanthophylls have been reported, although many of them may be 

isomers (Meléndez-Martínez, et al., 2007). In citrus fruits, carotenoids are mainly associated 

with pulp and its particles extracted in the juice; hence too much filtration is likely to remove 

them from the juice. In the pulp of oranges, carotenoid content differs among cultivars, ranging 

from 4 to 38 μg/ g FW (Alquézar, et al., 2008). Fruit of most orange varieties accumulates 

mainly β,β-xanthophylls, being, within these compounds, 9-cis-violaxanthin the most abundant 

carotenoid present in the pulp of the mature fruit (Alquézar, et al., 2008). Multiple health benefits 

in the protection against eye disease and other chronic diseases have been attributed to this 

specific group of carotenoids (xanthophylls) (Tanaka, et al., 2000; Kohno, et al., 2001; Abdel-

Aal, et al., 2013). However, other nutritionally important carotenoids are scarce in orange fruits: 

β-carotene content in oranges is low (about 71 μg) compared to many other food sources (see 

USDA page (USDA, 2008)), and lycopene accumulation is an unusual feature in orange fruits, 
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since it has only been reported in a few under-utilized mutants (Shara, Cara Cara, Hong Anliu, 

Mombuca, Puka, Pinhal, etc.). 

 

Other non-nutrient phytochemical/nutraceutical compounds: Phenolics 

 

Citrus fruits are also rich in phenolic compounds including flavonoids, and benzoic and 

hydroxycinnamic acids, with potential health-promoting properties. These components have 

been proposed as important contributors to the total antioxidant capacity (Rapisarda, et al., 

1999; Burda and Oleszek, 2001). Flavonoids, the most abundant phenolics in citrus fruits 

(Nogata, et al., 2006), are shown to have many biological functions in antioxidative, 

anticarcinogenic, cardiovascular, and anti-inflammatory activities (Benavente-García and 

Castillo, 2008; Huang and Ho, 2010). Health benefits of these flavonoids are probably 

potentiated by combinations with other phytochemicals occurring in plant foods, particularly 

carotenoids (Kohno, et al., 2001; Tanaka, et al., 2000). The highest concentrations found in 

oranges and other citrus fruits correspond to flavanone glycosides, followed by flavones, 

flavonols and the fully polymethoxylated flavones (PMFs) (Kawaii, et al., 1999; Peterson, et al., 

2006). Hesperidin, narirutin, naringin, eriocitrin and neohesperidin are the major flavanone 

glycosides (Mouly, et al., 1994). PMFs exist exclusively in the Citrus genus especially in the 

peels of mandarins, sweet and sour oranges (Gattuso, et al., 2007). Although citrus juice 

contains low concentrations of PMFs, these compounds exhibit high biological activity and have 

been reported as having anti-tumor and anticarcinogenic activity (Murakami, et al., 2000; Du 

and Chen, 2010). In addition to flavonoids, a major part of phenolic compounds of citrus fruits 

are benzoic and hydroxycinnamic acids. Previous studies have reported that hydroxycinnamic 

acids also possess significant antioxidant activity and chemoprotective effects, as shown by in 

vitro and in vivo studies (Natella, et al., 1999). 

The anthocyanins, a class of flavonoids, which are the pigments of blood oranges (e. g. 

‘Tarocco’, ‘Moro’ and ‘Sanguinelli’ sweet orange varieties) also have therapeutic value. It has 

been observed that the consumption of the juice of blood oranges (cultivar Moro) can modulate 

the permeability of the blood vessels and induce a protective effect on the gastric mucosa 

(Saija, et al., 1992). On the basis of studies conducted on rats, this juice is reported to elicit an 

immuno-stimulatory effect. The juice is desirable because it can act as co-adjuvant in the 

therapy of some circulatory system pathologies. It also increases the capability to react to 

unfavorable conditions (possibly infections) promptly. Finally, a recent study showed that dietary 

supplementation of Moro juice, but not Navelina one (blond orange) significantly reduced fat 

accumulation in mice. However, authors concluded that the anti-obesity effect observed could 

not be explained only by its anthocyanin content, suggesting that multiple components present 

in the Moro orange juice might act synergistically to inhibit fat accumulation (Titta, et al., 2010). 
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3.2. Metabolic engineering towards development of functional food 

 

Role of phytonutrients with antioxidant capacity on health 

 

Citrus is not the only crop to which health-promoting properties have been attributed. It 

is generally accepted that plant-derived foods exert some beneficial effects on human health 

beyond basic nutrition, particularly on defense against age-related diseases. It was the group of 

Peto (Doll and Peto, 1981; Peto, et al., 1981) who first proposed 30 years ago, based on 

epidemiological studies, that many of the cancers diagnosed in U.S. could be prevented with an 

adequate diet, based on the regular consumption of plant-foods rich in certain types of healthy 

compounds. Nowadays, although the relationship diet/food-health is not completely clarified, 

there is a wealth of information (based on numerous epidemiological and randomised 

intervention studies (Calder, et al., 1980; Lindeberg, et al., 2007; Osterdahl, et al., 2007; 

Frassetto, et al., 2009; Jonsson, et al., 2009) indicating that some of the global burden of 

chronic disease could be alleviated by adoption of diets containing greater amounts of plant 

foods. The US Healthy People 2020 (HP2020) objectives (USDA, 2010) recommend that 

citizens increase their consumption of fruit and vegetables to reduce the risk of morbidity and 

mortality from type 2 diabetes (Carter, et al., 2010), heart disease (Dauchet, et al., 2006), stroke 

(He, et al., 2006), obesity (Michimi and Wimberly, 2010; Ledoux, et al., 2011) and cancer 

(Valdés-Ramos and Benítez-Arciniega, 2007; Boggs, et al., 2010). The 2012 American Cancer 

Society guidelines recommend consumption of at least 2.5 cups of fruit and vegetables per day 

as a vital component of a healthy diet (Kushi, et al., 2012). But, although, overall, the literature 

indicates a protective effect of fruits/vegetables against a number of chronic diseases, the 

estimates of amounts of food required for benefit are imprecise and the relative importance of 

the individual components of the fruit/vegetable is not clear. Therefore, in the last decades, 

interest in the relationship between food and health goes beyond the preventive action of the 

nutrients in nutritional deficiencies, and the possibility that dietary intervention may significantly 

decrease incidence of diet-related diseases has catalysed scientific efforts to understand this 

relationship, which is fundamental to developing future strategies for stemming disease. 

Oxidative damage is involved in many chronic diseases including the major causes of 

death in Western societies such as cardiovascular disorders and cancer (Cheeseman and 

Slater, 1993). Oxidized LDL contributes to the formation of atherosclerotic lesions and poses an 

additional oxidant stress that injures smooth muscle and endothelial cells (Berliner, 1996). 

Adipositiy leads to oxidant stress because intracellular triglycerides cause increased superoxide 

formation (Bakker, et al., 2000) and stimulate adipocytes or pre-adiposites to produce 

inflammatory cytokines (Coppack, 2001), which induce formation of various oxidative radicals 

(Fenster, et al., 2002). Mutagens and carcinogens may act through the generation of free 

radicals which initiate a series of degenerative processes related to cancer, heart disease, and 

aging. Antioxidants may prevent these degenerative processes by various mechanisms 

including scavenging of free radicals. The capacity of some plant-derived food to reduce the risk 
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of chronic diseases has been associated to the occurrence of many different functional 

metabolites with antioxidant activity. Essential micronutrients, which are either organic 

compounds (vitamins) or minerals required in amounts <1 mg/day, act as cofactors or metabolic 

precursors and are required for specific biological processes, such that insufficient intake results 

in characteristic deficiency diseases (Zhu, et al., 2007; Gómez-Galera, et al., 2010). But, as well 

as their requirement for particular metabolic processes, certain essential nutrients present in 

plant foods also act as antioxidants or promote the activity or availability of antioxidants. A key 

example of such a ‘dual-purpose nutrient’ is vitamin A, which is obtained in the diet either as 

esters of retinol from meat and dairy products or as pro-vitamin A carotenoids such as β–

carotene from plants. Vitamin A is converted into the visual pigment rhodopsin (retinal), in the 

retina of the eye, and acts as a co-regulator of gene expression (retinoic acid); β-carotene is 

also an antioxidant, as are many other (non-essential) carotenoids. Similarly vitamin C 

(ascorbate) is an essential cofactor for several enzymes and vitamin E (tocochromanol family) is 

a regulator of protein kinase activity and gene expression. In all these cases, their potent 

antioxidant activities are arguably just as important as their essential and non-replaceable 

functions. Even metal ions, which are usually regarded as pro-oxidants, can be important to 

maintain antioxidant activity in humans, because they act as cofactors for certain antioxidant 

enzymes, for example iron is a cofactor for catalase. On the other hand, it is well known that 

many other non-essential molecules consumed in the diet are also antioxidants with health-

promoting effects. These non-nutrient secondary plant metabolites are commonly known as 

phytochemicals or nutraceuticals. Phytochemicals that are present in the diet and have been 

associated to reducing the risk of chronic diseases include glucosinolates, sulphur-containing 

compounds of the Alliaceae, terpenoids (carotenoids, monoterpenes, and phytosterols), and 

various groups of polyphenols (anthocyanins, flavones, flavan-3-ols, isoflavones, stilbenoids, 

ellagic acid, etc.). Hence there is an overlap between essential nutrients and non-essential 

compounds that act as antioxidants. All the functional plant metabolites that have shown a 

protective effect against degenerative diseases, whether or not essential nutrients, are 

collectively known as phytonutrients and their bioactivity has been, to some extent, associated 

to their antioxidant properties. However, the view that such phytonutrients also act on the 

signaling pathways that respond to reactive oxygen and nitrogen species (RONS) 

independently of their antioxidant activities, and in this way impact inflammation and the 

inception of chronic disease, is gaining considerable ground (Traka, et al., 2008; Virgili and 

Marino, 2008). 

Although a growing body of evidence supports the healthy properties of phytonutrients, 

in most cases, a concrete beneficial effect could not be attributed unequivocally to a particular 

phytonutrient. Many factors complicate the interpretation of epidemiological studies, which are 

one of the major sources of evidence for the role of dietary plant secondary metabolites in 

contributing to the prevention of chronic disease, and there is also a limitation to the extent of 

resolution that this type of studies can provide. On the other hand, a wide variation has been 

observed in preclinical and clinical studies on responsiveness to food components as modifiers 
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of human health (Traka and Mithen, 2011). This is because our food consists of complicated 

mixtures of nutrients and metabolites making it extremely difficult to identify and dissect out the 

contributions of any single component to nutrition and health. All nutrients are subject to 

metabolism by the enzymes of the GI tract and by the gut microbiotica, and the gut microflora 

may be highly personalized for individuals and yet change with time. In addition, phytonutrients 

may impact the composition of the gut microflora, which can, in turn, impact the risk of chronic 

disease, as it has been shown for the role of the microflora of the GI tract in relation to obesity 

(Gill, et al., 2006; Turnbaugh, et al., 2006). The sites of absorption of different nutrients within 

the GI tract vary, and the degree of absorption (bioavailability) may vary significantly for slightly 

different chemical species. Phytonutrients are usually further metabolized once absorbed. 

Finally, the efficacy of different phytonutrients in promoting health likely varies significantly as a 

result of the specificity with which such compounds and/or their metabolites impact different 

animal signalling pathways, although the meaning of such differences in efficacy currently 

remain ill defined. 

All this renders the results of bioactivity of a given plant-compound (or plant extract / 

plant-based food) with possible beneficial health properties as generally inconclusive, and even 

contradictory, depending on how analyses have been performed. Thus, for example, antioxidant 

capacity estimated through in vitro tests (such as ORAC, FRAP, ABTS, DPPH and lipid 

peroxidation assays) is extensively used to define and claim the ‘goodness’ of some 

phytonutrients (alone or within a food matrix). However, there is an increasing consensus in 

considering that the in vitro antioxidant activity of a certain compound may not reflect its actual 

activity in vivo, especially in view of its in vivo transformation into metabolites and/or other 

derivatives which are the true bioactive compounds (Cerdá, et al., 2004; Larrosa, et al., 2006). 

This fact stresses the importance of testing functionality on in vivo systems. Moreover, 

preclinical experimental studies with cell and animal models, although serve an important role to 

gain insight into underlying mechanisms of the health-promoting and disease-preventing activity 

of particular foods and their chemical components, do not consider some key issues such as 

bioavailability, metabolism, tissue distribution, dose/response and toxicity of food bioactive 

compounds in humans. Hence, human intervention studies (clinical trials) with adequate 

experimental designs provides the most reliable evidence for health benefits and is the only 

source of data upon which health claims for functional food products can be substantiated. 

Furthermore, evidence suggests that phytonutrients have not the same effect when consumed 

as supplements than as part of a food matrix. For example, anthocyanins from various foods 

were only effective at reducing obesity in mice subjected to a fatty diet when provided in the 

form of food, either red fruits (Prior, et al., 2008) or blood orange juice (Titta, et al., 2010). Also, 

in several large human intervention studies, it was found that β-carotene, vitamins A, C and E, 

or selenium supplementation were not preventive of gastrointestinal cancers, and instead 

increased mortality was recorded (Bjelakovic, et al., 2008). Similarly, while yet another study 

concluded that β-carotene supplementation does decrease the risk of developing cancer 

(Gallicchio, et al., 2008), some other works reported that β-carotene may take on 
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circumstantially adverse properties when given in high dose under highly oxidative conditions 

(Young and Lowe, 2001; Shukla and Mattoo, 2009). It is important to note, in this context, that 

under certain conditions, a particular antioxidant may not be effective in neutralizing oxidative 

damage, and that the very nature of antioxidants can make them pro-oxidants (Halliwell, 2007; 

Halliwell, 2008). This may also be relevant in the context of the findings that a synergistic 

relationship among different antioxidants (phytonutrients), present in dietary vegetables and 

fruits, has been proposed to be the reason for their beneficial effects on human health (Halliwell, 

et al., 2005). These are only a few examples that evidenced the importance of assessing the 

health impact of a particular phytochemical compound when is provided within the food matrix 

and in the appropriate amount, rather than as supplement. In this regard, one of the important 

contributions that plant scientists could make to this field of study is to develop plant genotypes 

that have contrasting levels of bioactive compounds but are otherwise identical for the use in 

dietary intervention studies, as reviewed recently by Martin, et al. (2011). 

In summary, with the information compiled to date it can be stated that phytonutrients 

have low potency as bioactive compounds when compared to pharmaceutical drugs, but when 

they are ingested regularly and in significant (but not excessive) amounts as part of the diet 

(rather than as dietary supplements), they may have a noticeable long-term physiological effect. 

Further human intervention studies with well-characterized plant-based foods and adequate 

experimental designs are need to clarify the true potency of phytonutrients on human health at 

all levels (mechanism of action, proper dose, bioavailability, interactions with other compounds 

found in the food matrix, etc.). 

 

Plant metabolic engineering for crop biofortification: nutrition versus functionality 

 

The important contribution of phytonutrients to the nutritional value and healthy 

properties of certain fruits and vegetables has led to attempts to induce or increase their levels 

in commonly consumed crops, a process commonly known as biofortification. Although 

conventional breeding is one means of achieving this goal, the genetic diversity available within 

sexually compatible species of any given crop will limit the extent of improvement. In addition, 

these breeding methods involve crosses and backcrosses for several generations which is a 

highly time consuming process and require high genetic variations of the trait and heritability 

(McGhie and Currie, 2008). Metabolic pathway engineering approaches have demonstrated the 

power of genetic manipulation in enhancing the content of phytonutrients beneficial for human 

health in transgenic crops. Several examples of crop biofortification by genetic engineering have 

received widespread coverage in the scientific literature as well as the general media, including 

rice and potato with enhanced β-carotene levels, lysine-rich corn, iron-rich lettuce, and 

lycopene-enhanced tomatoes (Davies, 2007; Newell-McGloughlin, 2008). In the same vein, 

suppression of key genes to inhibit production of allergenic proteins or toxins in crops and their 

derived products is highly sought (reviewed by Zhu, et al. (2013)). Nonetheless, the examples of 

crop biofortification by genetic engineering can be loosely grouped into two major classes 
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regarding their purpose. First, the biofortification attempts aimed at the prevention/alleviation of 

nutritional deficiency diseases. Second, examples of crop biofortification aimed at developing 

healthier crops or functional food. 

Approximately 50% of the global population is thought to be malnourished but the vast 

majority of malnourished people are the rural poor in developing countries, where diets are 

based almost exclusively on a single starch-based crop (so-called staple crops, such as rice, 

maize, or cassava) lacking many essential nutrients and other health-promoting compounds 

(Farré, et al., 2011). The first attempts to enhance concentrations of beneficial phytonutrients in 

crop plants through metabolic engineering consisted on biofortify this type of food with some 

essential nutrient. These biofortification programs were aimed at the development of 

micronutrient-dense staple crops predominantly as a strategy to alleviate some kind of 

micronutrient deficiency in developing country settings, where supplements may not reach 

those needing them due to limitations in distribution (Mayer, et al., 2008). The classic example 

of the contribution of plant science to biofortification with this purpose is the production of 

Golden Rice. In this work, rice was enriched in β-carotene, a pro-vitamin A with high bioactivity, 

in order to alleviate vitamin A deficiency. The expression of either two or three genes (phytoene 

synthase from daffodil, phytoene desaturase from Erwinia uredovora and lycopene β-cyclase 

from daffodil), encoding enzymes required for β-carotene biosynthesis, resulted in rice that 

accumulated up to 1–2 mg β-carotene per gram in the endosperm (Ye, et al., 2000; Paine, et 

al., 2005). However, these levels were not adequate to provide the daily recommended 

allowance of provitamin A in a standard portion of rice. Consequently, considerable effort was 

invested in improving the efficiency of these enzymes to develop Golden Rice 2, which 

accumulates 37 mg provitamin A per gram of rice (31 mg per gram β-carotene), enough to 

provide the daily recommended allowance (DRA) in a 100 g serving of rice (Paine, et al., 2005). 

In Golden Rice 2, phytoene synthase gene came from corn, and it was demonstrated that, in 

combination with phytoene desaturase from Erwinia uredovora, it was much more efficient in 

increasing β-carotene accumulation in the rice endosperm. Golden phenotypes resulting from 

enhanced β-carotene content have also been achieved in other crops, such as potato (Diretto, 

et al., 2010), although since these are no longer staple crops providing the bulk or sole source 

of nutrients to population groups, it is less likely that these will be useful in terms of alleviating 

vitamin A deficiency. Works that have succeeded in enhancing the content of folate or iron in 

rice also belong to this group (Goto, et al., 1999; Lucca, et al., 2001; Storozhenko, 2007). A 

more recent advance in this field has been the development of transgenic multivitamin corn, 

through the introduction of four cDNAs encoding enzymes in the biosynthetic pathways of 

vitamins β-carotene, ascorbate and folate (Naqvi, et al., 2009). The results of these works 

clearly indicate the power of genetic engineering in markedly enhance intracellular 

concentrations of some of the beneficial nutrients, to levels that, in some cases, are close to the 

recommended daily allowance (RDA) threshold (Mattoo, et al., 2010). However, it is important to 

emphasize the difference between bioaccumulation (the amount of a particular nutrient that can 

be stored in plant tissues) and bioavailability (the amount that can be absorbed when the plant 
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tissue is consumed as food). Whereas most studies have focused on bioaccumulation, the 

bioavailability of nutrients in engineered crops is a more important indicator of its nutritional 

quality (Hirschi, 2008). The food matrix plays an important role in the bioavailability of organic 

and inorganic compounds. For example, 12 mg of β–carotene in a food matrix must be ingested 

to gain the same benefit as 1 mg of pure β-carotene dissolved in oil. Similarly, vitamin E 

absorption requires the presence of bile salts, pancreatic enzymes and oils or fats to promote 

solubility (Jeanes, et al., 2004), and the bioavailability of ascorbate is enhanced by co-

presentation with proteins in the food matrix (Vinson and Bose, 1988; Gómez-Galera, et al., 

2010). In the case of minerals, the presence of antinutritional compounds such as phytate and 

oxalate in vegetables can inhibit mineral absorption because they act as chelating agents, 

whereas nutritional enhancers such as inulin can promote mineral absorption by slowing down 

the movement of food through the gut (Gómez-Galera, et al., 2010). Reducing the quantities of 

antinutritional compounds and/or increasing the quantities of nutritional enhancers can therefore 

increase the bioavailability of nutrients. Bioavailability may also depend on the chemical form in 

which a nutrient is presented; for example selenium is absorbed more efficiently when 

presented in an organic form such as selenomethionine rather than as inorganic metal ions 

(Combs, 2001), and iron presented as a complex with ferritin is less susceptible to the effects of 

antinutritional compounds than nonheme iron (Lönnerdal, 2009). Therefore, bioavailability 

studies of the target metabolite are essential to guarantee the validity of biofortified foods in 

alleviating nutritional deficiencies. In these regard, it has been recently demonstrated that β-

carotene in biofortified rice (Golden Rice) and maize has good bioavailability as a plant source 

of vitamin A in humans (Tang, et al., 2009; Li, et al., 2010; Muzhingi, et al., 2011).  

The second major class of crop biofortification include numerous examples of 

development of transgenic crops with enhanced levels of beneficial phytonutrients, on which, 

unlike the previous examples, the purpose was not to offset the nutritional lack but to grant 

some extra health benefits to the biofortified crops. Some examples of biofortification gathered 

within this category are the tomatos enriched in specific carotenoids (reviewed by Shukla and 

Mattoo (2009)), resveratrol (Nicoletti, et al., 2007), or flavonoids (Muir, et al., 2001; Davuluri, et 

al., 2005), the piceid-enriched kiwi and papaya (Zhu, et al., 2004; Rühmann, et al., 2006), the 

soybean with increased levels of α- and β-tocopherol (Van Eenennaam, et al., 2003; Tavva, et 

al., 2006), and the sweet potatos enriched with linolenic acid (Wakita, et al., 2001). These works 

arise in response to the evergrowing interest in the functionality of food. One of the most 

pressing challenges for the next 50 years is to reduce the impact of chronic age-related 

diseases, which continue to expand as the human population lives longer, and are known to be 

related to dietary habits. However, despite the appreciation of the importance of plant foods, 

and the provision of theories as to why diets rich in fruit and vegetables reduce the risk of 

chronic disease (Eaton and Konnor, 1985), public information programs are not particularly 

effective at persuading people to change long-established habits and campaigns to increase 

adoption of diets rich in fruit and vegetables have met with very limited success (National 

Cancer Institute, 2000; Pomerleau, et al., 2004; Truhe, 2006; Crawley, 2009). At the same time, 
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consumers are becoming increasingly aware of their self-care and expect to reach or maintain 

their health and welfare through the foods they eat. All this has resulted in a steep increase in 

the development of functional foods (FF) in the last years, mainly for luxury markets in the 

industrialized world. FF are those that when consumed regularly exert a specific health-

beneficial effect beyond their nutritional properties (i.e., a healthier status or a lower risk of 

disease) and this effect must be scientifically proven (International Life Science Institute; 

http://www.ilsi.org). Biofortification through engineering of crops to synthesize and/or 

accumulate essential micronutrients and other health-promoting compounds may be a 

sustainable strategy to develop FF, avoiding the need to fortify processed food products with 

additives (Gómez-Galera, et al., 2010). In these biofortification programs, the crops that are 

naturally rich in micronutrients and highly consumed in the diet are usually the preferred targets 

for enrichment, rather than a staple-food. This approach of biofortification seeks to take 

advantage of possible beneficial interactions with phytonutrients already present in the food 

matrix of the target crop and, thus, enhance their healthy qualities, resulting in the development 

of a novel FF. 

 

Testing functionality of biofortified crops (importance of isogenic lines) 

 

Enhancing the nutritional quality of plant-based foods through genetic modification is an 

attractive and potentially useful contribution to tackling the twin global health burdens of 

micronutrient deficiencies and diet-related non-communicable diseases (Martin, et al., 2011). 

Notwithstanding some differences, many of the same technical issues must be addressed in 

both environments, that is, the need to modulate endogenous plant metabolic pathways to 

ensure that flux is directed to the appropriate compounds, the need to ensure such compounds 

accumulate in the most appropriate tissues and the focus on bioavailability rather than 

bioaccumulation (Zhu, et al., 2013). Besides contend with the technical requirements referred, 

the concept of developing nutritionally functional food requires: (1) the understanding of the 

mechanisms of prevention and protection against a concrete diet-related disease; (2) the 

identification of the biologically active molecules and (3) the demonstrated efficacy of these 

molecules with human subjects. Accurate information is also highly desired to have in place 

about the RDA for effective phytonutrients, in order to design biotechnological strategies for 

manipulating their contents in vegetables and fruits. Still, even if all these issues were resolved, 

the functionality/biological activity of the final biofortified crop must also be scientifically 

corroborated to meet the definition of FF (forth above). The necessity of scientific support for 

health claims of these phytonutrient-enriched crops is also specifically indicated in the new 

regulation of the European Parliament and of the Council of 20 December 2006 on nutrition and 

health claims made on foods (http://eur-lex.europa.eu/JOIndex.do?ihmlang=en; Official Journal 

of the European Journal, OJ L 404, 30/12/2006). 

Plant-based approaches to alleviating micronutrient deficiencies have been widely 

advocated by international agencies, such as the Harvest Plus initiative, and well-defined 

http://www.ilsi.org/
http://eur-lex.europa/
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targets in addressing iron, zinc, and vitamin A deficiencies have been agreed upon (Hotz and 

McClafferty, 2007). By contrast, identifying plant metabolites whose manipulation in fresh and 

processed foods might have a significant effect in reducing the burden of chronic disease is 

more challenging. As mentioned above, this is, in part, due to the lack of well-characterized and 

contrasting plant foods required to test hypotheses for the health-promoting activity of specific 

plant metabolites (Traka and Mithen, 2011). Plant metabolic engineering is an important tool to 

reduce some of the complexity in the diet-health relationship particularly through the 

development of near isogenic genotypes of common foods that vary in specific phytochemicals 

that can be used within dietary intervention studies to ask specific questions concerning 

biological activity of different phytochemicals when provided not as supplements but within a 

common chemical and physical food matrix. Once isogenic food materials have been prepared, 

the impact of target phytonutrients on a range of different chronic diseases can be assessed 

using in vivo systems, and, if these isolines have been generated through genetic 

transformation, preclinical experiments with animal models become essential, prior to perform 

human intervention studies. The most notable approach to this is the manipulation of the 

phenylpropanoid and/or flavonoid pathways in crop plants to develop fruits that have contrasting 

flavonoid compositions, providing material that served as true matrix controls in experiments 

with animal models for specific diseases (Martin, et al., 2011). For example, an study 

demonstrated that consumption of a transgenic flavonoid-enriched tomato, at a dose achievable 

with a human diet, reduced C-reactive protein in human C-reactive protein transgenic mice 

expressing markers of cardiovascular risk more than wild-type tomato intake (Rein, et al., 2006). 

A similar approach using tomatoes genetically engineered to produce high levels of delphinidin 

and petunidin anthocyanins demonstrated that dietary consumption of high levels of 

anthocyanins can extend the life span of Trp532/2 (p53 knockout) cancer-prone mice by as 

much as 30% (Butelli, et al., 2008). A recent study used genetically engineered apples with 

increased flavonoids (through overexpression of the myeloblastis transcription factor 10 

(MYB10) gene), compared to non-transformed apples, to investigate the effects of dietary 

flavonoids on inflammation and gut microbiota in mouse feeding trials. They concluded that 

high-flavonoid apple was associated with decreases in some inflammation markers and 

changes in gut microbiota when fed to healthy mice. These three studies constitute the only 

examples to date in the literature of transgenic crop biofortification whose functionality has been 

tested with animal models. The use of these plant materials (and other biofortified crops 

enriched with different potentially health-promoting phytonutrients) in short- and long-term 

intervention trials with humans would potentially make a major contribution to our understanding 

of the dietary role of the target compounds in a manner that is not feasible through 

epidemiological and animal studies. Therefore, plant metabolic engineering can contribute to 

understanding the benefits of specific fruit and vegetables (Martin, et al., 2011; Martin, 2012), at 

a fundamental level, and such biofortification can potentially contribute to improving diets 

without fundamental compositional changes. 
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2. Objectives 

 

The main aims of this thesis are (1) performing the first studies on environmental 

biosafety and field performance of genetically modified citrus trees, required to validate the 

use of the GM technology in citrus improvement programs (Chapters 1 and 2), and (2) 

addressing, for the first time, an improvement goal on the nutri-functional fruit quality of a 

citrus variety of commercial interest by metabolic engineering (Chapter 3). This thesis, 

therefore, consists of two different parts, and as a whole seeks to provide essential 

information for the future possibilities of modern biotechnology in citriculture. 

 

The specific objectives are: 

 

- To investigate the maximum frequency of transgene dispersal through pollen 

from GM citrus trees in an orchard that is grown under open pollination conditions and is 

embedded in a diverse floral neighbourhood of non-GM citrus trees, and to assess the 

relative contribution of the genetic, phenological and environmental factors involved in 

transgene dispersal (Chapter 1). 

 

- To study the stability of the integration and expression of the uidA and nptII 

transgenes in GM citrus trees grown under agronomical, long-term culture conditions and 

the potential impact of transgenesis on the morphology, phenology and fruit quality of trees 

(Chapter 2). 

 

- To generate transgenic orange plants flowering and fruiting fast, and producing 

fruits enriched in β-carotene (pro-vitamin A) by metabolic engineering. To evaluate 

subsequently the biological activity in vivo (antioxidant capacity) of these fruits in the model 

organism Caenorhabditis elegans (Chapter 3). 
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3. RESULTS: CHAPTER 1.  

Pollen competition as a reproductive isolation 

barrier represses transgene flow between 

compatible and co-flowering citrus genotypes 

 

PLoS ONE (2011) 6(10): e25810. doi:10.1371/journal.pone.0025810 
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Abstract 

 

Background/Objective: Despite potential benefits granted by genetically modified 

(GM) fruit trees, their release and commercialization raises concerns about their potential 

environmental impact, and the transfer via pollen of transgenes to cross-compatible cultivars is 

deemed to be the greatest source for environmental exposure. Information compiled from field 

trials on GM trees is essential to propose measures to minimize the transgene dispersal. We 

have conducted a field trial of seven consecutive years to investigate the maximum frequency of 

pollen-mediated crop-to-crop transgene flow in a citrus orchard, and its relation to the genetic, 

phenological and environmental factors involved. 

Methodology/Principal Findings: Three different citrus genotypes carrying the uidA 

(GUS) tracer marker gene (pollen donors) and a non-GM self-incompatible contiguous citrus 

genotype (recipient) were used in conditions allowing natural entomophilous pollination to occur. 

The examination of 603 to 2990 seeds per year showed unexpectedly low frequencies (0.17-

2.86%) of transgene flow. Paternity analyses of the progeny of subsets of recipient plants using 

10 microsatellite (SSR) loci demonstrated a higher mating competence of trees from another 

non-GM pollen source population that greatly limited the mating chance of the contiguous cross-

compatible and flowering-synchronized transgenic pollen source. This mating superiority could 

be explained by a much higher pollen competition capacity of the non-GM genotypes, as was 

confirmed through mixed-hand pollinations. 

Conclusions/Significance: Pollen competition strongly contributed to transgene 

confinement. Based on this finding, suitable isolation measures are proposed for the first time to 

prevent transgene outflow between contiguous plantings of citrus types that may be extendible 

to other entomophilous transgenic fruit tree species. 
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Introduction 

 

The progressive increase in the global area and number of GM crops has lead to 

numerous empirical studies on transgene flow in field trials aimed at developing containment 

strategies, which are required by regulators and policy makers to legislate, on a case-by-case 

basis, how deliberate releases should be performed. Containment could be important to protect 

the rights of the owner of the transgenic variety and of GM-free growers and to avoid the 

unintended release of certain transgenic traits to other cultivars or to wild relatives [1, 2]. Most of 

these investigations have so far been carried out in annual crops [3, 4], while research in 

perennial species is still scarce or is focused on contemporary gene flow based on the genetic 

structure of natural populations [5-8]. Thus, it is necessary to carry out transgene flow studies 

specifically in trees because their long life and complex reproductive biology may have 

significant effects on the extent of transgene dispersal. 

Citrus is the most extensively produced fruit-tree crop in the world [9]. Commercial citrus 

genotypes are subjected to important biotic stresses, which are only partially controlled by the 

application of pesticides and, in many instances, limit the use of certain rootstocks and/or 

varieties. At the same time, markets demand fresh fruit and juice of increasing quality. In this 

context, the main focus of citrus breeding programs has been disease resistance plus fruit 

quality. However, improvement of citrus by conventional breeding is constrained by genetic 

crossing barriers, such as self and cross incompatibility, high heterozygosity, long juvenile 

periods, and facultative apomixis and sterility [10]. Genetic engineering (GE) could circumvent 

some of these limitations, especially by bypassing the long crossing cycles of tree breeding 

programs, without the complications of linkage drag. Moreover, it allows improvement of citrus 

varieties that are not amenable to breeding, like sweet oranges and grapefruits. Furthermore, 

GE is the only technology that enables gene transfer between unrelated organisms, even if they 

belong to widely divergent taxa, offering promising prospects in disease resistance approaches, 

especially when resistance sources are not present in reproductively compatible relatives. Thus, 

though there are no commercial GM citrus crops yet, genetic transformation is considered an 

essential tool in many current improvement programs, and experimental field trials are 

underway in several countries [11]. 

Cross-pollination in citrus is accomplished by insects, and honeybees are the most 

successful pollinators [12]. In insect-pollinated plants, pollen dispersal is generally the main 

component of gene flow [13]. The potential for pollen-based gene flow depends on the 

geographic distribution of the different compatible species (wild or crop) present in the area of 

study. In all citrus-production areas of the world, except East Asia, it is unlikely that transgenic 

plants could become feral populations because there are virtually no wild sympatric citrus 

species and relatives. However, cross-pollination between conventional citrus cultivars and 

transgenic citrus genotypes would be theoretically possible in many cases if they are grown in 

the same production areas. The presence of transgenic seeds in non-transgenic fruits as a 

result of effective cross-pollination could be a matter of concern. Although seeds in citrus are 
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never consumed deliberately, their adventitious presence in non-GM fruits could cause 

problems related to consumer acceptance, and it may have implications on the marketability of 

the fruit, especially if organic fruit-growing orchards are exposed [14]. For the specific case of 

self-incompatible, cross-compatible mandarins and mandarin hybrids, this problem is not 

contemplated because the presence of seeds in the fruit already represents a marketability 

problem, so different cultural strategies are commonly used to avoid cross-pollination with 

sympatric citrus cultivars. From an agronomic viewpoint, there is no concern over the 

adventitious propagation of GM citrus cultivars through escaped seeds because commercial 

citrus varieties are exclusively propagated by grafting adult vegetative buds onto juvenile 

rootstocks. In the incidental case that transgenic seedlings germinated in an orchard, they 

would be removed by farmers. Moreover, these seedlings would never flower before being 

removed because citrus seedlings need several years to start flowering [15]. Information about 

pollen-mediated crop-to-crop gene flow from a GM citrus cultivar is therefore required to 

estimate the likelihood of the adventitious presence of GM seeds in non-GM citrus varieties 

grown in the same area. 

In entomophilous species, the physical distance between the pollen source and sink is 

one of the most important factors determining the distribution of frequency and maximum 

dispersal distances of gene flow [16]. In fact, it is well known that bees in fruit tree orchards 

restrict their activity to single or adjacent plants [17], resulting in increased pollination between 

neighboring trees, e.g., in lychees [18], avocado [19], apples [20], almonds [21], citrus [22] and 

other tree species [23]. In all of these species, the maximum frequency of gene flow was 

adjacent to the source and rapidly declined with distance, often describing a marked leptokurtic 

curve [24]. 

Based on this finding, we designed an experimental field trial that involved the release 

of GM citrus trees with the objective of measuring during seven consecutive years the 

frequency of pollen-mediated transgene flow (PMTF) from GM lines to contiguous recipient 

trees under open pollination (OP) conditions. Three different citrus genotypes (sweet orange, 

citrange and lime) carrying the -glucuronidase gene (uidA), which served in this study as 

marker to track gene transfer, were used as pollen donors, and clementine, a self-incompatible 

mandarin type, was used as the recipient. 

Although recent studies demonstrate that bees have the potential to move pollen over 

several kilometers, the probability of pollen movement is very low if patches are more than 50 m 

away [25], and these rare outcrossing events contribute little to adventitious GM presence in 

non-GM receptor crops. Therefore, field assessment of the ‘extreme cases’ in which GM and 

non-GM citrus are cultivated adjacently is an essential first step for a thorough evaluation of 

gene flow and its potential consequences. Additionally, the influence of the diverse floral 

neighborhood on transgene flow frequency between sexually compatible and flowering-

synchronized species located in close proximity was also assessed. The role of the floral 

neighborhood as a possible isolation barrier between GM and non-GM crops is investigated 

here for the first time, providing valuable information for properly designing future field trials for 



Results: Chapter 1 

 

51 

 

efficient GM containment. The study site where the experimental field is located represents a 

collection of genetic resources of citrus, such as various widely diverse cultivars and breeding 

materials, which allows estimating the frequency and range of gene flow from different pollen 

sources by paternity analysis of progeny from OP recipients with the assistance of specific 

molecular markers. 

The objectives of this study were (1) to estimate the frequency of PMTF from three 

different GM citrus types to a non-GM citrus variety planted adjacently as an edge; (2) to assess 

the role of the surrounding flora as isolation barrier between co-flowering and compatible 

transgenic pollen donors and recipients through estimation of the mating success and gene flow 

patterns from different pollen sources within the study site; (3) to elucidate isolation 

mechanisms to explain how pollen donors showing higher mating success can limit PMTF; and 

(4) to propose containment strategies to repress transgene pollen dispersal from citrus (and 

other fruit) orchards. 

 

Materials and Methods 

 

Plant materials 

 

Eight independent transgenic lines of three citrus genotypes with a different genetic 

background were used as potential pollen donors in this work: Pineapple sweet orange (Citrus 

sinensis L. Osb.; named P1 to P8), Carrizo citrange (C. sinensis L. Osb. x Poncirus trifoliata L. 

Raf.; named C1 to C8) and Mexican lime (C. aurantifolia (Christm.) Swing.; named L1 to L8). All 

transgenic lines carried the 35S::uidA::Nos (GUSINT) and Nos::nptII::Nos marker transgenes, 

providing constitutive GUS expression and resistance to kanamycin, respectively. The uidA 

transgene was used as a marker to track gene flow. The transgenic lines used were selected 

based on their high-level transgene expression and low copy number of transgene insertions 

(ranging from 1 to 4, depending on the line) [26]. Three control lines (one per genotype, named 

PC, CC and LC) were also used in the current study as non-transgenic pollen donors. Trees of 

the self-incompatible and monoembryonic citrus genotype Clemenules clementine served as 

pollen recipients for monitoring PMTF. 

 

Experimental field design 

 

The gene flow experiment was conducted for seven production seasons (from 2001 to 

2007) at an experimental field named T plot, located at the Instituto Valenciano de 

Investigaciones Agrarias, Spain (latitude 39⁰35”N, longitude 0⁰23”W and altitude 50 m; typical 

Mediterranean climate). The field study was designed to evaluate the short-distance PMTF from 

transgenic to non-transgenic citrus plants, that is, the maximum expected dispersal frequency. 

The T plot, with an extension of 1.638 m
2
, contained 130 adult trees distributed in rows, as 

described in Fig. 1. The pollen-donor genotypes (transgenic and control lines) were planted at 
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the center, while 58 non-transgenic recipient clementine trees were planted on an external 

edge. All scion types were grafted onto Carrizo citrange rootstocks and grown in a loamy clay 

soil with drip irrigation. The field was managed as for normal citrus cultivation. No treatments 

were performed to control bees and pollinators in general. Visual surveys showed that the 

number of open flowers from pollen donors and recipient trees as well as the number of bees at 

the study site during the flowering periods greatly exceeded the amounts needed to ensure 

natural cross-pollination every year (Fig. S1). 

 

 

Determination of PMTF frequencies 

 

Fruit samples of every open-pollinated (OP) recipient clementine tree were collected 

annually. At least 10 randomly selected fruits per tree were harvested when the fruits were fully 

mature. Seeds were extracted from fruits, counted and tested for GUS expression. A 

histochemical GUS assay was performed on seeds that were cut to provide substrate 

penetration. A sample of seeds from a transgenic citrus line was used as the positive control 

(Fig. S2A). The PMTF frequency was calculated annually as the percentage of GUS-positive 

(transgenic) seeds over the total number of seeds analyzed, and we assumed that this 

frequency was the maximum achievable for our experimental conditions due to the proximity of 

the recipient trees to the transgenic pollen source. 

To validate the method used to determine the PMTF frequency, seedlings from seeds of 

an array of randomly selected OP recipient trees were tested for transgene expression and 

integration over 2 years (2005-2006). Seeds were sown on seedbeds containing steam-

sterilized artificial soil mix suitable for growing citrus and under regular greenhouse conditions. 

The greenhouse-grown seedlings were assessed through histochemical GUS assays of the 

 

Figure 1.  Schematic diagram of the experimental field trial. It consisted of 130 trees, planted in rows along the 

transgenic (T) plot, including 16 transgenic plants of Pineapple sweet orange (black circles), 16 transgenic plants of 

Carrizo citrange (black squares) and 16 transgenic plants of Mexican lime (black triangles) (2 plants each from 8 

independent transgenic lines numbered from 1 to 8, from left to right). In addition, there were 8 non-transgenic control 

plants from each genotype individually interspersed between the two plants from each transgenic line and represented 

by grey figures. Fifty-eight non-transgenic Clemenules clementine trees planted along an external edge (white circles; 

numbered in increasing order going clockwise) were used as the pollen recipients to estimate transgene flow 

frequencies. 
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leaves (Fig. S2B,C) and PCR analysis for the uidA transgene. For PCR analysis, DNA was 

extracted from 20 mg of leaves according to [27]. Standard PCR techniques were used to 

detect the uidA transgene. The primers used to amplify the transgenic DNA fragment were 

GUS-up (5’-ggtgggaaagcgcgttacaag-3’) and GUS-down (5´-tggattccggcatagttaaa-3’). The 

reactions were performed in 30 cycles of 0.50 min at 95⁰C, 0.50 min at 58⁰C and 1 min at 72⁰C. 

The PCR products were detected by electrophoresis using 1% agarose-ethidium bromide gels. 

The DNA was stored at -20°C for further microsatellite (SSR; Simple Sequence Repeat) 

analyses. 

 

Flowering synchrony, pollen viability and cross-compatibility 

studies 

 

To check the flowering synchrony between the pollen donor and recipient genotypes, 

the phenology of all trees in the T Plot was studied in 2005 and 2006 from the start of flowering 

to the initiation of fruit set. Phenological calendars were established for each genotype by 

weekly observation and recording of the predominant phenological stages of trees, following the 

BBCH codifications [28]. Mexican limes were excluded from this study because they tend to 

show sparse flowering over the year, which implies that throughout the year, almost all 

phenological stages can be found in a tree at the same time. 

Pollen viability of all pollen donors of the T Plot (transgenic and control lines) was 

evaluated by estimating pollen germination rate in vitro. A minimum of ten flowers per genotype 

was collected from field-grown plants. Anthers were removed from flowers and placed in a 

desiccator. Pollen from fully dehisced anthers was distributed with a fine brush onto small Petri 

dishes (diameter: 5.5 cm) containing germination medium (Murashige and Skoog mineral 

medium with 3% sucrose and 0.8% agar, pH 5.7). These Petri dishes were placed inside larger 

Petri dishes (diameter: 9 cm) containing a moist piece of filter paper and incubated at 24°C in 

the dark for 24 h. Germination was quantified as the percentage of germinated pollen grains 

form a minimum of 600 grains counted.  

The reproductive compatibility between the pollen donors and the recipient genotype in 

the T Plot were tested in vivo through directed hand crosses. The PC, P1, P7, CC, C1, LC and 

L8 lines were used as male parents in each single-pollination treatment. Hand pollinations were 

carried out in two years (2005 and 2006) by deposition of entire anthers on the stigmas of 

flowers from the clementine trees grown at the edge. The number of pollinated flowers per cross 

was 100. The fruits produced were collected at maturity and counted. Their seeds were 

extracted, counted and used in further analyses. For each pollination treatment, two measures 

of individual maternal fitness (“fruit set” and “seed set”) were used to determine the reproductive 

compatibility between the crossed lines. Fruit set was defined as the percentage of mature fruits 

produced from the total number of pollinated flowers. Seed set was defined as the number of 

viable seeds per fruit averaged over each treatment. 
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Assessing the influence of other nearby pollen sources on PMTF 

frequencies 

 

Potential pollen donor (PPD) genotypes in the neighboring plots 

The role of the surrounding flora as an isolation barrier between transgenic pollen 

donors and recipients was examined through paternity analysis of the progeny from a subset of 

OP clementine trees for two years. For this purpose, surrounding citrus orchards were also 

taken into consideration as alternative pollen sources able to pollinate recipient plants in OP 

conditions. Thus, adult trees of any citrus genotype that was male fertile, cross compatible and 

synchronized in flowering with clementine at the study site (the T plot and neighboring plots 

within 100 m) were considered PPDs, as represented in Table 1. In the neighboring plots, 

named A and B, there were populations of adult citrus trees belonging to different breeding 

programs carried out at IVIA. Plot A consisted of a population of triploid hybrids as well as their 

diploid parental genotypes [29]. As triploid hybrids are sterile [30], only some of the diploid 

genotypes that are known to be cross-fertile with clementine mandarin were considered PPDs. 

Plot B was composed of a population of 477 hybrids belonging to a rootstock breeding program. 

These hybrids were randomly distributed within the plot, and all them were, in principle, 

potential pollinators of clementine. 

 

 

Table 1. Potential pollen donor (PPD) genotypes present at the study site, including their abbreviation codes, population 

sizes (number of adult trees) and relative amounts. 

Plot PPD Genotype code Population size Relative amount (%) 

T Pineapple sweet orange P 24 3.80 

 Carrizo citrange  C 24 3.80 

 Mexican lime L 24 3.80 

A Fortune mandarin F 34 5.38 

 Orlando tangelo ORL 10 1.58 

 Murcott mandarin MU 7 1.11 

 Nova tangor N 6 0.95 

 Ortanique tangor ORT 6 0.95 

 Willowleaf mandarin MC 6 0.95 

 Ellendale mandarin E 6 0.95 

 Kara mandarin K 4 0.63 

 Minneola tangelo MI 4 0.63 

B King mandarin x Poncirus trifoliata H1 202 31.96 

 C. volkameriana x Poncirus trifoliata H2 88 13.92 

 Cleopatra mandarin x Poncirus trifoliata H3 84 13.29 

 Troyer citrange x Cleopatra mandarin H4 77 12.18 

 Troyer citrange x Willowleaf mandarin H5 26 4.11 

 



Results: Chapter 1 

 

55 

 

Molecular typing of progeny from OP recipients by microsatellite (SSR) analysis  

Genomic DNA from progeny of a subset of OP recipient plants was subjected to SSR 

analysis to determine the pollen parentages of each hybrid seedling. Because there were no 

unique markers with total allelic differentiation among all PPD genotypes, we performed a 

multilocus paternity analysis. We chose 10 SSR markers that were highly polymorphic among 

PPD genotypes. These markers were CI01G11, CIR07C07, CIR01E02 [31], mest192 [32], 

CIR01C06, CIR03C08 [33], mest458, mest107, mest86 (Luro et al., unpublished) and CAC23 

[34]. PCRs with wellRED oligonucleotides (Sigma®), which use cyanine-based fluorescent dyes 

at the 5’end, were performed as described by [35] with slight modifications. An Eppendorf® 

Mastercycler ep gradient S was used with a reaction volume 15 μl, composed as follows: 0.8 U 

Taq polymerase (N.E.E.D.®), reaction buffer – 750 mM Tris HCl (pH 9), 50 mM KCl, 200 mM 

(NH4)2SO4, 0.001% BSA, 0.1 mM of each dNTP, 5 mM MgCl2, 3 μM of each primer, and 30 ng 

DNA. The following PCR program was used: 5 min at 94°C; 40 cycles of 30 sec at 94°C, 1 min 

at 50-55°C and 30 sec at 72°C; final elongation 10 min at 72°C. After performing the PCR, 

genetic analysis was performed in a capillary-array sequencer CEQTM 800 System (Beckman 

Coulter_ Inc., Fullerton, CA), and the results were analyzed with Genome- LabTM GeXP 

Genetic Analysis System software. 

 

Paternity assignment 

Paternity analysis was performed based on SSR genotyping, using a simple exclusion 

approach [36]. When the paternal allele(s) at a locus could be inferred from the observed 

progeny and maternal genotype, then all PPDs that lacked the allele(s) were excluded. This 

process was repeated for each locus, until all PPDs could be excluded except one. In some 

cases, it was not feasible to assign a single PPD even after the hybrid was analyzed for all the 

10 markers. In these cases, phenotypical traits, such as leaf morphology (trifoliate vs. 

monofoliate) and GUS expression, were considered for discriminating among different 

ambiguously assigned PPDs. 

 

Pollen competition studies 

To clarify the mechanisms of isolation by which other PPDs at the study site limited 

PMTF frequencies, the pollen competition capacity of one of the PPDs displaying higher mating 

success in OP conditions (H3 in Table 1) was compared to that of one transgenic PPD of plot T 

(P1) by mixed pollination treatments over two years (2006-2007). P1 was chosen as the 

competitor from plot T because it had displayed high cross-compatibility with clementine in 

single pollination treatments and had three copies of the uidA transgene [26], meaning that 

inheritance of this trait would be considerably high (theoretically 87.5%, assuming 

independency between loci). Mixed pollinations were carried out by depositing one entire anther 

from each genotype onto the stigmas of clementine flowers. Previously, to avoid the possible 

influence of pollen density effects [37], the number of pollen grains per anther for each genotype 

had been determined to ensure the deposition of approximately the same number of pollen 
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grains. Likewise, differences in pollen viability between both genotypes were estimated by 

determining the percentage of pollen germination in vitro, as described above. 

One hundred flowers were pollinated per year. The fruits produced were collected at 

maturity and counted. Their seeds were extracted, counted and tested for GUS expression. The 

siring success of transgenic pollen (P1) in the mixed pollination treatment was inferred from the 

GUS-positive frequency achieved in the tested progeny. We compared this GUS expression 

rate to that obtained in the progeny of single-pollination control treatments performed with P1. 

 

Data analyses 

 

For the molecular validation of the PMTF assessment method, the 
2
-test was 

performed. The minimum sample sizes of progeny required for this purpose in both years were 

calculated according to [38]. 

In single pollination treatments, separate multifactor analyses of variance (ANOVA) 

were conducted to examine the effects of “Variety” and “Genetic Modification” of the pollinator 

and their interaction on the variables “Fruit set” and “Seed set”. LSD multiple range tests were 

performed for separation of means. Before performing the analyses, Box-Cox transformations 

[39] were applied on both variables to fit the data to a normal distribution.  

Data obtained from paternity analysis were used (1) to estimate the maximum 

reproductive success of each plot, calculated as the total percentage of progeny assigned; (2) 

to provide a spatial overview of the pollen dispersal patterns from the different plots by 

performing radial graphs; (3) to examine the influence of the proximity of plot B in the mating 

chance of the rest of pollen sources by drawing pollen dispersal curves with the percentage of 

pollination events unambiguously assigned to each plot as the y-axis and the distance from plot 

B as the x-axis; (4) to assess the possible relationship between the relative abundance of each 

PPD in plot B and their maximum mating success achieved. Simple regression analyses were 

used to model the relationships between the variables for (3) and (4). 

All statistical analyses were performed using STATGRAPHICS Plus 5.1. 

 

Results 

 

PMTF frequencies from three different citrus genotypes were 

unexpectedly very low in contiguous recipient trees 

 

PMTF frequencies found at the study site showed that the percentage of transgenic 

seeds in self-incompatible clementine fruits was consistently very low (between 0.17% and 

2.86%) (Table 2), taking into account the proximity of transgenic pollen donors to the recipient 

trees. As the numbers of flowers and bee pollinators were usually very high in the spring (Fig. 

S1), the average seed production in OP recipient trees was also high, as expected (Table 2). 

This high production allowed us to analyze many seeds (ranging from 603 to 2990) each year 
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by histochemical GUS assays. This high number of seeds analyzed, together with the seven 

consecutive years of assessment, provided strong confidence to our results. 

 

 

Table 2. The pollen-mediated transgene flow (PMTF) frequencies for seven years as determined by testing seeds from 

open-pollinated recipient trees for GUS expression. 

Year Number of seeds PMTF (%) 

 
per fruit (seed set mean  
SE) tested 

GUS 
positive  

2001 7.91  0.63 2990 5 0.17 

2002 1.21  0.12 1359 13 0.96 

2003 2.68  0.25 2171 9 0.41 

2004 0.80  0.12 603 5 0.67 

2005 4.68  0.34 2619 75 2.86 

2006 2.67  0.20 1573 22 1.39 

2007 3.43  0.27 1398 29 2.18 

 

 

Next, we decided to validate the method used and to investigate whether low/silenced 

GUS expression in seeds could be contributing to the low PMTF frequency observed. A total of 

224 hybrid seedlings from 12 recipient trees in 2005 and 140 seedlings from 9 recipient trees in 

2006 were tested for GUS expression in the leaves and uidA integration. Sample sizes used 

exceeded the minimum required to statistically represent the population at 95% confidence with 

an acquired precision error of ≤ 3%. The PMTF frequencies obtained from analyzing GUS 

expression in seedlings were 2.86% in 2005 and 1.39% in 2006 (Table 3). Moreover, PCR 

analyses confirmed, at the molecular level, the transgenic nature of all GUS-positive seedlings 

and dismissed the presence of transgene-silencing in GUS-negative seedlings without 

exception (Table 3). When comparing these results with those obtained previously for GUS 

expression in seeds in the same years (Table 1), a 
2
-test showed no statistically significant 

differences between the frequencies for either of the two years at the 95% confidence level, 

indicating that the hybrid seed identification system used during the seven years of assessment 

to determine PMTF frequency was reliable. 

 



Results: Chapter 1 

 

58 

 

Table 3. Molecular validation of the pollen-mediated transgene flow (PMTF) assessment method by testing seedlings from a subset of open-pollinated recipient trees during two years (2005 and 

2006). 

Year clementine number Number of seedlings PMTF (%)
2 


2
 value

3 

  Tested Transgenic
1
 Trifoliated 

  

2005 2 21 0 13   
 8 21 1 0   
 14 3 0 1   
 20 30 1 6   
 25 6 0 1   
 27 15 4 9   
 29 11 0 0   
 35 5 0 2   
 42 15 1 4   
 48 36 0 9   
 53 27 0 4   
 55 34 0 6   
 Total 224 7 55 3.12 0.024 
2006 2 6 0 0   
 6 11 0 2   
 20 2 0 0   
 27 15 2 1   
 30 18 0 1   
 36 18 0 0   
 42 30 0 2   
 50 34 0 1   
 55 6 0 5   
 Total 140 2 12 1.42 0.001 
 
1. Number of transgenic seedlings was determined by GUS expression in leaves and confirmed by PCR analysis of the uidA transgene. False GUS negative seedlings were not found in any 
case. 
2. PMTF frequency was calculated as the percentage of transgenic seedlings from the total number of seedlings analyzed per year. 

3. For each year, 
2
 tests were performed to compare the PMTF frequencies obtained by this method with the PMTF frequencies obtained by testing GUS expression in seeds (Table 2). The 

critical value for 1 df at a 95% confidence level is 3.84. 
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Transgenic pollen donors and recipient trees showed flower 

synchrony and were cross compatible  

 

To discard the idea that low PMTF was due to asynchrony in flowering times between 

the transgenic pollen donors and the recipient clementine trees, phenological calendars of 

flowering were assessed and compared. The extent of the full flowering stage varied among 

citrus types and was longer in clementine trees. This stage lasted 3 and 4 weeks for Pineapple 

sweet orange and Carrizo citrange, respectively, while it lasted up to 6 weeks for Clemenules 

clementine. However, the full flowering phase of both pollen donor genotypes, though shorter, 

fully coincided with that of the recipient plants (Fig. 2). 

 

 

 

 

The viability and capacity of fertilization of transgenic pollen was studied and compared 

with those of controls using in vitro and in vivo systems. In vitro studies of pollen viability 

showed that 1) germination rates varied among citrus types, reaching considerable high levels 

for sweet orange and citrange lines (about 50% and 70% on average, respectively) and 2) for 

each citrus type, pollen germination rates from transgenic lines did not differ from those of the 

 

Figure 2. Phenological calendars of flowering for genotypes in plot T. Different phases of the bloom period for 

Pineapple sweet orange, Carrizo citrange and Clemenules clementine genotypes are represented by different colors. 

The overlap in the full-flowering phase (pink) determines the flowering synchrony between genotypes. 
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correspondent controls (Fig S3). This demonstrates the absence of pleiotropic effects derived 

from the insertion of transgenes that affect negatively to pollen viability. 

To check whether pollen donors from the T plot and recipient trees were cross 

compatible, hand pollinations were performed. As shown in Table S1, “Variety” was the most 

important factor determining cross-compatibility in directed crosses because it had effects on 

both variables (P-value = 0.0002 for fruit set; P-value = 0.0310 for seed set). Pineapple sweet 

orange and Carrizo citrange induced higher fruit set and seed set than Mexican lime (Fig. S4). 

The “GM” factor had no effect (P > 0.05) on the variables investigated, indicating that transgenic 

trees were as compatible with recipients as the corresponding controls for the same background 

variety (Fig. S4). 

 

Influence of other nearby pollen sources on PMTF frequencies 

 

Identification of specific, highly mating PPD types in the neighboring plots 

The analysis of GUS expression and leaf morphology in seedlings from a subset of OP 

recipient trees showed the presence of many trifoliate but GUS-negative hybrids (Table 3). 

Because transgenic Carrizo citrange trees were as cross compatible with clementines as their 

non-transgenic counterparts (Fig. S4), these results suggested that (trifoliate) neighbor trees 

from other surrounding plots were competing with trees from the T plot for pollination of 

recipient trees and likely interfering with the PMTF frequencies obtained. To identify the pollen 

source(s) that competed with pollen donors from the T plot under OP conditions, the DNA of 

191 seedlings from 12 recipient trees and of 140 seedlings from 9 recipient trees was subjected 

to paternity analysis in 2005 and 2006, respectively. To this aim, marker profiles for each PPD 

genotype (or candidate father) from plots T and A were assessed as well as for the recipient 

(mother) genotype (Table S2). Because the PPD genotypes from plot B (reported in Table 1 as 

H1, H2, H3, H4 and H5) were F1 hybrids from a rootstock breeding program, their marker 

profiles in Table S2 corresponded to the alleles that could potentially be found in each F1 

progeny, which were inferred from the known profiles of their parents. Then, hybrid seedlings 

were classified according to the source plot of their assigned parents (Table 4; Table S3 and 

Table S4). In this way, the percentage of progeny unambiguously assigned to a given plot was 

very high, 82.19% in 2005 and 79.28% in 2006, especially considering the close genetic 

background of many PPDs from the 3 plots. Moreover, the percentage of progeny that could not 

be assigned to any PPD (because their pollen parents within the population could not be 

assigned) was very low, 1.57% and 7.14% in 2005 and 2006, respectively. Based on these 

results, the analysis showed that the pollen source that had the highest reproductive success 

with recipient clementine trees was Plot B (78.5% in 2005 and 63.6% in 2006), followed by Plot 

A (29.8% in 2005 and 36.4% in 2006). Plot T showed the lowest reproductive success (7.4% in 

2005 and 3.6% in 2006) (Fig. 3).  
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Table 4. Results of paternity assignment in progeny from open-pollinated recipients harvested in 2005 and 2006. 

Number of pollen 
donor(s) assigned 

Source of the pollen 
donor(s) assigned (Plot) Category Name 

Number of progeny placed 
within the class 

Percent of progeny placed 
within the class 

   Year 2005 Year 2006 Year 2005 Year 2006 

0 - Not assigned 3 10 1.57 7.14 

1 T Unambiguously assigned T 7 3 3.66 2.14 

1 A Unambiguously assigned A 26 28 13.61 20.00 

1 B Unambiguously assigned B 45 47 23.56 33.57 

>1 A Unambiguously assigned A 5 7 2.62 5.00 

>1 B Unambiguously assigned B 74 26 38.74 18.57 

>1 T / A Ambiguously assigned T/A 0 1 0.00 0.71 

>1 T / B Ambiguously assigned T/B 5 1 2.62 0.71 

>1 A / B Ambiguously assigned A/B 24 12 12.57 8.57 

>1 T / A / B Ambiguously assigned T/A/B 2 2 1.04 1.43 
 
All pollination events were categorized by the origin of the pollen donor(s) assigned according to microsatellite (SSR) genotyping, GUS expression and leaf morphology (trifoliate character) 
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Distance effect 

When considering the distance from recipient trees (Fig. 4), the frequency of mating 

events assigned to plot B was very high (almost 100%) in the progeny of recipient trees near 

that plot (see recipient numbers 2, 48, 53 and 55 for 2005 and recipient numbers 2, 6, 50 and 

55 for 2006) and lower in recipients located at greater distances from the plot (see recipient 

numbers 20, 27 and 29 for 2005 and recipient numbers 27, 30 36, 42 for 2006), as expected. 

However, the extent of the mating capacity of plot B was considerably higher than that of 

competing plots because 50% of the mating events in the farthest recipient trees (see recipient 

numbers 20, 27 and 29 for 2005 and recipient numbers 27 and 30 for 2006) were clearly 

attributable to pollen from plot B (Fig. 4). Together, these results indicate that (1) the mating 

success of plot B was directly correlated with the distance to the recipient trees and (2) the 

mating capacity of plot B was able to explain (with 50% success) the parentage of hybrid 

seedlings from trees located at least 26 rows away.  

 

Figure 3. Maximum reproductive success assessed for each pollen source population in A) 2005 and B) 2006. 

Based on the classification of the pollination events made in Table 4, maximum reproductive success was estimated for 

each plot, as the percentage of pollination events unambiguously assigned (black color) plus the partial contributions of 

the percentages corresponding to pollination events ambiguously assigned (grey color). n.a., not assigned. 
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The frequency of mating events assigned to plots T or A was null or very low in 

recipients near plot B and progressively increased with distance from that plot. Therefore, PPDs 

from plot B strongly limited the mating opportunities of the rest of PPDs from the study site, 

including those of the contiguous plot T. These results were reliable and indicate a consistent 

trend in pollen dispersal under our experimental conditions because the patterns were very 

similar in 2005 and 2006 (Fig. 4), likely also explaining the very low PMTF frequencies obtained 

during the seven years of the study (Table 2). 

 

Figure 4 Schematic representation of pollen dispersal patterns at the study site. A) Map showing the relative 

location of recipients (dots) and pollen source populations (T, A and B plots). Recipient (mother) trees sampled in 2005 

and/or 2006 whose progeny were analyzed for paternity assignment are represented by filled circles. B) Radial graphs 

represent the profiles of genotyped progeny from each mother tree. Numbers in the vertices indicate the recipient tree 

number followed by the total number of progeny seedlings analyzed from the mother tree (number in parentheses). The 

distribution of recipient trees in the vertices of the graph has been established according to their relative position in the 

field to accurately visualize the pollen dispersal patterns. The percentage of progeny from each corresponding recipient 

tree is represented on each radial axis by following categories: “B”, progeny unambiguously assigned to B; “A”, progeny 

unambiguously assigned to A; “T”, progeny unambiguously assigned to T; and “na”, progeny that could not be assigned 

to any PPD. Clementine plants producing an insufficient number of progeny seedlings were excluded from this study. 
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Pollen dispersal curves were performed to confirm the influence of the distance from 

plot B in the mating opportunity of each pollen source population. The logarithmic-X regression 

model showed that mating chance of plot B was strong and negatively correlated with the 

distance to B (R
2
 = 0.43; correlation coefficient = -0.66). For plot T, the linear regression model 

showed a relatively weak positive relationship between the variables (R
2
 = 0.24; correlation 

coefficient = 0.495). The square root regression model showed that the mating chance of plot A 

was moderately strong and positively correlated with the distance to B (R
2
 = 0.40; correlation 

coefficient = 0.638) (Fig. 5). 

 

 

Figure 5.  Pollen dispersal curves of each plot as a function of distance to plot B. Progeny from all recipient trees 

analyzed in 2005 and/or 2006 unambiguously assigned to each plot was divided into classes based on the distance 

between the (mother) recipient tree and plot B, measured in rows. Black dots represent the mating frequencies in each 

distance class as a proportion of all pollination events unambiguously assigned to this plot. Lines represent the curves 

fitted to regression models that best describe the relationship between mating frequencies and distance to Plot B for 

each pollen source population (*P < 0.05; **P < 0.01). 
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Density effect 

We attempted to determine whether the relative abundance of each PPD from plot B 

correlated with its mating success. As shown in Fig. 6, there was no statistically significant 

relationship (P > 0.1) between these variables for any of the simple regression models fitted. 

Indeed, the most abundant PPDs, H1 and H2 (representing 31.96% and 13.92%, respectively, 

of the total number of PPDs at the study site) displayed low mating success compared to other 

less-abundant genotypes (such as H3, H4 and H5). 

 

 

 

 

Pollen competition capacity/ability 

The pollen competition capacity of H3 (a specific PPD from plot B that showed high 

mating success in OP conditions) was compared to that of P1 (a transgenic pollen donor of plot 

T) by mixed pollination treatments, with the aim of clarifying the mechanisms of isolation 

whereby the surrounding flora limited PMTF. Single pollinations of clementine flowers with P1 

and PC, performed as controls, resulted in similar fruit set and seed set for both pollen donors 

(Table 5), indicating that the transgenic character of P1 did not affect its mating success. 

Moreover, 86% of the progeny seedlings from that cross were GUS positive, which fit well with 

expected transgene inheritance. In mixed pollinations with H3+P1, the percentage of GUS-

positive progeny seedlings was extraordinarily reduced (5%) with respect to the expected rate if 

the pollen competition capacity of the two pollen donors were similar (43.75%). Additionally, 

mixed pollination resulted in a higher seed set (13.5  2.1) than single pollinations (6.8  1.7 for 

P1 and 7.2  1.9 for PC), indicating that (1) the H3 type strongly reduced the siring success of 

 

Figure 6.  Density effect. Relationship between the maximum mating success achieved in 2005 and 2006 by each 

Potential Pollen Donor (PPD) of plot B (H1, H2, H3, H4 and H5) and its relative abundance at the study site (reported in 

Table 1). Black dots represent the proportion of mating events (unambiguously plus ambiguously) assigned to each 

PPD from plot B calculated over the total progeny unambiguously assigned to this plot and averaged between years. 

Bars represent standard errors. n.s., P > 0.1 (not significant). 
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P1 and (2) it was much more efficient in cross pollination of recipient clementine trees than P1 

or PC.  

 

 

Table 5. Results of mixed-pollination treatments performed in 2006 and 2007 in comparison with single-pollination 

control treatments with PC and P1, including fruit set, seed set, and the percentage of GUS-positive (GUS+) seedlings 

in progeny as a parameter determining the siring success of P1. 

Pollen source in 

pollination 

treatments 

Fruit set 

(%) 

Seed set (No. 

seeds/fruit) 

GUS+ 

progeny (%) 

Minimum no. of 

hybrid progeny 

analyzed per year 

Mixed: H3+P1 80.9  11.5
 

13.5  2.1
 

5.0  1.1
 

100 

Single: PC 78.5  17.7  7.2  1.9 
 

0.0  0.0
 

340 

 P1 68.0  12.7  6.8  1.7  86.0  3.4
 

222 

 

 

Discussion 

 

We report here the first experimental field trial performed with transgenic citrus trees to 

study maximum transgene flow frequencies. With this aim, eight independent transgenic lines 

from three genetically diverse citrus types were used as transgenic pollen donors, and a non-

transgenic self-incompatible citrus type planted along a contiguous edge was used as the 

recipient. The choice of a recipient unable to self-fertilize ensured a maximum outcrossing rate 

and facilitated the monitoring of transgene dispersal [40]. 

Pollination in most fruit trees, including citrus, is entomophilous [41], and honeybees are 

the predominant dispersal agents. Bees have the capacity to travel long distances (up to 3 km), 

but such long-distance flights are extremely rare in high-density plantings [42]. Consequently, 

as pollen-mediated gene flow in these species may be largely driven by the availability and 

foraging behavior of the pollinators [43], many studies have demonstrated that the maximum 

frequency of pollen-mediated gene flow between compatible and co-flowering crops occurred 

adjacent to the pollen source and typically decreased as the distance between crops increased, 

drastically decreasing 3 rows away (approximately 15 m) in the case of citrus [22]. 

In our experimental field, the spatial design, together with the lack of treatments against 

bees, allowed the maximum PMTF estimable in recipient trees under open-pollinated conditions 

to be achieved. However, contrary to our expectations, the data compiled during 7 years of 

assessment indicated that the rate of transgenic seeds from the edge trees was consistently 

very low. We decided to determine the factor/s that could have contributed to such results with 

the objective of proposing suitable containment measures applicable to future field trials with 

GM citrus and possibly other fruit tree crops. 

The PMTF monitoring method used in this work was based on the expression of a 

tracer marker (uidA) in seeds. Visual markers have been extensively used in field trials because 

they make it relatively easy to follow the stability of transgene expression after outcrossing and 

accurately estimate gene flow [44]. To discard the possibility that transgene silencing and/or 
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transgene loss in seeds from recipient trees could have masked the actual rate of transgene 

spread, we validated the monitoring method by analyzing transgene integration in hybrid 

seedlings during two consecutive years, and the results confirmed that only GUS-positive seeds 

carried the uidA transgene. 

Next, we decided to examine isolation barriers that could have limited the mating 

opportunities between transgenic donors and recipients under our experimental conditions. 

Barriers to gene exchange between populations may arise through a variety of mechanisms. 

Pre-mating barriers, such as divergent flowering times and scarcity of flowers from the pollen 

source, could reduce opportunities for hybridization, thus limiting PMTF [45]. However, our 

phenological and visual surveys of flowering at the study site indicated that open flowers were 

highly abundant and synchronic in both transgenic pollen donor and recipient trees. 

Reproductive barriers reduce gene flow between groups of organisms and act 

sequentially before and/or after mating [46]. It has been extensively reported that the potential 

gene flow from the transgenic pollen source to sympatric species is highly influenced by their 

reproductive compatibility, which can be measured by fruit set and seed set under controlled 

pollination conditions [47]. If the extent of reproductive compatibility between the transgenic 

source and overlapping genotypes were known in advance, it would represent an early ‘tier’ of 

risk assessment prior to the measurement of PMTF rates in experimental fields [48]. Single 

hand-pollination assays showed that the genetic background of the pollen source determined 

the extent of cross compatibility with the self-incompatible recipient. The importance of this 

factor has also been stressed in similar studies with other plant species, such as plum [49] and 

olive, [50] as well as in citrus [51]. As transgenic and control pollen donors produced viable 

pollen and were cross compatible with the recipient genotype in hand pollinations and the 

results were irrespective of the transgenic or non-transgenic nature of the pollen donor 

genotype, the very low rate of PMTF could not be attributed to low sexual compatibility between 

the source and sink nor to pleiotropic effects derived from expression of the transgenes.  

Gene flow can also be influenced by the surrounding flora [52]. A diverse floral 

neighborhood may reduce conspecific pollen deposition by driving potential pollinators away or 

by increased heterospecific pollen deposition [53]. Therefore, a key factor that could greatly limit 

the gene flow between sexually compatible and flowering-synchronized species located at close 

proximity is the influence of the flowering environment, including conspecific and heterospecific 

co-flowering plants [54]. The presence of many seeds in fruits from self-incompatible OP 

recipient trees and the low PMTF obtained indicated effective pollen dispersal from other non-

transgenic pollen source/s, most likely from citrus trees present in neighboring plots (A and B). 

Paternity analysis using molecular markers in the hybrid progeny from a subset of OP recipients 

confirmed the clear superiority in mating success for plot B. Moreover, the low mating success 

assigned to plot T (< 8%) coincided with the very low PMTF rates observed along the seven 

consecutive years of assessment. 

Additionally, pollen dispersal curves showed that the pollination competence of trees 

from plot B was so high that it strongly limited the mating opportunities of the other pollen 
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sources within the study site, including those of the T plot, even when these were contiguous to 

the recipients. Furthermore, the mating competence of plot B decreased as the distance to the 

recipients increased, as expected based on the behavior of bees in citrus orchards [12]. 

Pollen dispersal curves of entomophilous plants are dependent on the foraging habits of 

the pollinators, which in turn are responsive to pollinator-linked pre-mating barriers, such as 

plant population size and density [43]. Bees are very sensitive to plant density and respond in a 

similar fashion regardless of the plant species involved. Density-dependent foraging distances 

and pollen dispersal may be a common feature for bees and bee-pollinated plants [41]. 

However, the relative abundances of each PPD from plot B did not correlate with their mating 

success efficiencies. Therefore, ecological or pollinator-linked pre-mating barriers were not 

sufficient to explain the results of the paternity analyses. 

It has been suggested that reproductive barriers acting after pollination but before 

fertilization may play an important role in limiting gene flow [55]. If flowers receive more pollen 

grains from different pollen sources than the number of ovules they have, not every pollen grain 

will be able to sire a seed, and selection may occur during mating. This selection may involve 

discrimination between self and non-self pollen as well as discrimination among compatible 

donors, between too closely or too distantly related conspecifics, and among species [56]. 

Nonrandom mating among compatible mates at this level is of particular interest because it has 

the potential to produce sexual selection [57-59]. Such differential fertilization success often is 

stronger or exclusively observed when pollen from two species competes for fertilization [60-

62]. Pollen competition is recognized as an important and common reproductive barrier [63, 64]. 

The mixed pollination treatments performed in this study demonstrated that a higher pollen 

competition capacity of H3 (a PPD from Plot B) compared to that of P1 (a pollen donor from Plot 

T) explained most of the mating superiority achieved by plot B in OP conditions (71.05% of 

hybrid progeny in OP conditions versus a maximum of 94.29% obtained in controlled hand 

pollinations), meaning that pollen competition may have greatly contributed to transgene 

confinement. Therefore, the presence of neighboring genotypes with very high pollen 

competition capacity is a crucial factor able to strongly limit PMTF between cross-compatible 

species when they have synchronized flowering and are planted at close proximity.  

Based on these results, it is possible to propose transgene confinement measures that 

could be applicable to contiguous commercial plantings of citrus and may be extendible to other 

entomophilous fruit tree species, such as those from the genus Malus, Pyrus, Cydonia, 

Eriobotrya and Prunus: 

(1) Careful site examination and selection before the release of the GM crop. An 

essential first step is to determine the extent of reproductive compatibility and flowering 

synchrony between the transgene source and sympatric crops present at close proximity. If 

there were not previous information about these issues for the species/genotypes involved, it 

would be necessary to assess them before the release by performing controlled hand 

pollinations and phenological studies. 
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(2) If the species involved were co-flowering and cross compatible, we propose the use 

of an external edge of trees from a non-GM pollen donor genotype showing pollen competition 

capacity clearly exceeding that of the transgenic pollen source. The use of a “strong pollinator” 

could serve as isolation barrier, acting as an alternative source for pollinators and/or as an 

effective competitor during the fertilization process with the transgenic pollen, and would make 

transgenic pollen escape practically nonexistent. The choice of the “strong pollinator” genotype 

would therefore depend on the species considered and could be based on the results obtained 

from mixed-pollination treatments carried out before the release. 

(3) We also propose the use of an external edge of trees from another non-GM 

genotype as an alternative pollen sink, as has previously been used by others [40]. The 

genotype chosen for this purpose should have several characteristics: flower synchrony with the 

transgenic genotype/s and the “strong pollinator”, production of high amounts of pollen to attract 

pollinators and male sterility or self-incompatibility. This edge of trees would facilitate estimating 

transgene flow frequencies over short distances. 
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Figure S1. Representative pictures of plot T during the flowering period. A) Picture showing the amount of flowers 

produced by transgenic pollen donor trees. B) Picture showing the presence of honeybees at the study site. 

 

 

Figure S2. Detection of transgenic hybrids in progeny from open-pollinated recipient trees. (A) Seed progeny 

screened for GUS expression. (B) Seedling progeny cultivated on seedbeds in the greenhouse. (C) Seedling progeny 

screened for GUS expression in the leaves. GUS+, GUS-positive. The scale bar on pictures (A) and (C) represents 10 

mm. 
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Figure S3. In vitro studies of pollen viability. (A) Effect of genotype on pollen germination rate. Bars represent 

means ± SE. (B) Photographic views of pollen germination and tube growth (at 24°C after 24 h incubation in 

germination medium) from the P1 and H3 genotypes, chosen as competitors in mixed pollination treatments. Scale bars: 

100µm. 
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 Table S1.  ANOVA analysis for effects of Variety and Genetic Modification (GM) of the pollinator and their interaction 

on transformed versions of “Fruit set” and “Seed set” data obtained in single pollination treatments. 

Variable
 

Source df MS F-value P-value 

Fruit set
 

Variety 2 4283.35 31.12 0.0002 

 GM 1 386.451 2.81 0.1323 

 Variety x GM 2 51.3173 0.37 0.7001 

Seed set
 

Variety 2 56.0141 5.54 0.0310 

 GM 1 4.15599 0.41 0.5395 

 Variety x GM 2 2.41639 0.24 0.7930 

 

 

Figure S4. In vivo studies of cross-compatibility. The effect of different pollen donors on A) fruit set and B) seed set 

in directed crosses with recipient plants. The data are the means obtained in two years (2005 and 2006)  standard 

error (SE) bars. The means with at least one common letter are not significantly different (P < 0.05; LSD test). 



Results: Chapter 1 

 

77 

 

 
Table S2. Possible alleles of 10 SSR loci (markers) for each citrus genotype present at the study site and considered for paternity assignment, including clementine as known maternal genotype and 

all Potential Pollen Donors (PPD) as candidate fathers. 

Parental genotypes PPD code CIR01C06 CIR07C07 CIR01E02 CIR01G11 mest458 CAC23 mest107 mest86 CIR03C08 mest192 

Clemenules clementine 
(maternal genotype) 

- 
134 
166 

227 
239 

155 
167 

103/109 214 
248 
251 

176 
184 

112 
128 

207 
225 

227 

Pineapple sweet orange P 
134 
160 

227 
155 
171 

103/109 
214 
217 

248 
251 

176 
184 

120 
128 

212 
207 

222 
227 

Carrizo citrange  C 
146 
160 

212 
170 
171 

103/109 
213 
217 

245 
248 

173 
176 

118 
120 

212 227 

Mexican lime L 
148 
170 

227 159 
100/106 
103/109 

212 
231 

245 
260 

176 
182 

112 
199 
241 

211 
227 

Willowleaf mandarin MC 
134 
166 

227 
239 

155 
167 

103/109 
208 
214 

248 
251 

176 
112 
120 

207 
225 

222 
226 

Minneola tangelo MI 
134 
160 

227 
161 
165 

103/109 
214 
226 

248 
251 

176 
184 

128 207 
216 
226 

Orlando tangelo ORL 
132 
134 

225 
161 
165 

103/109 
214 
226 

248 
251 

176 
184 

128 207 
202 
222 

Ellendale mandarin E 
132 
134 

227 
239 

155 103/109 214 
248 
251 

176 
184 

112 
128 

207 
225 

216 
226 

Murcot mandarin MU 
132 
160 

225 
237 

155 
161 

100/106 
103/109 

214 
226 

248 
251 

176 112 
207 
228 

216 
230 

Ortanique tangor ORT 
132 
160 

227 
239 

171 103/109 
214 
217 

248 
251 

176 
184 

128 
212 
225 

216 
232 
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Fortune mandarin F 
134 
166 

239 
165 
167 

103/109 214 
248 
251 

176 
112 
128 

225 
216 
226 

Kara mandarin K 
132 
146 

233 
237 

155 
157 

100/106 
217 
226 

248 
251 

176 
184 

112 
120 

222 
225 

222 

King mandarin x 
Poncirus trifoliata 

H1 
132 
146 
160 

213 
225 
237 

157 
161 
169 
175 

100/106 
103/109 

214 
217 
226 

245 
248 
251 

173 
176 
184 

112 
118 
120 

214 
225 
228 

222 
225 
227 
232 

C. volkameriana x 
Poncirus trifoliata 

H2 
146 
170 

212 
235 

160 
176 

103/109 
206 
213 

245 
173 
176 

112 
118 

212 
225 

230 
242 

Cleopatra mandarin x 
Poncirus trifoliata 

H3 
132 
146 

212 
237 
241 

161 
170 
176 

100/106 
103/109 

208 
213 

245 
248 

173 
176 

112 
118 

214 
222 

222 
225 

Troyer citrange x 
Cleopatra mandarin 

H4 

132 
146 
160 
134 

212 
241 
237 
227 

161 
170 
171 
155 
176 

100/106 
103/109 

208 
213 
214 
217 

248 
245 
251 

176 
173 
184 

112 
118 
120 

212 
222 

222 
227 

Troyer citrange x 
Willowleaf mandarin 

H5 

146 
166 
134 
160 

227 
212 
239 

155 
170 
171 
176 
167 

103/109 

208 
217 
213 
214 

248 
251 
245 

173 
176 
184 

112 
118 
120 

212 
207 

222 
226 
227 
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Table S3. Results of Paternity assignment in progeny from open-pollinated (OP) recipients harvested in 2005, according 

to microsatellite (SSR) genotyping, GUS expression and leaf morphology (trifoliate character). 

Number of pollen 

donor(s) assigned 

Progeny of OP 

clementine (Seedling 

code) 

Code(s) of pollen donor(s) 

assigned 

Plot of pollen donor(s) 

assigned 

0 53.2 - Not assigned 

0 53.9 - Not assigned 

0 53.10 - Not assigned 

1 8.14 P T 

1 20.3 P T 

1 42.2 C T 

1 27.2 C T 

1 27.5 P T 

1 27.12 P T 

1 27.14 C T 

1 20.16 H4 B 

1 53.26 H4 B 

1 48.5 H4 B 

1 55.13 H4 B 

1 8.19 H4 B 

1 20.12 H4 B 

1 42.3 H4 B 

1 42.13 H4 B 

1 48.9 H4 B 

1 48.12 H4 B 

1 48.17 H4 B 

1 48.30 H4 B 

1 48.32 H4 B 

1 53.1 H4 B 

1 53.19 H4 B 

1 53.16 H4 B 

1 55.18 H4 B 

1 55.28 H4 B 

1 8.10 H5 B 

1 20.4 H5 B 

1 20.5 H5 B 

1 20.6 H5 B 

1 20.22 H5 B 

1 25.2 H5 B 

1 25.3 H5 B 

1 27.3 H5 B 

1 27.4 H5 B 

1 27.13 H5 B 

1 27.15 H5 B 

1 35.5 H5 B 

1 42.6 H5 B 

1 42.10 H5 B 

1 42.14 H5 B 

1 42.15 H5 B 

1 48.8 H5 B 

1 53.22 H5 B 

1 55.30 H5 B 

1 55.34 H5 B 

1 2.1 H5 B 

1 2.4 H5 B 

1 2.6 H5 B 

1 2.8 H5 B 

1 2.9 H5 B 

1 20.2 H1 B 

1 27.1 H1 B 

1 8.2 MI A 

1 8.11 F A 

1 8.20 F A 

1 8.21 F A 

1 14.1 F A 
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1 20.8 F A 

1 53.17 N A 

1 20.14 N A 

1 53.4 N A 

1 20.24 F A 

1 20.25 F A 

1 29.1 F A 

1 29.4 F A 

1 29.5 F A 

1 29.11 F A 

1 35.1 F A 

1 35.3 F A 

1 42.9 F A 

1 42.12 F A 

1 55.29 F A 

1 53.5 F A 

1 20.27 ORL A 

1 20.10 ORL A 

1 27.9 MU A 

1 27.10 MU A 

1 27.11 MU A 

>1 55.3 H3, H4 B 

>1 55.5 H3, H4 B 

>1 14.2 H3, H4 B 

>1 14.3 H3, H4 B 

>1 20.9 H3, H4 B 

>1 20.18 H3, H4 B 

>1 20.26 H3, H4 B 

>1 29.3 H3, H4 B 

>1 48.7 H3, H4 B 

>1 48.11 H3, H4 B 

>1 48.18 H3, H4 B 

>1 48.19 H3, H4 B 

>1 48.23 H3, H4 B 

>1 48.25 H3, H4 B 

>1 48.29 H3, H4 B 

>1 48.36 H3, H4 B 

>1 53.3 H3, H4 B 

>1 53.6 H3, H4 B 

>1 53.15 H3, H4 B 

>1 53.20 H3, H4 B 

>1 53.25 H3, H4 B 

>1 55.7 H3, H4 B 

>1 55.9 H3, H4 B 

>1 55.10 H3, H4 B 

>1 55.14 H3, H4 B 

>1 55.16 H3, H4 B 

>1 55.17 H3, H4 B 

>1 55.20 H3, H4 B 

>1 55.24 H3, H4 B 

>1 55.26 H3, H4 B 

>1 55.27 H3, H4 B 

>1 55.31 H3, H4 B 

>1 55.32 H3, H4 B 

>1 55.33 H3, H4 B 

>1 2.2 H3, H4 B 

>1 53.8 H3, H4, H1 B 

>1 55.21 H3, H4, H1 B 

>1 20.15 H3, H4, H1 B 

>1 29.2 H3, H4, H1 B 

>1 29.10 H3, H4, H1 B 

>1 48.10 H3, H4, H1 B 

>1 48.13 H3, H4, H1 B 

>1 48.14 H3, H4, H1 B 

>1 48.16 H3, H4, H1 B 

>1 48.21 H3, H4, H1 B 
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>1 48.26 H3, H4, H1 B 

>1 48.31 H3, H4, H1 B 

>1 48.33 H3, H4, H1 B 

>1 48.34 H3, H4, H1 B 

>1 53.13 H3, H4, H1 B 

>1 53.18 H3, H4, H1 B 

>1 53.21 H3, H4, H1 B 

>1 53.23 H3, H4, H1 B 

>1 55.11 H3, H4, H1 B 

>1 55.15 H3, H4, H1 B 

>1 55.25 H3, H4, H1 B 

>1 2.5 H3, H4, H1 B 

>1 2.7 H3, H4, H1 B 

>1 2.10 H3, H4, H1 B 

>1 2.12 H3, H4, H5, H1 B 

>1 48.2 H3, H4, H5 B 

>1 48.22 H3, H4, H5 B 

>1 55.12 H3, H4, H5 B 

>1 55.4 H3, H2, H1 B 

>1 29.9 H4, H1 B 

>1 20.28 H4, H5 B 

>1 2.11 H4, H5 B 

>1 2.3 H4, H5 B 

>1 20.11 H4, H5 B 

>1 20.21 H4, H5 B 

>1 35.2 H4, H5 B 

>1 27.7 H4, H5 B 

>1 42.1 H4, H5 B 

>1 53.7 H4, H5 B 

>1 48.3 E, ORT, N A 

>1 20.1 E, ORT, N A 

>1 53.12 E, ORT, N A 

>1 53.27 E, ORT, N A 

>1 55.2 E, ORT, N A 

>1 42.8 C, H4 ,H5, H1 T / B 

>1 27.8 C, H4, H5 T / B 

>1 48.4 C, H4, H5 T / B 

>1 55.8 C, H3, H4, H5, H1 T / B 

>1 8.6 P, H5 T / B 

>1 20.7 H1, ORL,MU A / B 

>1 20.19 H1, ORL,MU A / B 

>1 20.20 H1, ORL,MU A / B 

>1 20.23 H1, ORL,MU A / B 

>1 20.29 H1, ORL,MU A / B 

>1 20.30 H1, ORL,MU A / B 

>1 48.20 H1, MU A / B 

>1 25.1 H5, MC, F, N A / B 

>1 25.5 H5, MC, F, N A / B 

>1 29.6 H5, MC, F, N A / B 

>1 29.8 H5, MC, F, N A / B 

>1 42.7 H5, MC, F, N A / B 

>1 55.6 H5, MC, F, N A / B 

>1 8.1 H5, MC F, N A / B 

>1 8.8 H5, MC, F, N A / B 

>1 8.13 H5, MC, E, F A / B 

>1 25.6 H5, MC A / B 

>1 8.12 H5, MC A / B 

>1 42.11 H5, MC A / B 

>1 8.4 H5, MC A / B 

>1 8.3 H4, H5, MC A / B 

>1 8.9 H4, H5, MC A / B 

>1 8.16 H4, H5, MC A / B 

>1 29.7 H4, H5, MC A / B 

>1 8.15 P, H4,H5, ORT T / A / B 

>1 8.5 P, H4,H5, ORT T / A / B 
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Table S4. Results of paternity assignment in progeny from open-pollinated (OP) recipients harvested in 2006, according 

to microsatellite (SSR) genotyping, GUS expression and leaf morphology (trifoliate character). 

Number of pollen 

donor(s) assigned 

Progeny of OP 

clementine (Seedling 

code) 

Code(s) of pollen donor(s) 

assigned 

Plot of pollen 

donor(s) assigned 

0 20.6 - Not assigned 

0 36.14 - Not assigned 

0 36.2 - Not assigned 

0 36.4 - Not assigned 

0 36.5 - Not assigned 

0 42.15 - Not assigned 

0 42.27 - Not assigned 

0 42.35 - Not assigned 

0 50.29 - Not assigned 

0 50.6 - Not assigned 

1 27.4 P T 

1 27.5 P T 

1 50.24 L T 

1 30.11 H1 B 

1 36.8 H1 B 

1 50.18 H1 B 

1 50.37 H1 B 

1 55.8 H1 B 

1 6.7 H1 B 

1 30.13 H2 B 

1 2.2 H3 B 

1 2.4 H3 B 

1 2.3 H4 B 

1 2.6 H4 B 

1 20.1 H4 B 

1 30.5 H4 B 

1 36.9 H4 B 

1 50.21 H4 B 

1 50.28 H4 B 

1 50.36 H4 B 

1 50.38 H4 B 

1 50.7 H4 B 

1 50.8 H4 B 

1 50.9 H4 B 

1 6.11 H4 B 

1 6.12 H4 B 

1 6.16 H4 B 

1 2.9 H5 B 

1 27.11 H5 B 

1 27.2 H5 B 

1 27.8 H5 B 

1 27.9 H5 B 

1 30.1 H5 B 

1 30.12 H5 B 

1 30.15 H5 B 

1 30.18 H5 B 

1 36.1 H5 B 

1 36.10 H5 B 

1 36.18 H5 B 

1 42.19 H5 B 

1 50.15 H5 B 

1 50.2 H5 B 

1 50.23 H5 B 

1 50.3 H5 B 

1 50.30 H5 B 

1 50.31 H5 B 

1 55.10 H5 B 

1 55.14 H5 B 

1 55.4 H5 B 

1 6.6 H5 B 
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1 6.8 H5 B 

1 30.6 F A 

1 36.13 F A 

1 36.19 F A 

1 42.11 F A 

1 42.17 F A 

1 42.2 F A 

1 42.3 F A 

1 30.17 MI A 

1 30.7 MI A 

1 30.9 MI A 

1 36.17 MI A 

1 42.10 MI A 

1 42.14 MI A 

1 42.20 MI A 

1 42.28 MI A 

1 42.31 MI A 

1 42.7 MI A 

1 42.33 MI  A 

1 30.21 N A 

1 36.11 N A 

1 36.20 N A 

1 42.18 N A 

1 42.21 N A 

1 42.24 N A 

1 42.32 N A 

1 42.8 N A 

1 36.12 N  A 

1 42.26 N  A 

1 27.6 ORL A 

>1 2.1 H1, H4 B 

>1 50.1 H1, H4 B 

>1 50.19 H1, H4 B 

>1 50.26 H1, H4 B 

>1 50.27 H1, H4 B 

>1 6.13 H1, H4 B 

>1 6.3 H1, H4 B 

>1 30.23 H1, H4 B 

>1 36.3 H1, H4 B 

>1 50.4 H1, H4 B 

>1 27.7 H1, H3, H4 B 

>1 30.22 H1, H3, H4 B 

>1 36.16 H1, H3, H4 B 

>1 50.10 H1, H3, H4 B 

>1 50.11 H1, H3, H4 B 

>1 50.12 H1, H3, H4 B 

>1 50.16 H1, H3, H4 B 

>1 50.20 H1, H3, H4 B 

>1 50.22 H1, H3, H4 B 

>1 50.25 H1, H3, H4 B 

>1 50.34 H1, H3, H4 B 

>1 50.35 H1, H3, H4 B 

>1 55.12 H1, H3, H4 B 

>1 55.15 H1, H3, H4 B 

>1 6.10 H1, H3, H4 B 

>1 6.14 H1, H3, H4 B 

>1 6.15 H1, H3, H4 B 

>1 30.24 MI, F A 

>1 42.16 MI, F A 

>1 42.30 MI, F A 

>1 42.4 MI, F A 

>1 42.6 MI, F A 

>1 42.34 MI, ORL A 

>1 30.3 ORL, MU A 

>1 50.14 C, H4, H5 T / B 

>1 50.17 P, MI, E, ORT T / A  
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>1 30.2 H1, ORL, MU A / B 

>1 42.37 H4, N A / B 

>1 27.14 H5, MC A / B 

>1 27.15 H5, MC A / B 

>1 27.16 H5, MC A / B 

>1 27.3 H5, MC A / B 

>1 42.36 H5, MC, F A / B 

>1 27.13 H5, MC, F, N A / B 

>1 27.20 H5, MC, F, N A / B 

>1 30.14 H5, MC, F, N A / B 

>1 36.15 H5, MC, F, N A / B 

>1 42.5 H5, MC, N A / B 

>1 27.10 H5, P, MC T / A / B 

>1 42.9 H5, P, MC, E, F T / A / B 
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Abstract 

 

Background: The future of genetic transformation as a tool for the improvement of fruit 

trees depends on the development of proper systems for the assessment of unintended effects 

in field-grown GM lines. In this study, we used eight transgenic lines of two different citrus types 

(sweet orange and citrange) transformed with the marker genes β-glucuronidase (uidA) and 

neomycin phosphotransferase II (nptII) as model systems to study for the first time in citrus the 

long-term stability of transgene expression and whether transgene-derived pleiotropic effects 

occur with regard to the morphology, development and fruit quality of orchard-grown GM citrus 

trees. 

Results: The stability of the integration and expression of the transgenes was 

confirmed in 7-year-old, orchard-grown transgenic lines by Southern blot analysis and 

enzymatic assays (GUS and ELISA NPTII), respectively. Little seasonal variation was detected 

in the expression levels between plants of the same transgenic line in different organs and over 

the 3 years of analysis, confirming the absence of rearrangements and/or silencing of the 

transgenes after transferring the plants to field conditions. Comparisons between the GM citrus 

lines with their non-GM counterparts across the study years showed that the expression of 

these transgenes did not cause alterations of the main phenotypic and agronomic plant and fruit 

characteristics. However, when comparisons were performed between diploid and tetraploid 

transgenic citrange trees and/or between juvenile and mature transgenic sweet orange trees, 

significant and consistent differences were detected, indicating that factors other than their 

transgenic nature induced a much higher phenotypic variability. 

Conclusions: Our results indicate that transgene expression in GM citrus remains 

stable during long-term agricultural cultivation, without causing unexpected effects on crop 

characteristics. This study also shows that the transgenic citrus trees expressing the selectable 

marker genes that are most commonly used in citrus transformation were substantially 

equivalent to the non-transformed controls with regard to their overall agronomic performance, 

as based on the use of robust and powerful assessment techniques. Therefore, future studies of 

the possible pleiotropic effects induced by the integration and expression of transgenes in field-

grown GM citrus may focus on the newly inserted trait(s) of biotechnological interest. 
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Background 

 

Crop improvement via genetic modification (GM) remains controversial, with one of the major 

issues being the potential for unintended effects caused by the integration and expression of the 

transgene. Such unintended effects may occur as a result of interactions between the transgene or its 

regulatory elements and the plant genome at the site of insertion. The integration site could affect a 

transgenic plant in two ways: with regard to the functioning of the surrounding DNA sequences 

(insertion effect) and with regard to the expression of the transgene (position effect). The insertion 

effect can be of a mutagenic nature and could result in null, loss of function, gain of function or other 

possible phenotypes, depending on the specific DNA region that is randomly targeted by the insertion 

and the regulatory elements within the foreign DNA (T-DNA in the case of Agrobacterium 

tumefaciens-mediated transformation). With respect to the position effect, it is well known that the 

integration site and transgene architecture (i.e., transgene copy number) may influence the transgene 

expression level and stability (see [1,2] for reviews). All of these effects can vary according to the 

specific integration event and would, therefore, be unique to each independent transgenic line. 

Moreover, the full range of recurring locus-independent changes induced by the expression of a given 

transgene constitutes the so-called pleiotropic effects. Although some of these effects may be 

expected based on the intended trait, others may occur through unexpected interactions of the 

transgene products with plant cell metabolism [3]. 

Within the context of GM crops, the relevance of unintended effects is mainly related to their 

implications regarding agronomic performance [4]. There are examples showing that transgenesis 

may generate non-desirable phenotypic alterations as a consequence of pleiotropic changes in plant 

growth and development, compromising the preservation of the identity of the transformed genotype 

[5-9]. Although the existence of such unintended effects does not necessarily generate concerns in 

terms of safety (for human health and/or the environment), it is important to evaluate their extent to 

validate or discard the application of each genetic engineering product in agriculture [10]. Some 

studies have reported unintended pleiotropic effects generated by the expression of selectable marker 

genes [11-13], despite the fact that such transgenes are not generally believed to alter biological 

processes in plants [14-16]. These findings indicate that the pleiotropic effects associated with 

selectable marker genes also need to be assessed in a range of plants, particularly in those that are 

expected to remain in the field for many years and be subjected to highly variable environmental 

conditions. 

The significance of unintended changes is negligible in most cases because most event-

specific effects are routinely eliminated during the early screening stages [1]. However, even after 

selection, there are some reports of apparently normal transgenic plants exhibiting aberrant 

behavioral or biochemical characteristics upon further analysis (for reviews, see the references in [17-

19]). Such studies often focus on the possibility that a transgene may not result in the desired 

phenotypic effect when GM plants are moved from a controlled glasshouse environment to more 

variable field conditions [20]. However, some studies have also reported potentially unintended 

phenotypic effects of transgenes in GM plants exposed to a range of realistic environmental 
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conditions. Examples of these unexpected traits include lower yields [21-23], an enhanced 

susceptibility to pathogens [24], altered insect resistance as a consequence of non-targeted changes 

in secondary metabolism [25] and an enhanced outcrossing ability of transgenic plants [26,27]. 

Therefore, it is important to investigate the substantial equivalence of transgenic crops 

through the assessment of phenotypic differences between GM lines and their non-GM counterparts 

in field trials [4]. The comparative analysis of physiological character ristics, such as agronomic-, 

morphology- and development-related traits, is an essential first step in identifying these differences 

[28]. Furthermore, an appropriate experimental design is required for the assessment of GM crops 

[29]. The guidelines described internationally for performing agronomic and phenotypic analyses of 

GM crops emphasize that choosing appropriate comparators and performing adequate field trials 

(e.g., number of growing seasons, replicates, selection of characteristics to be analyzed) are crucial to 

ensure confidence in the results. The experimental design should also be consistent with the intended 

method of statistical analysis [30]. 

Citrus is the most economically important and extensively grown fruit tree crop in the world 

[31]. Genetic transformation is considered an essential tool in some current citrus improvement 

programs and offers great opportunities to achieve the goals of interest, such as the resistance to 

devastating diseases or enhancement of health-promoting fruit qualities [32]. However, there are no 

available reports regarding the agronomic performance of transgenic citrus plants. Although there are 

some studies on the integration patterns, expression and inheritance of transgenes in citrus plants 

and their progeny [33,34], none of these investigations has addressed the impact of transgene 

integration and expression on agronomic characteristics. The aim of the present study was to 

estimate the effects of transgenesis on the performance of citrus trees grown in an orchard since 

1997 and to study the stability of transgene integration and expression. The experiment involved the 

release of 8 independent transgenic lines of Carrizo citrange (Citrus sinensis L. Osb. X Poncirus 

trifoliata L. Raf.) and Pineapple sweet orange (C. sinensis L. Osb.) carrying the marker transgenes 

nptII and uidA (GUS). We also included non-transgenic regenerants obtained from the transformation 

experiments, which were used as the non-GM controls. Making use of comparative analyses of fruit 

quality, tree morphology and phenology conducted over several years, the present work evaluates the 

substantial equivalence of field-grown transgenic citrus plants relative to their non-GM counterparts. 

Furthermore, to validate the evaluation techniques applied in this work, the effects of genetic and 

physiological factors (other than ‘transgene’) were also investigated. For this purpose, some 

transgenic lines of each citrus type that could be distinguished by an additional trait, either their ploidy 

level (diploid vs. tetraploid, in the case of Carrizo citrange) or developmental stage (juvenile vs. 

mature, in the case of Pineapple orange), served as comparators to test the effects of ‘ploidy’ and 

‘ontogeny’ on the parameters studied for the citrange and sweet orange lines, respectively. This is the 

first detailed study demonstrating the substantial equivalence of field-grown GM and non-GM citrus 

trees reported thus far and could represent a model for investigating the performance of GM fruit trees 

under field conditions through the use of appropriate controls and comparators. 
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Results 

 

All of the citrus plants used in the field trial (T plot) were generated previously in our 

laboratory, and their main characteristics are summarized in Figure 1. The Pineapple sweet orange 

plants were obtained from the experiments described in Cervera et al., 1998a [35]. For the field 

release, we selected six independent transgenic lines (designated P3 to P8) and one non-GM 

regenerant (PCA) derived from adult plant material. Moreover, to address the ‘ontogeny’ effect in the 

sweet orange lines, we also included two independent transgenic lines (designated P1 and P2) and a 

non-GM control (designated PCJ) derived from juvenile material in the experimental orchard. 

“Juvenile” transformants flowered in 2002 and set fruits in 2003 for the first time. Although they could 

not be considered strictly juvenile from that moment on, these plants passed through a transition 

phase [36] characterized for tree vigorous growth, thorniness, alternate bearing and reduced yield, 

which prolonged at least for the 3 years of study. Conversely, mature transformants set fruits soon 

after being grafted in the field and they showed typical features of true-to-type Pineapple sweet 

orange trees bearing regular fruits. The Carrizo citrange plants were generated in experiments 

described in Peña et al., 1995 [37] and Cervera et al., 1998b [38], and six independent transformants 

were selected for the field release (designated C1, C3, C4, C5, C6 and C8) in addition to one non-GM 

regenerant. All of these lines were diploid and presented a normal appearance in a preliminary screen 

under greenhouse conditions [33]. We also decided to include two unintentionally obtained off-type 

transgenic tetraploid lines (designated C2 and C7) in the field trial to assess the ‘ploidy’ effect in the 

citrange lines. We did not include a non-GM tetraploid control line because none was spontaneously 

generated during the course of the original experiments [33]. Mexican lime (C. aurantifolia (Christm.) 

Swing.) plants present in the orchard were obtained from experiments described in [39]. Although our 

original intention was to conduct the same analyses with these transgenic lime trees, they were 

excluded from further analysis because they suffered severe symptoms from frost during successive 

winters. 

In 2004, seven years after planting in the orchard (Figure 1B), when all of the transgenic and 

control lines had experienced several cycles of fruit production, the molecular and phenotypic 

analyses of each plant were initiated. 

 

Long-term stability of transgene integration and expression 

 

To demonstrate the long-term stable integration and expression of nptII and uidA gene 

cassettes, analyses of genomic DNA were performed on 7-year-old, orchard-grown transgenic citrus 

trees, and the results were compared to the results previously reported by our group [33,35,38]. 

Southern blot analysis confirmed the presence of stably integrated transgene cassettes into the plant 

genomes of all of the transgenic trees. Digestion with either HindIII or DraI + ClaI resulted in the 

generation of internal fragments of the uidA and nptII cassettes, with the expected sizes of 2.8 and 2.0 

kb, respectively. The corresponding non-transgenic controls showed no hybridization signals (results 

not shown). The T-DNA of the binary vector used has unique restriction sites for EcoRI and DraI at 
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the left and right borders of the sequence, respectively, and digestion of the DNA with either of these 

enzymes generated unique fragments between the T-DNA and plant DNA. A different number of 

insertions and integration patterns were revealed in the different transgenic lines following 

hybridization with the uidA or nptII probes, as summarized in Table 1. All of the transgenic plants 

exhibited the long-term stable integration of both the uidA and nptII genes, with different hybridization 

patterns being detected among independent transgenic lines. As shown in Table 1, the estimated 

number of copies of each transgene was identical to that shown previously by our group (when the 

transformants were generated). 

 

Figure 1.  Experimental field trial (T plot). A) Description of all of the citrus lines selected for release in the experimental 

orchard, including the citrus type, genetic modification (GM), developmental stage (ontogeny), ploidy level and number of 

plants of each line. T, transgenic; C, control; J, juvenile; A, adult; 2n, diploid; 4n, tetraploid. B) Images showing the T plot in 

1998 (left) and in 2004 (right). C) Schematic diagram of the T plot showing the arrangement of the 130 trees, including 16 

transgenic plants of Pineapple sweet orange (green), 16 transgenic plants of Carrizo citrange (blue) and 16 transgenic 

plants of Mexican lime (red). In addition, there were 8 non-transgenic control plants from each citrus type interspersed 

individually between the two plants from each transgenic line (black). Fifty-eight non-transgenic Clemenules clementine 

trees planted along an external edge (white circles) were used as a buffer to prevent transgene flow through pollen 

dispersal. 
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Table 1. Long-term stability of the integration of transgenes in transgenic sweet orange and citrange lines determined by 

Southern blot analysis 

Line 

Copy number determined by Southern blot 

In previous analyses
1 

In 2004
2 

uidA nptII uidA nptII 

P1 nd nd 4 4 

P2 nd nd 1 1 

P3 2
 

1
 

2 1 

P4 1
 

2
 

1 2 

P5 1
 

3
 

1 3 

P6 1
 

1
 

1 1 

P7 4
 

4
 

4 4 

P8 1
 

1
 

1 1 

C1 2
 

2
 

2 2 

C2 1
 

1
 

1 1 

C3 nd nd 2 2 

C4 2
 

2
 

2 2 

C5 2
 

1
 

2 1 

C6 2
 

1
 

2 1 

C7 1
 

1
 

1 1 

C8 1
 

1
 

1 1 
1
Analyses performed prior to the release in the experimental orchard in 1997, as described in [35] [38] and [33] 

2
Analyses performed in this work. 

nd, not determined 

 
 
GUS analyses of different organs of the transgenic trees were performed periodically 

beginning in 2004. All of the transgenic samples showed blue staining in histochemical assays during 

the 3 consecutive years of the study (Figure 2A), whereas no coloration was visible in the control 

samples (Figure 2A, left column of the image). In spite of some detectable variation in the expression 

levels among the different transgenic lines, GUS expression remained relatively high in all of the 

tissues analyzed for all of the transgenic lines. Moreover, the transgenic plants showed similar 

conserved patterns of GUS expression throughout the study period, and no drastic decreases or 

increases in transgene activity were observed within any tree or between trees of the same line. 

To estimate the enzyme activities, fluorimetric GUS assays and NPTII ELISAs were 

performed on leaf samples from all of the plants every 3 months over a period of one year (2007). The 

measurements were performed using different plants of the same line and at different time points to 

ensure a reliable representation of the temporal intraline transgene expression. The results regarding 

the fluorimetric GUS activity and immunological quantification of NPTII accumulation are shown in 

Figure 2B. All of the transgenic lines displayed both NPTII and GUS activity, with the expression 

levels varying from 2.8 to 26.6 ng NPTII per mg total protein and from 20.4 to 191.8 pmol MU per min 

per μg total protein, respectively, in the transgenic samples. These ranges in activity were similar to 

those obtained in the initial populations of transformants from which we propagated the sweet orange 

and citrange plants under investigation [33,35]. The data shown in Figure 2B are the average annual 

values per line. The relatively low SE bars indicate little variation in the expression levels between the 

plants of the same line and a lack of considerable seasonal fluctuations. 
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Morphological and phenological analyses revealed the normal 

appearance and development of 7-year-old orchard-grown transgenic trees 

 

We performed morphological and phenological analyses of the transgenic trees in comparison 

with their respective non-GM counterparts to study the influence of transgenesis on the main 

phenotypic characteristics of the plants (i.e., the ‘transgene’ effect). For this purpose, each citrus 

genotype was analyzed separately. 

Based on an initial visual scrutiny, noticeable differences were detected among the sweet 

orange lines with respect to the size of the tree, as the juvenile lines showed a greater size than the 

adult lines (Figure 3A). No other morphological differences were observed among the lines. Indeed, 

the transgenic trees could not be visually distinguished from their respective non-transgenic controls 

at any time during the growing season or after fruit harvesting (Figure 1B). To confirm these 

observations, two morphological variables related to tree size, tree height (TH) and tree canopy 

volume (TCV), were measured in two consecutive years (2004 and 2005) for each line, and the data 

were analyzed statistically. Differences among the sweet orange lines were confirmed using the 

Kruskal-Wallis test (p < 0.001) for the variables TH and TCV. Notched box-and-whisker plots showed 

that the median values of both variables were always higher for the juvenile lines (PCJ, P1 and P2) 

than for the adult lines (PCA, P3, P4, P5, P6, P7 and P8), indicating that the factor ‘ontogeny’ 

(developmental stage) had a marked effect on the parameters. Mann–Whitney tests confirmed the 

highly significant differences in these variables between ‘ontogeny’ classes (juvenile versus adult 

lines). However, no significant differences (p < 0.05) in these variables were detected between the 

transgenic and control lines (Figure 3B). These results indicated that the juvenile plants continued to 

display the morphological features typical of juvenility (faster growth behavior than adults), even after 

 

Figure 2 Characterization of 7-year-old, orchard-grown transgenic citrus trees: analyses of GUS and NPTII protein 

activities. A) Histochemical GUS analysis of different organs (row 1, leaves; row 2, flowers in pre-anthesis; row 3, flowers 

in post-anthesis; row 4, transverse sections of immature fruit) from the transgenic citrus plants. Representative image 

showing the staining patterns exhibited by the different transgenic lines under investigation. Left column, control samples 

showing no coloration; all of the leaves were punched to facilitate substrate infiltration. After the reaction, the organs were 

cleared of chlorophyll by means of an ethanol series. B) GUS and NPTII activities in the leaf samples from all of the sweet 

orange and citrange lines grown in the experimental orchard. Data represent the average values ± SEM from the different 

plants of each line, assayed at four time points (seasonally) over the course of one year 
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entering the fruit production stage. In contrast, transgenesis did not affect any of the morphological 

traits. 

 

 

In the citrange population, several obvious differences were visually detected only in lines C2 

and C7. These tetraploid lines developed thicker and broader leaves, having a darker green color, 

and larger flowers and showed a slightly smaller tree size and leaf density in comparison with the rest 

of the citrange lines (all diploid) (Figure 4A). A Kruskal-Wallis test confirmed significant differences (at 

the 95 % confidence level) among the medians of the variables TH, TCV, leaf fresh weight (LFW) and 

leaf area (LA) for the citrange lines. Subsequently, Mann–Whitney tests detected a statistically 

significant ‘ploidy’ effect for the TH and TCV variables (p < 0.01) and for the LFW and LA variables at 

 

Figure 3 Morphological analysis of sweet orange trees. A) Images showing the appearance of the sweet orange trees 

in the experimental orchard. Image on the left: general view of the sweet orange trees (from the P2 to P8 lines) distributed 

in a row in the orchard; image on the right: size comparison between juvenile and adult trees. B) Effects of the ‘line’, 

‘transgene’ and ‘ontogeny’ factors on the morphological variables Tree height and Tree canopy volume. The data 

represented in the notched box-and-whisker plots were calculated from measurements recorded over the course of two 

years (2004 and 2005) at the end of the growing season. K-W, Kruskal-Wallis test (n = 48); M-W, Mann–Whitney tests; A, 

all adult lines (n = 36); J, all juvenile lines (n = 12); C, all control lines (n = 16); T, all transgenic lines (n = 32). 
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higher levels of significance (p < 0.0001), whereas the ‘transgene’ factor had no effect on any of these 

variables (p < 0.05). 

 

 

Figure 4 Morphological analysis of citrange trees. A) Images showing morphological differences observed between 

tetraploid (4n) and diploid (2n) lines. Image on the left: differences in the coloration and leaf density of the trees; image on 

the right: differences in the morphology of their leaves and flowers. B) The effects of the ‘line’, ‘transgene’ and ‘ploidy’ 

factors on the morphological variables Tree height, Tree canopy volume, Leaf fresh weight and Leaf area. The data 

represented in the notched box-and-whisker plots were calculated from measurements recorded over the course of two 

years (2004 and 2005) at the end of the growing season. K-W, Kruskal-Wallis test (n = 48); M-W, Mann–Whitney tests; 2n, 

all diploid lines (n = 40); 4n, all tetraploid lines (n = 8); C, control line CC (n = 16); T, all transgenic lines, except tetraploids 

C2 and C7 (n = 24). 
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Phenological calenders showed no differences in the transgenic trees when compared with 

the non-GM controls for either of the two genotypes studied. Marked differences were not detected 

due to either ‘ploidy’ (in the citrange lines) or ‘ontogeny’ (in the sweet orange lines). As expected, the 

most notable differences were observed when the phenological cycles of the two citrus genotypes 

under   study   were  compared  ( Figure  5 ).   Therefore,  transgenesis  per  se  did  not  affect   the 

morphological appearance or phenological cycle of the trees, whereas other factors, such as the 

developmental stage (for the sweet orange plants) or the ploidy level (for the citrange plants), had a 

 

Figure 5 Phenological assessment. A) Schematic representation of the phenological cycle of the citrus lines. The main 

phases of development are shown using different colors (key legend), which were used to draw the phenological calender 

of B) the Carrizo citrange lines and C) the Pineapple sweet orange lines. Phenological stages were recorded weekly 

according to the BBCH codification for citrus and grouped into 8 phases stressing flower and fruit developmental stages 
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highly significant impact on the morphological variables. 

 

The ‘transgene’ effect did not influence fruit quality, whereas ‘ontogeny’ 

and ‘ploidy’ did alter many quality parameters 

 

To assess whether transgenesis affected the agronomic performance of the transgenic citrus 

trees, the typical parameters commonly used to define the quality of citrus fruit [40] were evaluated in 

the fruit samples from the orchard-grown transgenic citrus lines and from their respective non-GM 

controls. The parameters evaluated for all of the sweet orange and citrange lines in the 2004, 2005 

and 2006 seasons (S1 to S3) were as follows: fruit weight (W), fruit volume (V), caliber, the color 

index (CI), juice content (JC), total soluble solids (TSS), titratable acidity (TA) and maturity index (MI). 

The fruit of the citrange lines was analyzed for an additional season (2007; S4). The data for each 

citrus type and season was analyzed separately using an ANOVA procedure to test the effect of ‘line’ 

on each fruit quality parameter. The ‘transgene’ effect was assessed by performing a posteriori 

contrasts in which each transgenic line was compared with its respective non-GM control. Moreover, 

as it is known that the developmental stage and the ploidy level of citrus plants may affect the quality 

of their fruit, the effects of ‘ontogeny’ and ‘ploidy’ were also evaluated in the sweet orange and 

citrange lines, respectively, by performing the pertinent planned (or a priori) contrasts. 

A summary of the quality characteristics of the fruit from the sweet orange trees is presented 

in Additional file 1. We observed visually marked variations in yield among the sweet orange trees, 

depending on the year of analysis. This phenomenon, known as alternancy, is common in such citrus 

cultivars as Pineapple sweet orange and may affect fruit quality [41]. The lines in which the reduction 

of the yield was particularly drastic (less than 30 fruits per tree) were PCJ, P1 and P2 for S2 and PCA, 

P3 and P4 for S3 (shown in bold in Additional file 1). These productivity data were taken into account 

when drawing conclusions in the analysis of the fruit. The effects of the ‘line’, ‘transgene’ and 

‘ontogeny’ factors on the fruit quality of the sweet orange lines are represented in Table 2. The 

ANOVA results showed that the ‘line’ factor had a significant effect on the variables TA and MI in all of 

the seasons analyzed. For TA, these effects were always highly significant (p < 0.0001). The ‘line’ 

factor also had an effect on the parameters caliber, CI and JC but only in one of the three years tested 

and at a lower significance level (p < 0.01). The ‘line’ factor had no effect on any other variable. The 

results of the contrasts performed to test the ‘transgene’ effect showed that no significant differences 

(p < 0.01) were found for any fruit quality parameter evaluated when each transgenic line was 

compared with its corresponding non-GM control. The only exceptions were the significant differences 

found for the variable MI detected in the contrasts “P3 vs. PCA” and “P4 vs. PCA” for S3. These 

results could be explained by the poor yield of the P3 and P4 trees in that particular season (see 

Additional file 1). Therefore, ‘transgene’ did not induce any detectable difference in fruit quality in the 

sweet orange lines. Table 2 also shows the results from contrasts performed to test the ‘ontogeny’ 

effect on the fruit quality parameters in the sweet orange lines. Highly significant differences were 

detected between the juvenile and adult lines, irrespective of their transgenic nature, for the variables 

TA and MI in at least two of the three seasons analyzed. As presented in Figure 6A, the juvenile lines. 
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Table 2. The effects of the ‘line’, ‘transgene’ and ‘ontogeny’ factors on the fruit quality in the sweet orange lines 

Source 

Fruit quality parameter (dependent variable) 

Weight Volume Caliber Color Index 

Juice 

content
1 

TA TSS MI 

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

Factor / ANOVA
2 

                        

Line NS NS NS NS NS NS NS * NS NS * NS * NS NS *** *** *** NS NS NS * * *** 

Plant (Line) *** *** *** *** *** *** *** *** *** *** *** *** * * NS *** *** *** *** *** *** *** *** NS 

Contrasts to test 

‘transgene’ effect
3                         

P3A vs PCA NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS * 

P4A vs PCA NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS ** 

P5A vs PCA NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

P6A vs PCA NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

P7A vs PCA NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

P8A vs PCA NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Contrasts to test 

‘ontogeny’ effect
4                         

J vs A NS * NS NS ** NS NS ** NS NS ** NS NS NS NS *** *** *** NS NS NS ** ** *** 

PCJ vs PCA NS * NS NS * NS NS * NS NS ** NS NS NS NS *** * *** NS NS NS ** NS *** 

TJ vs TA NS NS NS NS NS NS NS * NS NS * NS NS NS NS * *** *** NS NS NS NS ** *** 
 

1
The “juice content” variable was log-transformed prior to the analyses to fit the data to a normal distribution 

2
ANOVA to test the effects of Line on each fruit quality variable. Independent statistical analyses were performed for each fruit quality parameter and season. 

3
Contrasts to test for significant differences between each adult transgenic line and their respective control line (PCA) using Dunnett’s test 

4
Planned comparisons to test for significant differences between juvenile and adult lines. J, average of all juvenile lines; A, average of all adult lines; TJ, average of all juvenile and transgenic lines; 

TA, average of all adult and transgenic lines 

TA, titratable acidity; TSS, total soluble solids; MI, maturity index (TSS/TA); S1, season 2004; S2, season 2005; S3, season 2006 

*p < 0.01; **p < 0.001; ***p < 0.0001; NS, not significant 
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showed higher TA (at a p < 0.0001 significance level) and lower MI (at a p < 0.001 significance level) 

values than the adult lines in all three of the seasons. This result was somewhat expected, taking into 

account that the differences in the TSS were not detected when comparing juvenile and adult lines 

(Table 2). In contrast, for W, V, caliber and CI, a significant ‘ontogeny’ effect was only detected for S2 

(Table 2), which could be explained by the low yield in all of the juvenile lines in that particular year 

(see the sampling data in Additional file 1). Thus, ‘transgene’ had no impact on any fruit quality 

parameter evaluated, whereas a significant and consistent ‘ontogeny’ effect was detected for certain 

variables. Juvenile transformants were not producing regular fruits five years after flowering for the 

first time. This should be taken into account when using juvenile instead of mature tissues as starting 

material for genetic engineering. 

 

 

 

 

A summary of the fruit quality characteristics of the citrange lines is presented in Additional file 

2. There were no noticeable differences in yield among the seasons analyzed. The effects of ‘line’, 

‘transgene’ and ‘ploidy’ on the fruit quality of the citrange lines are presented in Table 3. The ANOVA 

results showed that the effect of ‘line’ on all of the fruit quality variables was significant for at least two 

of the four seasons analyzed, at p < 0.01, with the exception of the variable CI. Regarding the 

 

Figure 6 Graphic representation of the significant and consistent effects detected in the analysis of fruit quality in 

the sweet orange and citrange lines. A) ‘ontogeny’ effect detected in sweet orange lines. B) ‘Ploidy’ effect detected in 

citrange lines. C) Images showing the representative appearance of mature diploid (2n) and tetraploid (4n) fruit from 

Carrizo citrange trees. The scale bar represents 2 cm. Level of significance achieved in the planned contrasts: *p < 0.01; 

**p < 0.001; ***p < 0.0001. Seasons analyzed: S1, season 2004; S2, season 2005; S3, season 2006; S4, season 2007. 

Average ± SE from contrasts showing significant differences (p < 0.01) in at least two seasons are represented 



Results: Chapter 2 

 

101 

 

‘transgene’ effect, Table 3 also shows that no significant differences were found for more than one 

season for any of the quality parameters evaluated when each transgenic line was compared with its 

corresponding non-GM control. For most of the variables (V, W, caliber and JC), significant 

differences were found exclusively for the first season analyzed, and these differences decreased in 

the following seasons, ceasing to be significant (p < 0.01) in all cases. This result may indicate that the 

citrange trees were not fully mature in the first year of assessment (S1). Thus, it was necessary to 

evaluate these parameters in an additional (fourth) year (S4) to confirm that the highly significant 

differences found for S1 were not repeated and, therefore, could not be attributed to the ‘transgene’ 

effect. Table 3 shows that ‘ploidy’ had a significant effect on W, V, caliber and JC in all of the four 

seasons analyzed. Moreover, for these variables, the differences between the diploid (T-2n) and 

tetraploid (T-4n) transgenic lines were highly significant (p < 0.001) for at least two of the four 

seasons. ‘Ploidy’ also had a significant effect on the MI in S1, S2 and S3, although at a lower 

significance level than the other variables tested (Figure 6). The tetraploid lines showed higher W, V, 

and caliber and lower JC values than the diploid lines (Figure 6B), indicating that the higher weight 

and size of the tetraploid fruit were due to a greater peel thickness and not to a higher juice 

percentage (Figure 6C). For these variables, the trend of the compared means within the contrasts 

was consistent over the seasons, meaning that these differences between the diploid and tetraploid 

lines, in addition to being highly significant, were consistent, regardless of the season/environmental 

conditions. The tetraploid lines also showed higher MI values than the diploid lines. This less-

pronounced but consistent ‘ploidy’ effect was due to a lower TA in the tetraploid lines compared to the 

diploid lines. 

In summary, the results from the analysis of fruit quality indicated that (1) no significant 

‘transgene’ effect was detected for any fruit quality parameter evaluated, and (2) both the methods of 

evaluation and the statistical analyses performed to study the influence of transgenesis on the fruit 

quality of the different citrus genotypes were robust and sufficiently powerful to detect differences due 

to other physiological and genetic factors. 
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Table 3. The effects of the ‘line’, ‘transgene’ and ‘ploidy’ factors on the fruit quality in the citrange lines 

 Fruit quality parameter (dependent variable) 

Source 

Weight Volume Caliber Color Index Juice Content
1 

MI (TSS/TA) 

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 

Factor /ANOVA
2 

                        

Line *** * ** NS *** * *** NS *** * *** NS NS NS NS – ** *** * - * * NS - 

Plant(Line) *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** – * NS *** - *** *** * - 

Contrasts to test 

‘transgene’ effect
3                         

C1 vs CC *** NS NS NS *** NS NS NS *** NS NS NS NS NS NS – * NS NS – NS NS NS – 

C3 vs CC * NS NS NS NS NS NS NS * NS NS NS NS NS NS – * NS NS – NS NS NS – 

C4 vs CC NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS – NS NS NS – NS * NS – 

C5 vs CC ** NS NS NS ** NS NS NS ** NS NS NS NS NS NS – NS NS * – NS NS NS – 

C6 vs CC ** NS NS NS * NS NS NS * NS NS NS NS NS NS – * NS NS – NS NS NS – 

C8 vs CC NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS – NS NS NS – NS NS NS – 

Contrasts to test 

‘ploidy’ effect
4                         

T-2n vs T-4n *** *** *** * *** *** *** ** *** *** *** ** NS NS NS – * *** ** - * ** * - 
 

1
The “juice content” variable was transformed prior to the analyses to fit the data to a normal distribution 

2
ANOVA to test the effects of Line on each fruit quality variable. Independent statistical analyses were performed for each fruit quality parameter and season 

3
Contrasts to test for significant differences between each transgenic diploid line and their respective control line (CC) using Dunnett’s test. In the absence of a tetraploid control line, transgenic lines 

C2 and C7 (tetraploids) were excluded from this analysis to avoid confounding effects 
4
Planned comparisons to test for significant differences between the average of all transgenic diploid lines (T-2n) and the average of all transgenic tetraploid lines (T-4n). Because only one control 

line (CC) was available for the Carrizo citrange plants, which was diploid, the data from this line were excluded from this analysis to avoid confounding effects 

MI, maturity index; TSS, total soluble solids; TA, titratable acidity; S1, season 2004; S2, season 2005; S3, season 2006; S4, season 2007 

-, Not measured; *p < 0.01; **p < 0.001; ***p < 0.0001; NS, not significant 
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Discussions 

 

For such long-lived and vegetatively propagated crops with complex genetic and 

reproductive characteristics as fruit trees, genetic modification offers an important potential for 

crop improvement. Genetic engineering allows desirable traits to be transferred into mature 

tissues of selected genotypes, bypassing the long crossing cycles required in tree breeding 

programs. Moreover, genetic engineering overrides incompatibility barriers and permits gene 

transfer not only between unrelated tree species, but also between widely divergent taxa. 

Additionally, the potentially undesirable effects of linked alleles, which could be inadvertently 

introduced into the progeny in conventional breeding programs, can be avoided. However, the 

future prospects for commercial plantations of GM trees are controversial and remain uncertain, 

as certain biological and regulatory issues still need to be satisfactorily resolved [42-46]. The 

modification of crops via genetic engineering is a subject of public concern. A question that is 

often asked is “do genetically modified crops differ significantly from their non-modified 

equivalents?” The term ‘substantial equivalence’ has been used in the fields of food safety and 

biotechnology to describe the relationship between components produced from the same 

source using either novel or conventional methodologies: if the resulting components are 

indistinguishable, they can be considered equivalent [47]. Substantial equivalence in the context 

of this work is used to describe the relationship between the phenotype and agronomic 

performance of the GM citrus plants and their non-GM counterparts. 

We report here that several independent transgenic sweet orange and citrange lines 

stably carrying and expressing uidA and nptII transgenes showed a similar phenotype (at 

morphological, phenological and agronomic levels) to their non-transgenic comparators when 

both were grown under orchard conditions for a long period of time (> 7 years). We intentionally 

used transgenes with a well-characterized function to simplify the analysis of substantial 

equivalence and because this was the first release of transgenic citrus plants into the field. The 

evaluated parameters allowed the assessment of the outcomes of numerous metabolic 

pathways that would tentatively result in a distinguishable phenotype in the modified plants, as 

recommended in the Guidance Document (Section III, D7) described by the EFSA GMO Panel 

[29]. Moreover, some aspects regarding the design of the experimental orchard contributed to 

the validation of our study. The relatively high number of independent transgenic lines (eight) of 

each citrus type used allowed the minimization of event-specific unintended effects derived from 

transgene integration. The availability of more than one plant per line permitted investigating the 

intraline variability and discarding possible chimeric events, which frequently occur during the 

genetic transformation of citrus [48]. The homogeneous distribution of the non-transgenic 

control trees within the orchard contributed to reducing the possible environmental effects 

caused by the position of the trees in the field. Lastly, the inclusion of some off-type lines from 

each citrus type (juvenile sweet orange and tetraploid citrange lines) allowed assessing the 

influence of other (genetic and physiological) factors on the parameters studied. Thus, by 

performing the comparisons “juvenile versus adult” for the sweet orange lines and “diploid 
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versus tetraploid” for the citrange lines, we also addressed the effects of ‘ontogeny’ and ‘ploidy’ 

on the phenotypic variables. 

There are reported cases of transgenic trees in which the expression of transgenes was 

silenced at some point during development [34,49]. There are also instances of T-DNA loss, 

such as in transgenic apples [50], which are likely due to chimerism rather than T-DNA 

instability. In general, a high stability of transgene integration and expression have been 

observed in trees over 3 to 4 years of culture in vitro in either the greenhouse or in the field 

[51,52]. However, there is limited information available about the stability of transgene 

expression over the many years that trees remain in the field, where they are subjected to 

highly variable environmental conditions. The results of our molecular analyses confirmed the 

long-term stability of transgene insertion and expression over 7 years for all of the transgenic 

citrus lines examined. Moreover, little seasonal variation in the expression levels was detected 

between plants of the same transgenic line in different organs and over the duration of the 

study, confirming the absence of rearrangements and/or silencing of the transgenes after 

transferring the plants to the orchard conditions. The long-term stability of attacin E transgene 

expression has also been recently shown in orchard-grown apples trees over a 12-year period 

[53]. 

The monitoring of commercial transgenic crop varieties in the field has allowed the 

observation of unintended traits. Verified examples of such traits include stem splitting and 

decreased yields in transgenic soybean plants [54] and a 67-fold reduction in beta-carotene 

content in a transgenic squash variety engineered for virus resistance (USDA Application # 95-

352-01). Therefore, it is important to test whether the stable expression of transgenes in 

different organs affects morphological, phenological and fruit quality parameters, especially in 

perennial crops. While investigating apple, Ruhmann et al. [55] have shown that the expression 

of a stilbene synthase transgene did not affect the leaf shape, flower morphology and color, or 

fruit shape and size when compared to control plants and fruit. Attacin E overexpression also 

did not affect the fruit characteristics of transgenic apple fruit of trees grown in the field over a 

period of 7 years [53]. No significant differences in the morphological variables or fruit quality 

parameters have been found between the transgenic and non-transformed controls of the two 

citrus genotypes tested in our study. Furthermore, the evaluation methods and statistical 

analyses used for this purpose were robust and sufficiently powerful to detect significant 

differences when comparing trees at different developmental stages (for sweet orange) or with 

different ploidy levels (for citrange). These results indicated that the modification of the citrus 

genome via conventional breeding (with the subsequent generation of -juvenile- seedlings) or 

via ploidy manipulation (i.e., through polyploidization processes) generates much more genetic 

and phenotypic variability in terms of morphology and fruit quality than is induced by genetic 

engineering. Therefore, transgenesis can be considered to be a more precise method for 

altering genotypes, without (or minimally) affecting phenotypes in comparison with other 

breeding methods commonly used in citriculture. 
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The goal of genetic engineering in crop improvement programs generally involves the 

modification of metabolic pathways in a manner that may alter plant development and/or fitness 

under real agricultural conditions at much more complex levels than those described here. 

However, particular attention should be paid to the selectable marker genes used, as they 

usually remain linked to the transgenes of interest, at least in vegetatively propagated crops. 

The detailed pleiotropic effects of selectable marker genes need to be understood, as they may 

influence the interpretation of scientific results when co-transforming genes of interest are being 

examined in transgenic plants [3]. Our research has shown that nptII and uidA did not induce 

pleiotropic effects on the main phenotypic plant characteristics of transgenic citrus trees. 

 

Conclusions 

 

We have demonstrated that the stable integration and expression of uidA and nptII 

transgenes for more than 7 years under orchard conditions has minimal effects on the main 

agronomic plant characteristics (tree morphology, phenology and fruit quality) of transgenic 

citrus lines compared to appropriate controls. Therefore, transgenic sweet orange and citrange 

lines carrying the selectable marker genes that are most commonly used in citrus transformation 

are substantially equivalent to the non-transformed controls during long-term agricultural 

cultivation. This information is essential to be able to focus mainly on the pleiotropic effects that 

may be induced by the insertion of gene(s) of interest in future experiments with GM citrus. 

 

Methods 

Plant materials and experimental field design 

 

The citrus transformants and controls used in this work (see Figure 1A) were generated 

previously in our laboratory. A. tumefaciens EHA 105 containing the binary plasmid 

p35SGUSINT was used in the different experiments as a vector for the transformation of plant 

materials from three citrus types: Pineapple sweet orange (C. sinensis L. Osb.) [35]; Carrizo 

citrange (Citrus sinensis L. Osb. X Poncirus trifoliata L. Raf.) [37,38] and Mexican lime (C. 

aurantifolia (Christm.) Swing.) [39]. Two gene cassettes in the T-DNA, 35 S-uidA(GUSINT)-35 S 

and NOS-nptII-NOS, served as the reporter and selectable marker genes, respectively. Six 

independent sweet orange transgenic lines derived from adult plant material (designated P3 to 

P8) and two derived from juvenile material (designated P1 and P2) were selected for the 

release. Non-GM regenerants obtained from these transformation experiments served as the 

control adult (PCA) and juvenile (PCJ) sweet orange lines. For the release, we also selected six 

independent transgenic citrange lines (designated C1, C3, C4, C5, C6 and C8) and one non-

GM regenerant, which was used as a control line (CC). Moreover, we included two off-type 

transgenic tetraploid lines (designated C2 and C7) in the orchard that were unintentionally 

obtained during the course of the experiments [33]. The Mexican lime plants included in the field 
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trial (named L1 to L8 and LC) were excluded from the study because they suffered severe 

symptoms from frost in several consecutive winters. 

The transgenic lines were chosen based on their high level of transgene expression and 

low copy number of transgene insertions. The plants were transferred to the orchard conditions 

in 1997, together with their respective non-GM controls. The experimental orchard, designated 

the T plot, was located at the Instituto Valenciano de Investigaciones Agrarias, Spain (latitude 

39º35”N, longitude 0º23”W and elevation of 50 m; typical Mediterranean climate), and was 

approved by the Spanish Ministry of Environment (permit Nr. B/ES/96/15). All of the scion types 

were grafted onto Carrizo citrange rootstock and grown in a loamy clay soil using drip irrigation. 

The orchard was managed as for normal citrus cultivation. The T plot, which covered an area of 

1.638 m2, contained 130 trees distributed in rows, as described in Figure 1C. Non-transgenic 

Clemenules clementine (C. clementina ex. Hort. Tan.) trees planted along an external edge 

were used as a buffer to prevent transgene flow through pollen dispersal [56]. It was designed 

to study long-term transgene integration/expression and the influence of transgenesis (the 

‘transgene’ effect) on the main phenotypic plant characteristics. 

 

Molecular characterization 

 

Southern blot analysis 

Genomic DNA was isolated from leaves according to Dellaporta et al. (1983) [57]. The 

Southern blot analysis was performed using 20 μg of EcoRI-, DraI-, HindIII- and DraI + ClaI-

digested samples, which were separated on 1 % (w/v) agarose gels and blotted onto nylon 

membranes (Hybond-N+, Amersham,, Buckinghamshire, UK). The filters were probed with a 

digoxigenin (Boehringer-Mannheim, East Sussex, UK)-labeled fragment corresponding to the 

coding region of the uidA or the nptII gene prepared by PCR following the supplier’s 

instructions. 

Histochemical and fluorimetric GUS assays and NPTII ELISA 

The histochemical GUS activity of the transgenic plants was analyzed as described in 

[37]. The GUS activity in the leaf samples was estimated by measuring the fluorescence emitted 

at 445 nm during the hydrolysis of 4-MUG to 4-MU [58]. The NPTII activity in leaf samples was 

quantitated using a commercial Patho Screen NPTII ELISA kit (Agdia Inc., Indiana, USA). The 

GUS and NPTII analyses were performed using crude protein samples extracted from the fully 

expanded leaves from each plant. The total protein was quantified using the Bradford assay. 

 

Phenotypic characterization 

 

Morphology 

To analyze the size of the trees, measurements of the height and average diameter for 

each tree were recorded at the end of the growing season. We defined the tree height (TH) as 

the highest point of the plant measured from the soil. The average diameter was calculated from 
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two independent measurements of the diameter of the tree obtained at different points. The tree 

canopy volume (TCV) was calculated by applying the volume formula for the ellipsoid, as 

follows: V = 0.524 h d2, where “h” is the TH and “d” is the average diameter of the tree. To study 

leaf morphology, the average leaf fresh weight (LFW) and average leaf area (LA) parameters 

were calculated for each tree. Measurements were performed using 30 adult leaves located in 

the intermediate zone of spring shoots. The area was measured using a LiCor 3100 C device 

(Nebraska, USA). 

Statistical analyses were performed using STATGRAPHICS Plus software, version 5.0. 

Each citrus genotype was analyzed separately. The data for each morphological variable (TH, 

TCV, LFW and LA) were analyzed using the Kruskal-Wallis non-parametric test to determine 

whether differences in the median values existed among the lines [59]. The effects of the 

‘transgene’, ‘ontogeny’ and ‘ploidy’ factors were tested by performing pertinent planned 

comparisons using the Mann–Whitney non-parametric test. We chose these tests because the 

data did not show clear normality or equal variances. Moreover, Kruskal-Wallis is a 

recommended as an alternative to parametric analysis of variance (ANOVA) for populations 

containing uneven sample sizes [60], as was the case in the present study. The Kruskal-Wallis 

test compares the medians instead of the means; therefore, we report the medians and 

interquartile ranges instead of the means and standard deviations for these variables. 

 

Phenology 

The phenological cycle of every tree in the orchard was evaluated through weekly 

observations and the recording of the predominant phenological stage of development 

according to BBCH codifications [61]. A visual representation of the phenological cycle of each 

line was produced by generating phenological calenders. 

 

Analysis of fruit quality 

The assessment of fruit quality for the sweet orange and citrange lines was performed 

for 3 and 4 consecutive seasons, respectively, starting in the 2004 production season in both 

cases. Measurements of quality parameters were performed based on fruit samples from every 

citrus tree in the T plot. A total of 30 fruits (six samples of 5 fruits each) per tree were harvested 

annually when the fruit was fully mature. The following fruit quality parameters were measured 

and averaged for each sample: fruit weight (W), fruit volume (V), caliber, the color index (CI), 

juice content (JC), total soluble solids (TSS), titratable acidity (TA) and maturity index (MI). The 

V was estimated via the water displacement method. To estimate the caliber, the equatorial 

diameter of the fruit was measured using MITUTOYO digital calipers (Ilinois, USA). The CI was 

determined according to the method described by Jiménez-Cuesta et al. (1981) [62]. The L (0–

100, black to white), a (± yellow/blue), and b (± red/green) parameters of the color system were 

measured using a Minolta CR-200 Chroma Meter (Osaka, Japan). The juice was extracted from 

the fruit and weighed, and the JC was expressed as a percentage on the basis of weight. 

Immediately after the extraction of the juice, the TSS was determined in terms of Brix degrees 
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using a refractometer (Atago PR-101 model 0-45 %, Tokyo, Japan). The TA of the juice was 

determined by titration with 0.1 mol L-1 NaOH and expressed as the percentage of anhydrous 

citric acid by weight, using phenolphthalein as a visual endpoint indicator, according to AOAC 

methods (AOAC. 1980. Official Methods of Analysis, 13th ed. N°46024 and N° 22061. 

Association of Official Analytical Chemists, Washington. DC). The MI was estimated as the 

TSS/TA ratio. The MI was estimated as the TSS/TA ratio. 

Prior to the statistical analysis, the quality variables were checked for normality, and 

those that deviated were transformed via log transformation. A double hierarchical analysis of 

variance was conducted using the General Linear Models procedure (GLM, for ANOVA with 

unbalanced data) to assess the influence of ‘line’ (independent variable) on the variance of each 

fruit quality parameter measured (dependent variable). The analysis was performed separately 

for each citrus type and season, and the model used was as follows: xij= μ+ linei + plant 

(line)j(i) + errork(ij). The main factor, ‘line’, included the C1, C2, C3, C4, C5, C6, C7, C8, and CC 

treatments for the citrange samples and the P1, P2, P3, P4, P5, P6, P7, P8, PCJ, and PCA 

treatments for the sweet orange samples. The hierarchical factor, ‘plant’, included the plant 

treatments within each level of ‘line’. The ‘plant’ effect was considered random, and it was used 

as the source of error for the ‘line’ effect. We used the restricted maximum-likelihood estimation 

technique to avoid negative estimates of variance. A posteriori, we used Dunnett’s test to 

address the effect of ‘transgene’ (each transgenic line vs. control) on each fruit quality variable. 

Additionally, the effects of ‘ploidy’ (2n vs. 4n) and ‘ontogeny’ (juvenile vs. adult) were also 

addressed in the citrange and sweet orange lines, respectively, by performing the 

corresponding planned (or a priori) contrasts/comparisons. The statistical analyses were all 

performed using the software package SAS version 8.02 (SAS Institute Inc., Cary, NC, USA), 

and a significance level (α) of 0.01 was taken into consideration to protect against Type I errors.  
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Additional file 1. Summary of the analysis of fruit quality for the transgenic sweet orange lines 

Season Line 

Sampling  Fruit quality parameter 

trees/ 

line 
samples/tree n1 n2 Weight (g) Volume (ml) Caliber (mm) Color Index JC (%) TSS (%) TA (%) MI (TSS/TA) 

S1 

(2004) 

PCJ 2 6 12 12  149.83 ± 3.08 182.25 ± 3.89 68.74 ± 0.53 12.23 ± 0.27 45.59 ± 0.92 13.09 ± 0.30 1.34 ± 0.03 9.77 ± 0.23 

P1 2 6 12 12  149.18 ± 5.03 171.18 ± 6.87 68.14 ± 0.90 14.88 ± 0.24 43.47 ± 1.19 13.13 ± 0.24 1.32 ± 0.01 9.98 ± 0.18 

P2 2 6 12 12  119.50 ± 2.14 138.75 ± 3.28 62.91 ± 0.38 11.98 ± 0.17 40.12 ± 0.46 12.80 ± 0.10 0.79 ± 0.02 16.25 ± 0.40 

PCA 6 6 36 36  150.22 ± 4.17 170.33 ± 5.24 67.72 ± 0.63 14.10 ± 0.25 42.10 ± 0.52 13.39 ± 0.08 0.81 ± 0.02 16.86 ± 0.42 

P3 2 6 12 12  155.33 ± 5.21 178.33 ± 6.08 69.39 ± 0.83 14.34 ± 0.39 46.44 ± 0.83 13.33 ± 0.13 0.87 ± 0.02 15.57 ± 0.52 

P4 2 6 12 12  154.08 ± 3.06 177.17 ± 4.17 69.16 ± 0.52 15.23 ± 0.19 41.61 ± 0.78 12.90 ± 0.07 0.97 ± 0.01 13.28 ± 0.17 

P5 2 6 12 12  121.92 ± 3.16 136.00 ± 3.43 61.90 ± 0.57 13.11 ± 0.35 47.04 ± 0.53 13.87 ± 0.09 0.86 ± 0.02 16.21 ± 0.39 

P6 2 6 12 12  128.42 ± 2.26 139.67 ± 3.86 63.49 ± 0.41 12.96 ± 0.16 43.13 ± 0.70 13.38 ± 0.09 0.94 ± 0.02 14.33 ± 0.25 

P7 2 6 12 12  137.00 ± 3.21 149.83 ± 3.41 65.76 ± 0.60 14.62 ± 0.21 41.88 ± 0.42 13.10 ± 0.09 0.91 ± 0.01 14.44 ± 0.18 

P8 2 6 12 12  144.58 ± 2.43 155.17 ± 2.78 66.61 ± 0.40 13.26 ± 0.21 44.05 ± 0.79 13.44 ± 0.10 0.81 ± 0.03 16.82 ± 0.63 

S2 

(2005) 

PCJ 2 6 12 8  239.38 ± 20.75 284.75 ± 40.11 80.60 ± 2.75 10.59 ± 0.16 41.76 ± 0.90 11.90 ± 0.32 1.15 ± 0.05 10.46 ± 0.45 

P1 2 6 12 8  230.00 ± 4.19 297.25 ± 10.45 81.62 ± 0.58 12.60 ± 0.18 43.84 ± 1.06 12.66 ± 0.13 1.43 ± 0.02 8.87 ± 0.18 

P2 2 6 12 8  166.88 ± 6.76 193.63 ± 18.14 68.73 ± 1.43 10.14 ± 0.32 39.67 ± 0.83 12.84 ± 0.27 0.99 ± 0.01 13.00 ± 0.28 

PCA 6 6 36 36  147.67 ± 4.67 162.61 ± 5.58 67.44 ± 0.70 14.02 ± 0.19 41.36 ± 0.67 12.01 ± 0.06 0.92 ± 0.01 13.12 ± 0.18 

P3 2 6 12 12  150.42 ± 9.53 161.00 ± 9.86 64.82 ± 1.90 12.43 ± 0.15 41.81 ± 0.49 12.09 ± 0.11 0.95 ± 0.03 12.82 ± 0.38 

P4 2 6 12 12  166.42 ± 14.17 186.08 ± 16.90 70.17 ± 2.07 13.01 ± 0.43 42.05 ± 0.89 12.13 ± 0.06 0.98 ± 0.01 12.42 ± 0.20 

P5 2 6 12 12  120.00 ± 2.51 127.17 ± 2.64 61.78 ± 0.52 12.90 ± 0.28 44.81 ± 0.67 12.78 ± 0.09 0.82 ± 0.03 15.84 ± 0.55 

P6 2 6 12 12  154.83 ± 3.96 167.17 ± 3.75 68.43 ± 0.63 13.76 ± 0.32 41.10 ± 0.72 12.37 ± 0.20 0.88 ± 0.02 14.01 ± 0.20 

P7 2 6 12 12  125.33 ± 5.20 134.17 ± 5.57 63.06 ± 0.97 14.43 ± 0.15 40.47 ± 0.83 12.50 ± 0.09 0.93 ± 0.01 13.49 ± 0.17 

P8 2 6 12 12  144.42 ± 4.84 156.50 ± 5.61 66.45 ± 0.85 12.81 ± 0.32 41.34 ± 0.91 12.54 ± 0.21 0.87 ± 0.01 14.53 ± 0.36 

S3 

(2006) 

PCJ 2 6 12 12  176.58 ± 3.95 199.00 ± 3.94 73.11 ± 0.64 12.36 ± 0.53 46.68 ± 0.43 12.13 ± 0.09 1.46 ± 0.02 8.33 ± 0.10 

P1 2 6 12 12  197.50 ± 10.49 221.17 ± 11.91 74.16 ± 1.24 13.71 ± 0.25 44.97 ± 0.64 12.15 ± 0.14 1.53 ± 0.03 7.97 ± 0.18 

P2 2 6 12 12  144.67 ± 2.65 161.17 ± 3.24 67.08 ± 0.52 11.89 ± 0.40 45.64 ± 0.33 12.29 ± 0.22 1.00 ± 0.03 12.33 ± 0.21 

PCA 6 6 36 24  216.54 ± 3.85 242.63 ± 4.68 76.22 ± 0.45 13.15 ± 0.17 44.39 ± 0.70 11.91 ± 0.11 0.85 ± 0.01 14.03 ± 0.16 

P3 2 6 12 6  196.00 ± 2.56 228.33 ± 5.76 73.97 ± 0.47 13.79 ± 0.34 46.63 ± 0.78 11.47 ± 0.19 0.99 ± 0.03 11.68 ± 0.32 

P4 2 6 12 8  237.75 ± 14.74 277.13 ± 18.83 79.27 ± 1.50 12.35 ± 0.23 43.35 ± 0.66 11.40 ± 0.20 1.05 ± 0.03 10.86 ± 0.18 

P5 2 6 12 12  159.58 ± 3.91 173.67 ± 5.08 68.48 ± 0.63 11.58 ± 0.31 45.78 ± 0.64 11.94 ± 0.07 0.88 ± 0.01 13.60 ± 0.23 

P6 2 6 12 12  170.25 ± 3.43 193.58 ± 4.03 71.15 ± 0.54 13.59 ± 0.36 43.16 ± 0.46 11.88 ± 0.07 0.94 ± 0.02 12.70 ± 0.27 

P7 2 6 12 12  176.50 ± 2.11 199.83 ± 2.40 72.18 ± 0.44 13.01 ± 0.35 44.73 ± 0.61 11.27 ± 0.11 0.90 ± 0.01 12.49 ± 0.13 

P8 2 6 12 12  177.25 ± 5.43 197.92 ± 6.70 71.72 ± 0.73 11.85 ± 0.40 44.23 ± 0.67 11.85 ± 0.09 0.88 ± 0.02 13.44 ± 0.19 

n1, theorical/planned sampling; n2, sampling carried out. The cases where yield was very scarce (n2 < n1) are shown in bold. 

Each value represents the average ± SE of the n2 samples analyzed per line and year. 

JC, juice content; TSS, total soluble solids; TA, titratable acidity; MI, maturity index 
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Additional file 2. Summary of the analysis of fruit quality for the transgenic citrange lines. Data are the average ± SE of the n samples analyzed per line and year. -, Not measured 

Season Line 

Sampling  Fruit quality parameter 

trees/ 
line 

samples/ 
tree 

n Weight (g) Volume (ml) Caliber (mm) Color Index JC (%) TSS (%) TA (%) MI (TSS/TA) 

S1 
(2004) 

CC 8 6 48  82.63 ± 1.03 96.67 ± 1.54 54.53 ± 0.29 8.61 ± 0.16 29.75 ± 0.54 11.10 ± 0.09 5.26 ± 0.05 2.12 ± 0.02 
C1 2 6 12  46.75 ± 1.97 56.50 ± 3.20 45.06 ± 0.73 8.16 ± 0.20 24.29 ± 1.15 12.27 ± 0.15 5.22 ± 0.11 2.36 ± 0.07 
C2 2 6 12  101.63 ± 4.78       126.50 ± 4.63 59.45 ± 0.92 8.13 ± 0.72 22.28 ± 1.61 11.79 ± 0.23 4.91 ± 0.24 2.43 ± 0.10 
C3 2 6 12  64.75 ± 2.35 77.50 ± 3.05 49.54 ± 0.46 7.73 ± 0.27 23.54 ± 1.27 11.69 ± 0.22 5.11 ± 0.11 2.30 ± 0.05 
C4 2 6 12  76.42 ± 2.32 86.58 ± 3.29 53.04 ± 0.55 8.28 ± 0.17 26.44 ± 0.68 12.13 ± 0.20 5.69 ± 0.06 2.13 ± 0.04 
C5 2 6 12  60.58 ± 2.15 67.83 ± 2.99 48.24 ± 0.66 8.82 ± 0.44 34.06 ± 1.30 10.70 ± 0.19 5.19 ± 0.09 2.07 ± 0.03 
C6 2 6 12  60.08 ± 2.04 72.17 ± 2.98 49.76 ± 0.55 8.26 ± 0.23 23.71 ± 1.48 11.69 ± 0.15 5.55 ± 0.12 2.11 ± 0.04 
C7 2 6 12  84.92 ± 2.39 104.83 ± 3.58 57.75 ± 0.66 9.27 ± 0.26 20.84 ± 0.69 11.78 ± 0.12 4.63 ± 0.08 2.56 ± 0.05 
C8 2 6 12  78.17 ± 1.77 93.00 ± 2.21 54.36 ± 0.43 9.76 ± 0.28 29.96 ± 1.22 11.28 ± 0.14 4.92 ± 0.07 2.30 ± 0.04 

S2 
(2005) 

CC 8 6 48  83.46 ± 1.79 96.58 ± 2.16 55.70 ± 0.44 2.08 ± 1.24 33.82 ± 0.35 11.83 ± 0.12 5.61 ± 0.08 2.12 ± 0.02 
C1 2 6 12  60.75 ± 1.88 74.75 ± 4.35 49.63 ± 0.57 -3.64 ± 1.37 31.75 ± 1.23 11.60 ± 0.17 5.34 ± 0.07 2.18 ± 0.04 
C2 2 6 12  102.67 ± 5.91 128.75 ± 7.70 62.30 ± 1.31 -1.82 ± 1.33 25.94 ± 1.11 11.49 ± 0.08 5.16 ± 0.08 2.23 ± 0.03 
C3 2 6 12  72.00 ± 4.06 81.50 ± 4.53 52.77 ± 0.94 1.57 ± 0.68 33.06 ± 0.80 11.70 ± 0.13 6.14 ± 0.08 1.91 ± 0.03 
C4 2 6 12  58.27 ± 0.96 67.64 ± 1.48 49.61 ± 0.33 8.57 ± 0.31 30.07 ± 0.64 13.40 ± 0.06 7.12 ± 0.08 1.88 ± 0.01 
C5 2 6 12  62.17 ± 2.57 71.33 ± 2.85 50.49 ± 0.72 8.35 ± 0.32 37.17 ± 0.68 12.38 ± 0.06 5.99 ± 0.07 2.07 ± 0.02 
C6 2 6 12  64.42 ± 2.83 73.50 ± 2.92 51.17 ± 0.76 7.84 ± 0.17 31.53 ± 0.57 13.43 ± 0.15 6.20 ± 0.11 2.17 ± 0.03 
C7 2 6 12  105.08 ± 1.80 121.58 ± 1.89 61.29 ± 0.39 9.27 ± 0.30 25.10 ± 0.59 12.38 ± 0.13 5.15 ± 0.12 2.41 ± 0.05 
C8 2 6 12  85.58 ± 2.01 95.92 ± 2.41 56.24 ± 0.49 8.60 ± 0.23 33.54 ± 0.59 11.59 ± 0.08 5.36 ± 0.05 2.17 ± 0.03 

S3 
(2006) 

CC 8 6 48  77.10 ± 1.24 86.71 ± 1.27 53.80 ± 0.31 4.50 ± 0.17 34.46 ± 0.51 10.66 ± 0.06 5.74 ± 0.08 1.88 ± 0.04 
C1 2 6 12  72.33 ± 1.97 82.00 ± 2.12 52.11 ± 0.57 4.53 ± 0.48 33.96 ± 1.07 10.62 ± 0.13 5.88 ± 0.11 1.81 ± 0.02 
C2 2 6 12  141.17 ± 7.93 168.08 ± 9.47 66.97 ± 1.40 2.71 ± 0.51 29.98 ± 0.78 10.57 ± 0.07 5.15 ± 0.08 2.06 ± 0.04 
C3 2 6 12  78.00 ± 0.96 87.58 ± 1.11 54.00 ± 0.23 3.74 ± 0.25 30.67 ± 0.68 10.63 ± 0.08 5.76 ± 0.05 1.85 ± 0.02 
C4 2 6 12  74.92 ± 3.42 82.50 ± 3.69 52.87 ± 0.96 4.64 ± 0.20 31.81 ± 1.14 11.17 ± 0.19 5.93 ± 0.12 1.89 ± 0.04 
C5 2 6 12  59.75 ± 2.35 67.00 ± 2.52 49.24 ± 0.72 5.60 ± 0.35 40.42 ± 0.90 11.55 ± 0.13 5.91 ± 0.10 1.96 ± 0.04 
C6 2 6 12  63.00 ± 0.99 71.33 ± 1.08 50.06 ± 0.26 4.53 ± 0.47 33.32 ± 0.79 11.03 ± 0.19 5.67 ± 0.12 1.95 ± 0.02 
C7 2 6 12  100.33 ± 3.03 117.67 ± 3.27 61.23 ± 0.62 5.68 ± 0.26 27.82 ± 0.65 10.87 ± 0.17 5.02 ± 0.06 2.17 ± 0.02 
C8 2 6 12  71.92 ± 2.07 81.33 ± 2.37 52.55 ± 0.62 4.45 ± 0.41 34.66 ± 0.94 10.39 ± 0.10 5.58 ± 0.08 1.87 ± 0.03 

S4 
(2007) 

CC 8 6 48  109.63 ± 2.86 123.29 ± 3.38 60.62 ± 0.58 - - - - - 
C1 2 6 12  80.33 ± 4.00 89.92 ± 4.79 54.16 ± 0.90 - - - - - 
C2 2 6 12  133.92 ± 4.72 160.50 ± 6.25 67.90 ± 0.88 - - - - - 
C3 2 6 12  102.33 ± 4.11 116.58 ± 4.70 59.58 ± 0.88 - - - - - 
C4 2 6 12  101.17 ± 3.33 114.75 ± 3.20 59.39 ± 0.62 - - - - - 
C5 2 6 12  75.92 ± 1.83 86.42 ± 2.62 53.38 ± 0.48 - - - - - 
C6 2 6 12  110.08 ± 5.18 119.92 ± 6.03 60.25 ± 1.10 - - - - - 
C7 2 6 12  139.00 ± 7.40 168.25 ± 9.65 67.49 ± 1.30 - - - - - 
C8 2 6 12  109.00 ± 2.35 122.25 ± 2.76 59.99 ± 0.52 - - - - - 
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Summary 

 

Oranges are a major crop and an important source of health-promoting bioactive 

compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic 

engineering could strengthen the fruit’s health benefits. In this work, we have afforded 

enhancing the β-carotene content of orange fruit through blocking by RNA interference the 

expression of an endogenous β-carotene hydroxylase gene (Csβ-CHX) that is involved in the 

conversion of β-carotene into xanthophylls. Additionally, we have simultaneously overexpressed 

a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange 

(CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short 

period time. Silencing the Csβ-CHX gene resulted in oranges with a deep yellow (‘‘golden’’) 

phenotype and significant increases (up to 36-fold) in β-carotene content in the pulp. The 

capacity of β-carotene-enriched oranges for protection against oxidative stress in vivo was 

assessed by using Caenorhabditis elegans as experimental animal model. Golden oranges 

induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the 

successful metabolic engineering of the β-carotene content (or the content of any other 

phytonutrient) in oranges and demonstrates the potential of genetic engineering for the 

nutritional enhancement of fruit tree crops. 
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Introduction 

 

Plants are a source of many phytonutrients, including nutrients (such as vitamins) and 

phytochemicals to which a beneficial physiological function has been directly or indirectly 

attributed (such as folates, carotenoids, flavonoids, isothiocyanates, glucosinolates, 

polyphenols, and glutathione). Phytonutrients are essential for human nutrition and contribute to 

the promotion of good health (Beecher, 1999; Block et al., 1992; Lampe, 1999; Nagura et al., 

2009). The bioactivity of phytonutrients has been, to a certain extent, associated with their 

antioxidant properties, such as the capacity to scavenge free radicals, which are involved in the 

onset and development of many chronic degenerative diseases (e.g., low density lipoprotein 

oxidation and atheroma plaque development, DNA oxidation and cancer, oxidation and aging) 

(Dröge, 2002). Moreover, evidence suggests that the beneficial effects of these bioactive 

molecules on human health at a nutritional and/or pharmacological level are higher when the 

phytonutrients are ingested regularly and in specific amounts as part of the diet rather than as 

dietary supplements (Asplund, 2002; Cooper, 2004; Guarnieri et al., 2007). Unfortunately, due 

to either low access to fruits and vegetables or consumer ignorance about the types and 

quantities of the right foods required for benefit, optimal levels of these substances are not 

always reached in the diet. The biofortification of crops can foster significant progress at a 

fundamental level by facilitating the elucidation of the relationship between diet and health and 

at an applied level by improving diets and reducing the risk of chronic diseases (reviewed by 

Martin et al. (2011)). In this context, genetic engineering has emerged as a powerful tool to 

introduce favorable changes in the metabolic pathways of plants to improve the quantity and 

bioavailability of phytonutrients, particularly antioxidants (Martin, 2012; Shukla and Mattoo, 

2009). 

Citrus is the most extensively produced and economically important fruit tree crop in the 

world and, among the 10.9 million tons (valued at $9.3 billion) of citrus products traded in 2009, 

sweet orange (Citrus sinensis L. Osbeck) accounted for approximately 60% of citrus production 

(FAO statistics, http://faostat.fao.org/default.aspx). Oranges contain an array of potent 

antioxidants, including carotenoids, vitamin C, and certain phytochemicals (i.e., flavonoids and 

phenolics), with potential health-promoting properties (Franke et al., 2005; Guarnieri et al., 

2007; Miyagi et al., 2000; So et al., 1996). Carotenoids are the main pigments responsible for 

the color of the peel and pulp of citrus fruits and greatly contribute to the fruit’s nutritional and 

antioxidant value. Although citrus fruits are a rich and complex source of carotenoids, the fruit of 

most orange varieties predominantly accumulates β,β-xanthophylls, which may represent more 

than 90% of the total carotenoids, with 9-Z-violaxanthin being the main carotenoid in the pulp of 

mature fruits (Alquézar et al., 2008b; Kato et al., 2004). However, the levels of other nutritionally 

important carotenoids (such as β-carotene) are considered suboptimal in these varieties. In 

addition to being the most potent dietary precursor of vitamin A, a large body of epidemiological 

and laboratory (in vitro, animal, and cell culture) studies suggest that β-carotene offers 

protection against certain age-related degenerative diseases, such as various cancers 
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(predominantly of the aero-digestive tract) (Bertram and Bortkiewicz, 1995; Chew et al., 1999; 

IARC, 1998; Mathews-Roth, 1982; van Poppel, 1996), type 2 diabetes (Abahusain et al., 1999; 

Montonen et al., 2005), and coronary heart disease (Gey et al., 1993; Shaish et al., 1995). 

These health-promoting effects are independent of pro-vitamin A activity and have most 

frequently been linked to the high antioxidant activity of β-carotene, which is one of the most 

efficient carotenoid singlet oxygen quenchers (Cantrell et al., 2003).  

Recent advances in the identification and isolation of the genes responsible for 

carotenogenesis in citrus fruits (Alquézar et al., 2008b; Kato et al., 2004) and the development 

of genetic transformation procedures for this crop type (Peña et al., 2008) enable the production 

of increased β-carotene levels in orange fruits via metabolic engineering of carotenoid 

biosynthesis. Specifically, in this work we sought to block by RNA interference (RNAi) in 

transgenic sweet orange plants the expression of an endogenous β-carotene hydroxylase gene 

(Csβ-CHX) involved in the conversion of β-carotene into xanthophylls (Figure S1). However, 

improving the nutritional quality of citrus fruits can be time consuming, laborious, and expensive 

because the plants’ long juvenile phase delays regular fruit production for years; most citrus 

types need 5-15 years to begin flowering and fruiting (Peña et al., 2008). Alternatively, early 

flowering has been achieved in transgenic trees, including citrus plants, by constitutively 

overexpressing flower meristem identity genes (Bohlenius et al., 2006; Endo et al., 2005; Peña 

et al., 2001; Weigel and Nilsson, 1995). Then, the fructification of β-CHX-transgenic plants has 

been accelerated by simultaneously overexpressing the FLOWERING LOCUS T gene from 

sweet orange (CsFT), a key regulator of the flowering transition. 

Analyzing the antioxidant ability of a fortified food would be the first step in studying a 

food’s effectiveness in exerting a specific health benefit (i.e., improved overall health or a lower 

risk of disease) (Shukla and Mattoo, 2009). However, the in vitro antioxidant capacity, which is 

often used as a claim, can be irrelevant to in vivo antioxidant effects because critical factors 

such as the bioavailability, metabolism, tissue distribution, dose/response, and toxicity of food 

bioactive compounds affect the true health benefits of engineered crops (Espín et al., 2007). 

Thus, preclinical animal studies have become an essential first step in testing the in vivo 

functionality of genetically engineered food. Here, we present a strategy to induce early fruit 

production and increase the β-carotene level in the pulp of sweet oranges by metabolic 

engineering. We also confirm the increased capacity of the enriched orange juice to enhance in 

vivo protection against oxidative stress by approximately 20% in an animal model. 

 

Results 

 

To increase β-carotene levels and simultaneously induce early fruit production in sweet 

orange plants, we constructed a binary vector, named HRP, containing both an intron-spliced 

hairpin (ihp) β-CHX RNAi cassette and an FT overexpression cassette (Figure 1a). We used 

this vector to transform seedlings via Agrobacterium tumefaciens-mediated T-DNA transfer. The 
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binary plasmid pROK2-CsFT, which was previously generated in our laboratory (for details see 

Data S1), served as the vector system for transforming control plants in this work (Figure 1a). 

 

 

 

The FT overexpression system induces an extremely early fruiting 

phenotype and two fruiting cycles per year in sweet orange plants 

 

Kanamycin-resistant regenerants obtained after performing transformation experiments 

with either the HRP vector or the pROK2-CsFT control vector (CV) were screened by PCR 

using primers specific to the CsFT transgene. Putatively transformed (PCR-positive) plants, 

designated as HRP and CV lines, respectively, were grafted onto vigorous non-GM citrus 

rootstocks in a greenhouse in April 2008 and subjected to phenotypic observation for three 

consecutive years. Whereas the wild type (WT) seedlings remained in the non-reproductive 

vegetative growth phase for the entire study period, the FT lines (either HRP or CV) flowered for 

 

Figure 1. Induction of early flowering in transgenic sweet orange (cv. Pineapple) plants containing a sweet 

orange FLOWERING LOCUS T (CsFT) overexpression cassette. (a) Schematic diagram of the T-DNA region of the 

HRP and control (CV) vectors used for plant transformation. LB and RB, left and right T-DNA borders, respectively; 

35Sp, CaMV 35S promoter; CHXi-AS and CHXi-S, antisense- and sense-oriented sequences, respectively, designed to 

silence the expression of the Csβ-CHX gene; PDK intron, pyruvate dehydrogenase kinase intron; OCSt, terminator 

region of octopine synthase gene; CsFT, FLOWERING LOCUS T from sweet orange; NPTII, neomycin 

phosphotransferase II selectable marker gene conferring kanamycin resistance; NOSt and NOSp, nopaline synthase 

terminator and promoter sequences, respectively. The transcription orientation for each cassette is indicated by black 

triangles. (b) Four selected HRP lines and one CV line, all carrying the CsFT transgene, exhibiting an early-flowering 

and fruiting phenotype compared with the WT control. All of the plants were obtained from seedling plant material, and 

the photograph was taken one year after grafting in the greenhouse. (c) Representative fruits from CV plants at the full-

color stage after 18 months of cultivation in the greenhouse. 
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the first time in June 2009 or, at the latest, in June 2010. The FT lines not only produced fruits in 

an extremely short period of time (approximately one year after being grafted in the 

greenhouse) but also had two effective fruiting cycles per year instead of one. None of the FT 

transformants exhibited morphological features typical of juvenility (i.e., vigorous growth and 

thorniness). Indeed, they remained stunted, showing smaller leaves than WT seedlings (Figure 

1b). Early flowering and fruiting confirmed the effective integration and expression of the FT 

cassette in all of the HRP and CV transformants. Moreover, the FT transgenic fruits developed 

normally (Figure 1c). 

 

Transgenic HRP lines harboring intact copies of the β-CHX RNAi 

cassette produce fruits with a golden coloration 

 

The presence and integrity of the β-CHX RNAi cassette, as well as the number of 

transgene DNA loci integrations, were assayed in the HRP lines by Southern blot analysis (Data 

S1 and Figure S2). The HRP lines that did not flower the first year after grafting (2009) or did 

not set enough number of mature fruit were excluded from the analysis. DNA restriction with 

either NotI or ClaI, followed by Southern blot hybridization with a 35S promoter-specific probe 

revealed that plant lines HRP6, HRP11, and HRP12 contained one or two non-truncated copies 

of the β-CHX RNAi cassette (Figure S2b). This result was confirmed by digestion with either 

NotI or KpnI, followed by hybridization with a CHXi-specific probe (Figure S2c). Then, based on 

their low loci number and whole-transgene integrity (Figure S2b,c), plant lines HRP6, HRP11, 

and HRP12 were selected for propagation and investigated in detail in successive seasons.  

During the first stages of development (immature green, mature green, and breaker), 

the fruits from the selected HRP6, HRP11, and HRP12 lines were visually indistinguishable from 

fruits transformed with the CV. However, at the full-color stage, the HRP fruits developed an 

orange-yellow color, whereas the CV fruits exhibited the bright orange coloration typical of 

sweet oranges. The difference in the coloration of the fully mature fruits from the HRP lines was 

easily distinguishable in the flavedo (outer colored part of the peel), pulp (internal juice 

vesicles), and juice (Figure 2a). There were no substantial color differences between the three 

HRP lines, and this golden phenotype remained stable in all three fruiting seasons and after 

propagation by grafting onto different rootstocks. Significant differences in the external 

coloration (P < 0.01) of the HRP and CV fruits were confirmed by measuring the flavedo color 

index (CI) at maturity (Figure 2b). To ensure complete fruit maturity at the time of measurement, 

all fruits were sampled when fully colored, and the internal maturity index (MI) was assayed. 

Because no significant differences in the MI were detected in the HRP and CV fruits (Figure 2b), 

the differences in coloration cannot be attributed to an incomplete maturation of the HRP fruits. 

Rather, changes in the carotenoid content and/or profile are the most likely explanation. 
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Silencing of Csβ-CHX results in increased β-carotene in the pulp 

 

The golden phenotype of fruits from the transgenic lines containing the RNAi construct 

suggests that β-CHX gene expression is suppressed in the HRP fruits. We therefore examined 

endogenous Csβ-CHX mRNA abundance in fully mature fruits from the transgenic lines HRP6, 

HRP11, and HRP12 in comparison with the mature fruits of the CV lines by quantitative reverse 

transcription PCR (qRT-PCR). While the target carotenoid biosynthetic gene was readily 

expressed in the flavedo and pulp of the CV plants, Csβ-CHX transcript accumulation was 

highly reduced (up to 39-fold) in both tissues of the HRP lines (Figure 3a). 

To estimate carotenoid accumulation in the edible part of the transgenic fruits, we 

conducted comparative profiling of the carotenoid content and composition of pulp samples 

collected at the full-color stage by high-performance liquid chromatography (HPLC). The results 

revealed that, consistent with the silencing of the Csβ-CHX gene, the levels of β-carotene were 

significantly increased (up to 36-fold) in fruits from the three HRP lines compared with the CV 

fruits (Figure 3b; Table 1). In the best-performing HRP line, the pulp accumulated 114.0 ng β-

carotene/g fresh weight (FW) on average, while this carotenoid was barely detectable in the CV 

lines (Table 1). A similar trend was observed for α-carotene, whose content increased (up to 45-

fold) in the HRP lines but reached lower absolute amounts compared with β-carotene (47.2 ng/g 

of FW in the best-performing line). By contrast, a slight reduction in xanthophyll content was 

detected in the pulp of the HRP lines compared with the CV lines, particularly for β,β-branch 

xanthophylls (which comprise β-cryptoxanthin, zeaxanthin, antheraxanthin, violaxanthin, and 

neoxanthin) (Figure S1). Despite this decrease, the β,β-xanthophylls remained the  major 

 

Figure 2. Golden phenotype of fruits from transgenic sweet orange (cv. Pineapple) plants carrying an ihp β-CHX 

RNAi cassette (HRP). (a) Phenotype of fruits from the selected HRP6, HRP11, and HRP12 lines, which display a 

golden color at the full-color stage. Representative HRP (upper row) and CV (lower row) sweet orange plants (left), 

whole and cross-sectioned fruits (middle), and juice (right). All scale bars, 5 cm. (b) Flavedo color index (CI) and internal 

maturity index (MI) of fruits from the three HRP and CV transgenic lines at the full-color stage. The data represent mean 

values ± SEM and are derived from at least three fruits from two independent plants per line analyzed in three different 

fruiting seasons. A statistical analysis of differences between average HRP fruits and average CV fruits was conducted 

using Student’s t-test, and the significance of the differences are indicated (**, P < 0.01). L, a, b, Hunter color values; 

SSC, solid soluble content; TA, titratable acidity. 
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Figure 3. Quantitation of Csβ-CHX transcript levels and HPLC analysis of pulp carotenoids in transgenic fruits. 

(a) qRT-PCR analysis of Csβ-CHX expression in the flavedo (black bars) and pulp (gray bars) of full-colored fruits from 

the CV and HRP6, HRP11, and HRP12 lines. The Csβ-CHX transcript accumulation, normalized to the CsACT levels, is 

expressed relative to accumulation in the flavedo of CV fruits and was analyzed in at least six independent technical 

replicates (using two different 96-well plates). The data for the CV represent the average of data for two independent CV 

lines. (b) Representative HPLC chromatograms of the carotenoid profiles of orange pulp from HRP11 and CV 

transgenic plants, with the retention time shown on the x-axis and the intensity shown on the y-axis. E-Vio, all E-

violaxanthin; 9Z-Vio, 9-Z-violaxanthin; Lut, lutein; Zea, zeaxanthin; Ant, antheraxanthin; Phy, phytoene; α-Cry, α-

cryptoxanthin; Phytf, phytofluene; β-Crypt, β-cryptoxanthin; ζ-Car, ζ-carotene; α-Car, α-carotene; β-Car, β-carotene. 
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carotenoids in the pulp of the HRP lines (mainly 9-Z-violaxanthin), accounting for approximately 

80% of the total carotenoids, whereas in the CV lines, the β,β-xanthophylls represented more 

than 90% of the total carotenoids. Consistent with the reduction in xanthophyll content (the 

major carotenoid compounds in pulp), a reduction in total carotenoids was observed in the HRP 

lines (Table 1). The levels of the colorless linear carotenes at the early steps of the biosynthetic 

pathway (phytoene, phytofluene, and ζ- carotene) (Figure S1) were not significantly different 

from the levels achieved in the CV pulp (Table 1). In summary, the distribution of carotenoid 

species indicated that the β-CHX RNAi construct promoted the silencing of the Csβ-CHX gene 

in the sweet orange pulp, resulting in the accumulation of significant amounts of β-carotene and 

α-carotene accompanied by a mild general decrease in the downstream products of β-

hydroxylation (xanthophylls). 

 

 

 

Table 1 Comparative analysis of carotenoid content and composition in pulp samples from transgenic lines. 

 
 

Total  
carotenoids

 
Lineal 
carotenes β-carotene α-carotene 

β.β-
xanthophylls 

ε.β-
xanthophylls 

CV 12060.4 ± 1412.1 97.5 ± 23.3 3.1 ± 1.9
 

1.0 ± 0.7
 11015.6 ± 

1327.0 
943.1 ± 113.6 

% 100.0 0.8 0.0 0.0 91.3 7.8 

HRP6 6509.2 ± 944.0 135.6 ± 64.5 98.3 ± 7.5 47.2 ± 3.8 5363.3 ± 991.5 864.7 ± 76.8 

% 100.0 2.1 1.5 0.7 82.4 13.3 

Fold variation -1.9 1.4 31.4*** 45.2*** -2.1 -1.1 

HRP11 4187.3 ± 493.6 38.8 ± 15.2 114.0 ± 2.1 27.1 ± 7.5 3511.8 ± 453.4 495.7 ± 73.6 

% 100.0 0.9 2.7 0.6 83.9 11.8 

Fold variation -2.9* -2.5 36.4*** 26.0*** -3.1* -1.9 

HRP12 1885.5 ± 646.0 33.6 ± 17.8 60.4 ± 12.7 11.3 ± 7.6 1505.9 ± 611.8 274.3 ± 47.5 

% 100.0 1.8 3.2 0.6 79.9 14.5 

Fold variation -6.4** -2.9 19.3*** 10.8* -7.3** -3.4* 

The values are the means ± SEM of at least three independent measurements and are given in ng/g of FW. For each 
line, the percentage of each carotenoid or group of carotenoids was calculated on the total carotenoid content. The total 
content of carotenoids was assessed as the sum of the content of individual pigments. The fold variation with respect to 
the CV is reported for each carotenoid or group of carotenoids and for each HRP line. The asterisks indicate the 
significance of the fold variation according to Student’s t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001). 
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Establishment of a C. elegans system to evaluate the in vivo 

antioxidant effect of orange juice 

 

C. elegans has been widely used as a model to study the in vivo antioxidant capacity of 

different pure compounds and certain plant extracts (Artal-Sanz et al., 2006; Martorell et al., 

2011; Martorell et al., 2012; Van Raamsdonk and Hekimi, 2010) but not the juice from fruits or 

vegetables. Therefore, it was necessary to optimize certain essential aspects concerning the 

experimental method prior to performing the bioassays with the orange fruit. First, based on 

preliminary dose-response experiments performed with commercial pasteurized orange juice 

(data not shown), a range of 1-2% (by vol.) was chosen as the optimal range for 

supplementation of the nematode growth medium (NGM) to test antioxidant effect. At higher 

doses, antioxidant effect was also observed but reaching levels close to saturation. 

Subsequently, when including the food matrix under study (not-sterilized pulp powder samples 

obtained from orange fruits) at a concentration of 2% in the NGM, microbial contamination was 

detected in the supplemented medium during the course of experiments. Therefore, it was 

necessary to establish a sample sterilization system prior to the supplementation of the NMG 

with pulp (for details, see Data S1 and Figure S3). 

Another important task was to confirm the intake of the orange-pulp extracts by the 

nematodes during the optimized culture protocol. Therefore, intake confirmation experiments 

were performed by feeding worm populations with WT pulp extracts and using the NGM without 

supplementation as a control (see Experimental procedures). As the only purpose of this 

experiment was confirming the intake of pulp (and not the biological response of nematodes), 

we decided to use a high dose of supplementation (20%), which greatly facilitated the detection 

of carotenoids in the worm extracts. The two conditions yielded worm pellets of differing color; 

the nematodes fed with the pulp extract were slightly orange (Figure 4a). Afterward, HPLC 

analysis of the lysed worm pellets indicated the presence of violaxanthin in the nematodes fed 

with WT pulp extracts, whereas no carotenoid was detected in the control sample (worms fed 

with NGM) (Figure 4b,c), thus confirming the intake and bioassimilation of pulp extract by C. 

elegans. 
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β-carotene-enriched (HRP) orange juice exerts a much higher 

antioxidant effect than control (CV) juice in C. elegans 

 

To investigate whether the levels of β-carotene achieved were sufficient to offer 

antioxidant properties in a dietary context, we tested diets supplemented with orange pulp in C. 

elegans. The two samples compared in the bioassay (pulp extracts from the HRP or CV fruits) 

were processed according to the method described in Data S1. After processing and measuring 

the content of carotenoids and vitamin C (Data S1; Table S1), the samples were added to the 

NGM agar plates at a final concentration of either 1% or 2% (by vol.). In our trials, we also 

included two additional feeding conditions that served as internal experimental controls: NGM 

without supplementation (negative control) and NGM supplemented with vitamin C (a well-

known antioxidant compound) at 0.1 µg/mL. As shown in Figure 5, both doses of 

supplementation (1% and 2%) demonstrated the positive effect of the citrus pulp extracts (and, 

in particular, the HRP pulp extract) on resistance against oxidative stress in C. elegans. 

However, 2% was chosen as the optimal dose for supplementation because better protection 

was observed (Figure 5b). The animals fed with CV pulp extract had a survival rate of 52%, 

which was significantly (P < 0.01) higher than the rate obtained in the negative control condition 

(34%) and similar to the rate obtained for the worms fed with vitamin C (46.13%). More 

interestingly, the animals fed with the HRP pulp extract had a survival rate of 71.67%, which 

 

Figure 4. Bio-assimilation of pulp extracts by C. elegans. (a) Comparison of worm pellets (not disrupted) obtained 

after feeding with wild type pulp extracts (20%) (NGM + PULP) or a standard diet (NGM), showing significant increases 

in the levels of colored carotenoids in worms fed with the citrus pulp. (b) HPLC analysis of carotenoids in disrupted 

worms previously fed with NGM + PULP or NGM, with the retention time shown on the x-axis and the intensity shown 

on the y-axis. (c) Total violaxanthin levels as measured by HPLC analysis of worms fed with NGM + PULP or NGM and 

normalized to the total protein content in the worm samples. E-vio, E-violaxanthin; 9-Z-vio, 9-Z-violaxanthin; ND, not 

detected. 
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represented a significant (P < 0.01) increase of approximately 20% compared with the survival 

rate observed in the CV pulp extract-fed worms (Figure 5b). These results demonstrate that the 

worms fed with the β-carotene-enriched orange pulp were more resistant to the oxidative 

stressor hydrogen peroxide than worms fed with the control orange pulp. 

 

 

 

 

Finally, to study whether the observed antioxidant effect of HRP pulp was related to the 

β-carotene, we performed oxidative stress response assays in C. elegans with exogenous pure 

β-carotene at a dose equivalent to the amount of β-carotene present in the HRP pulp extract 

(3µg/mL). We also included in the bioassays a 10-fold higher dose of β-carotene 

supplementation (30µg/mL) and the standard nematode diet as control. Results showed a 

significantly higher (p < 0.01) antioxidant effect of β-carotene at a dose of 3µg/mL compared to 

the NGM control condition; at a 10-fold higher dose, greater effect was observed (Figure 5c). 

These results confirmed the antioxidant capacity of β-carotene. However, the fact that the 

survival rate obtained by feeding worms with the HRP pulp extract (71.67% worm survival, 

Figure 5b) was higher than that achieved with pure β-carotene at 3µg/mL (52% worm survival, 

 

Figure 5. Antioxidant activity of orange pulp extracts and pure β-carotene in C. elegans. (a and b) Survival of C. 

elegans treated with 2 mM H2O2 on NGM agar plates, with β-carotene-enriched (HRP) or control (CV) pulp extract 

supplementation at 1% (a) or 2% (b). The HRP pulp extract tested in the bioassays was obtained from mixtures of pulp 

from the HRP6, HRP11, and HRP12 lines. The standard diet (NGM) and a diet supplemented with vitamin C (0.1 

µg/mL) were used as negative and positive control treatments, respectively. (c) Survival of C. elegans treated with 2 mM 

H2O2 on NGM agar plates, with or without β-carotene supplementation. Doses of supplementation with pure β-carotene 

used were 3 µg/mL (βCAR 3) or 30 µg/mL (βCAR 30). The trials were performed in triplicate (100 worms scored per 

condition). In each experiment, the mean values ± SEM are presented, and treatments labeled with different letters are 

significantly different at P < 0.01 using Fisher’s Protected LSD test. 
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Figure 5c) suggests that this particular background food matrix (orange pulp) enhances the 

antioxidant effect of increased β-carotene. 

 

 

Discussion 

 

The possibility that dietary intervention via nutrition-enriched food may significantly 

decrease the incidence of certain chronic degenerative diseases, in conjunction with increased 

public awareness of the nutritional benefits of antioxidants for human health, has catalyzed 

scientific efforts to increase many bioactive constituents in fruits and vegetables (Davies, 2007; 

Hossain and Onyango, 2004; Shukla and Mattoo, 2009). Although conventional breeding is one 

means of achieving this goal (Nestel et al., 2006; Mayer et al., 2008), the genetic diversity 

available within the sexually compatible species of any given crop limits the extent of 

improvement. In this regard, genetic engineering has become a refined tool to increase the 

antioxidant and nutrient capacity of economically important crops, not only to achieve levels 

favorable for highly nutritional diets but also to enable in-depth studies on the relationships 

between diet, genetics, and metabolism (Christou and Twyman, 2004). Moreover, a Fast-Track 

system, as the one used here based on the ectopic overexpression of CsFT in juvenile plants, 

greatly facilitates addressing metabolic engineering strategies aimed at improving fruit quality in 

plant species requiring many years to begin to flower and set fruits. To our knowledge, this is 

the first report in which this Fast-Track system has been successfully used for that purpose, 

opening the possibility for rapid characterization of fruit quality traits achieved by transgenic 

approaches in citrus and other fruit tree crops. 

The important contribution of carotenoids to the nutritional value and healthy properties 

of certain fruits and vegetables has led to attempts to induce or increase carotenoid levels in 

foods, particularly β-carotene, through metabolic engineering of carotenoid biosynthesis (e.g., 

tomato, maize, rice, potato, and canola seeds; reviewed in (Botella-Pavía and Rodríguez-

Concepción, 2006; Della Penna and Pogson, 2006)). Sweet orange fruit is an excellent 

candidate for the transgenic enhancement of β-carotene content. Increased levels of β-carotene 

(a lipophilic antioxidant) would complement vitamin C (a hydrophilic antioxidant highly abundant 

in oranges) because it is generally thought that foods rich in both soluble and membrane-

associated antioxidants offer the best protection against disease (Yeum et al., 2004). 

Additionally, other factors, such as the low complexity of the food matrix, would potentially 

enhance the absorption and bioavailability of the increased β-carotene in oranges (de Pee et 

al., 1998). In this work, we have shown that RNAi-mediated silencing of Csβ-CHX, which 

regulates an important step in orange carotenogenesis, induces the accumulation of high levels 

of β-carotene in oranges (up to 36.4-fold with respect to control fruits). This increase was 

accompanied by a general, mild decrease in the accumulation of downstream xanthophylls. 

This result is consistent with the findings of other studies, in which increases in one carotenoid 

were found to occur at the expense of others (Fraser et al., 2002), suggesting feedback 
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inhibition or rate-limiting steps within the carotenoid biosynthetic pathway and/or possible 

saturation of the carotenoid storage capacities within citrus fruits (Lu et al., 2006). The 

unexpectedly slight decrease of xanthophyll concentration in β-carotene-enriched oranges may 

be explained by the presence of a second putative β-CHX in the sweet orange genome 

(http://citrus.hzau.edu.cn/orange/, http://www.phytozome.net/) that would not be silenced by the 

RNAi strategy used here because its transcripts do not show enough sequence homology with 

Csβ-CHX RNA targets. Therefore, activity of the second putative β-CHX could likely 

counterbalance, at least in part, the very low Csβ-CHX transcript levels found in golden orange 

fruits. 

Various vegetable and fruit crops have been transformed with the objective of 

enhancing the concentration of health-promoting phytonutrients, with special attention to 

antioxidants (Davies, 2007; Newell-McGloughlin, 2008; Shukla and Mattoo, 2009). Although 

most studies have successfully increased the amount of the target metabolite(s), only a few 

studies have also evaluated the antioxidant capacity of the enriched foods (Butelli et al., 2008; 

Rein et al., 2006). In this study, we have developed a straightforward experimental system that 

permits the characterization of the biological activity of transgenic citrus fruit in vivo in an 

inexpensive manner using C. elegans as a model organism for the functional analysis of orange 

juice. 

We have engineered an increased level of β-carotene in sweet oranges, and C. elegans 

studies indicate that this level is sufficient to impart a substantial protective effect against 

oxidative damage when orange juice is included as part of the regular diet. The biofortified 

oranges exerted a higher protective effect than control oranges despite its slightly lower content 

of xanthophylls (oxygenated carotenoids also described as dietary antioxidants (Haegele et al., 

2000)), which supports the strong antioxidant effect of dietary β-carotene reported in previous 

studies (Jialal et al., 1991; Meydani et al., 1994; Nakagawa et al., 1996). The effect of dietary β-

carotene against oxidative stress achieved in this work (70% worm survival after hydrogen 

peroxide treatment) is similar to the effect reported for cocoa polyphenols (Martorell et al., 2011) 

and Tonalin (a conjugated linoleic acid commercial mixture) (Martorell et al., 2012). The 

mechanism of the antioxidant activity of β-carotene is related to this compound’s hydrophobic 

character and ability to quench singlet oxygen and deactivate free radicals (Burton and Ingold, 

1984; Rice-Evans et al., 1997). There is evidence indicating that the efficacy of β-carotene (as 

well as the efficacy of other phytonutrients) is heavily influenced by nutritional context (Hadad 

and Levy, 2012; Palozza and Krinsky, 1992; Shaish et al., 1995). Consistent with this finding, 

we observed that the level of resistance to oxidative stress achieved with exogenous pure β-

carotene was lower than the levels of protection reached with the biofortified oranges, though 

both feeding conditions supplied diets with equivalent concentrations of β-carotene. This result 

indicates that the orange juice nutritional context has a substantial influence on the impact of 

dietary β-carotene, either through synergistic interactions with other constituents of the food 

matrix or through effects on bioavailability. 
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Experimental procedures 

 

Generation of citrus transformants 

 

A binary vector (HRP) was constructed that contained both an ihp β-CHX RNAi cassette 

and an FT overexpression cassette. The details of the construction are provided in the Data S1. 

After the HRP construct was confirmed by restriction mapping and DNA sequence analysis, the 

plasmid vector was transferred to A. tumefaciens strain EHA105 by electroporation and used to 

transform sweet orange plants (cv. Pineapple). The binary plasmid pROK2-CsFT, which 

contains a CsFT overexpression cassette, was used as the vector system for transforming 

control plants (Data S1). In both cases, the transformation of epicotyl explants from citrus 

seedlings was performed as previously described (Peña et al., 2001). The regenerated shoots 

obtained after kanamycin selection were screened by PCR using primers specific for the CsFT 

chimeric cassette. To avoid nonspecific amplification of the endogenous FT gene(s), the 

primers 35Sfinal-F (5’-CACAATCCCACTATCCTTCG-3’) and FTCs2 (5’-

GGGATTGATCATCGTCTGAC-3’), which amplified the region encompassing the end of the 

35S promoter and the entire CsFT transgene, were used to screen the transformants. The PCR 

program used was 95 ºC for 5 min, 30 cycles of 95 ºC for 30 s, 58 ºC for 30 s, and 72 ºC for 1 

min, followed by 72 ºC for 10 min. All PCR-positive shoots were shoot-tip grafted onto Troyer 

citrange (C. sinensis L. Osb. x Poncirus trifoliata L. Raf.) seedlings growing in vitro (Peña et al., 

2008). Three to five weeks after shoot-tip grafting, the plantlets were grafted again in a 

greenhouse onto 5-month-old Carrizo citrange seedlings. The putatively transformed Pineapple 

sweet orange plants were maintained in greenhouses for 3-4 years and grafted onto different 

citrus rootstocks for further analyses. 

 

Plant material, color index and internal maturity index 

 

Fully ripened fruits of the transgenic HRP and CV lines were harvested during three 

consecutive seasons. The Color index (CI) of each fruit was measured with a Minolta 

colorimeter (model CR-200; Minolta Co. Ltd., Osaka, Japan) by taking three measurements in 

the equatorial zone of each fruit. The mean values of the lightness (L), red-green (a), and 

yellow-blue (b) Hunter parameters were calculated for each fruit, and presented as previously 

described (CI = 1000a/Lb) (Jiménez-Cuesta et al., 1981). 

After color measurement, part of the flavedo and pulp tissues was separated with a 

scalpel, frozen in liquid nitrogen, ground to a fine powder, and stored at -80 ºC until analysis. 

Juice was extracted from the remaining pulp of each fruit and immediately analyzed. The 

titratable acidity (TA) of the juice was determined by titration with 0.1 N NaOH solution using 

phenolphthalein as an indicator and expressed as grams of citric acid per 100 mL of juice. The 

soluble solids content (SSC) was determined by measuring the refractive index of the juice 
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(Atago Digital Refractometer PR-101 model 0-45%; Atago Co., Ltd., Tokyo, Japan), and the 

data were expressed as ºBrix. The Maturity Index (MI) was estimated for each fruit from the 

SSC/TA ratio. 

 

qRT-PCR 

 

RNA extractions were performed from flavedo and pulp samples using the RNAeasy 

Plant Mini Kit (Qiagen, Hilden, Germany). The total RNA preparations were treated with 

recombinant DNase I (RNase-Free DNase Set; Qiagen) for complete genomic DNA removal, 

and the resultant RNA was accurately quantified in triplicate using a NanoDrop®ND-1000 

(NanoDrop products, Wilmington, DE, USA) spectrophotometer. Gene expression analysis was 

performed by a two-step real-time qRT-PCR method. First-strand cDNA was synthesized from 2 

μg of each DNase-treated RNA in 20 µL using oligo(dT)18 and a SuperScript™ II Reverse 

Transcriptase kit (Invitrogen) according to the manufacturer’s instructions. After synthesis, the 

cDNA was subjected to a 20-fold dilution with RNase-free water (Sigma-Aldrich, St. Louis, MO, 

USA). Subsequent qPCR reactions were performed with a LightCycler®480 Instrument 

(Roche), and fluorescence was analyzed using LightCycler®480 Software. The primer pair and 

reaction conditions used for Csβ-CHX target gene amplification were obtained from Alquézar et 

al. (2009). Normalization was performed using the expression levels of the ACTIN gene from C. 

sinensis (CsACT) (Romero et al., 2012). Fluorescence intensity data were acquired during the 

72 ºC extension step, and the specificity of the reactions was verified by analyzing the post-

amplification dissociation curves. Melting curve analysis confirmed the presence of a single 

PCR product from all samples with no primer-dimers. The relative expression of the target gene 

(Csβ-CHX) normalized to the expression of the housekeeping gene (CsACT) was calculated 

following the mathematical model described by Pfaffl (2001). cDNA from the flavedo of the CV 

lines at the full-colored stage was used as a calibrator sample, and the rest of the values were 

expressed relative to this sample’s value. The PCR efficiency values for Csβ-CHX and CsACT 

were approximately equal and were calculated by generating respective standard curves using 

cDNA serial dilutions. The values reported are the mean ± SEM of at least two independent 

assays. Each assay included (in triplicate) a standard curve, a no-template control, and 1 μL of 

each test and calibrator cDNA.  

 

Carotenoid extraction and analysis 

 

The extraction of carotenoids from the pulp of the sweet oranges followed a previously 

described protocol (Alquézar et al., 2008b). The extracts were dried by rotary evaporation and 

stored under a nitrogen atmosphere at -20 ºC until HPLC analysis. Carotenoid extracts were 

prepared for HPLC analysis by dissolution in 30 μL of chloroform:MeOH:acetone (5:3:2 by vol.), 

and a 25-μL aliquot was immediately injected. The HPLC analysis method was described 

previously (Alquézar et al., 2008b). Carotenoids were identified by their retention time, 
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absorption, and fine spectra (Britton, 1998). The carotenoid peaks were integrated at their 

individual maximum wavelengths, and the peaks’ content was calculated using calibration 

curves of β-carotene (Sigma) for α- and β-carotene; β-cryptoxanthin (Extrasynthese, Lyon, 

France) for α- and β-cryptoxanthin; zeaxanthin (Sigma) for zeaxanthin; and antheraxanthin and 

lutein (Sigma) for lutein, violaxanthin, and neoxanthin isomers. Phytoene and phytofluene 

standards for quantification were obtained from flavedo extracts of Pinalate sweet oranges, 

which accumulate large amounts of these compounds (Rodrigo et al., 2003), and were then 

purified by TLC (Pascual et al., 1993). Quantification was performed using Empower 

chromatography software (Waters Corp., Milford, MA, USA). Carotenoids were measured for a 

minimum of three different fruits from two different plants per line and three consecutive fruiting 

seasons. 

 

Worm feeding studies 

 

Strains and maintenance conditions: The C. elegans strain used in this study (WT 

Bristol N2) and Escherichia coli OP50 were obtained from the Caenorhabditis Genetics Center 

at the University of Minnesota. The worms were maintained at 20 ºC on NGM (3 g/L NaCl, 2.5 

g/L peptone, 5 g/L cholesterol, 1 M MgSO4, and 1 M KPO4, pH 6.0) agar plates on a lawn of E. 

coli OP50. 

Intake confirmation experiments: A sample processing system was established 

suitable for including citrus pulp in the nematode growth medium (NGM) (for details see Data 

S1). The intake confirmation experiments were performed with synchronized populations of the 

C. elegans WT strain Bristol N2. The nematodes were cultured on NGM or NGM supplemented 

with WT pulp extract (20%), and eggs were recovered in 50 plates per condition. Embryos were 

incubated at 20 ºC until reaching the young-adult stage (3 days old). The worms were then 

recovered with M9 buffer and washed three times to eliminate the E. coli OP50 present in the 

media. An additional 2 h of incubation in M9 buffer was performed to facilitate the removal of gut 

microbiota from the nematodes. Once the supernatant was discarded, the worm pellets 

(containing approximately 12,500 worms per condition) were recovered in Eppendorf tubes and 

disrupted by sonication (three pulses, 10 W, 20 s/pulse). The evacuated and washed worms 

were rotated gently for 3 min at 4 °C to form a loose pellet, and the supernatant was carefully 

removed with a pipette. The worm pellets were ground to a powder with a micropestle 

(Eppendorf, Hamburg, Germany) and liquid N2. Acetone was then added to the powder (0.5 

mL), followed by vortex-stirring for 1 min and centrifugation for 2 min at 13,000 rpm (4 °C). Upon 

centrifugation, the acetone extracts were recovered, and the pellet was re-extracted with 

acetone. The colorless pellets were stored at -20 °C until subsequent measurements of protein 

content. Pooled acetone extracts were dried under a nitrogen atmosphere at 30 °C until 

reducing their volume to approximately 0.5 mL, after which the extracts were sequentially 

washed with two nonpolar organic solvents (ether and chloroform, 0.5 mL each) to remove any 

traces of water and impurities. The extracts were dried with nitrogen and stored under a 
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nitrogen atmosphere at -20 ºC until performing HPLC analysis of the carotenoids, following the 

protocol above described. Finally, the protein content of the stored worm pellets was measured 

essentially as previously described (Lamitina et al., 2004), and the content value was used to 

normalize the carotenoid levels. Briefly, the pellets resulting from the carotenoid extraction were 

treated with 0.5 mL 10% perchloric acid (PCA) to precipitate proteins. After centrifugation 

(10,000 rpm, 30 min, 4 ºC), the acidic supernatant was removed, and the PCA-precipitated 

pellets were solubilized with 0.1 N NaOH (200 μL). The protein concentration of these solutions 

was quantified according to Bradford (1976) using Protein Assay Dye Reagent (Bio-Rad, 

Hercules, CA, USA) and bovine serum albumin as a standard. 

Hydrogen peroxide-induced oxidative stress assays: To measure C. elegans 

survival rates after exposure to oxidative stress, we employed synchronized eggs hatched in 

NGM on agar plates containing the E. coli OP50 strain and in the presence of either the β-

carotene-enriched (HRP) or the control (CV) pulp extracts at a final concentration of either 1% 

or 2% (by vol.). The HRP pulp extract was obtained from mixtures of pulp from the HRP6, 

HRP11, and HRP12 lines. The trials were performed with fruits from two different fruiting 

seasons. Ascorbic acid (0.1 μg/ mL, Sigma-Aldrich, St. Louis, MO, USA) was used as 

antioxidant positive control. After 7 days of growth at 20 ºC, the worms were transferred to NGM 

plates containing 2 mM H2O2 and incubated for 5 h. The animals were then washed, and their 

viability was measured. Worms were considered dead when they no longer responded to 

prodding. The experiments were performed in triplicate. The proportion surviving after treatment 

with H2O2 was used to estimate the antioxidant capacity resulting from each feeding condition. 

The data on the survival rates were subjected to ANOVA using Statgraphics v.5.1 software 

(Manugistics Inc.), and Fisher’s Protected LSD test (P < 0.01) was used to separate the means.  
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Supporting information 

 

Data S1. Supplemental experimental procedures  

 (a) Plasmid construction 

The binary vector pROK2-CsFT was previously constructed using standard restriction 

and ligation DNA techniques (Rodríguez et al., unpublished results). This vector contains the 

FLOWERING LOCUS T gene from sweet orange (CsFT), which is 100% identical to the Citrus 

unshiu CiFT2 homolog (GenBank accession number AB301934.1), in sense orientation under 

the control of the CaMV 35S promoter and the NOS terminator. The T-DNA of this binary vector 

also includes the neomycin phosphotransferase II gene (NPTII) driven by the NOS promoter 

and terminator sequences. The binary plasmid pROK2-CsFT was used in the present work as 

the vector system for transforming control plants. The HRP vector was constructed in two steps. 

First, the β-CHX RNAi cassette was generated using the Gateway System (Invitrogen). The 

399-bp fragment corresponding to the sequence used in the hairpin (CHXi; nucleotide positions 

357-756 of the 936-bp complete coding sequence) was PCR-amplified from a cDNA clone of a 

β-CHX gene isolated from the fruit of C. sinensis (GenBank accession number DQ228870) 

(Inoue et al., 2006) using the gene-specific primers 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTGACTCTCCG-GAAATAAGGCACGTC-3’ and 5’-

GGGGACCACTTTGTACAAGAAAGCTG-GGTTTATCTCGTTGCTGCCGTCATGTC-3’, flanked 

by attB recombinase sites (underlined). The gel-purified PCR product was recombined into the 

Gateway donor vector pDONR211 (Invitrogen) following the manufacturer’s protocol for BP 

recombination. After the pDONR construct was confirmed by restriction digestion, Gateway LR 

recombination was performed with the pHellsgate8 (pHG8) destination vector (Helliwell et al., 

2002), generating the ihp vector pHG8-CHXi. The T-DNA of this binary vector also includes the 

NPTII gene, which confers kanamycin resistance, under the control of the NOS promoter and 

terminator sequences. Next, the FT overexpression cassette was cloned into pH8-CHXi using 

standard restriction and ligation DNA techniques. The complete 1780-bp cassette was PCR-

amplified from pROK2-CsFT with AccuPrime Pfx DNA polymerase (Invitrogen, Carlsbad, CA) 

using the primers FT-NheI-up (5’-TGGCGTAATCATGGTGCTAGCTG-TTT-3’) and FT-NheI-

down (5’-GTTTTGCTAGCCACG-ACGTTGTAAAA-3’), which contain the NheI restriction sites 

(underlined). The resulting PCR product was gel-purified and cloned into the unique NheI site of 

pHG8-CHXi, generating the final HRP vector. 

(b) Southern blot analysis.  

Genomic DNA was isolated from leaves according to Dellaporta et al. (1983). Southern 

blot analysis was performed using 20 μg of either NotI-, ClaI- or KpnI-digested samples, which 

were separated on 1% (w/v) agarose gels, blotted onto nylon membranes (Hybond-N+, 

Amersham Pharmacia, London, UK), and fixed by UV irradiation. The filters were probed with a 

digoxigenin (DIG-11-dUTP; Roche Diagnostics Corporation, Indianapolis, IN)-labeled fragment 

of either the 35S promoter or the coding region of the βCHX gene used in the hairpin construct 
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(CHXi), prepared by PCR following the supplier’s instructions (Boehringer Mannheim GmbH, 

Mannheim, Germany), and detected with the chemiluminescent CSPD substrate (Roche 

Diagnostics). 

(c) Processing and biochemical analysis of pulp extracts/worm food 

NGM supplementation with citrus pulp extracts: A protocol was developed for the 

processing and sterilization of pulp samples prior to addition to the NGM using oranges from 

WT plants. Pulp powder samples stored at -80 ºC were thawed and homogenized in a Polytron 

(on ice) until a near-liquid consistency was obtained. For sterilization, the homogenized samples 

were pretreated overnight with 7 mM Velcorin® (DMDC, Lanxess), a compound widely used in 

the food industry for the sterilization of drinks. This pretreatment partially reduced the initial 

contamination of the pulp and was completely innocuous to the worms. Higher doses of 

Velcorin® (10, 15, 20, and 25 mM) did not improve the sterilization of the pulp extracts. 

Subsequently, because microbial contamination was still present on the NGM agar plates 

supplemented with the Velcorin®-treated samples (Figure S3a), which precluded the completion 

of the experiments, we applied a heat treatment system for proper sterilization. A volume of 

each pulp sample (10 mL) was subjected to different periods of heat at 90 ºC: 0.5, 2, 5, 10, 15, 

or 30 min. Afterward, the pulp extracts were added to the NGM plates at 2% to determine the 

presence of contaminant microbiota. In parallel, the carotenoid profile and vitamin C content of 

the treated pulp extracts were characterized by HPLC. After testing the different heat treatment 

times, 15 min was selected as the effective time for sterilization of the WT pulp because this 

time prevented contamination while minimally altering pulp composition. As shown in Figure S3, 

any contamination in the NGM agar plates supplemented with pulp extracts was completely 

removed (Figure S3a). The carotenoid losses from the samples were acceptable; that is, no 

losses were observed for β-carotene and other important carotenoids compared with the 

untreated sample, and the xanthophylls antheraxanthin and violaxanthin were the only 

carotenoids whose content was substantially reduced (Figure S3b). Furthermore, the loss of 

vitamin C from the pulp extract after 15 min of heat treatment at 90 °C was relatively low 

(approximately 15%; Figure S3c). 

Quantification of carotenoid content: Carotenoids were extracted from the pulp extracts 

as previously described by Stinco et al. (2012), with slight modifications. Briefly, 1 mL of each 

pulp extract was centrifuged, and the aqueous phase was removed. Acetone was then added to 

the pellet (2.5 mL), followed by stirring for 5 min and centrifugation for 5 min at 18,000 g. Upon 

centrifugation, the acetone extracts containing the carotenoid pigments were recovered. The 

pellet was re-extracted with acetone until it was colorless. To obtain the saponified carotenoids, 

the pooled acetone extracts were treated with 5 mL of methanolic KOH (10% w/v) for 1 h under 

dim light at room temperature. The saponified carotenoids were subsequently re-extracted with 

dichloromethane (10 mL), after which the material was washed three times with water to remove 

any traces of base and impurities. The colored dichloromethane extracts were dried by rotary 

evaporation and stored under a nitrogen atmosphere at -20 ºC until HPLC analysis. HPLC 
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analysis of carotenoids was performed as described in the “Carotenoid Extraction and Analysis” 

section (in Experimental Procedures). 

Determination of vitamin C content: The vitamin C content (ascorbic acid (AA)) was 

determined according to the method described by Sdiri et al. (2012), with slight modifications. 

Pulp extract samples (3-4 mL) were centrifuged at 14,000 rpm (4 °C, 5 min) to remove the pulp 

and coarse cloud particles. Aliquots (1 mL) of supernatant were added to 9 mL of 2.5% meta-

phosphoric acid (MPA). The diluted samples were filtered through a 0.45-μm nylon filter and 

injected into an HPLC system (LachromElite, Merck Hitachi, Germany) equipped with a diode 

array detector (L-2450), column oven (L-2300), and auto-sampler (L-2200). Separation was 

performed on a Lichospher 100 RP-18 column (4 mm x 250 mm), preceded by a precolumn (4 x 

4 mm) with a particle diameter of 5 µm. KH2PO4 (0.2 M, adjusted to pH 2.3 with phosphoric 

acid) was used as the mobile phase at a flow rate of 1 mL/min and with UV detection at 243 nm. 

The total elution time was 10 min, and the injection volume was 20 µL. The analyses were 

performed in triplicate. 

(d) Supplemental References 

Dellaporta, S., Wood, J. and Hicks, J. (1983) A plant DNA minipreparation: Version II. Plant Mo.l 

Biol. Rep., 1, 19-21. 
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Results: Chapter 3 

 

145 

 

 

 

 

Figure S1. Carotenoid biosynthesis in sweet oranges. Green and orange arrows indicate the branch of the pathway 

predominantly active in the immature green and full-color stages of fruit development, respectively. A photograph of the 

fully mature fruit from the Pineapple sweet orange cultivar used in this study is presented besides 9-Z-violaxanthin, 

which is the major carotenoid in the pulp of full-colored fruits. The key step of the pathway that we sought to knock down 

in this work as a strategy for accumulating β-carotene is shown in red. The rest of the enzymes are shown in blue. PSY, 

phytoene synthase; PDS, phytoene desaturase; ZDS, ζ-carotene desaturase; ε-LCY, lycopene ε-cyclase; β-LCY, 

lycopene β-cyclase; β-CHX, β-carotene hydroxylase; ε-CHX, ε-carotene hydroxylase; ZEP, zeaxanthin epoxidase; VDE, 

violaxanthin de-epoxidase; NSY, neoxanthin synthase. 
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Figure S2. Southern blot analysis of Pineapple sweet orange plants transformed with the β-CHX RNAi silencing 

plasmid.  (a) Schematic representation of the T-DNAs used for citrus transformation, showing the restriction sites for 

the enzymes NotI, ClaI, and KpnI, the 35S and CHXi probes used, and the expected sizes of the hybridization products. 

(b) Southern blot analysis of DNA preparations from a set of sweet orange plants transformed with the HRP construct 

(lines HRP1, 6, 9, 11, and 12), or with the control vector (CV). Hybridization was performed with a DIG-labeled DNA 

probe of the 35S promoter. The DNA restrictions with NotI revealed that all the HRP transgenic lines contained at least 

one intact copy of the entire β-CHX RNAi cassette, because a band of 4.88 kb (fragment a) was detected in all cases. 

The detection of additional bands higher than 4.88 kb in lanes 1 and 7 suggests truncated insertions of the RNAi 

cassette in the transgenic HRP1 and HRP9 lines. The other lines containing non-truncated insertions (HRP6, 11 and 12) 

showed low T-DNA loci number, according to the digestion pattern observed with ClaI. HRP11 and HRP11b were 

considered to be plant clones because their restriction profiles were identical. (c) Confirmation of whole-transgene 

integrity and low T-DNA loci number in plant lines HRP6, HRP11, and HRP12 by restriction analysis with either NotI or 

KpnI, and Southern blot hybridization with a CHXi-specific probe. Digestion with NotI confirmed the presence and 

integrity of the β-CHX RNAi cassette because a 4.88 kb band was detected in all the three HRP lines and not in the CV 

line. Additional bands at the top of all NotI-lanes suggested hybridization with endogenous sweet orange β-CHX gene/s. 

Digestions with KpnI released a 3.67 kb band (fragment b), plus a number of bands that varied depending on the 

number of T-DNA loci integrations. The size of the DNA marker used is indicated at the left in kilobases. 
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Figure S3. Effect of heat treatment (90 ºC) of the wild type (WT) pulp extracts on microbial contamination, 

carotenoid profile, and vitamin C content. (a) Plate count in NGM supplemented with 2% of WT pulp extracts 

previously treated with Velcorin® and heated at 90 ºC for 0.5, 1, 2, 5, 10, 15, or 30 min. a, Plate count in NGM 

supplemented with 2% of the non-heat-treated HRP pulp extracts. b, Plate count in NGM without supplementation. (b) 

HPLC analysis of carotenoid accumulation in WT pulp samples treated at 90 °C for different lengths of time (key legend 

in minutes), presented as the amount relative to the untreated sample (t = 0). (c) Quantification of the loss of vitamin C 

from the pulp extracts after 15 min of heat treatment. The values are the means ± SE (n = 3). PHY, phytoene; PHF, 

phytofluene; Z-CAR, ζ-carotene; A-CRY, α-cryptoxanthin; LUT, lutein; B-CAR, β-carotene; B-CRY, β-cryptoxanthin; 

ZEA, zeaxanthin; ANT, antheraxanthin; VIO, all E-violaxanthin and 9-Z-violaxanthin. 
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Table S1. Carotenoid levels (ng/mL) and vitamin C content (mg AA/100 mL) in the pulp extracts used for 

nematode diet supplementation. HRP and CV pulp extracts were analyzed after sterilization (15 min at 90 ºC). For 

each pulp extract, the percentage of each carotenoid or group of carotenoids was calculated on the total carotenoid 

content. AA, ascorbic acid. The HRP pulp extract was obtained from mixtures of pulp from the HRP6, HRP11, and 

HRP12 lines. 

 

 CV pulp extract HRP pulp extract 

Carotenoids ng/mL % ng/mL % 

Lineal carotenes 270.4 6.7 64.4 4.9 

-Carotene 41.6 1.0 194.7 15.0 

-Carotene 42.3 1.1 59.5 4.6 

Total carotenes 354.4 8.8 318.5 24.5 

,-xanthophylls 1963.4 48.7 465.3 35.8 

,-xanthophylls 1714.4 42.5 517.0 39.7 

Total xanthophylls 3677.8 91.2 982.2 75.5 

Total carotenoids 4032.2 100.0 1300.7 100.0 

Vitamin C (mg AA/100 ml) 29.53 ± 2.64 33.04 ± 1.72 
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6. General discussion and outlook 

In this thesis, it has been investigated in detail the first field trial with GM citrus trees 

performed in the world. The results of this field trial have provided crucial information on factors 

influencing pollen dispersal from transgenic citrus to non-transgenic genetically diverse 

surrounding citrus trees under field conditions, data that were non-existent to date. It has been 

found out that pollen-mediated transgene flow (PMTF), which is the main component of 

transgene dispersal to the environment in entomophilous plants (Ennos, 1994), could be greatly 

limited by the presence of neighboring sympatric citrus genotypes with high pollen competition 

capacity (superior to that of the GM citrus genotypes) (Chapter 1). Such information has had a 

direct practical application as it has served to draft part of the White Paper that contains the 

guidelines on how releases of GM sweet orange trees should be performed in Brazil, the main 

producer country of citrus for processing. The release of GM plants into the environment for 

either research or commercial purposes should follow the guidelines and applicable regulations 

of the country where the field test are being conducted. Legislation at this respect is generally 

made case-by-case, and the White Paper is the document on which protocols and safeguards 

are proposed, including the containment measures that should be adopted for each crop to 

minimize transgene dispersal. Such measures must be duly justified, and preferably based on 

empirical studies on transgene flow for the crop under study. Following the approval of the 

White Paper document by the relevant regulatory authority (the correspondent National 

Biosafety Committee of each country), the proposed measures become mandatory regulations. 

The non-profit association FUNDECITRUS (FUNDO DE DEFESA DA CITRICULTURA), 

in consensus with other institutions that also work in the field of plant biotechnology and plan to 

make deliberate releases of GM citrus in Brazil, proposed in 2012 a White Paper for the release 

of GM citrus and presented it to the Comissão Técnica Nacional of Biossegurança (CTNBio). 

The measures contemplated in that document basically consisted on the use of trees from non-

GM citrus genotypes with high pollen competition ability (or "strong pollinators") as buffer rows 

surrounding the transgenic trees. It was also proposed the use of other external edge of trees 

from a monoembryonic and self-incompatible citrus genotype that would serve to track PMTF 

(because the only seeds/seedlings they could produce would come from cross-pollination). 

These containment measures have been approved in October 2013 (see Annex 1) and are 

much more realistic and viable than others previously proposed and approved for the same crop 

in Brazil. For example, the biotechnological company Allelyx proposed in 2007 containment 

measures that consisted on the use of empty spaces (8 m) as isolation barriers plus avoiding 

flowering of GM citrus by performing the field tests when trees were juvenile and removing the 

flowers in the case they would flower (Allelyx, 2007). In such assays, citrus trees were not 

allowed to produce fruits. A very similar approach has been recently approved in Florida to 

allow release of transgenic sweet orange trees to test disease resistance. Unlike those cases, 

the White Paper approved in Brazil permits flowering and fruiting to occur. The only pending 

work is (1) to specify the citrus genotypes suitable for using as "strong pollinators", which will 
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vary depending on the transgenic varieties intended to be released and should be selected 

based on the results of mixed-pollination treatments carried out before the release, and (2) 

testing the effectiveness of the proposed measures using the selected genotypes, under actual 

field conditions for each country. FUNDECITRUS is currently conducting a large-scale 

experiment in Brazil for these purposes. 

To fully validate the use of the genetic transformation technology on a commercial 

basis, it requires the ability to adequately grow and test the transgenic trees in the field. This 

needs legislative action to provide appropriate protocols and safeguards, when none currently 

exist. Without this ability, the scope of the efforts and resources used to develop these trees are 

greatly reduced. Where no legislation exists or while legislation is being developed to field test 

transgenic trees, collaborative field plantings should be encouraged between research 

institutions from countries that have proper regulatory systems approved and those that do not. 

Acceptance of this White Paper by the CTNBio may have a major impact because it allows the 

possibility of addressing some of the challenges that are currently threatening the Brazilian (and 

global) citrus industry through the use of genetic transformation as a modern tool for 

improvement. 

The field trial with GM citrus trees conducted in this thesis has further implications. On 

the one hand, it has served as model to study for the first time in citrus the long-term stability of 

the transgene expression. Moreover, it represents the first approach to propose how field trials 

with GM citrus should be performed to detect transgene-derived unintended effects with regard 

to the main crop characteristics (tree morphology, phenology and fruit quality) (Chapter 2). 

Regarding this, it is particularly noteworthy the importance of performing control comparisons 

(using suitable comparators to be able to detect statistically significant differences), besides 

those obvious comparisons of “GM versus non-GM” required to assess substantial equivalence. 

Thus, the robustness of the system used to detect differences (that is, the experimental design 

and statistical analysis) is verified, giving more reliability and confidence to the results obtained. 

The comparisons performed in Chapter 2 revealed a most noticeable and significant 

effect of other factors than transgenesis (as plant ontogeny and ploidy level) on the fruit quality 

parameters and morphological variables analysed. Similar results were shown in research 

performed with other crops. After a large number of studies afforded to find out unintended 

effects of transgenesis in different plants, no differences between the GMs and their 

conventionally bred counterparts have been found beyond natural variability, whether using 

targeted (Cellini, et al., 2004) or non-targeted approaches (that is “omic” assessments or large-

scale profiling techniques) (Ricroch, et al., 2011) to detect them. Indeed, the most pronounced 

differences were consistently found among the various conventional varieties, a trend linked to 

the genetic diversity maintained or created by plant breeders. This should be put in perspective, 

taking into account that conventional breeding is generally regarded as safe, despite the fact 

that the nature of the genetic changes in new conventional cultivars is usually unknown (Parrott, 

et al., 2010). Other intensive breeding methods that are routinely used, such as mutational 

breeding, intervarietal hybrids, wide interspecies crosses, inbreeding, ploidy modification and 
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tissue culture multiplication, produced abundant pleiotropic effects on gene structure and trait 

expression in some plants (Ozcan, et al., 2001). Likewise, a number of environmental factors 

(field location, sampling time during the season or at different seasons, mineral nutrition) have 

also been shown, consistently, to exert a greater influence on quality than transgenesis (Pilate, 

et al., 2002; Tilston, et al., 2004; Halpin, et al., 20007; Ricroch, et al., 2011). Although the 

generation of new unintended effects is an often cited fear of plant genetic modification 

(Filipecki and Malepszy, 2006), no significant differences attributable to the transgenic nature of 

a crop have been reported so far (Shepherd, et al., 2006), and none of the published omic 

assessments has raised new safety concerns about marketed GM cultivars (Lehesranta, et al., 

2005; Abdeen, et al., 2010; Rommens, 2010; Zhao, et al., 2013). 

The next generation of GM crops is likely to include those with improved nutritional 

properties which are more prone to affect metabolic pathways, and thus introduce an increased 

complexity to the genetic modification process. The incorporation of new biosynthetic pathways 

in plants as well as genetic modifications targeting key enzymes in primary and secondary 

metabolism could result in metabolic perturbations not explicable based on our current 

knowledge of plant biology and metabolic pathway networks. In these cases, it is encouraged 

the use of non-targeted approaches such as transcriptomics, proteomics and metabolomics 

analyses to evaluate substantial equivalence (Cellini, et al., 2004). Results from these analyzes 

could provide an idea on the aspects of plant development and quality on which to focus during 

further field evaluations. 

On the other hand, the field study carried out in the Chapter 2 of this thesis 

demonstrated the innocuousness of marker transgenes uidA and nptII at phenotypic level as 

well as their long-term stability in transgenic citrus trees grown under agronomic conditions. The 

absence of unintended effects associated with these marker genes has been demonstrated in 

other plants, at different levels (food safety, environmental risks, agronomical performance) and 

with different techniques (transcriptomics, metabolomics, animal toxicity testing model, etc.) 

(Dale and McPartlan, 1992; Nap, et al., 1992; Redenbaugh, et al., 1992; El Ouakfaoui and Miki, 

2005; Hopkins, et al., 2007; Miki, et al., 2009). Recently, the safety of nptII has been studied in 

detail. The product of the nptII gene (providing resistance to kanamycin and related antibiotics) 

was classified as Generally Recognized as Safe (GRAS) during deregulation of the Flavr Savr 

tomato (Redenbaugh, et al., 1992; Fuchs, et al., 1993). A working group of the British Society 

for Antimicrobial Chemotherapy made a strong general argument for the safety of virtually all 

antibiotic resistance genes in plants (Bennett, 2004): “The Working Party finds that there are no 

objective scientific grounds to believe that bacterial AR [antibiotic resistance] genes will migrate 

from GM [genetically modified] plants to bacteria to create new clinical problems. Use of these 

genes in GM plant development cannot be seen as a serious or credible threat to human or 

animal health or to the environment.” This view largely echoes that of (Flavell, et al., 1992) and 

the US Food and Drug Administration in their “Guidance for Industry” issued in 1998 (FDA, 

1998). Strong arguments have been made for the safety of the β-glucuronidase reporter gene 

(Gilissen, et al., 1998), which was present in commercially released transgenic papaya 
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(Gonsalves, 1998). Nevertheless, due to the reported reluctance of people to consume food that 

has been transformed with bacterial genes (Rommens, 2010), the last trend is to limit their use 

as far as possible. To do this, alternatives to the use of selectable marker genes as well as 

systems for marker gene removal when it is no longer needed in the plant, such as the CRE/lox 

and similar marker transgene excision systems are currently being developed for many crops 

(Klaus, et al., 2004; Wang, et al., 2005; Fladung and Becker, 2010). These technologies are not 

yet applicable for citrus at a large scale, and the current protocols to generate transgenic plants 

are still largely dependent on the use of screenable and selectable genes, and among them, 

uidA and nptII are the most commonly used. Hence, information provided by this field trial (in 

the Chapter 2) is relevant and must be taken into consideration when interpreting their effects 

and safety when co-transforming them with genes of interest in future studies with GM citrus. 

In summary, studies performed in this field trial constitute the first attempt to address 

concerns of biotechnologists, regulators and general public about using GM citrus. It is well 

known that there exist certain public disquiet over GM foods and crops, especially in some EU 

countries, and this is, in part, because consumers simply find no reason to support a new 

technology that does not provide any benefits to them. In this sense, and as demonstrated in 

some market surveys (http://ageconsearch.umn.edu/bitstream/6407/2/469580 a.pdf) (Hossain 

and Onyango, 2004; Onyango and Nayga, 2004; Costa-Font, et al., 2008), it is expected that 

the use of the GM technology could be much more accepted when the objective is to develop a 

functional food (FF), and even more if the functionality of this new food is proven using in vivo 

systems. For this reason, enrichment of crops with health-promoting phytonutrients has become 

one of the main improvement goals addressed by genetic transformation during the last decade 

(Cressey, 2013). 

Orange fruits (which are the most consumed citrus types worldwide) are already very 

healthy, but in Chapter 3 of the present thesis we have proposed to enrich them with a 

phytonutrient through metabolic engineering, with the aim of increasing their in vivo antioxidant 

properties. To address this challenge, the first technical difficulties we encountered were (1) 

excessive periods of time to see the results due to the long juvenile phase of citrus, (2) need of 

a lot of space due to the large size of trees, and (3) the animal model systems available to test 

the in vivo functionality of the FF are very expensive and require lots of fruit. These issues were 

resolved in Chapter 3 by (1) developing a new experimental system that combines the use of a 

fast track system (over-expression of the CsFT gene in juvenile plants) to accelerate the 

production of the transgenic fruit and (2) through the use of C. elegans as a model organism to 

test the in vivo functionality of such enhanced fruit. This system brings the possibility of 

performing early-tests on the effectiveness of this (and any other) goal of nutri-functional 

improvement of citrus fruits, in a remarkably short period of time and in an inexpensive manner. 

The next challenge we faced was to select the right phytonutrient and the proper 

strategy to increase it. In our case, the chosen target metabolite was β-carotene for the 

following reasons: it has known benefits on human health; its content in the orange pulp is very 

low; currently, there is an ample knowledge about the regulation of carotenogenesis in the 

http://ageconsearch.umn.edu/bitstream/6407/2/469580
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orange fruit and most genes from the pathway have been cloned. Lycopene (another carotenoid 

with well-recognized health-promoting properties (Rao and Agarwal, 1999; Karppi, et al., 2009) 

and absent in most orange cultivars), or anthocyanins (a specific class of flavonoid compounds, 

whose health-promoting qualities are supported by extensive literature, and that are present in 

blood oranges only under very strict and particular environmental conditions) are examples of 

other phytonutrients that would be interesting targets for enrichment in the orange fruit. Our 

laboratory is currently focused on work over these targets with the aim of enhancing the health-

promoting qualities of sweet orange fruits and juices. Very promising results are already 

available, only needing confirmation in coming fruiting seasons (Alquézar et al.; Pons et al., 

unpublished results) (Annex 2). As for the strategy used in this thesis, we opted for silencing 

the βCHX gene (involved in the conversion of β-carotene into xanthophylls) by RNAi. A similar 

strategy was conducted to successfully increase the β-carotene content in other crops, (e.g. in 

potato (Diretto, et al., 2007)). Other attempts to increase specific carotenoid contents in several 

other crops by using carotenoid pathway genes are well reviewed (Botella-Pavía and 

Rodríguez-Concepción, 2006; Giuliano, et al., 2008). Alternative to those, though not 

incompatible with them, it is also possible to use more elaborated strategies, such as 

overexpressing specific transcription factors, or the Or gene (which represents a novel 

regulatory gene in mediating carotenoid accumulation by inducing chromoplast biogenesis) (Lu, 

et al., 2006; Lu and Li, 2008). Irrespective of the target metabolite and the chosen strategy for 

improvement, nowadays, tissue-specific strategies are desirable to avoid unintended effects 

derived from the transgene expression in non-target tissues. In the case of citrus, there was not 

available any fruit-specific promoter when this work was initiated, which led us to use a 

constitutive promoter in this thesis. In this sense, one of the priority lines of research being 

conducted today in our laboratory is the development of a fruit-specific promoter for citrus to be 

used for biotechnological purposes. The use of such a promoter, besides reducing the 

possibility of generating unintended effects, represents a critical step towards the development 

of cisgenics and intragenics strategies, which are highly desirable due to their greater 

acceptance by consumers and likely lower regulatory requirements (Rommens, 2004; 

Schouten, et al., 2006; Conner, et al., 2007; Rommens, et al., 2007). 

In Chapter 3 of this thesis, it has been achieved an increase (of about 37 fold) of β-

carotene content in the orange pulp, which results in a 20% increase of its in vivo antioxidant 

capacity, as measured in the animal model C. elegans. Although these enriched oranges have 

served, together with control oranges (transformed with the empty vector) as isogenic food 

material, to be tested in the bioassays, they could not be used commercially because they 

contain the CsFT transgene, which produces developmental alterations in the plants. For this 

reason, the next step performed in our laboratory was to silence the βCHX gene in adult sweet 

orange varieties that flower and fruit normally about two years after transformation. After 

confirming that the transgenic adult orange trees produce β-carotene-enhanced fruit and grow 

normally, we are currently submitting a proposal to CTNBio to get the appropriate permits to 

plant them in Brazil at large scale. The aim is to carry out in depth studies of these plants and 
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their fruits at all levels (fruit quality, field performance, metabolomics, etc.), including research 

on their potential health benefits. Compared with the control fruits, golden oranges provide 

highly characterized, isogenic material with enhanced antioxidant capacity to evaluate the 

protective effects of dietary β-carotene on animal models of chronic diseases, such as cancer, 

cardiovascular disease and the metabolic syndrome, for which there are strong correlative data 

for protective effects of β-carotene. Furthermore, β-carotene-enriched orange fruits could 

contribute substantially to the antioxidant levels of human diets and might, as foods, be more 

widely adopted in preventive medicine strategies by healthy consumers than antioxidant 

supplements, such as vitamins, which are often viewed in the same way as conventional 

medicines. Such oranges with higher antioxidant capacity would create a niche market of 

specialty produce, more so if their usefulness in improving the health benefits, including 

protection against a particular disease, is demonstrated through clinical assays. 
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7. Conclusions 

 

1. It has been demonstrated, for the first time in citrus, the efficiency of a pollen mediated 

transgene flow (PMTF) monitoring method consisting on testing the expression of a 

tracer marker gene (uidA) in seeds from a self-incompatible and monoembryonic citrus 

genotype (Clemenules clementine), used as pollen recipient. 

 

2. Unexpectedly low frequencies (from 0.17% to 2.86%) of PMTF were found during 7 

consecutive years in a field trial that involved the release of three different citrus 

genotypes carrying the uidA (GUS) tracer marker gene (pollen donors), as estimated by 

measuring the percentage of transgenic seeds in non-GM clementine trees (pollen 

recipient), planted along a contiguous edge in conditions allowing natural 

entomophilous pollination to occur. Phenological studies and hand pollination 

treatments demonstrated that transgenic pollen donors and recipient trees showed 

flower synchrony and were cross compatible. 

 

3. Paternity analyses of the progeny of subsets of open pollinated recipient plants using 10 

microsatellite (SSR) loci demonstrated a higher mating competence of trees from 

another non-GM pollen source population that greatly limited the mating chance of the 

contiguous cross-compatible and flowering-synchronized transgenic pollen source. This 

mating superiority could be explained by a much higher pollen competition capacity of 

the non-GM genotypes, as was confirmed through mixed-hand pollinations.  

 

4. Then, presence of neighboring genotypes with very high pollen competition capacity is 

a crucial factor able to strongly limit PMTF between cross-compatible species when 

they have synchronized flowering and are planted at close proximity. Based on this 

finding, suitable confinement measures are proposed for the first time to minimize 

transgene outflow between contiguous plantings of citrus types that may be extendible 

to other entomophilous transgenic fruit tree species. 

 

5. The stability of the integration and expression of the transgenes uidA and nptII was 

confirmed in 7-year-old, orchard-grown transgenic lines from two distinct citrus types 

(Pineapple sweet orange [Citrus sinensis L. Osb.] and Carrizo citrange [C. sinensis L. 

Osb. x Poncirus trifoliata L. Raf.]) by Southern blot analysis and enzymatic assays, 

respectively. 

 

6. Comparisons between such GM citrus lines with their non-GM counterparts across the 

study years showed that the integration and expression of these transgenes (uidA and 

nptII) did not cause alterations of the main phenotypic and agronomic plant and fruit 

characteristics. However, when comparisons were performed between diploid and 
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tetraploid transgenic citrange trees and between juvenile and mature transgenic sweet 

orange trees, significant and consistent differences were detected, indicating that 

factors other than their transgenic nature induced a much higher phenotypic variability. 

 

7. These results establish the principle that it is possible to produce transgenic citrus trees 

that are substantially equivalent to the control non-transformed lines, with regard to their 

overall agronomic performance, based on the use of robust and powerful assessment 

techniques. Therefore, future studies of the possible pleiotropic effects induced by the 

integration and expression of transgenes in field-grown GM citrus may focus on the 

newly inserted trait(s) of biotechnological interest. 

 

8. It has been developed a fast-track system based on the ectopic overexpression of the 

FLOWERING LOCUS T gene from sweet orange (CsFT) in juvenile plants that induces 

an extremely early fruiting phenotype (less than 1 year after being grafted in the 

greenhouse) and two fruiting cycles per year in sweet orange. This system opens the 

possibility for rapid characterization of the fruit quality traits achieved by transgenic 

approaches in citrus and other fruit tree crops usually requiring many years to begin to 

flower and set fruits. 

 

9. It has been established a straightforward experimental system that permits the 

characterization of the biological activity of transgenic citrus fruit in vivo in an 

inexpensive manner using Caenorhabditis elegans as a model organism for the 

functional analysis of orange juice. As necessary requirement of the system, an orange 

pulp processing method was set up and the intake of orange pulp extracts by the 

nematodes was confirmed. 

 

10. It has been proven that RNAi-mediated silencing of a β-carotene hydroxylase gene from 

sweet orange (Csβ-CHX), which regulates an important step in orange 

carotenogenesis, induces the accumulation of high levels of β-carotene in oranges (up 

to 36.4-fold with respect to control fruits). 

 

11. Levels of pro-vitamin A that accumulate in oranges are sufficient to impart a substantial 

protective effect against oxidative damage in C. elegans (20% higher antioxidant effect 

than the isogenic control), when included as part of their regular diet. This effect is 

presumably due to the synergistic interaction between β-carotene and orange juice 

phytochemicals. 
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ANNEX 1 

 

Normative Resolution No. 10, published in the DOU on 02 October 2013, establishing the 

conditions of isolation for the planned release of genetically modified sweet orange (Citrus 

sinensis (L.) Osbeck) plants to the environment 
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ANNEX 2 

 

Phenotype of fruits from transgenic sweet orange (cv. Pineapple) plants carrying RNAi-inductive 

constructions targeted to block the expression of key carotenogenic genes, resulting in the 

accumulation of (A) lycopene and (B) β-carotene. EV, control oranges that were transformed 

with the empty vector. 
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