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Abstract

Ensemble kalman filter (EnKF) has proven to be a powerful inverse method
for the characterization of hydraulic conductivities, which works well for
non-linear state equation and Gaussian-distributed parameters. It is com-
putationally more efficient than other inverse methods; however, it is still
time-consuming. This thesis addresses two issues, how to speed up the EnKF
through code parallelization and how to properly address the problem of
characterizing non-Gaussian hydraulic conductivity fields. It is organized in
four parts.

The first part deals with the the parallelization of the ensemble Kalman
filter (EnKF) algorithm in the context of hydraulic conductivity character-
ization using transient piezometric head data. The EnKF consists of two
steps, forecast and analysis, and both steps have potential to be parallelized.
In the forecast step, due to the Monte Carlo nature of the EnKF, the most
straightforward way for parallelization is at the realization level, where each
member of the ensemble is sent to a different processor. While in the anal-
ysis step, the computations of the covariances are distributed between the
different processors. The results of speedup and efficiency show that the
parallelized EnKF can significantly reduce the computation time, especially
for a large number of ensemble realizations.

The second part describes an application of the localized normal-score
EnKF with covariance inflation in a heterogenous bimodal hydraulic conduc-
tivity field. The objective is to demonstrate the power of transient piezomet-
ric head for the characterization of the spatial variability of a channelized
bimodal hydraulic conductivity field, where the only existing prior infor-
mation about conductivity is its univariate marginal distribution. Besides,
covariance localization and covariance inflation are used to overcome the
appearance of spurious correlations and the underestimation of the final un-
certainty by the NS-EnKF. Covariance localization eliminates the effect of
spurious correlations between state variables and parameters by constrain-
ing the correlation range of the empirical covariance. Covariance inflation
is a technique used to avoid filter inbreeding by inflating the empirical co-
variance. The results show the importance of covariance localization and
covariance inflation to reduce filter inbreeding.

The third part investigates the inverse method proposed by (Hu et al.,
2013) and proposes an improved version. Unlike the idea of (Hu et al., 2013),
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which uses the EnKF to directly update uncorrelated uniform random fields
(those used to draw from the local conditional marginal distributions in se-
quential simulation), the new version propose working on correlated uniform
random fields, more precisely the same uniform random field used in proba-
bility field simulation (Froidevaux, 1993). The comparison of both versions
shows that the new proposed one is much better than the original in order
to capture the main patterns of conductivity and in reducing uncertainty.

The fourth and last part proposes a new stochastic inverse method named
inverse sequential simulation (iSS). The iSS is a breed of sequential simula-
tion and the normal-score ensemble Kalman filter. The new approach applies
the ensemble concept to generate realizations by sequential simulation us-
ing the experimental non-stationary cross-covariance between conductivities
and piezometric heads computed on an ensemble of realizations. We use the
normal-score transformation to ensure marginal Gaussian distribution. And
then, we apply standard multivariate sequential Gaussian conditional simu-
lation to generate conductivity realizations conditioned to both conductivity
and piezometric data. The benchmark against the NS-EnKF shows that the
iSS is capable of generating inverse-conditioned non-Gaussian realizations
with similar quality for both approaches.
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Resumen

El filtro de Kalman de conjuntos (EnKF) es un método inverso de gran po-
tencial para la caracterización de conductividades hidráulicas, que funciona
bien con ecuaciones de estado no lineales y parámetros con distribuciones
gausianas. Es computacionalmente más eficiente que otros métodos inver-
sos; sin embargo, consume mucho tiempo de cálculo. Esta tesis se centra en
dos cuestiones, la forma de acelerar el EnKF a través de la paralelización
del código y la forma de abordar adecuadamente el problema de la caracter-
ización de campos de conductividad hidráulica no gausianos. La tesis está
organizada en cuatro partes.

En la primera parte se presenta el algoritmo de paralelización del filtro de
Kalman de conjuntos en el contexto de la caracterización de la conductividad
hidráulica utilizando datos de piezometŕıa en estado transitorio. El EnKF
consta de dos pasos, predicción y análisis, y ambos pasos son susceptibles de
ser paralelizados. En la fase de predicción, debido a que el EnKF tiene una
componente importante de análisis de Monte-Carlo, la forma más sencilla
para su paralelización es a nivel de realización, donde cada miembro del
conjunto se env́ıa a un procesador diferente. Mientras que en la etapa de
análisis, los cálculos de las covarianzas se distribuyen entre los diferentes
procesadores. Los resultados, en cuanto a aceleración y eficiencia del cálculo,
muestran que la paralelización del EnKF puede reducir significativamente
el tiempo de cálculo, especialmente para los casos en que el número de
realizaciones es grande.

La segunda parte describe una aplicación del EnKF con anamorfosis
localizada, e inflación de la covarianza a un campo de conductividades het-
erogéneo y con una distribución bimodal. El objetivo de esta parte es de-
mostrar el potencial de las alturas piezométricas transitorias para la car-
acterización de la variabilidad espacial de un campo de conductividades
hidráulicas bimodal y con patrones de variabilidad complejos, donde la
única información a priori existente es su distribución marginal univariada.
Además, se demuestra el uso de las técnicas de localización e inflación de
la covarianza para evitar la aparición de correlaciones espurias y la subes-
timación de la incertidumbre final. La localización de la covarianza elimina
el efecto de las correlaciones espurias entre las variables de estado y los
parámetros al restringir el rango de correlación de la covarianza emṕırica.
La inflación de la covarianza es una técnica utilizada para evitar el colapso
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del filtro aumentando (inflando) los valores de la covarianza emṕırica. Los
resultados muestran la importancia de estas técnicas en la reducción del
colapso del filtro.

La tercera parte investiga el método inverso propuesto por (Hu et al.,
2013) y propone una versión mejorada. A diferencia de la idea de (Hu et al.,
2013), que utiliza el EnKF para actualizar directamente campos uniformes
no correlacionados (los que se utilizan para el muestreo aleatorio de las dis-
tribuciones marginales condicionales locales en la simulación secuencial), la
nueva versión propone trabajar en campos aleatorios uniformes correlaciona-
dos, más precisamente los mismos campos que se utilizan en la simulación
por campos de probabilidades (Froidevaux, 1993). La comparación de las
dos versiones demuestra que la nueva versión propuesta es mucho mejor que
la original tanto a la hora de capturar los principales patrones de conduc-
tividad como en la reducción de la incertidumbre.

La cuarta y última parte propone un nuevo método inverso estocástico
llamado simulación secuencial inversa (iSS). La iSS es una mezcla de sim-
ulación secuencial y filtro de Kalman con anamorfosis. El nuevo método
usa el concepto de conjuntos del EnKF para generar realizaciones por sim-
ulación secuencial usando las covarianzas cruzadas no estacionarias entre
conductividades experimentales y alturas piezométricas calculadas a partir
de un conjunto de realizaciones. Utilizamos la anamorfosis para asegurar
una distribución gausiana marginal. Y entonces, aplicamos la simulación
secuencial gausiana estándar para generar realizaciones de conductividad
condicionando tanto en la conductividad como en los datos piezométricos.
El comparación con el NS-EnKF muestra que la iSS es capaz de generar real-
izaciones no gausianas condicionadas a las alturas piezométricas con calidad
similar para ambos métodos.
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Resum

El filtre de Kalman de conjunts (EnKF) és un mètode invers de gran poten-
cial per a la caracterització de conductivitats hidràuliques, que funciona bé
amb equacions d’estat no lineals i paràmetres amb distribucions gausianes.
És computacionalment més eficient que altres mètodes inversos; no obstant
açò, consumeix molt temps de càlcul. Aquesta tesi se centra en dues qües-
tions, la forma d’accelerar el EnKF a través de la paralelització del codi i la
forma d’abordar adequadament el problema de la caracterització de camps
de conductivitat hidràulica no gausians. La tesi està organitzada en quatre
parts.

En la primera part es presenta l’algorisme de paralelitzación del filtre de
Kalman de conjunts en el context de la caracterització de la conductivitat
hidràulica utilitzant dades de piezometria en estat transitori. El EnKF con-
sta de dos passos, predicció i anàlisi, i tots dos passos són susceptibles de ser
paralelitzats. En la fase de predicció, a causa que el EnKF té una compo-
nent important d’anàlisi de Monte-Carlo, la forma més senzilla per a la seua
paralelització és a nivell de realització, on cada membre del conjunt s’envia
a un processador diferent. Mentre que en l’etapa d’anàlisi, els càlculs de les
covariàncies es distribueixen entre els diferents processadors. Els resultats,
quant a acceleració i eficiència del càlcul, mostren que la paraleliztació del
EnKF pot reduir significativament el temps de càlcul, especialment per als
casos en què el nombre de realitzacions és gran.

La segona part descriu una aplicació del EnKF amb anamorfosis local-
itzada, i inflació de la covariància a un camp de conductivitats heterogeni
i amb una distribució bimodal. L’objectiu d’aquesta part és demostrar el
potencial de les altures piezométriques transitòries per a la caracterització
de la variabilitat espacial d’un camp de conductivitats hidràuliques bimodal
i amb patrons de variabilitat complexos, on l’única informació a priori exis-
tent és la seua distribució marginal univariada. A més, es demostra l’ús de
les tècniques de localització i inflació de la covariància per a evitar l’aparició
de correlacions espúries i la subestimació de la incertesa final. La local-
ització de la covariància elimina l’efecte de les correlacions espúries entre
les variables d’estat i els paràmetres en restringir el rang de correlació de la
covariància emṕırica. La inflació de la covariància és una tècnica utilitzada
per a evitar el col·lapse del filtre augmentant els valors de la covariància
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emṕırica. Els resultats mostren la importància d’aquestes tècniques en la
reducció del col·lapse del filtre.

La tercera part investiga el mètode invers proposat per (Hu et al., 2013)
i proposa una versió millorada. A diferència de la idea de (Hu et al., 2013),
que utilitza el EnKF per a actualitzar directament camps uniformes no cor-
relacionats (els que s’utilitzen per al mostreig aleatori de les distribucions
marginals condicionals locals en la simulació seqüencial), la nova versió pro-
posa treballar en camps aleatoris uniformes correlacionats, més precisament
els mateixos camps que s’utilitzen en la simulació per camps de probabili-
tats (Froidevaux, 1993). La comparació de les dues versions demostra que la
nova versió proposada és molt millor que l’original tant a l’hora de capturar
els principals patrons de conductivitat com en la reducció de la incertesa.

La quarta i última part proposa un nou mètode invers estocàstic anome-
nat simulació seqüencial inversa (iSS). La iSS és una mescla de simulació
seqüencial i filtre de Kalman amb anamorfosis. El nou mètode usa el
concepte de conjunts del EnKF per a generar realitzacions per simulació
seqüencial usant les covariàncies creuades no estacionàries entre conductivi-
tats experimentals i altures piezométriques calculades a partir d’un conjunt
de realitzacions. Utilitzem la anamorfosis per a assegurar una distribució
gaussiana marginal. I llavors, apliquem la simulació seqüencial gaussiana
estàndard per a generar realitzacions de conductivitat condicionant tant en
la conductivitat com en les dades piezométriques. El comparació amb el
NS-EnKF mostra que la iSS és capaç de generar realitzacions no gausianes
condicionades a les altures piezométriques amb qualitat similar per a tots
dos mètodes.
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1
Introduction

1.1 Motivation and Objectives

As we know, reliable groundwater flow and transport modeling are very
important for groundwater forecast, solute migration forecast, subsurface
resource management, and environmental risk assessment. The quality of
groundwater flow and transport modeling is mostly dependent on a proper
characterization of the subsurface hydrogeological properties (such as hy-
draulic conductivity, porosity, etc.) However, in reality, the experimental
measurements of these properties are very sparse compared to the scale of
the aquifers. So, how to use these sparse data to get the best characteriza-
tion possible of the subsurface hydrogeologic properties is a real challenge.

In recent decades, stochastic inverse modeling accounting for real-time
state data has proven to be a powerful technique for the characterization of
subsurface hydrogeologic properties. Some existing methods for stochastic
inverse modeling are the gradual deformation method (Hu, 2000), the se-
quential self-calibration (Gómez-Hernánez et al., 1997), the Markov chain
Monte Carlo method Oliver et al. (1997), the representer method (Valstar
et al., 2004), the pilot points method (De Marsily et al., 1984), and the en-
semble Kalman filter (EnKF) (Evensen, 2003). Among these methods, the
EnKF is getting more popular as a very effective inverse method in recent
years. However, large computational needs and the difficulty to characterize
non-Gaussian parameter fields are major drawbacks to be addressed.

There are many researchers working on the solution of the above-mentioned
issues. To address the problem of computational efficiency, the EnKF ha
been coupled with covariance localization and with upscaling to reduce the

1
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ensemble size and to speed up the solution of the state equation (Li et al.,
2012c). An analysis of the EnKF algorithm itself shows that it can be
parallelized resulting in savings of running time. To address the problem
of how to handle non-Gaussian fields, several approaches have been devel-
oped; for example, the methods using a Gaussian mixture model (Dovera
and Della Rossa, 2011), the methods using normal score transform (Zhou
et al., 2011), the methods using transformed reparameterization (Chen et al.,
2009), and the iterative EnKF (Gu and Oliver, 2007). The normal-score
EnKF proposed by Zhou et al. (2011) has proven to be one of the most effec-
tive methods to deal with non-Gaussian distributions. Moreover, Zhou et al.
(2011) showed that transient piezometric head was enough for hydraulic con-
ductivity characterization if a training image for the hydraulic conductivity
was available. We will go even further and analyze what if there is no infor-
mation about conductivity except for its univariate marginal distribution,
can we still get a proper characterization from transient piezometric head
data only?

Taking as inspiration the normal-score EnKF algorithm, and trying to
go beyond the incremental updating of realizations implicit in the ensem-
ble Kalman filter, we have developed a new inverse algorithm by blending
some of the ideas underlying multivariate Gaussian sequential simulation
and ensemble Kalman filtering; this new method is capable of dealing with
non-Gaussian distribution.

The main objectives of this thesis can be summarized as follows: First,
design a new parallelized algorithm for the EnKF. Second, analyze the power
of transient piezometric head data in the characterization of non-Gaussian
parameter fields using the localized normal-score ensemble Kalman filter
coupled with covariance inflation with the only information on conductivities
of its univariate marginal distribution. And third, develop a new stochastic
inverse modeling approach based on sequential simulation to characterize
non-Gaussian parameter fields.

1.2 Thesis Organization

Aside from the motivation and objectives, the rest of the thesis is organized
as follows: The fist five chapters are independent papers which are published
or under review or to be submitted in refereed international journals. And
the last chapter is the summary of the whole work.

Chapter 2 presents a new parallelized EnKF algorithm. Four tests with
different ensemble size and model size are designed to evaluate the speedup
and efficiency of the parallelized EnKF.

Chapter 3 proposes a localized NS-EnKF with covariance inflation to re-
duce filter inbreeding and eliminate the effect of spurious correlations among
the state variables and the parameters. A synthetic bimodal confined aquifer
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is designed and seven scenarios are used to demonstrate the effectiveness of
the proposed approach. Besides, we also show the power of transient piezo-
metric head information for the characterization of the spatial variability
of hydraulic conductivity with the only information of univariate marginal
distribution of hydraulic conductivities.

Chapter 4 presents an improved inverse method on the base of the
method proposed by (Hu et al., 2013) to characterize non-Gaussian hydraulic
conductivity fields. A synthetic channelized bimodal continuous hydraulic
conductivity field is used to show and compare the improved method and
previous method.

Chapter 5 proposes a new inverse modeling approach based on sequential
simulation (iSS) to character non-Gaussian hydraulic conductivity fields. A
synthetic bimodal confined aquifer is used to demonstrate the ability of the
new method to characterize non-Gaussian fields. The performance of the
proposed approach is compared with that of the NS-EnKF.

Chapter 6 applies the iSS to a synthetic channelized bimodal hydraulic
conductivity field and six scenarios with difference number of conditional
data, searching nodes and ensemble size with the aim of evaluating the
performance and sensitivity of the iSS.

Chapter 7 summarizes all the works in this thesis and shows some sug-
gestions for future research.
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2
Parallelized Ensemble

Kalman Filter for Hydraulic
Conductivity

Characterization

Abstract

The ensemble Kalman filter (EnKF) is nowadays recognized as an excellent
inverse method for hydraulic conductivity characterization using transient
piezometric head data. Its implementation is well suited for a parallel com-
puting environment. A parallel code has been designed that uses paral-
lelization both in the forecast step and in the analysis step. In the forecast
step, each member of the ensemble is sent to a different processor, while in
the analysis step, the computations of the covariances are distributed be-
tween the different processors. An important aspect of the parallelization is
to limit as much as possible the communication between the processors in
order to maximize execution time reduction.

Four tests are carried out to evaluate the performance of the paralleliza-
tion with different ensemble and model sizes. The results show the savings
provided by the parallel EnKF, especially for a large number of ensemble
realizations.

5
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2.1 Motivation

The ensemble Kalman filter (EnKF) proposed by Evensen (Evensen, 2003)
has proven to be an effective inverse method. It has been applied in many
fields such as petroleum engineering, oceanography, meteorology or hydrol-
ogy (e.g., Aanonsen et al., 2009; Evensen, 2003; Dowell et al., 2004; Franssen
and Kinzelbach, 2008; Li et al., 2012a). While it has proven to be more effec-
tive than alternative inverse methods (Hendricks Franssen and Kinzelbach,
2009), it still has important computational needs.

The ensemble Kalman filter is based on the simultaneous analysis of a
large number of realizations. The first attempts to reduce CPU time usage
were aimed at reducing the number of realizations in the ensemble. The
covariance localization is a modification of the initial EnKF implementation
that serves to reduce the ensemble size without compromising much the
quality of the outcome (e.g., Houtekamer and Mitchell, 1998; Anderson,
2007b; Devegowda et al., 2010; Zhang and Oliver, 2010). Other authors have
proposed to reduce the size of each realization, for instance, Li et al. (2012c)
couple upscaling and the EnKF for the inverse modeling of groundwater
flow.

In any case, even for the most efficient implementation of the EnKF,
the fact that it works on each one of an ensemble of realizations makes
it amenable to parallelization and thus take advantage of multi-processor
computers or of grid computing to reduce even further the time needed for
the algorithm to run. Although it will be reviewed in more detail later in the
paper, recall that the EnKF takes an ensemble of realizations, runs a forward
model in each realization, collects state data at observation locations and
uses the difference between the predicted and observed values to update each
one of the realizations. The updating step requires using all the ensemble
realizations to compute the Kalman gain.

Keppenne (2000) proposed a parallel algorithm in which the forward
model for each ensemble member is run in a different processor, then, to
compute the Kalman gain, a domain decomposition is performed and each
processor ends up with a small portion of all ensemble realizations, finally,
for the updating, each processor is responsible of the update of a realization.
(Keppenne and Rienecker, 2002a,b, 2003) also apply a domain decomposi-
tion in the updating step and each processor is responsible of updating the
subdomain used for the Kalman gain computation in all realizations. This
approach has the advantage of avoiding the ensemble transpositions across
processor that would be required if, after the computation of the Kalman
gain, each processor updates a full realization.

Recently, Tavakoli et al. (2011) have proposed a parallel EnKF algorithm
applied to petroleum engineering using a three-level parallelization. On
the first level, each ensemble member runs on a separate processor during
the forecast step, on the second level uses a parallel implementation of the
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reservoir simulator, and, on the third level, it handles the matrix-vector
multiplications involved in the Kalman gain computation and the updating
of the ensemble members.

In this paper we propose an alternative parallel EnKF algorithm and
provide the computer code to run it on a parallel environment using MOD-
FLOW (McDonald and Harbaugh, 1988; Harbaugh et al., 2000) as the for-
ward model. To the best of our knowledge this is the first application of a
parallel EnKF algorithm in the field of hydrogeology.

The paper proceeds with an overview of the EnKF, the strategy for
parallelization, and the evaluation of the algorithm on two examples.

2.2 Overview of the EnKF

The EnKF is the evolution of the Kalman filter to better address nonlinear
state transfer functions using a Monte-Carlo approach. The Kalman filter
was proposed by Kalman et al. (1960) as a data assimilation filter to im-
prove the estimation of the state of a dynamic linear system. Later, the
extended Kalman filter (EKF) was proposed to address nonlinear systems;
the extension is based on a linearization of the nonlinear model, using a
Taylor expansion, for the computation of the time evolution of the covari-
ance (McElhoe, 1966). The EKF has been used in many fields, including
hydrology (e.g., Hantush, 1997; Leng and Yeh, 2003; Yeh and Huang, 2005),
however, it has severe shortcomings in dealing with highly nonlinear func-
tions due to the accumulative error induced by the linearization process.
Besides, the algorithm itself is time and storage consuming, yielding it in-
feasible for large-scale system. To overcome these problems, the EnKF was
proposed, the specifics of which are introduced next.

There are many uncertain factors in groundwater modeling: initial and
boundary conditions, forcing terms, parameter values, ... (Hendricks Franssen
and Kinzelbach, 2009). In this paper, we focus on the uncertainty about the
parameter log-hydraulic conductivity. The state-transition equation is the
standard three-dimensional groundwater flow equation, which is solved by
MODFLOW, one of the most popular three-dimensional finite-difference
groundwater flow simulators (e.g., McDonald and Harbaugh, 1988; Har-
baugh et al., 2000). The filter has two steps. The first one is the prediction
step, given by

sfi (t) =M(sai (t−∆t) + wi(t), w(t) ∼ N(0, σ) (2.1)

where sfi (t) is the forecasted state of the system for a given set of parameters
i, this state is function of the last estimate of the state of the system at
t − ∆t, sai (t − ∆t) through a state-transition equation represented by M .
Equation M is only an approximation of how the system behaves, therefore
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a model error w is added to the forecast, which is assumed to be Gaussian
distributed, with zero mean and covariance σ.

The second step is the analysis step (Burgers et al., 1998), whereby the
observed state measurements are used to update the forecast state to come
up with a better estimate of the forecasted state.

sai (t) = sfi (t) + k(t)[do(t) + ei(t)−Hsfi (t)] (2.2)

k(t) = pf (t)HT [Hpf (t)HT +R]−1 (2.3)

where the forecasted state sfi (t) is updated as a function of the difference

between the predicted state sfi (t) and the observations (do(t) + ei(t); ma-
trix H is a measurement matrix that serves to map the model predictions
(generally over a fixed grid) onto the locations where the observations are
taken. Note that the observations are composed of two terms the “real”
state of the system do(t) plus a measurement error ei(t) of mean zero and
covariance R. The amount by which the forecasted state should be modified
is controlled by the Kalman gain k(t), which is a function of the state co-
variance pf (t). The ensemble Kalman filter was developed precisely to avoid
the shortcomings in computing the state covariance by linearizing the state-
transfer equation. For this purpose, an ensemble of realizations is generated,
and their state is forecasted and updated sequentially in time as data are
collected. At each time step, the covariance is numerically inferred from the
ensemble of realizations,

pf (t) =
1

Ne − 1

Ne∑
i=1

(sf (t)− ⟨sf (t)⟩)(sf (t)− ⟨sf (t)⟩)T (2.4)

⟨sf (t)⟩ = 1

Ne

Ne∑
i=1

sf (t) (2.5)

where Ne is the number of realizations of the ensemble, ⟨·⟩ denotes ensemble
average, and p is a matrix of dimensions n×n, with n is the number of nodes
at which the state of the system is predicted by the numerical forecast model.

In inverse modeling applications, the state of the system is augmented so
that it not only includes the properly-speaking state of the system but also
the parameters defining the transfer function. In hydrogeology it is com-
mon to use such an augmented state, in our case we use piezometric heads
and log-hydraulic conductivities as state and parameters, respectively. In
our implementation we use an augmented vector, the state transfer func-
tion in Eq. (2.1) leaves unchanged the logconductivity values, and updates
the piezometric heads according to the groundwater flow model; then, in
the analysis step, we limit ourselves to update the logconductivity values as
explained next. For the sake of demonstration, we will assume that obser-
vations are taken at groundwater model prediction locations; limiting the
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component of the measurement matrix H to be 0’s and 1’s, and simplifying
the expressions in Eqs. (2.2) and (2.3) as follows. We may partition the
covariance matrix

p =

[
phh pY h

phY pY Y

]
(2.6)

where phh, pY Y are the covariance between hydraulic heads at measure-
ment locations and the covariance between log-conductivities at all model
gridnodes, respectively, and pY hand phY are the cross-covariances between
a log-conductivity and a hydraulic head. And Eqs. (2.2) and (2.3) become

Y a
i (t) = Y f

i (t) + k(t)[do(t) + ei(t)− hfi (t)] (2.7)

k(t) = pY h[phh +R]−1 (2.8)

where Y a
i (t) and Y

f
i (t) are the elements of the augmented state vector cor-

responding to the logconductivities, and hfi (t) is the predicted piezometric
heads at measurement locations.

The output of the EnKF is an ensemble of realizations of hydraulic con-
ductivity all of which are “conditioned” to the observation data. From this
ensemble we can obtain average estimates and uncertainty estimates about
the hydraulic conductivity, or we can post-process these fields to obtain opti-
mal estimates, with their associated uncertainty, of response functions based
on the ensemble, such as optimal pumping rates for the dewatering of a con-
struction site. As more observational data are assimilated, the ensemble of
hydraulic conductivities become more alike, and therefore the uncertainty
associated is smaller, since there are less alternative realizations capable of
reproducing the observed entire transient state information.

We end this introduction mentioned some of the main advantages and
drawbacks of the EnKF. The main advantage of the EnKF is that is not an
optimization approach but rather a filtering approach. Therefore, there is
no need for recursive evaluations of expensive cost functions, just the need
to compute the ensemble covariance and the mismatch between predictions
and observations, which will be used to update the conductivity fields. This
characteristic makes the EnKF very easy to implement and to apply in cases
with many different sources of information. The main drawback, leaving
apart the Monte-Carlo aspect of the method and the need to handle many
realizations, is that the EnKF has been found to collapse underestimating
the final uncertainty (that is, as the fields keep been updated, they tend
to become more and more similar). There are two main reasons for this
behavior, one is the appearance of spurious correlations between distant
points due to the numerical nature of the covariance calculations, the other
has to do with the number of realizations, if it is not large enough, the
empirical covariance based on a reduced number of realizations tends to
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decrease as new updating steps are performed. The approaches to deal with
these problems are covariance localization and covariance inflation.

2.3 Parallelization approach

There are mainly three kinds of parallel computer architectures, the first
kind is based on shared memory, the second one is based on distributed
memory, and the third one is a hybrid in between both of them. The first
type corresponds to multi-core computers, the benefits are that the com-
munication between the different ranks is very fast, and that it is very easy
to share data among them. However, this type of architecture is limited by
the total amount of memory available, and may be unable to address large
models. The second type corresponds to sharing resources among a grid of
computers, the grid could easily be enlarged attaching new computers to it,
and therefore the limitation about the size of the model they can handle
disappears, on the contrary, the communication between the different pro-
cessors is much slower than in the shared-memory architecture. The best
architecture is the third one that uses a grid of multi-core computers, bal-
ancing the advantages and disadvantages of the first and second architecture
kinds.

In this paper, we employ a hybrid architecture. The cluster of computers,
known as “Pleiades”, consists of three HP Proliant DL 580, each with six-
core four processors AMD Opteron Model 8439 SE (six-core, 2.8GHz, 6MB
L3, 105W), which amounts to a total of 24 cores per computer. All cores
are 64-bit, and each computer has 256 GB of RAM. The operating system is
CentOS. Communication between processors is via message passing interface
(MPI). The cluster is networked via Ethernet TCP/IP.

As already explained previously, the EnKF consists of two steps: forecast
and analysis (or updating). We have analyzed the potential for paralleliza-
tion of both steps.

Fig. 2.1 shows a flowchart of the proposed parallelization, which is ex-
plained next.

2.3.1 Forecast step

The most straightforward way to parallelize the forecast step in the EnKF
is at the realization level (Chen and Zhang, 2006). See box 1 of Fig. 2.1, let
s(n·Ne) be the state vector including all the ensemble members, where n rep-
resents state-vector size andNe is the number of realizations of the ensemble;
if there are k processors, then the metric can be decomposed into sub-metrics
s(n ·m0), s(n ·m1),..., s(n ·mk), where m0,m1,...mk (m0+m1+...+mk=Ne)
denotes the number of ensemble members that must be processed by each
processing element, PE0, PE1,...PEk respectively. Once the realizations
are distributed among the processors, the MODFLOW simulator is called
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Figure 2.1. The parallel EnKF flow chart: box 1 is for the forecast step; box 2 is
for the updating step.
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to generate the forecast piezometric heads in all realizations. The distri-
bution of the realizations to the processors must be so that the load on all
processors is as similar as possible. If Ne is a multiple of k, then each proces-
sor will receive Ne/k realizations, otherwise there will be Ne%k processors
receiving one extra realization.

Since the processors operate asynchronously, and the analysis step can-
not be performed until the forecast is performed in all realization, it is
necessary to call the MPI Barrier command before starting the update
step, to block each processor until all processors reach the barrier point in
the code (Dewaraja et al., 2002).

2.3.2 Update step

After the forecast step, the state vector sf , which contains all realizations,
is distributed between the processors. Next, we have to compute the co-
variances pY h, and phh. This calculation is distributed as follows, first accu-
mulate the distributed state vector sf in each processor,

∑
sf0,

∑
sf1, ...,∑

sfk, (recall that each processor is in charge of the forecast of a subset of
all realizations) send these accumulated values to one of the processors PE0

and compute the mean value of each component. Broadcast the mean values
to all of the processors, and accumulate the products of the differences of
the state vector with respect to their means in each one of the processors∑

(sf0− < sf >)(sf0− < sf >)T ,...,
∑

(sfk− < sf >)(sfk− < sf >)T . Then,
send the accumulated products of differences to PE0 and compute the covari-
ances in this processor. Notice that the accumulated products of differences
must be computed only for the individual entries in pY h, and phh, not for
all possible entries of pf in Eq. (2.6). With the covariances computed, the
Kalman gain is obtained and broadcasted back to all processors so that the
updating Eq. (2.7) is applied to each member of the state vector distributed
between the processors.

2.4 Application

The 3-D transient groundwater flow equation is:

Ss
∂h

∂t
−∇ · (k∇h) =W (2.9)

where Ss is specific storage coefficient [L−1]; h is the hydraulic head [L]; k
is the hydraulic conductivity [LT−1]; t is the time [T ]; W denotes sinks and
sources per unit volume [T−1].

We use four test cases corresponding to two different model sizes. Cases
1, 2 and 3 use a synthetic model with 50 by 50 by 5 cells, and the difference
between them is the number of realizations in the ensemble, which are 1200,
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720 and 240. Case 4 uses a synthetic model with 50 by 50 by 1 cell and 1200
realizations in the ensemble. All cells are 5 m by 5m by 2 m.

For the small model of size 50 by 50 by 1 cells, there are 75 observation
wells in the domain located as shown in Fig. 2.2. The left boundary has a
specified head boundary equal to 8 m, the right boundary has a specified
flow of -0.0008 d−1 and the top and bottom boundaries are no flow.

For the large model of size of 50 by 50 by 5 cells, there are 25 observation
wells in the domain, as shown in Fig. 2.3, that monitor the piezometric
heads at the first, third and fifth layers, for a total of 75 measurements. A
verification well, located at row 30, column 20 and layer 3 (see Fig. 2.3) is
used to test the evolution of the piezometric head at an unsampled location.
The first layer of the left boundary is given a specified head of 8 m, the fifth
layer of the right boundary is given a prescribed flow of -0.008 d−1. The
rest of the boundary are no flow boundaries.

Figure 2.2. Flow domain and location of the 75 observation wells in the small
model.

For both models, the initial head is set 8 m throughout the domain.
Specific storage Ss is set as 0.0008 m−1. The total simulation time is 500
days, discretized into 100 time steps according to the following progression

△tk = δ△tk−1 (2.10)

where δ is 1.05.
Log-conductivity ln(k) is assumed to be second-order stationary follow-

ing a multi-Gaussian distribution of zero ln m/d mean, standard deviation
σ=1.5 ln m/d, and an exponential covariance function.
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Figure 2.3. Flow domain and location of the 25 observation wells in the large
model. The filled triangles are observation wells measuring the piezometric heads
at the first, third and fifth layers, and the filled circle is a verification well.

r(h) = σ2[1− exp(−|hx|
λx

− |hy|
λy

− |hz|
λz

)] (2.11)

where the integral scales in the x, y, z directions are respectively λx = 90
m,λy = 30 m,λz = 5 m.

The sequential Gaussian simulation module of the GSLIB software (Deutsch
and Journel, 1998a) is used to generate the log-conductivity realizations.
One of the realizations is chosen as the reference field.

2.4.1 Analysis

Fig. 2.4 shows the reference log-conductivity field, and Fig. 2.5a,2.5b,2.5c,2.5d,2.5e,2.5f
shows the ensemble mean field for the tests 1, 2 and 3, at the beginning of
the simulation (when no piezometric head data has been assimilated yet)
and at the 50th time step. While comparing Fig.2.5b,2.5d,2.5f and Fig. 2.4,
we find that the main features of the reference field are captured by the
EnKF after the 50th data assimilation step. The larger the ensemble size,
the smoother is the ensemble mean.

Fig. 2.6a, 2.6c and 2.6e shows the piezometric heads in the control well
(not used for conditioning) computed on the initial ensemble of logconduc-
tivity realizations. They display a very large variability indicative of large
prediction uncertainty. This variability is reduced when the piezometric
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Figure 2.4. Reference realization of ln(k).

heads are computed on the updated realizations, as seen in Fig. 2.6b, 2.6d
and 2.6f.

We can evaluate the goodness of the estimated field using the average
deviation between the average of the ensemble members and the reference
field using the root mean square error (RMSE).

RMSE =

√√√√ 1

N

N∑
i=1

(sref − ⟨sa⟩)2 (2.12)

Where N is the number of model gridblocks; sref is the value of the
reference field; ⟨sa⟩ denotes the mean estimation of the ensemble fields.

Fig. 2.7 shows that the RMSE of test 3 has some fluctuations at early
assimilation steps, yet after the 31st assimilation step, it begins to increase,
becoming even larger than the starting value, which implies that for a small
ensemble size the estimation of the covariance is poor (Franssen and Kinzel-
bach, 2008). In the comparison of the RMSE between tests 1 and 2, the
RMSE of test 1 is lower, plus, it is gradually smoother after the 27th as-
similation step. So it can be concluded that the larger the ensemble, the
better the estimation.

Similar results and conclusions can be reached for fourth test case, for
which the model size is smaller while retaining the same number of mea-
surements.

2.4.2 Parallelization analysis

Speedup and efficiency are usually used to evaluate the performance of par-
allel algorithms
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Figure 2.5. initial and updated ensemble means facies fields.(a), (b) show the en-
semble mean facies fields of the initial realizations and the 50th updated realizations
of test 1; (c), (d) show the ensemble mean facies fields of the initial realizations
and the 50th updated realizations for test 2; (e), (f) show the ensemble mean facies
fields of the initial realizations and the 50th updated realizations for test 3.
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Figure 2.6. Piezometric head time evolution at the control well. The red curve is
for the reference field, the gray curves for each realization of the ensemble, and the
green curve is the ensemble mean. (a) and (b) show piezometric heads of the the
initial realizations and the 50th updated realizations for test 1; (c) and (d) show
piezometric heads of the initial realizations and the 50th updated realizations for
test 2; (e) and (f) show piezometric heads of the initial realizations and the 50th
updated realizations for test 3.
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Speedup:SP =
Ts
TP

(2.13)

Efficiency:EP =
SP
P

(2.14)

P is the number of the processors, Ts is the CPU time consumed under a
serial implementation of the algorithm, TP is the CPU time consumed under
a parallel implementation with P processors.

There is an obvious trade-off between the ensemble size and the CPU
time, and also between the size of the numerical model and the CPU time.
Table 2.1 and Fig. 2.8 show the performance of the parallel algorithm for
test cases 1 (three-dimensional domain and 1200 realizations), 3 (three-
dimensional domain and 240 realizations) and 4 (two-dimensional domain
and 1200 realizations ).

From the table and figure we can see that the speedup is far from the ideal
line for which the improvement in CPU should follow the same proportion
as the number of processors. This is not a surprising result, there are two
causes for this departure from the ideal performance: there is a need for all
processors to wait until they have finished certain tasks for them to proceed
on to the next task, and there is extra time needed for communication
between processors.

We notice some differences between the tests. Comparing tests 1 and
3, we notice that the speedup is better for the case with the larger number
of realizations, this is because for test 3, each processor receives a smaller
number of realizations and thus, proportionally, the time spent in commu-
nication is larger for test 3 than for test 1. Apparently, for both tests, the
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Figure 2.8. Parallel speed-up and efficiency. (a) Speed up (b) efficiency.

Table 2.1. Parallel performance of three of the tests.

Processors Test1CPUs Speedup Efficieny Test3CPUs Speedup Efficieny

1 20539.92 1.00 1.00 4866.50 1.00 1.00

2 14284.37 1.44 0.72 3316.35 1.47 0.73

4 8125.83 2.53 0.63 2607.83 1.87 0.47

6 5846.27 3.51 0.59 1723.75 2.82 0.47

8 4640.38 4.43 0.55 1307.34 3.72 0.47

10 4005.09 5.13 0.51 1250.23 3.89 0.39

12 3508.46 5.85 0.49 1036.38 4.70 0.39

Processors Test4CPUs Speedup Efficieny
1 10087.23 1.00 1.00
2 6595.59 1.53 0.76
4 4426.79 2.28 0.57
6 2790.85 3.61 0.60
8 2077.76 4.85 0.61
10 1961.45 5.14 0.51
12 2109.46 4.78 0.40
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speedup could keep increasing if more processor were available. For test
4, however, the speedup is similar to that of test 1 up to eight processors,
then it appears to worsen, again, the cause is found in the increase in the
communication time among processors. It does not seem that increasing the
number of processors past 8 will increase the speedup (although the overall
CPU time will be still reduced) for test 4.

The efficiency curves have a similar behavior as the speedup curves.
Efficiency worsens past 8 processors for test 4, and for tests 1 and 3 we can
conclude that the parallel algorithm is more efficient the larger the ensemble
size.

We can conclude that the parallel implementation of the EnKF runs
with higher efficiency for large size models and large ensembles than for
small ones. In all cases, the final CPU time is smaller than for the serial
implementation, although the speedup is still far from ideal.

In this parallel algorithm there are two inherent barriers to its processing
capabilities, one is data asynchrony, and the other is data-dependency. Data
asynchrony makes all processors be as slow as the slowest one, since they
have to wait for all processors to finish a certain task before they can proceed
to the next one. Data dependency refers to the fact that the distribution
of realizations to the processors does not necessarily leaves all processors
with the same number of realizations. Data asynchrony mainly affects the
forecast step, while data dependency affects all steps and it is less noticed
for large number of realizations.

2.5 Summary and suggestion

A parallel algorithm for the forecast and analysis steps of the EnKF has
been presented that reduces significantly the time to run the EnKF for
large ensemble sizes. The efficiency remains over 0.40 when using up to 12
processors for the two tests using 1200 realizations.

There are many measures that could be taken to reduce the communica-
tion time and increase the efficiency such as decreasing the communication
traffic, boosting communication granularity or using a high-speed internet
protocol to reduce the information transfer delay. In addition, we must at-
tempt to keep the load as balanced as possible among the processors, that
is, all processors should work on the same (or very similar) number or real-
izations.

Furthermore, the algorithm could be improved using a parallelized ver-
sion of the groundwater flow simulator, such as one employing domain de-
composition, especially for large size models.
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3
The Power of Transient

Piezometric Head Data in
Inverse Modeling: An

Application of the Localized
Normal-score EnKF with
Covariance Inflation in a
Heterogenous Bimodal

Hydraulic Conductivity Field

Abstract

The localized normal-score ensemble Kalman filter (NS-EnKF) coupled with
covariance inflation is used to characterize the spatial variability of a chan-
nelized bimodal hydraulic conductivity field, for which the only existing prior
information about conductivity is its univariate marginal distribution. We
demonstrate that we can retrieve the main patterns of the reference field by
assimilating a sufficient number of piezometric observations using the NS-
EnKF. The possibility of characterizing the conductivity spatial variability

21
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using only piezometric head data shows the importance of accounting for
these data in inverse modeling.

3.1 Introduction

It is well known that proper characterization of subsurface hydrogeologic
properties and their uncertainty are critical issues for groundwater fore-
cast, subsurface resource management and environmental risk assessment (Li
et al., 2011). This can be achieved by stochastic inverse modeling accounting
for real-time state data. Some existing methods for stochastic inverse mod-
eling are the gradual deformation method, the sequential self-calibration,
the Markov chain Monte Carlo method, the Representer method, and the
Pilot Points method (e.g., Capilla and Llopis-Albert, 2009; Hu, 2000; Gómez-
Hernánez et al., 1997; Fu and Jaime Gómez-Hernández, 2009; Oliver et al.,
1997; Alcolea et al., 2006; Wen et al., 2002; RamaRao et al., 1995; Franssen
et al., 2003). Although these methods are flexible with regard to nonlinear-
ities and system complexity, they are very time consuming and not easy to
apply to large scale problems (Franssen and Kinzelbach, 2008).

To overcome this problem, the Ensemble Kalman Filter (EnKF) has
become more popular in many fields, such as oceanography, meteorology,
petroleum engineering, or hydrology (e.g., Aanonsen et al., 2009; Chen and
Zhang, 2006; Evensen, 2003; Moradkhani et al., 2005; Dowell et al., 2004;
Bertino et al., 2003a; Franssen and Kinzelbach, 2008; Li et al., 2012a), be-
cause it is computationally efficient and capable of handling large fields.
However, it has been shown that, although the EnKF is good accounting
for the non linearities of the state equation, it fails when dealing with non-
Gaussian parameter fields (e.g., Sun et al., 2009; Simon and Bertino, 2009;
Chen et al., 2009).

The particle filter (PF) (e.g., Gordon et al., 1993; Losa et al., 2003;
Van Leeuwen, 2009) is able to handle any type of statistical distribution
and it is very robust for nonlinear models and non-Gaussian distributed
variables (Schöniger et al., 2012); however, it is also very time-consuming
and hardly applied to large simulation models.

Recently, new methods have been developed trying to adapt the EnKF to
non-Gaussian distributions. They can be grouped in four categories accord-
ing to their characteristics: those using a Gaussian mixture model (GMM),
those using a transformed reparameterization, the iterative EnKF, and those
using a Gaussian anamorphosis (GA) also known as normal score (NS) trans-
form.

In the first category, the methods using a Gaussian mixture model method
apply a probabilistic model in which a finite number of Gaussian probabil-
ity density functions (pdf’s) is used to approximate the underlying non-
Gaussian pdf’s (e.g., Apte et al., 2007; Sun et al., 2009; Chen and Liu, 2000;
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Dovera and Della Rossa, 2011; Reich, 2011; Stordal et al., 2011). GMM takes
advantage that for linear transfer functions the forecasting step preserves the
Gaussian mixture. Sun et al. (2009) showed the benefits of the EnKF inte-
grated with GMM techniques for high-dimensional, multimodal parameter
distributions. Dovera and Della Rossa (2011) combined the EnKF with
GMM for simulating a multimodal distribution in the context of reservoir
facies modeling.

In the second category, the transformed reparameterization, the methods
work with alternative state variables that may be better approximated by
a Gaussian distribution. Chen and Oliver (2010b) discuss that using the
EnKF to update saturation may yield non-physical results because of its non-
Gaussian distribution. They proposed to reparameterize the formulation of
the EnKF using the water arrival time as the state variable. This approach
has also been followed by Chen et al. (2009); Chang et al. (2010); Li et al.
(2007).

In the third category, the iterative EnKF, an iterative scheme is intro-
duced into the forecasting and updating steps of the EnKF. At any given
time step, the static parameters are repeatedly updated using the Kalman
gain equation until a satisfactory match between predicted state variables
and observations is reached. This iteration is needed because of the strong
non-linearities of the forecast model. Example applications can be found
in the petroleum engineering literatures (e.g., Liu and Oliver, 2005; Gu and
Oliver, 2007, 2006; Wen and Chen, 2005, 2006; Li and Reynolds, 2007; Wang
et al., 2010; Zhao et al., 2008), and also in hydrogeology (Franssen and
Kinzelbach, 2008).

In the fourth category, the EnKF is combined with GA. Gaussian anamor-
phosis (also known as normal score transform) is used to transform the
non-Gaussian variables into Gaussian ones, but only at the univariate level.
Then the EnKF is used on the univariate Gaussian variables. Applications
of this approach can be found in the fields of ecology, remote sensing, geo-
physics, petroleum engineering or hydrogeology (e.g., Simon and Bertino,
2009, 2012; Bertino et al., 2003a,b; Bocquet et al., 2010; Béal et al., 2010;
Schöniger et al., 2012; Zhou et al., 2011; Li et al., 2012b).

In this paper, we will apply the GA implementation by Zhou et al. (2011)
to a bimodal aquifer assuming that the only information we have about the
hydraulic conductivity is its univariate distribution. Our conjecture is that
the assimilation of enough transient piezometric head data is sufficient to
capture the main features of the spatial variability of hydraulic conductivity.

The structure of this paper is as follows. First, an introduction of the GA
implementation is given. And then we evaluate the impact of the number of
conditioning piezometric heads in the characterization of the conductivity
patterns. The paper ends with a summary of the main findings.
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3.2 The Localized Normal-Score Ensemble Kalman
Filter with Covariance Inflation

The Normal-Score Ensemble Kalman Filter (NS-EnKF) is an evolution of
the EnKF to accommodate non-Gaussian random variables. It is based on
a univariate transformation of each component of the parameter vector of
non-Gaussian conductivities into another vector in which all components
follow a standard Gaussian distribution.

We will present the NS-EnKF for the case in which we wish to character-
ize the heterogeneity of hydraulic conductivity (X) by assimilating transient
piezometric heads (Y ). The NS-EnKF can be summarized as follows:

1. Initialization step. An ensemble of hydraulic conductivity fields must
be generated. There are many techniques that can be used for this
purpose, such as sequential simulation, multiple point simulations with
training images (e.g., Gómez-Hernández and Journel, 1993; Strebelle,
2002; Mariethoz et al., 2010); however, since we assume that there is no
prior information about the spatial heterogeneity, but only information
about its marginal univariate distribution, we generate homogeneous
realizations, each one with a value drawn from this distribution.

2. Normal-score transformation step. At each location, all conductivity
values from all realizations are collected, and a normal score transform
function is built. Then, these functions are used to transform all values
for all realizations.

The normal score transformed conductivity vector X̃ is

X̃ = ϕ(X) (3.1)

where ϕ(·) is a vectorial normal score transform function, different
for each location. Each member of the vectorial function is non-
parametrically built.

3. Forecasting step. In this step, the simulated piezometric heads are
calculated for the tth time step based on the piezometric heads from
the (t − 1)th time step using a transient flow model, realization by
realization.

Yt = ψ(Yt−1,Xt−1) (3.2)

where Yt, Yt−1 are the simulated piezometric heads at the tth time
step and the simulated piezometric heads at the (t − 1)th time step,
respectively; Xt−1 is the conductivity estimate at the (t − 1)th time
step; ψ(·) denotes the transient groundwater flow model.
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4. Analysis step or assimilation step. The aim of this step is to update the
transformed conductivity X̃ and piezometric heads Y accounting for
the discrepancy between forecasted and observed piezometric heads.

(a) First, build the augmented state vector S with the transformed
conductivity X̃ and the forecasted piezometric heads Y, which
for the ith realization at the tth time step is:

Sf
i,t =

[
X̃
Y

]
i,t

, (3.3)

(b) Then, the measured piezometric heads at time t are assimilated
by updating the state vector into Sa

i,t using:

Sa
i,t = Sf

i,t +Gt(Y
o
t + ei,t −HSf

i,t) (3.4)

Gt = PtH
T (HPtH

T +Rt)
T (3.5)

where Sa
i,t is the updated state vector of the ith ensemble mem-

ber at the tth time step; Sf
i,t is the forecast state vector; Pt is the

forecast covariance matrix; Yo
t + ei,t is the hydraulic head obser-

vation vector, including the true head Yo
t plus the observation

error ei,t —the observation error has with mean zero and covari-
ance Rt; Gt is the Kalman gain; and H is an observation matrix,
which consists only of 0’s and 1’s when observations are taken at
simulation nodes, in which case, Equation 3.5 can be simplified
as

Gt = C
X̃Y

(CY Y +Rt

)−1
(3.6)

whereC
X̃Y

corresponds to the cross-covariance between the trans-
formed state vector and the forecasted piezometric heads at the
observation locations; and CY Y is the covariance between the
forecasted piezometric heads at the observation locations.

5. Back transformation step. Back transform the updated normal-score
transformed conductivities into conductivities using the inverse of the
previously computed transform functions:

X = ϕ−1(X̃) (3.7)

since a non-parametric transformation is used, there is a need to spec-
ify how to backtransform the values that are outside the range given by
the minimum and maximum values used to build the non-parametric
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transform function. In our case we used the same approach as de-
scribed in the Gslib library (Deutsch and Journel, 1998b) choosing a
power interpolation with absolute bounds set at -4 and 4 ln(m/d).

6. Return to the step 3 and repeat the processes until all the observed
data are assimilated.

Zhou et al. (2011, 2012) have shown that the NS-EnKF is a good al-
ternative in the characterization of non-Gaussian distributed conductivity
fields. However, since the NS-EnKF is based in the EnKF, it has the same
drawbacks, that is, the appearance of spurious correlations between distant
points and the underestimation of the final uncertainty. Spurious corre-
lations appear due to the numerical nature of the covariance calculations,
which result in fluctuating covariance estimates about zero at distances for
which it should be zero. Underestimation of the final uncertainty is due to
the underestimation of the empirical covariance based in a small number of
realizations (Xu et al., 2012). These two problems can be tackled through
combining covariance localizations and covariance inflation techniques.

Covariance localization aims to eliminate the effect of spurious corre-
lations among the state variables and the parameters by constraining the
correlation range of the empirical covariance. This can be achieved by re-
placing Equation 3.6 with the following equation:

Gt = ρ
X̃Y

◦C
X̃Y

(
ρY Y ◦CY Y +Rt

)−1
(3.8)

where ◦ represents the Schur product; and ρ
X̃Y

and ρY Y are localization
functions used to correct C

X̃Y
and CY Y , respectively.

There are many alternatives to calculate the localization functions (e.g.,
Chen and Oliver, 2010a; Greybush et al., 2011; Houtekamer and Mitchell,
2001; Bergemann and Reich, 2010; Nan and Wu, 2011). In this paper, we use
the same fifth-order distance dependent localization function (e.g., Gaspari,
1999; Hamill et al., 2001) for both covariances.

ρ
X̃Y

(d) = ρY Y (d) =


−1

4(
d
a)

5 + 1
2(

d
a)

4 + 5
8(

d
a)

3 − 5
3(

d
a)

2 + 1, 0 ≤ d ≤ a;
1
12(

d
a)

5 − 1
2(

d
a)

4 + 5
8(

d
a)

3 + 5
3(

d
a)

2 − 5(da) + 4− 2
3(

d
a)

−1, a≤ d≤ 2a;

0 d>2a.

(3.9)
where d is the Euclidean distance, and a is a distance parameter controlling
the distance at which the localization function will die out to zero. We chose
this function based on our past experience (Li et al., 2012a,b).

Covariance inflation is a technique used to avoid filter divergence (in-
breeding) by inflating the empirical covariance. This can be achieved by
linearly inflating each component of the augmented state vector:
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Sinf,f
i,t =

√
λt(S

f
i,t − ⟨Sf

t ⟩) + ⟨Sf
t ⟩ (3.10)

where Sinf,f
i,t is the ith ensemble member at the tth time step of the state

vector; ⟨·⟩ denotes ensemble average; λt is the inflation factor at the tth time
step. There are many methods to get the inflation factor λ (e.g., Anderson,
2007a; Zheng, 2009; Liang et al., 2011; Li et al., 2009; Kurtz et al., 2011).
In this work, we will use the time-dependent inflation algorithm proposed
by Wang and Bishop (2003).

λt =
(R

− 1
2

t dt)
TR

− 1
2

t dt − kt

trace{R− 1
2

t HPt(R
− 1

2
t H)T }

(3.11)

where kt is the number of observations; dt is the residual between observation
data and forecast data, which can be described as:

dt ≡ Yo
t + ei,t −H⟨Sf

t ⟩ (3.12)

Then the transformed analysis state vector Sa
i,t is:

Sa
i,t = Sinf,f

i,t + λtCX̃Y
(λtCY Y +Rt)

T (Yo
t + ei,t −Yinf,f

i,t ) (3.13)

where Yinf,f
i,t contains the forecasted piezometric heads after inflation at the

observation locations.

3.3 Synthetic Example

A synthetic bimodal confined aquifer consisting of 30% high permeability
sand and 70% low permeability shale is constructed on a grid of 100 by
80 by 1 cells, each cell being 3 m by 3 m by 10 m. The SNESIM code,
a multiple-point simulation program developed by Strébelle (2000), is used
to generate a two-facies field using the training image in Strebelle (2002)
(see Figure 3.1). Then, the facies field is populated, independently for each
facies, with log-conductivity values using a sequential Gaussian simulation
algorithm (Gómez-Hernández and Journel, 1993). The parameters used in
the sequential Gaussian simulations are shown in Table 3.1. The resulting
reference log-conductivity field and its histogram are shown in Figures 3.2
and 3.3, respectively. We can see in Figure 3.2 that the distribution of log-
conductivities is clearly non-Gaussian, and that the field has well-connected
sand channels. The bimodal distribution in Figure 3.3 has a global mean of
-0.3 ln(m/d), and a global standard deviation of 1.7 ln(m/d).

The boundary conditions used in the simulation of transient groundwater
flow are: north and south boundaries, no flow; east boundary, prescribed
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Table 3.1. Parameters of the random functions describing the spatial continuity
of the sand and shale logconductivities

Facies Proportion Mean Std.dev Variogram λx λy sill
[ln [m/d]] [ln [m/d]] type [m] [m]

Sand 0.3 2.1 0.7 exponential 144 72 1
Shale 0.7 -1.4 0.7 exponential 72 72 0.35

flow as indicated in Figure 3.2; and west boundary, general head boundary
condition with head at 2 m and leakage coefficient of 0.14 d−1. The initial
head is set to zero throughout the domain. Specific storage is set to 0.003
m−1. The total simulation time is 500 days and it is discretized into 100
time steps. The time steps increase in size as time progresses following a
geometric series with ratio 1.05. The transient flow simulator MODFLOW
(e.g., McDonald and Harbaugh, 1984; Harbaugh et al., 2000) is used as the
forward model.

Training Image

Easting

N
o
rt
h
in
g

.0 750
.0

750

Shale

Sand

Figure 3.1. Training image used to generate the ensemble of binary facies real-
izations.

3.3.1 Scenarios

In this work, seven scenarios are used to demonstrate the power of transient
piezometric head in the characterization of a bimodal hydraulic conductivity
field. The impact of the covariance inflation in the characterization of the
hydraulic conductivity field (see Table 3.2) is also analyzed. It is important
to recall that no prior information about the spatial variability of conductiv-
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Figure 3.2. Reference field. The line source where particles are injected is shown
with the blue dashed line, the two control planes indicated by the black lines are
used to compute breakthrough curves.
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Figure 3.3. The histogram of the reference field
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Table 3.2. Definition of scenarios

Scenario S0 S1 S2 S3 S4 S5 S6

Initial Homogenous fields
√ √ √ √ √ √

Initial Heterogenous fields
√

Observation piezometers (111)
√ √

Observation piezometers (56)
√ √ √

Observation piezometers (24)
√ √

No variance inflation
√ √ √ √

Variance inflation
√ √ √

ity is used, and that no conditioning hydraulic conductivity data are used,
either.

For reference purposes, we include a Scenario S0 in the analysis. This
scenario replicates the analysis performed by Zhou et al. (2011), where they
had information about the spatial variability of hydraulic conductivity in
the form of the training images from which the reference case had been
generated; therefore, the training image of Figure 3.1 is used to generate
1000 unconditional realizations of the two-facies distribution, which are later
populated with conductivity values by Gaussian sequential simulation, in the
same manner as the reference realization was built. Scenarios S1, S2, S3, S4,
S5, S6 use, as initial realizations, the same 1000 homogenous fields generated
based on the bimodal distribution shown in the Figure 3.3.

All scenarios use localization in the application of the NS-EnKF. The
distance a in the localization function (Equation 3.9) is set to 40 m imply-
ing that correlation will be zero at a distance of 80 m. This value is chosen
after analyzing the experimental cross-covariances of the first batch of real-
izations. Figure 3.4 shows the localization function. Scenarios S0, S1, S3,
S5 do not use covariance inflation, whereas scenarios S2, S4, S6 do use it.

The number of observation piezometers goes from 111 down to 24 for
the different scenarios as indicated next. Scenarios S1 and S2 have 111 ob-
servation piezometers (see Figure 3.5a), scenarios S0, S3 and S4 have 56
observation piezometers (see Figure 3.5b), and scenarios S5 and S6 have 24
observation piezometers (see Figure 3.5c). In addition, two control piezome-
ters, not used for conditioning, are employed to verify the performance of
the NS-EnKF in all the scenarios (see Figure 3.5). The control piezometer
number 1 is located in the north-western part of the aquifer, and the control
piezometer number 2 is towards the center.
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Figure 3.5. Graphs a,b,c show the locations of the 111, 56, 24 observation piezome-
ters, respectively. The blue squares denote observation piezometers, and the red
triangles, control piezometers.
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3.4 Analysis

We have applied the localized NS-EnKF for the different scenarios described
previously assimilating the piezometric observations for the first 60 time
steps (67.7 days). We will show the updated log-conductivity fields after
the 10th time step (2.4 days) and after the 60th time step. We will also
show the piezometric evolution at the control points from time zero until
the 100th time step (500 days).

Figure 3.6a displays the log-conductivity histogram for the initial ensem-
ble of heterogeneous realizations used in scenario S0. Figure 3.6b displays
the log-conductivity histogram of the updated ensemble of realizations in
scenario S0 after the 60th assimilation step. Figure 3.7 displays at the top
the log-conductivity histogram for the initial ensemble of homogeneous re-
alizations used in scenarios S1-S6. The corresponding histograms for each
scenario after the 60th assimilation step are shown in Figure 3.7a-3.7f. Com-
paring the updated histograms with the reference one, we can observe that
the bimodality is preserved in all scenarios, although only scenarios S0, S2,
S4, and S6 are able to approximately keep the original proportions between
sand and shale.
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Figure 3.6. Scenario S0. Log-conductivity histograms for the initial ensemble of
realizations and for the updated ensemble of realizations after the 60th assimilation
step.

Figure 3.8 shows the ensemble mean of the initial log-conductivity fields,
together with the ensemble mean of the updated log-conductivity fields after
the 10th and 60th assimilation time step for scenario S0. Similarly Figure
3.9 shows the ensemble variance for the same sets of log-conductivity in
Figure 3.8.

The ensemble mean and the ensemble variance of the initial log-conductivities
for scenarios S1-S6 are not shown, since they are the same as Figure 3.8a and
Figure 3.9a, respectively. Figures 3.11 and 3.12 show the ensemble means of
the updated fields after the 10th and 60th time step, respectively. Similarly,
Figures 3.13 and 3.14 show the corresponding ensemble variances.
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Figure 3.8. Scenario S0. Ensemble mean of lnK for the initial realizations and
after assimilating heads at the 10th and 60th time steps.
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Figure 3.9. Scenario S0. Ensemble lnK variance for the initial realizations and
after assimilating heads at the 10th and 60th time steps.
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The initial ensemble means in Figure 3.8a and Figure 3.10a are homo-
geneous with a value equal to the prior mean (even for scenario S0), since
the initial realizations are unconditional. For the same reason, the initial
ensemble variances in Figure 3.9a and Figure 3.10b are also homogeneous
with a value equal to the prior variance.
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Figure 3.10. Maps a,b show the ensemble mean and ensemble variance of the
initial realizations for the scenarios with initial homogenous fields (S1-S6).

Figure 3.8 and Figure 3.9 replicate the results by Zhou et al. (2011) who
introduced the NS-EnKF algorithm. We can see how, as time progresses,
the main channel features in the reference field are better delineated in
the ensemble mean maps, and the ensemble variance decreases. Since the
fastest piezometric head changes are close to the east and west boundaries,
the channel features close to these boundaries can be already identified at
the 10th time step. It was precisely the evolution of the ensemble mean
map as a function of time seen in the these figures, what disclosed to us
the importance of the transient piezometric head for hydraulic conductivity
characterization. For this reason, this paper focuses in the power of assim-
ilating transient piezometric heads using the NS-EnKF algorithm for the
case in which we do not have any information about the spatial variability
of hydraulic conductivities.

Figures 3.11a,c,e, and 3.12a,c,e show the ensemble means for the scenar-
ios in which no covariance inflation has been implemented. Correspondingly,
Figures 3.13a,c,e, and 3.14a,c,e show the ensemble variances for these sce-
narios. We notice that the implementation of the localized NS-EnKF with
homogeneous initial fields results in filter inbreeding very quickly. This can
be identified in the variance maps in Figures 3.14a,c,e, which are almost
zero everywhere. Even though, after the 60th time step, some of the chan-
nel features can be identified when using 111 piezometers, we discarded
these results as acceptable due to filter inbreeding. And, for this reason, we
implemented covariance inflation into the localized NS-EnKF.

Figures 3.11b,d,f, and 3.12b,d,f show the ensemble means for the scenar-
ios in which covariance inflation has been implemented. Correspondingly,
Figures 3.13b,d,f, and 3.14b,d,f show the ensemble variances in these sce-
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Figure 3.11. Scenarios S1-S6. Log-conductivity ensemble mean computed after
the 10th time step.
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Figure 3.12. Scenarios S1-S6. Log-conductivity ensemble mean computed after
the 60th time step.
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Figure 3.13. Scenarios S1-S6. Log-conductivity ensemble variance computed after
the 10th time step.
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Figure 3.14. Scenarios S1-S6. Log-conductivity ensemble variance computed after
the 60th time step.
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narios. When using 111 piezometers and covariance inflation after 60 time
steps, the ensemble mean captures very well the main features of the refer-
ence field (see Figure 3.12b). If the number of piezometers is reduced to 56,
the method can still capture the general position of the channels, but with
less accuracy than in the previous case (see Figure 3.12d). However, if we
reduce the number of piezometers down to 24, then the characterization of
the channels is very poor. As in scenario S0 after 10 time steps, in scenarios
S1-S6, we can start to see the appearance of the channels in the ensemble
means of the updated fields. For these scenarios, in which covariance infla-
tion was implemented, the ensemble variance after 60 time steps is too small
indicating some filter inbreeding.

The issue of filter inbreeding is better analyzed by looking at the ratio
of the root mean square error (RMSE) to the ensemble spread (ES), where
RMSE and ES are defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(srefi − ⟨sa⟩i)2, (3.14)

where n is the number of model elements; srefi is the value of the reference
field at node i; ⟨sa⟩i is the ensemble mean of the updated fields, and

ES =

√√√√ 1

n

n∑
i=1

σ2i , (3.15)

where σi is the ensemble variance of the updated fields at node i.

The RMSE measures how well the ensemble average map reproduces
the reference one, the smaller the RMSE, the better the reproduction. Yet,
we know that the ensemble average map can only be a smooth representation
of the spatial heterogeneity, and consequently it can never be zero. The ES
measures the degree of variability across the different realizations. When
ES is too close to zero, it indicates that the realizations have collapsed and
filter inbreeding occurs. Liang et al. (2011) show that a good way to check
the degree of filter inbreeding is by analyzing the ratio of RMSE to ES,
which, in ideal conditions, should be 1.

Figure 3.15 shows the evolution of the RMSE for all scenarios computed
on the updated log-conductivity fields after each assimilation step. We can
see how, except for S6, the RMSE decreases with time. The smallest values
are found for scenario S0, followed by scenario S2. Figure 3.16 shows the
evolution with time of the ratio of RMSE to ES. In this figure, we can
clearly see how for scenario S0 this ratio converges quickly to 1, indicating
that there is no filter inbreeding. On the other hand, filter inbreeding is
very high for scenarios S1, S3, S5 (the ones without covariance inflation),
and it is less pronounced for scenarios S2, S4, S6 (the ones with covariance
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inflation). As already noticed in Figure 3.12b, scenario S2 provides the best
results.
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Figure 3.15. RMSE

Next, we analyze the reproduction of the piezometric heads at the control
piezometers. Figure 3.17 shows the evolution of the piezometric heads at
control piezometers 1 and 2 for the initial log-conductivity fields; in the top
row, the evolution in the heterogeneous fields used in scenario S0, and in
the bottom row, the evolution in the homogeneous fields used in the other
scenarios. The figure also shows the evolution of heads in the reference
field and the average of the individual realizations. Figure 3.18 shows the
evolution at the two control points in the updated fields after 60 time steps
for scenario S0. Figure 3.19 and Figure 3.20 shows the evolution of heads
at control piezometers 1 and 2, respectively, in the updated fields after
60 time steps for scenarios S1-S6. Notice that for Figures 3.18, 3.19 and
3.20 the assimilation period lasts only until day 67.7, beyond that the log-
conductivity fields are not updated anymore.

We can see in Figure 3.17 that with no conditioning to conductivity and
without assimilating any piezometric head the spread of the responses of
piezometric head is extremely large. The localized NS-EnKF with initial
heterogeneous fields (scenario S0) does a good job in reducing the spread of
the piezometric head curves with the conductivity fields updated up to the
60th assimilation time step. However, there is still a small bias between the
reference values and the ensemble mean results.
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Figure 3.16. The ratio of RMSE to SE

The evolution of the piezometric heads computed on the updated fields
after the 60th assimilation time step in both control piezometers is very
similar for all scenarios. The spread is reduced very much with respect
to the spread in the initial fields, although for some scenarios like S1, or
S3, the reduction is too large due to the filter inbreeding. Scenario S2,
which performed best for log-conductivity reproduction, is the one displaying
the largest spread among the different realizations but also the largest bias
between the reference values and the ensemble average.

In order to analyze the characterization of the log-conductivity fields in
the different scenarios, we are going to perform two additional checks, one
involving the advective transport of an inert solute, and the other one based
on the analysis of some connectivity functions. For these checks, we will use
the updated log-conductivity fields after the 60th assimilation time step.

For the transport exercise, we release 10,000 particles along an injection
line at x = 10 m and we track them to the two control planes at x = 100
m and x = 280 m using the random walk particle tracking program RW3D
(Fernàndez-Garcia et al., 2005) (see Figure 3.2). Porosity is assumed con-
stant and equal to 0.3. Figure 3.21 shows the breakthrough curves (BTCs)
corresponding to scenario S0. Figure 3.22 shows the BTCs at the first con-
trol plane for scenarios S1-S6, and Figure 3.23 shows the BTCs at the second
control plane.
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Figure 3.17. Graphs a,b show the piezometric head time evolution of the initial
ensemble of heterogenous log-conductivity realizations at the control piezometers
1 and 2, respectively; graphs c,d show the piezometric head time evolution on the
initial homogenous realizations at the two control piezometers. The red square
line corresponds to the piezometric head time evolution in the reference, the green
triangle line corresponds to the mean of the ensemble, and the gray lines correspond
to the realizations.
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Figure 3.18. Scenario S0. The piezometric head time evolution after the 60th
time step for the two control piezometers. The red square line corresponds to the
piezometric head time evolution in the reference, the green delta line corresponds
to the mean of the ensemble, the gray lines correspond to the realizations and the
vertical dashed lines indicate the conditioning period.

Again, scenario S0 is the one that performs best since the reference
BTCs are within the 90% confidence interval for both control planes, and
the median BTCs do an acceptable job in reproducing the reference BTCs.
The non inflation scenarios display an extremely narrow 90% confidence
interval, although they are able to reproduce the reference BTCs for control
plane 2. Of the inflation scenarios both S2 and S4 give good results both
in terms of the confidence intervals and the approximation of the reference
BTC by the median. The behavior of scenario S6 is odd, particularly when
compared with S5, since S5 is able to reproduce moderately well the BTCs
for both control planes (with a very narrow band of uncertainty) and S6 fails
completely, displaying a transport behavior much slower than in all other
scenarios. This behavior must be due to the covariance inflation and the
low number of conditioning points, such an inflation may result in an overall
higher variability that masks the presence of the conductivity channels.

All in all, transport results could be very much dependent on the refer-
ence field used for the analysis, and should be interpreted in this view.

For the connectivity exercise, we are going to analyze the connectivity of
high conductivity values in the horizontal direction. Of the different methods
proposed to evaluate connectivity (e.g., Western et al., 2001; Knudby and
Carrera, 2005; Neuweiler and Cirpka, 2005), we choose the one proposed by
Stauffer and Aharony (1994). Before computing the connectivity of each
field we need to convert the continuous log-conductivity fields into binary
fields using the indicator transform function

I(x) =

{
1, if lnK ≥ 0

0, otherwise
(3.16)
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Figure 3.19. Scenarios S1-S6. The piezometric head time evolution at the control
piezometer 1 after the 60th time step. The red square line corresponds to the
piezometric head time evolution in the reference, the green delta line corresponds
to the mean of the ensemble, the gray lines correspond to the realizations and the
vertical dashed lines indicate the conditioning period.
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Figure 3.20. Scenarios S1-S6. The piezometric head time evolution at the control
piezometer 2 after the 60th time step. The red square line corresponds to the
piezometric head time evolution in the reference, the green delta line corresponds
to the mean of the ensemble, the gray lines correspond to the realizations and the
vertical dashed lines indicate the conditioning period.
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Figure 3.21. Graphs a,b show the BTCs at the two control planes for scenario
S0. The red square line corresponds to BTCs in the reference. The black lines
correspond to the 5 and 95 percentiles of all realization BTCs, and the green delta
line corresponds to the median.

where we chose the threshold value lnK = 0 because it separates sand from
shale in the reference histogram (Figure 3.3). The program CONNEC3D
(Pardo-Igúzquiza and Dowd, 2003) computes the connectivity following the
method by Stauffer and Aharony (1994) as the probability that two points
with log-conductivities larger than zero horizontally separated by a certain
distance are connected by a continuous path of log-conductivities larger than
zero. Figures 3.24 and 3.25 show the connectivity curves for the high con-
ductivities as a function of their horizontal separation distance. Both figures
show the connectivity curves computed in all realizations together with the
connectivity curve computed in the reference field, and the mean of the
curves. Figure 3.24 shows the connectivity curves for the initial heteroge-
neous conductivity realizations and for the updated conductivity realizations
after the 60th assimilation time step for scenario S0. Figure 3.25 shows the
connectivity functions for the updated conductivity realizations after the
60th assimilation time step for scenarios S1-S6. The connectivity functions
for the initial homogeneous fields are not displayed since the connectivity in
a homogeneous field is always perfect.

Analyzing Figures 3.24 and 3.25 we can arrive at the same conclusions
as before. The spread of the curves for the non inflation scenarios is too
small. The fact that the connectivity functions for scenarios S1 and S3 are
so close to the reference connectivity function may be the explanation why
the BTCs are also so well reproduced for these scenarios. Scenarios S2 and
S4 show a larger spread than the non inflation scenarios, yet, the envelope
of individual functions encloses the reference function, and its mean is an
acceptable approximation of the reference.
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Figure 3.22. Scenarios S1-S6. The BTCs at the first control plane. The red square
line corresponds to BTCs in the reference. The black lines correspond to the 5 and
95 percentiles of all realization BTCs, and the green delta line corresponds to the
median.
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Figure 3.23. Scenarios S1-S6. The BTCs at the second control plane. The red
square line corresponds to BTCs in the reference. The black lines correspond to the
5 and 95 percentiles of all realization BTCs, and the green delta line corresponds
to the median.
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Figure 3.24. Scenarios S0. Connectivity curves for the initial ensemble of realiza-
tions and for the updated realizations after the 60th assimilation time step. The
red square line corresponds to the connectivity curve in the reference, the green
delta line corresponds to the mean of the ensemble, and the gray lines correspond
to the individual realizations.
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Figure 3.25. Scenarios S1-S6. Connectivity curves. The red square line corre-
sponds to connectivity curves in the reference, the green delta line corresponds to
the mean of the ensemble, and the gray lines correspond to the individual realiza-
tions
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3.5 Summary and conclusion

In this paper we wanted to show the power of transient piezometric head
information for the characterization of the spatial variability of hydraulic
conductivity, for hydraulic conductivity fields displaying spatial patterns
that can not be characterized with multi-Gaussian approaches. We have
taken an extreme position in that we assume that we do not have any infor-
mation about hydraulic conductivity, neither locally nor globally, except for
its bimodal marginal distribution. Zhou et al. (2011) already showed that
transient piezometric head was enough for hydraulic conductivity character-
ization if a training image for the hydraulic conductivity was available. Our
main finding is that without such a training image but with enough transient
piezometric head information, we can generate an ensemble of realizations
that captures the main patterns of the non-Gaussian reference field. The
number of piezometers below which the characterization will deteriorate is
very much problem dependent; both the type of underlying conductivity field
and the boundary conditions of the flow problem will have an impact on how
many piezometers are necessary and for how long they have to be measured.
In this paper we do not seek to give an answer to this latter question, but
rather emphasize that even for a clearly channelized bimodal conductivity
field, the transient piezometric heads carry very valuable information about
the conductivity spatial heterogeneity, and therefore, we should always do
every attempt to try to assimilate these data into our flow models. On oc-
casions, piezometric head is disregarded for the purpose of inverse modeling
on the account that it is a low pass filter of the conductivities, it is true that
in the examples shown, the assimilation of piezometric head cannot get the
short scale variability of the reference field, but the main patterns are clearly
identified. We took a rather radical approach, i.e., no spatial information
was used. However, additional information about the patterns in conduc-
tivity, without the need of resorting to a training image, such as the main
orientation of the channels and their width, will help improving the charac-
terization. If in addition, a training image is available, the characterization
would improve as demonstrated in the reference scenario S0.

We have also shown that filter inbreeding can be reduced with covariance
inflation techniques. Although, when no inbreeding appears, as in scenario
S0, there is no need for such an inflation.

We conclude that the NS-EnKF approach developed by Zhou et al.
(2011) proves again capable of preserving the bimodality of the reference
field, even for the case in which there is very limited information about
the log-conductivities. Covariance localization and inflation are necessary
to reduce filter inbreeding. For the specific case analyzed in this paper, 56
piezometers were enough to capture the main channels in the reference field;
however, our purpose is not to give a rule about how many piezometers are
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needed, but rather to emphasize the importance of accounting for transient
piezometric heads in our inverse modeling.
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to be submitted

4
Probability Fields Revisited
in the Context of Ensemble

Kalman Filtering

Abstract

Hu et al. (2013) proposed an approach to update complex geological facies
models generated by multipoint simulation while keeping geological and sta-
tistical consistency. Their approach is based on mapping the facies realiza-
tion onto the spatially uncorrelated uniform random numbers used by the
sequential multipoint simulation to generate the facies realization itself. The
ensemble Kalman filter was then used to update the probability realizations,
which were used to generate a new facies realization by multipoint sequential
simulation. This approach has a poor performance that we attribute to the
fact that, being the probabilities random and spatially uncorrelated, their
correlation with the state variable (piezometric heads) is very weak, and the
Kalman gain is always small. The approach is reminiscent of the proba-
bility field simulation, which also maps the conductivity realizations onto a
field of uniform random numbers; although the mapping now is done using
the local conditional distribution functions built based on a prior statistical
model and the conditioning data. Contrary to Hu et al. (2013) approach,
this field of uniform random numbers, termed a probability field, displays
patterns of spatial correlation related to the correlation of the conductivities,
and, therefore, the correlation between probabilities and state variable is as
strong as the correlation between conductivities and state variable could be.

55
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Similarly to Hu et al. (2013), we propose to use the ensemble Kalman fil-
ter to update the probability fields, and show that the correlation between
probability values and state variables improves the performance.

4.1 Introduction

In the pursue of an application of the ensemble Kalman filter (EnKF)
Evensen (1994, 2003) and multipoint simulation (MPS) Guardiano and Sri-
vastava (1993b); Strébelle (2000) to assimilate dynamic production data into
reservoir facies models, Hu et al. (2013) proposed a method based on the
mapping of a given reservoir model onto the uniform random numbers used
to generate it. Recall that MPS proceeds by visiting, using a predetermined
path sequence, all nodes of a grid; computing the local probability of the
parameter being simulated conditioned to the already simulated points (in
MPS simulation this probability is deduced from a training image); and
chosing a parameter value from this probability distribution by drawing a
uniform random number between 0 and 1. At each node, there is a uniform
random number drawn, with each random number being independent of the
rest. Therefore, given the parameters which will drive the MPS simulation,
i.e., training image, size of search neighborhood to look for conditioning data,
maximum number of conditioning data to retain, etc., there is a one-to-one
mapping between a facies model and a spatially independent realization of
uniform numbers. If the realization of uniform numbers is modified, a new
geological model is obtained, which will be as geologically consistent with
the training image as the first realization. The initial objective of the work
by Hu et al. (2013) was to assimilate production data onto binary facies
models; the mapping of the facies realization (a realization consisting only
of only two numbers) onto uniform numbers has the additional interest of
mapping a discrete field into a continuous one, which will be amenable of
treating by the EnKF. The method proposed by Hu et al. (2013) simply ap-
plies the standard EnKF to the uniform numbers, instead of onto the facies
values.

We have tested the method by Hu et al. (2013) in the context of assim-
ilating piezometric heads in an aquifer and we have found that the method
does not perform very well. We think that this underperformance is due to
the very weak cross-correlation that there is between the uniform numbers
and the state variables. Recall that the EnKF proceeds in two steps: fore-
cast and analysis. The forecast step presents no problem, it is based in the
solution of the numerical model appropriate to the process being studied.
The analysis step is the one in which the approach by Hu et al. (2013) fails.
In the analysis step, discrepancy between predicted and observed states at
observation locations is used to update the parameters driving the state-
equation. This update is proportional to the said discrepancy, but also to
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what is called the Kalman gain, which is a function of the auto- and cross-
covariances of parameters and state variables. When the parameters being
updated are uniform random numbers that are uncorrelated in space, the
auto-covariance of the parameters and the cross-covariance are very weak,
resulting in a very small Kalman gain. The net effect is that during the
analysis step the update of the uniform random field is small and limited to
a very narrow area around observation locations.

Mapping parameters onto probabilities reminded us of the probability
field approach Froidevaux (1993) to generate conditional realizations of a
given parameter using unconditional (but correlated) realizations of a uni-
form random field. In this case, the mapping uses the local conditional
distribution functions of the parameter. Given a set of conditional data,
and a set of structural parameters, one can obtain the local conditional dis-
tribution functions by simple kriging, indicator kriging, numerically from
a training image, or from an ensemble of realizations generated otherwise.
Once the local conditional distribution functions are defined at each point
within the domain, there is a one-to-one mapping between any parameter
realization and a probability field. The probability field does not have to
be conditional to the parameter values since the conditioning will happen
when reading back the (Heaviside) cumulative distribution function at con-
ditioning locations; yet, it needs to be correlated, to preserve the correlation
structure of the parameters. The interest of the probability field approach
was the generation of conditional realizations (of the parameter) from un-
conditional realizations (of probabilties), which were, at the time, much
cheaper to generate than conditional ones. The method never had a wide
acceptance for the difficulty of establishing, a priori, which the correlation
structure of the probabilities should be. Yet, there are some interesting
applications of probability fields for inverse modeling (Capilla et al., 1999;
Capilla and Llopis-Albert, 2009).

We have decided to revisit the concept of probability fields in the context
of data assimilation by the EnKF. The spatial correlation of the probabil-
ity fields will be determined a posteriori, from the ensemble of parameter
realizations, thus avoiding the main problem of the original idea. We have
applied the EnKF on the probability fields and found that the method gives
good results.

The paper continues by presenting an extension to the algorithm by Hu
et al. (2013) for the simulation of continuous variables, together with the
implementation of EnKF using probability fields. Next, both algorithms
are tested in a synthetic channelized aquifer with a bimodal histogram of
conductivities.
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4.2 Methodology

In this section, we will describe the two algorithms. The algorithm based
on Hu et al. (2013) work will be referred to as the Uncorrelated Probability
Field (UPF) method, and the one based on Froidevaux (1993)’s approach
will be referred as the Correlated Probability Field (CPF) method.

In both methods, the parameter which is updated by the EnKF is proba-
bility (which should follow a uniform distribution between 0 and 1); however,
given that the EnKF is optimal when the parameters follow a Gaussian dis-
tribution, we will convert the uniform probabilities into Gaussian deviates
and apply the EnKF to the latter. The conversion simply amounts to read-
ing the standard N (0, 1) Gaussian cumulative distribution function.

4.2.1 Uncorrelated probability field method

Hu et al. (2013) approach only updated the facies distribution and then as-
sumed homogeneous parameters within each facies. We would like to have
heterogeneous conductivities on top of the facies heterogeneity. For this
reason, the generation of each conductivity realization is done in two steps,
in the first step a facies realization is generated using MPS (we limit this
analysis to two facies), and, in the second step, each facies is independently
populated with conductivity values using sequential Gaussian simulation
(SGS). This implies that the mapping between conductivities and probabili-
ties requires not just one random field of uncorrelated uniform numbers, but
three, one to generate de facies and two to generate the conductivities that
will be associated with each facies. Conceptually the approach is the same as
the original one: conductivities are mapped onto uncorrelated probabilities,
and these probabilities are the parameters updated by the EnKF.

Figure 4.1 shows the flowchart for this method, which can be described
as follows:

Figure 4.1. Work flow for the Unconditional Probability Field method. The
starting step is highlighted in bold.
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1. Generate an ensemble of uncorrelated standard Gaussian fieldsN (0, 1).

2. Transform the uncorrelated Gaussian deviates into uniform probability
fields.

3. Use these uniform fields with MPS and SGS to generate an ensemble
of conductivity fields.

4. Feed the conductivity fields into the groundwater flow model, with ap-
propriate initial and boundary conditions, and given sinks and sources;
as a result, we obtain an ensemble of piezometric heads.

5. Compute the auto- and cross-covariances of the Gaussian deviates ob-
tained in step 1 and the piezometric heads of the previous step.

6. Sample the piezometric heads at the observation points.

7. Update the Gaussian deviates by the EnKF and return to step 1.

4.2.2 Correlated probability field method

For the CPF method we need to establish first which are the local conditional
probability distributions given the conditioning data. When the probability
field method was developed, these probability distributions were obtained
by kriging: simple kriging when the random function model was multiGaus-
sian, indicator kriging when the model was non-parametric and based on
the indicator covariances. With the advent of multipoint statistics, model
statistics are not specified analytically but inferred from a training image;
the training image can also be used to define the local conditional probability
distributions. An alternative, used in this work, is to infer the conditional
distributions from an ensemble of realizations that has been generated by
whichever stochastic simulation approach.

Before the CPF method starts, we have to generate an initial ensem-
ble of conductivity realizations from which to compute the local conditional
distribution function at each grid node. (When there are no conditioning
data, the local conditional distribution coincides with the marginal one ev-
erywhere.)

Considering that the map of local distribution functions has been already
determined determined one way or another, the flow chart of the CPF is
shown in Figure 4.2, which can be described as follows:

1. Transform the ensemble of conductivity fields into an ensemble of (cor-
related) probability fields by replacing each conductivity value with the
probability associated to its local conditional distribution.

2. Transform the probabilities into Gaussian deviates using an inverse
standard Gaussian cumulative distribution function N (0, 1).
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Figure 4.2. Work flow for the Conditional Probability Field method. The starting
step is highlighted in bold.

3. Feed the conductivity fields into the groundwater flow model, with ap-
propriate initial and boundary conditions, and given sinks and sources;
as a result, we obtain an ensemble of piezometric heads.

4. Compute the auto- and cross-covariances of the Gaussian deviates ob-
tained in step 2 and the piezometric heads of the previous step.

5. Sample the piezometric heads at the observation points.

6. Update the Gaussian deviates by the EnKF.

7. Transform the Gaussian deviates into updated probabilities using the
standard Gaussian cumulative distribution function.

8. Transform back the updated probability fields into updated conduc-
tivities through the inverse local conditional distribution and return
to step 1.

4.3 Synthetic Example

The performance of the two methods will be evaluated on a synthetic con-
fined aquifer of 50 m by 50 m by 5 m, discretized into 50 by 50 by 1 cells.
The aquifer is composed of 35% high conductivity sand and 65% low con-
ductivity shale. The spatial heterogeneity of the sand/shale distribution
is characterized by the training image shown in Figure 4.3 (replicated af-
ter (Strebelle, 2002)). Hydraulic log-conductivity within the sand follows a
Gaussian distribution with mean of 2.3 ln(m/d) and a standard deviation
of 1 ln(m/d), while in shale has a mean of -3.5 ln(m/d) and a standard
deviation of 0.6 ln (m/d). The conductivity in sand has a spatial correlation
anisotropy characterized by an exponential variogram with ranges of 48 m
in the horizontal direction and 24 in the vertical direction; while conductiv-
ity in shale displays an isotropic correlation characterized by an exponential
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Table 4.1. Parameters of the random functions describing the spatial continuity
of the sand and shale log-conductivities

Facies Proportion Mean Std.dev Variogram λx λy sill
[ln [m/d]] [ln [m/d]] type [m] [m]

Sand 0.35 2.3 1.0 exponential 48 24 1
Shale 0.65 -3.5 0.6 exponential 24 24 0.35

variogram with range of 24 m. These parameters are summarized in Table
4.1.

Training Image
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Figure 4.3. Training image

The log-conductivities in the synthetic aquifer are built in two steps. In
the first step, using the code SNESIM Strebelle (2002), a binary sand/shale
realization is generated coherent with the training image in Figure 4.3. (Note
that the training image extends over a much larger area than the aquifer.) In
the second step, using the code GCOSIM3D Gómez-Hernández and Journel
(1993), each facies is populated independently with log-conductivity values
generated by sequential Gaussian simulation. The resulting field and its
histogram are shown in Figure 4.4. The synthetic aquifer displays the chan-
nelized structure of the training image and has a bimodal distribution with
global mean of -1.1 ln(m/d) and global standard deviation of 2.8 ln(m/d).

A transient groundwater flow problem is solved in the synthetic aquifer
using MODFLOW (e.g., McDonald and Harbaugh, 1984; Harbaugh et al.,
2000). The top and bottom boundaries are impermeable, the left boundary
has a prescribed head equal to 8 m, and the right boundary has prescribed
pumping at the segments coinciding with the sand channels with a total
pumping of 190 m3/d distributed as shown in Figure 4.4. The initial head is
uniform and equal to 8 m throughout. The specific storage is homogeneous
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Figure 4.4. Synthetic aquifer and log-conductivity histogram.

en equal to 0.1 m−1. The total simulation time is 500 d, discretized into 100
time steps following a geometric sequence with ratio 1.05. (The first time
step is 0.19 days.)

After solving groundwater flow, the piezometric heads at the 25 points
shown in Figure 4.5 are recorded and saved for all time steps. The data
from the first 60 time steps (67 days) will be used for assimilation by the
EnKF. No facies data, or log-conductivity data are used.
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Figure 4.5. Distribution of observation piezometers

Both the UPF and the CPF begin with an ensemble of realizations that
will be progressively updated by ensemble Kalman filtering with each time
step. In this work, we generate 800 realizations, using the same two-step
approach as for creating the synthetic aquifer, that is, we use the same
training image for the facies realizations by MPS and the same parameters
of Table 4.1 to fill in the facies with log-conductivities. These realizations
are unconditional since no data on facies or log-conductivity are available.
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For the purpose of applying the UPF method, we have recorded the
uniform random numbers used for the generation of the fields; then, these
uniform random numbers are transformed into Gaussian deviates using the
inverse of the standard Gaussian distribution. The UPF starts from this
ensemble of realizations of Gaussian deviates (see Figure 4.2).

For the purpose of applying the CPF method, we have computed, at
each node, the local conditional distribution function, which, for this case,
since the realizations are unconditional, coincides with the one derived from
the global histogram of the reference (see Figure 4.4b).

Next, we evaluate the ability of both methods to reproduce the patterns
observed in the synthetic aquifer after assimilating the piezometric heads
for the first 60 time steps. We will also evaluate the ability of both methods
to reproduce the observed piezometric heads.

4.4 Reproducing log-conductivity

Figure 4.6 shows the ensemble mean and the ensemble variance of the initial
ensemble of log-conductivity realizations used in both approaches, together
with the global histogram. The 800 realizations were generated uncondi-
tional and, consequently, their ensemble mean and ensemble variance are
flat and equal to their marginal values.

Figures 4.7 shows the ensemble mean, ensemble variance and global his-
tograms computed for both methods after assimilating piezometric head
data for 10 time steps. Figure 4.8 shows similar results after 60 time steps.
From these two figures it is evident that the CPF outperforms the UPF.
The ensemble mean of the log-conductivities obtained by the CPF already
delineates the channels observed in the synthetic aquifer, and the ensemble
variance highlights that there is some residual uncertainty at the channel
edges. Whereas, the ensemble mean and variance of the log-conductivities
obtained by the UPF are a little bit more informative than the mean and
variance for the initial ensemble, yet, they are quite far from the results
achieved by the CPF.

Notice that the bimodal histogram of the log-conductivities is respected
by the ensemble of updated realizations in both methods. In the case of
the UPF this happens by construction, since, independently of the updated
probabilities resulting from the application of the EnKF, the associated
log-conductivities are fully consistent with the prior statistical model since
they are obtained by MPS followed by SGS with fixed training image and
statistical parameters. In the case of the CPF it depends on the histogram
of the probabilities, when this histogram remains uniform; then, sampling
back the local conditional distributions will result in a global histogram
respecting the prior one.
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Figure 4.6. Ensemble mean, ensemble variance and ensemble histogram of the
initial ensemble of log-conductivity realizations.

To try to explain why the dramatic difference in performance we will
show the evolution of realizations number 400 and 800 at different times
during the assimilation process. Figures 4.9 and 4.10 show these two real-
izations at the beginning (same realization for both approaches) and after
time steps 9, 10, 59 and 60. The objective of this display is to show the
changes that can occur in a single update step (between time steps 9 and 10
or between time steps 59 and 60) and the overall evolution. In the UPF, the
changes between consecutive time steps can be quite drastic, given the na-
ture of the sequential simulation algorithms, in which each node is simulated
based on the previously simulated nodes; however, since each realization is
obtained by MPS and SGS, the delineation of the facies (as in the train-
ing image) is quite clear at all steps. In the CPF, the changes between
consecutive time steps are quite smooth, the EnKF updates smoothly the
probabilities, and when reading back the updated probabilities through the
local distribution functions the changes are smooth, too; however, the con-
trols that generated the facies in the initial realizations disappear, and the
delineation of the facies becomes fuzzier than in the UPF, yet the look of the
final updated realizations obtained with the CPF is closer to the reference
than with the UPF.
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Figure 4.7. Ensemble mean, ensemble variance and ensemble histogram of the
log-conductivity realizations obtained after 10 assimilation time steps. Left column,
uncorrelated probability fields (S1). Right column, correlated ones (S2).
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Figure 4.8. Ensemble mean, ensemble variance and ensemble histogram of the
log-conductivity realizations obtained after 60 assimilation time steps. Left column,
uncorrelated probability fields (S1). Right column, correlated ones (S2).
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Figure 4.9. Evolution of the 400th realization in both methods. Top row, uncor-
related probabilities (S1); bottom row, correlated probabilities (S2). Columnwise
from left to right, initial realization (same for both approaches), after time step 9,
10, 59 and 60.
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Figure 4.10. Evolution of the 800th realization in both methods. Top row, uncor-
related probabilities (S1); bottom row, correlated probabilities (S2). Columnwise
from left to right, initial realization (same for both approaches), after time step 9,
10, 59 and 60.
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It is interesting to analyze how the update in the log-conductivity field
relates to the update of the underlying probability fields. Figure 4.11 shows
the update of the underlying Gaussian deviates at time steps 10 and 60 as
computed by the EnKF in realization 400 for both methods. In the case of
the UPF, there are three Gaussian deviate fields, we are showing only the
field that is used to update the facies distribution. Similar results are shown
for realization 800 in Figure 4.12. The update is the result of the product of
the Kalman gain by the discrepancy between predicted and observed piezo-
metric heads. In the UPF, the updates of the Gaussian deviates are very
local and short correlated, as a result of the very weak correlation between
the uncorrelated probability fields and the piezometric heads; however, this
local, random looking update of the probabilities produces changes in the
facies quite important. Figure 4.13 shows the facies change in realizations
400 and 800 at time steps 10 and 60. Apparently, similar random updates
of the Gaussian deviates induce quite different updates in the facies realiza-
tion for realizations 400 and 800. This “discrepancy” between the Gaussian
update and the facies update is due to the nature of the MPS and SGS
sequential simulation algorithms, which can be regarded as chaotic. On the
contrary, in the CPF, the updates in the Gaussian deviates are smoother
that in the previous method and its magnitude reduces significantly as time
proceeds. This reduction in the magnitude of the updates is the result of the
piezometric head assimilation which in turn reduces the ensemble variance.
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Figure 4.11. Increment of Gaussian deviates in realization 400. Top row, uncor-
related probabilities (S1); bottom row, correlated probabilities (S2). Left column,
update at the 10th step; right column, update at the 60th step.
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S1: t10_R800 (Gaussian deviate)
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Figure 4.12. Increment of Gaussian deviates in realization 800. Top row, uncor-
related probabilities (S1); bottom row, correlated probabilities (S2). Left column,
update at the 10th step; right column, update at the 60th step.
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Figure 4.13. Faces changes induced by updating the probabilities in the uncorre-
lated probability field method. Blue means change from sand to shale, red means
change from shale to sand, and green means no change. Right column for the
updates at time step 10, left column for the updates at time step 60, top row for
realization 400, bottom row for realization 800.
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4.5 Reproducing piezometric head

Figure 4.14 shows the piezometric head evolution at piezometers #1 and #2
of Figure 4.5 computed on the initial set of realizations. As expected, and
given that the initial realizations are unconditional, their response to the
groundwater flow conditions in the synthetic aquifer is quite variable among
the realizations.
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Figure 4.14. Reproduction of the observed piezometric head at the piezometers
#1 and #2 of Figure 4.5 by the log-conductivity fields obtained after 60 time steps.
Left, piezometer #1; right, piezometer #1. The red squares correspond to the
head evolution in the synthetic aquifer, the gray lines are the head evolution in the
individual realizations, and the green triangles correspond to the ensemble mean.

Figure 4.15 shows the piezometric head evolution at the same piezome-
ters for the two methods after 60 assimilation time steps. The UPF shows
a minor improvement with respect to the initial realizations, whereas the
CPF is able to generated log-conductivity realizations capable of matching
almost perfectly the observed piezometric heads.

Again, the poor behavior of the UPF must be attributed to the weak
correlation between the Gaussian deviates and the piezometric heads in the
UPF, plus the chaotic behavior of the sequential simulation algorithms: a
small change in a single probability value could induce a very large change in
the final log-conductivity map, particularly if this change happens in a node
that is generated early in the path that visits all nodes being simulated.
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Figure 4.15. Reproduction of the observed piezometric head at the piezometers
#1 and #2 of Figure 4.5 by the log-conductivity fields obtained after 60 time steps
for both methods. Top row, uncorrelated probability field method (S1); bottom row,
correlated probability field method (S2). Left, piezometer #1; right, piezometer #1.
Meaning of lines same as previous figure.
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4.6 Discussion

The idea of mapping the conductivities onto probabilities was not new, but
choosing as probabilities the ones used in the sequential simulation algorithm
to draw from the local distribution functions conditioned to all previously
simulated values was certainly a new idea. By modifying these probability
fields and using them in a multipoint simulation, we can assure that the final
realizations will always be coherent with the training image chosen. There-
fore, it seemed a good idea to try to update the probability fields, instead
of the conductivities directly in the context of the EnKF, in order to apply
the EnKF to the generation of clearly non-Gaussian realizations. However,
as it has been shown, the method has definite flaws linked precisely to the
mapping procedure: on one hand, the probabilities are spatially uncorre-
lated and display a weak correlation with the state variables, on the other
hand, the transformation of the perturbation of the probabilities onto per-
turbations of conductivities is chaotic, with small probability perturbations
possibly inducing very large and widespread perturbations in conductivity.

Revisiting the probability field approach, which is based also in the map-
ping of conductivities onto probabilities, and formulating the EnKF method
in terms of these probabilities, proves to be a powerful approach to gener-
ate conductivity realizations which display features difficult to model with
multiGaussian-based approaches. This is an approach that should be recon-
sidered for data assimilation in hydrogeology and petroleum engineering.
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5
Inverse sequential

simulation: A new approach
for the characterization of

non-Gaussian hydraulic
conductivity fields

Abstract

Inverse sequential simulation (iSS) is a new inverse modeling approach based
on sequential simulation for the characterization non-Gaussian hydraulic
conductivity fields. The approach is described and demonstrated in a syn-
thetic aquifer, and compared against the normal score ensemble Kalman fil-
ter (NS-EnKF). The new approach uses the sequential simulation paradigm
to generate realizations borrowing from the ensemble Kalman filter approach
the idea of using the experimental non-stationary cross-covariance between
conductivities and piezometric heads computed on an ensemble of realiza-
tions. The resulting approach is fully capable of retrieving the main patterns
of the reference field after conditioning on the piezometric heads.
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5.1 Introduction

The quality of a groundwater model, particularly when studying the fate and
transport of contaminants, relies very much on the quality of the characteri-
zation of hydraulic conductivities. Many studies have shown that, unless the
heterogeneity of hydraulic conductivity is well captured in the groundwater
model, the resulting transport predictions could be totally wrong; for in-
stance, Gómez-Hernández and Wen (1994) show the high impact that prop-
erly accounting for heterogeneity has in transport predictions. But not only
it is important to account for heterogeneity, as important is using the most
adequate heterogeneity model. For many years, the only model consider
for the spatial variability of hydraulic conductivity was the mutiGaussian
model of log-conductivity, until it was recognized that the spatial patterns
often observed in the subsurface (i.e., channels, permeability barriers, high
conductivity streaks) were better modeled using alternatives to the multi-
Gaussian model (Gómez-Hernández and Wen, 1998). Since then, there have
been many attempts to define non multiGaussian random functions capable
of capturing the spatial features difficult to capture by the multiGaussian
ones, and then, to build algorithms for the spatial representation of hydraulic
conductivity according to these new random function models.

Probably the most successful approach for the generation of realistic
hydraulic conductivities is the one based on training images and multiple
point statistics (Guardiano and Srivastava, 1993a; Strébelle, 2000; Strebelle,
2002). The next challenge was how to use these random functions in inverse
modeling, that is, how to generate realizations of hydraulic conductivity
that not only are consistent with the training image and conditional to the
local measurements, but also that are inverse conditioned onto observed
measurements of the state variables, such as piezometric head or solute con-
centration. Inverse modeling in hydrogeology and petroleum engineering
has a long tradition (see Zhou et al. (2014) for a review) but, again, most
inverse models rely on the assumption that hydraulic conductivity follows
a multiGaussian model. Recent attempts to couple inverse approaches and
non multiGaussian random functions have been attempted by Sun et al.
(2009); Sarma and Chen (2009); Jafarpour and Khodabakhshi (2011); Hu
et al. (2012b); Zhou et al. (2011, 2012); Attia and Sandu (2014), among
others, with different degrees of success. The common denominator of all
these proposals is that they are variants of algorithms that work for multi-
Gaussian fields. In this paper we propose a completely new algorithm that
is the result of blending some of the ideas underlying multivariate Gaussian
sequential simulation (Gómez-Hernández and Journel, 1993) and ensemble
Kalman filtering (Evensen, 2003). We have called this new algorithm inverse
sequential simulation (iSS).

The algorithm proposed aims at the characterization of hydraulic con-
ductivity using sparse observations of hydraulic conductivity, and sparse
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observations of piezometric heads. As a benchmark, the algorithm will be
compared with the normal-score ensemble Kalman filter (NS-EnKF) (Zhou
et al., 2011), which is one of the algorithms that best performs for non-
Gaussian inverse modeling. The paper continues with a description of the
algorithm, followed by the comparison between NS-EnKF and iSS, and ends
with some discussion and conclusions.

5.2 Methodology

The new algorithm is a breed of sequential simulation and the normal-
score ensemble Kalman filter. On one hand, we borrow, from the ensemble
Kalman filter (EnKF) (van Loon et al., 2000; Evensen, 2003; Blöschl et al.,
2008; Karri et al., 2014), the idea of using an ensemble of realizations to
compute an experimental, non-stationary conditional cross-covariance be-
tween conductivities and piezometric heads, and also the non-stationary
conditional auto-covariances of both conductivity and piezometric head. On
the other hand, we borrow, from the normal-score ensemble Kalman filter
(Zhou et al., 2011), the idea of performing a normal-score transformation
and thus work with a marginally Gaussian multivariate random function.
We are aware that a normal-score transformation only produces marginally-
distributed Gaussian variables, never multiGaussian ones; however, it has
been shown in the normal-score EnKF that this transformation is quite
effective in capturing non-Gaussian patterns. Finally, we use standard mul-
tivariate sequential Gaussian conditional simulation (Gómez-Hernández and
Journel, 1993; Friedel and Iwashita, 2013) to generate realizations of the nor-
mal scores of conductivity conditioned to the normal scores of conductivity
and to the piezometric head measurements. The state equation relating con-
ductivity and piezometric heads, with its initial conditions, boundary con-
ditions and forcing terms, is indirectly included in the sequential simulation
through the conditional auto- and cross-covariances that are computed on
the ensemble of realizations. When and if new head measurements are taken,
the generated ensemble of conductivity realizations are used to forecast an
ensemble of head realizations, new experimental covariances are computed,
and a new ensemble of conductivity realizations is generated conditioned to
the new head measurements.

The iSS method has been developed for its application under transient
conditions, with a regeneration of the ensemble of conductivity fields each
time new piezometric heads are measured. Consider that piezometric heads
are collected sequentially in time. The method starts with an ensemble of
conductivity fields generated according to a given random function model —
for the generation of this initial set no information about piezometric heads
is used, this initial set should be conditional to conductivity measurements
and other soft information such as geophysical data, when available. Then,
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for each time step for which piezometric heads are observed, the algorithm
carries out the following: (i) an ensemble of piezometric head realizations
are predicted on the basis of the last ensemble of conductivity fields by
means of a numerical flow model, (ii) the conductivity and heads auto-
and cross-covariances are computed from the ensemble of realizations —
these covariances will be non-stationary, (iii) using a sequential multivariate
simulation algorithm, a new ensemble of conductivity fields conditioned to
the conductivity data, if any, and to the measured piezometric heads are
generated. The details of the iSS implementation are explained next:

Consider that there are Ne realizations in the ensemble, and that each
realization is discretized into N nodes.

1. Initialization step. We need to start from an ensemble of conductivity
fields. This ensemble should be generated with the algorithm that is
most adequate for the type of heterogeneity that describes the con-
ductivity spatial variability. This ensemble can be made conditional
to hard measurements of conductivity, and also to soft measurements
such as those derived from geophysics. For the purpose of illustration,
we choose a formation with channel-like features that introduce a high
connectivity of the facies in the direction of flow. We choose this type
of heterogeneity because it is well known that it is difficult to capture
by multiGaussian-based approaches. In our synthetic case, the initial
ensemble of realizations is generated in two steps. In the first step, an
ensemble of binary facies realizations is constructed using direct simu-
lation Mariethoz et al. (2010) —a very efficient implementation of se-
quential normal-equation simulation, first developed by Guardiano and
Srivastava (1993a) and improved by Strébelle (2000). Then, each fa-
cies (channel/sand and non-channel/shale) is independently populated
with log-conductivity values using sequential Gaussian simulation; the
conductivities of each facies have very distinct mean values, ensur-
ing that each realization has a clearly bimodal distribution, with the
highest-value mode in the channel elements and the lowest-value mode
in the non-channel elements. The specific parameters used for the gen-
eration of the initial ensemble of log-conductivities are described in the
next section. At the end of this step there is an ensemble of hydraulic
conductivity fields that will be denoted by K0, with K0

i,j being the
conductivity for realization i at node j. The superindex is used for
the time coordinate and zero indicates that these are the initial con-
ductivity estimates. For notation purposes, we will use Ki,· to denote
realization i of the ensemble, and K·,j to denote the set of Ne con-
ductivity values collected from all realizations at node j. During the
initialization step it is also necessary to specify the initial piezometric
heads H0, as well as boundary conditions and forcing terms necessary
to solve the transient groundwater flow equation.
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2. Forecasting step. In this step, the simulated piezometric heads (Ht+1)

are calculated for the (t + 1)th time step based on the piezometric

heads and the hydraulic conductivity estimates from the tth time step
using a transient flow model:

Ht+1
i,· = ψ(Ht

i,·,K
t
i,·), i = 1, . . . , Ne. (5.1)

The groundwater flow equation, represented by ψ(·) has to be solved
independently for each realization of the ensemble.

3. Normal-score transformation step. A normal-score transformation will
be applied to all the conductivity values of all the realizations:

K̃t
i,j = G−1(Fj(K

t
i,j)), i = 1, . . . , Ne; j = 1, . . . , N. (5.2)

where K̃t and Kt are the normal-score transformed hydraulic conduc-
tivity vector and the hydraulic conductivity vector estimates at time
step t, respectively; F (·) is a vectorial normal-score transform function,
with N components, one for each location. The normal-score trans-
form function is, generally, a non-parametric function that is built as
described in Appendix A. After the normal-score transform of all the
elements in all realizations, the transformed ensemble of normal-score
conductivity realizations will follow a marginal Gaussian distribution
with zero mean and unit variance.

4. Covariance calculation. As it will be explained later, for the updating
step the normal-scored conductivity auto-covariance and the cross-
covariances between normal-scored conductivity and piezometric heads
will be needed. These covariances are non-stationary and need to be
computed accounting for the locations of each variable. The procedure
is described next. First consider the augmented variable vector

S =

[
K̃
H

]
(5.3)

with Ne realizations of 2N variables, the covariance between any two
variables S.,k and S.,l is given by

Ck,l =
1

Ne

Ne∑
m=1

(Sm,k−⟨S.,k⟩)(Sm,l−⟨S.,l⟩) k = 1, . . . , 2N ; l = 1, . . . , 2N

(5.4)
with

⟨S.,∗⟩ =
1

Ne

Ne∑
m=1

Sm,∗ (5.5)
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Since piezometric heads change in time, and hydraulic conductivities
are also updated in time, the covariance is recalculated at each time
step and, therefore, it is time dependent. The covariance matrix C
contains 2N×2N elements; however, not all elements have to be com-
puted, and the effective number of elements that must be computed is
in the order of N logN .

5. Sampling step. Piezometric heads are sampled at a few locations Nh

at time step t+ 1

6. Update step. In this step, a new ensemble of K̃ is generated condi-
tioned to the hard conductivity measurements and to the just sampled
piezometric heads. Sequential multivariate Gaussian simulation is used
as outlined next; the reader interested in knowing all the implementa-
tion details of the algorithm is referred to (e.g., Gómez-Hernández and
Journel, 1993; Deutsch and Journel, 1992; Delbari et al., 2009). The

steps of the sequential simulation algorithm to generate realization K̃i,.

(the superindex t+ 1 is omitted por clarity):

(a) Assign the normal-score transformed values of the conditioning
conductivity measurements to the closest nodes in the grid.

(b) Assign the observed piezometric heads to the closest nodes in the
grid.

(c) Generate a random path through all N grid nodes to be simu-
lated.

(d) Visit a node along the random path. At the node location, search,
within a predefined search neighborhood, all K̃ values already in
the grid, and all observed piezometric heads. Then, compute the
conditional distribution function given the K̃ and H data found.
Under the assumption of multivariate Gaussianity, this condi-
tional distribution function is Gaussian and its mean and variance
are given by the solution of a set of simple kriging equations (e.g.,
Deutsch and Journel, 1992; Goovaerts, 1997). Denoting the node
for which the conditional distribution is to be computed by j, the
row vector of n conditioning data (normal-scored conductivities
and piezometric heads) by S(n), the covariance matrix between
any two variables at the conditioning locations by Cα, and the
covariance column vector between the conditioning locations and
the location being estimated as Cβ, the conditional mean at j is
given by

m
K̃i,j

= ⟨K̃i,j⟩+C−1
α Cβ(S(n) − ⟨S(n)⟩), (5.6)
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where ⟨·⟩ refers to the average value computed through the en-
semble of realizations at a given location as in Eq. (5.5), and the
conditional variance is given by

σ2
K̃i,j

= Cj,j −CT
βC

−1
α Cβ. (5.7)

where T denotes transpose. Note that the use of a search neigh-
borhood limits the pairs of variables for which their covariance is
needed while building Cα and Cβ, it is for this reason that the
number of covariance values that have to be precomputed at step
4 is in the order of N logN .

(e) Draw a random number λ from a standard Gaussian distribution

with zero mean and unit variance, and generate K̃i,j as

K̃i,j = m
K̃i,j

+ λ
√
σ2
K̃i,j

(5.8)

(f) Assign K̃i,j to node j and return to step (d) to visit another node
until all nodes in realization i have been visited.

The update step is repeated for all realizations in the ensemble.

7. Back transformation step. Back transform the just generated normal-
score transformed conductivities into conductivities using the inverse
of the previously computed normal-score transform functions:

Ki,j = F−1(G(K̃i,j)), i = 1, . . . , Ne; j = 1, . . . , N. (5.9)

8. Go back to the step 2 and repeat the process for as many time steps
as there are observed piezometric heads.

The main difference between the iSS algorithm and the NS-EnKF algo-
rithm is in the updating step. The updating step in the NS-EnKF (as in any
other variant of the ensemble Kalman filter) is based on the premise that
if there is a departure between forecasted piezometric heads and observed
ones it is because there must be a departure between the conductivity esti-
mates and their real values, and this departure can be computed by simple
cokriging of the head departures. In the NS-EnKF, at each time step, there
is a refinement of the conductivity fields according to the expression

K̃t+1
i,j − K̃t

i,j = C−1
α Cj,β(S(n)−Sf

i,(n)), , i = 1, . . . , Ne; j = 1, . . . , N (5.10)

where S(n) is a vector with all the observed piezometric heads Sf
i,(n) is a

column vector containing the forecasted piezometric heads at observation
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locations for realization i, Cα is a matrix with the covariances of forecasted
heads at observation locations and Cj,β is a vector with the cross-covariances
between normal-scored conductivity at location j and piezometric heads at
observation locations.

5.3 Synthetic Example

A synthetic bimodal confined aquifer composed of 35% high permeability
sand and 65% low permeability shale is constructed on a 50 m by 50 m
square discretized into a grid of 50 by 50 by 1 cells. The thickness of the
confined aquifer is assumed to be 5 m. (The actual units are irrelevant for
the purpose of the study, as long as consistency among them is kept.) The
construction of the reference field is done in two steps. First, a two-facies
field with 9 conditional data (Figure 5.1) is generated via the SNESIM code
by Strebelle (2002) using the training image in (Strebelle, 2002) (see Figure
5.2). Second, this binary field is populated independently for each facies
with log-conductivity values using a sequential Gaussian simulation code
(GCOSIM3D) Gómez-Hernández and Journel (1993) with the parameters
shown in Table 5.1. The resulting reference log-conductivity field and its
histogram are shown in Figures 5.3 and 5.4. The two figures show that the
distribution of log-conductivity is clearly non-Gaussian, the histogram has
two modes (one for each facies) and the global mean and standard deviation
are -0.9 ln(m/d), and 2.9 ln(m/d), respectively.

A transient groundwater flow simulator MODFLOW (e.g., McDonald
and Harbaugh, 1984; Harbaugh et al., 2000) is used to solve the transient
groundwater equation. The model boundary is impermeable (see Figure
5.3). Figure 5.5 shows the locations of wells, including 25 observation wells,
2 injection wells and 3 pumping wells. Observation wells # 6 and # 7 will be
used as calibration wells (post audit) and will not be used for conditioning.
The injection rates of the two injection wells # 1 and # 2 are 16 m3/d, and
15 m3/d, respectively. The pumping rates of the three pumping wells #
3, # 4, and # 5 are 7.5 m3/d, 7.5 m3/d and 14.5 m3/d, respectively. The
initial head is set to 8 m throughout the study domain. Specific storage is

Table 5.1. Parameters of the random functions describing the spatial continuity
of the sand and shale log-conductivities

Facies Proportion Mean Std.dev Variogram λx λy sill
[ln [m/d]] [ln [m/d]] type [m] [m]

Sand 0.35 3.5 1.0 exponential 20 20 1
Shale 0.65 -2.5 0.6 exponential 20 20 0.35
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Figure 5.1. Location of the conditional data. The red nodes denote shale; the
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Figure 5.2. Training image used to generate the ensemble of binary facies real-
izations.
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Figure 5.3. Reference field. It shows the boundary conditions; it also shows
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computed (solid lines) in the transport experiment.
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set to 0.03 m−1. The total simulation time is 500 days, discretized into 100
time steps of increasing size following a geometric series with ratio 1.02; the
length of the first time step is 1.60 days. The piezometric heads simulated
in the reference field are sampled at the observation wells for each time step
and used as input data for both algorithms.
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Distribution of wells

Figure 5.5. Location of wells. Red triangles denote observation wells; green
squares denote injection (#1, #2) and pumping wells (#3, #4 and #5). The
observation wells #6, #7 are used as calibration wells.

As already mentioned, the performance of the iSS will be compared to
that of the NS-EnKF. We will analyze two scenarios, scenario S0 with the
results obtained applying the NS-EnKF, and scenario S1 with the results
of the iSS. The data supplied to both algorithms is the same. Both algo-
rithms use the same initial ensemble of 600 conductivity realizations. The
initial ensemble of conductivity realizations is generated in a manner sim-
ilar to which the reference field was generated: first an ensemble of facies
realizations, conditional to the same 9 facies values as the reference, is gener-
ated using SNESIM; then, each facies is independently (and unconditionally)
populated using GCOSIM3D with the same parameters in Table 5.1.

5.4 Analysis

Both the NS-EnKF and the iSS have been used to incorporate the observed
piezometric heads during the first 50 time steps (135.4 days) for the gen-
eration of an ensemble of conductivity realizations. These realizations are
analyzed by looking at several aspects:

1. Histogram of the ensemble. Figure 5.6a shows the log-conductivity
histogram for the initial ensemble. Figure 5.6b,c display the log-
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conductivity histograms of the updated ensemble after the 50th time
step for scenario S0, and scenario S1, respectively. We can see from
Figure 5.6b,c that the histogram of log-conductivity with its bimodal-
ity is retained after 50 time steps in both scenarios.
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Figure 5.6. Log-conductivity histograms of the initial ensemble of realizations
and of the updated ensemble of realizations after the 50th assimilation step of the
two scenarios.

2. Ensemble mean and ensemble variance. Figure 5.7a,b shows the en-
semble mean and variance for the initial ensemble. The only condi-
tioning data used for the generation of the initial ensemble is the facies
type at 9 locations. With this limited information it is not enough to
control the spatial heterogeneity of each realization; therefore, the en-
semble mean only shows some localized high and low values and the
ensemble variance is quite high everywhere with only some small val-
ues around the facies conditioning locations. Figures 5.8 and 5.9 show
the ensemble mean and ensemble variance, after 10 and 50 time steps.
As time passes, and more piezometric heads are used to characterize
the ensemble, the realizations of the ensemble are more alike, resulting
in ensemble means that delineate the locations of the channels much
better than in the initial set, and ensemble variances with zones of vir-
tually no variance and small variances elsewhere. The areas with the
highest ensemble variances are those areas with conductivity values
which are not as sensitive to the piezometric heads at observation lo-
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cations as the rest of the aquifer; in a practical case, one could propose
the sampling of conductivities at those locations. Both methods per-
form equally well, with the highest variance reductions for the longer
times. The only significative difference is that the ensemble means
obtained with the iSS algorithm appear to have a slightly larger short
scale variability than the ensemble means obtained with the NS-EnKF.
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Figure 5.7. Ensemble mean and ensemble variance of lnK for the initial realiza-
tions.

3. Root mean square error (RMSE) and ensemble spreading (ES) of log-
conductivity. In synthetic examples like this one, we can calculate the
deviation of the realizations from the “truth” since we have access to
the underlying conductivity distribution from which the piezometric
heads have been observed. The RMSE measures the accuracy of the
algorithm in reproducing the reference field, and the ES measures the
precision of the ensemble of realizations. The RMSE and ES are given
by

RMSE =

√√√√ 1

N

N∑
j=1

(lnKref
j − ⟨lnKj⟩)2, (5.11)

ES =

√√√√ 1

N

N∑
j=1

σ2lnKj
, (5.12)

where lnKref
j is the lnK value at node j in the reference field, ⟨lnKj⟩

is the ensemble mean, and σ2lnKj
is the ensemble variance. As dis-

cussed by Chen and Zhang (2006) when the RMSE and the ES have a
similar magnitude, the resulting ensemble variance provides a realistic
measure of the uncertainty associated to the ensemble mean estimate.

Figure 5.10 shows the evolution in time of the RMSE, ES, and the
ratio of RMSE to ES for both methods. We can see that the RMSE
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Figure 5.8. Ensemble mean of lnK after assimilating observation heads at the
10th and 50th time steps for the two scenarios.
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Figure 5.9. Ensemble variance of lnK after assimilating observation heads at the
10th and 50th time steps for the two scenarios.
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corresponding to the NS-EnKF is smaller than that for the iSS, indi-
cating that, on average, the realizations obtained with the NS-EnKF
are closer to the reference than those obtained by iSS. The ES is sim-
ilar in both cases. And the ratio RMSE/ES remains closer to 1 for
the NS-EnKF than for the iSS, indicating a better characterization of
the uncertainty with the former approach. Yet, these differences are
small, and the absolute values of RMSE and ES sustain the conclusions
derived from the visual analysis of the ensemble means and variances
discussed before.
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Figure 5.10. RMSE, ES, and RMSE/ES.

4. Reproduction of the piezometric heads at the two calibration wells.
Figure 5.11 shows the evolution of the piezometric heads for the ini-
tial ensemble of conductivity realizations at the two calibration wells
#6 and #7 —these wells were not used for conditioning. Since, no
piezometric information was used to generate the initial conductivity
ensembles, the spread among the individual responses of each realiza-
tion is quite large. Figure 5.12 shows the evolution of the piezometric
heads in the updated ensembles for both approaches. The vertical
dashed line indicates the end of the use of the observed piezometric
heads as conditioning data. Comparing Figures 5.11 and 5.12, the ef-
fect of conditioning on piezometric heads is patent, with a significant
reduction of the spread of the piezometric head curves in all realiza-
tions about the reference one for both approaches.
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Figure 5.11. Evolution in time of the piezometric head at the two calibration
wells for the initial ensemble of log-conductivity realizations. The red square line
corresponds to the piezometric head in the reference, the gray lines correspond to
the realizations and the vertical dashed lines marks the end of the conditioning
period, the green delta line corresponds to the average of the gray lines.

5. Solute breakthrough curves (BTCs). A transport prediction experi-
ment of an inert solute is carried out to further evaluate the goodness
of the characterization of conductivity by the updated conductivity re-
alizations. For this purpose, 10 000 conservative particles are released
along a vertical line at x = 2.5 m and the arrival times are recorded
at two control planes, located at x = 15 m and x = 45 m (see Fig.
5.3). The random walk particle tracking program RW3D (Fernàndez-
Garcia et al., 2005) is used to solved the transport equation. Porosity
is assumed constant and equal to 0.3. Figure 5.13 Shows the BTCs at
the two control planes for the initial ensemble. Figure 5.14 shows the
BTCs at the two control planes using the conductivity fields updated
after 50 times steps. We can see that the uncertainty about the BTC
predictions is significantly reduced after conditioning to the piezomet-
ric head data. Comparing the Figure 5.14b,d with Figure 5.14a,c, we
can find that the iSS performs a little better than the NS-EnKF, since
the spread of the BTC predictions is smaller, and the median BTCs
is closer to the reference BTCs.
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Figure 5.12. Evolution in time of the piezometric head at the two calibration wells
after the 50th time step. The red square line corresponds to the piezometric head in
the reference, the gray lines correspond to the realizations and the vertical dashed
lines marks the end of the conditioning period, the green delta line corresponds to
the average of the gray lines.
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Figure 5.13. Breakthrough curves (BTC) at the two control planes for the initial
lnK realizations. The red square line corresponds to the BTCs in the reference.
The black lines correspond to the 5 and 95 percentiles of all realization BTCs, and
the green delta line corresponds to the median.
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Figure 5.14. Breakthrough curves (BTC) at the two control planes for the lnK
realizations updated after the 50th time step. The red square line corresponds to
BTCs in the reference. The black lines correspond to the 5 and 95 percentiles of
all realization BTCs, and the green delta line corresponds to the median.
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5.5 Discussion

From the above analysis we can conclude that the quality of the ensem-
ble of realizations generated by iSS is comparable to that of the ensemble
generated by NS-EnKF. The main difference between the two approaches is
that iSS is a stochastic simulation approach, whereas the NS-EnKF works
by progressively refining an initial ensemble of realizations on the basis of
the discrepancy between forecasted and predicted piezometric heads. In the
iSS, at each time step, a new ensemble of realizations is generated using as
conditioning data the last set of observed piezometric heads; the ensemble
of realizations keeps improving as time progresses, through the updating of
the experimental ensemble non-stationary covariances. Furthermore, since
iSS is based in the sequential simulation algorithm, which uses a search
neighborhood to decide the information to use when computing the cumu-
lative distribution function at a given location, it avoids the use of spurious
correlations for long distances, since conditioning data which are far from
the point being simulated are never used, solving, in this way, a common
problem of the ensemble Kalman filter implementations. There is nothing
that prevents the use of the iSS algorithm to condition not only on the ob-
served piezometric heads at time t + 1, but simultaneously on piezometric
heads measured at time t, and at other previous times; including these addi-
tional past data would imply only computing the cross-covariances between
normal-scored conductivities and the forecasted piezometric heads at the
earlier steps, and could improve the final characterization of conductivities.
The power of iSS, as compared with other stochastic simulation techniques,
is based on the same principle that has made the ensemble Kalman filter so
successful, the use of non-stationary covariances experimentally computed
from a set of ensemble realizations of conductivity and the resulting ensem-
ble of piezometric heads obtained after running a numerical flow model on
the conductivity realizations. Notice that iSS, being an inverse simulation
technique, is neither an optimization algorithm nor a filter, it is a stochastic
simulation technique. The algorithm is still in its first stages, but we are
confident that it could be used for inverse stochastic simulation under a wide
variety of scenarios, not limited to the field of hydrogeology.

5.6 Summary and conclusions

A new inverse stochastic simulation method, the inverse sequential simula-
tion (iSS), has been proposed for the purpose of generating a set of hydraulic
conductivity realizations that, when used to model groundwater flow, can
reproduce observed piezometric heads. The method is based on the se-
quential simulation paradigm making use of the non-stationary covariance
experimentally inferred form an ensemble of conductivity fields and the cor-
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responding piezometric head responses, in a manner similar as how it is done
in ensemble Kalman filtering. We have benchmarked the technique against
the normal-score ensemble Kalman filter (NS-EnKF), possibly the current
algorithm that best performs for inverse modeling using transient piezomet-
ric heads. The iSS compares very well with the NS-EnKF in all aspects an-
alyzed (histogram reproduction, ensemble mean and variance, reproduction
of observed piezometric heads, and reproduction of breakthrough curves),
and it can be considered an alternative approach for inverse stochastic sim-
ulation. The new algorithm has room for expansion and has the potential
of application in other fields.
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6
Inverse Sequential

Simulation: Performance and
Implementation Details

Abstract

For good groundwater flow and solute transport numerical modeling, it is im-
portant to characterize the formation properties. In this paper, we describe
a new approach for stochastic inverse modeling called inverse sequential sim-
ulation (iSS) capable of characterizing conductivity fields with heterogene-
ity patterns difficult to capture by standard multiGaussian-based inverse
approaches. The method is based on the multivariate sequential simula-
tion principle, in which the local conditional probability distributions are
computed, by simple co-kriging, using the expected values, covariances and
cross-covariances derived from an ensemble of conductivity and piezometric
head fields. The piezometric head fields are the solution of the groundwater
flow equation for each member of the ensemble of conductivities with given
initial and boundary conditions, and recharge and pumping schedules. Ex-
pected values, covariances and cross-covariances are updated in time as new
piezometric head data are acquired. The details of its implementation are
described and the sensitivity of the approach to different input parameters
is shown.
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6.1 Introduction

Characterization of geological properties plays an important role in making
reliable groundwater models. Inverse modeling is a powerful tool to improve
such a characterization by incorporating the information about the geologi-
cal properties born by the state variables. The reader is referred to the work
by Zhou et al. (2013) for a recent review on inverse methods in hydrogeology.

There has been a lot of activity in this field in the last decades, and
many approaches have been developed. Just to name a few, there are the
gradual deformation method, the sequential self-calibration, variants of the
Markov chain Monte Carlo method, the representer method, the pilot points
method, particle filters, ... (e.g., Capilla and Llopis-Albert, 2009; Hu, 2000;
Gómez-Hernánez et al., 1997; Fu and Jaime Gómez-Hernández, 2009; Oliver
et al., 1997; Alcolea et al., 2006; Wen et al., 2002; RamaRao et al., 1995;
Franssen et al., 2003; Gordon et al., 1993; Losa et al., 2003; Van Leeuwen,
2009).

Besides the above mentioned methods, the ensemble Kalman filter (EnKF)
Evensen (2003) is the method that has attracted most attention recently.
Although not an inverse method by conception, the inclusion of the param-
eters governing the state equation as part of an extended state vector, has
turned the ensemble Kalman filter in the most favored inverse method nowa-
days. The EnKF is well known for its flexibility to be applied to virtually
any inverse problem, and for its efficiency in producing realizations of the
geological parameters that are consistent with the observed state variable
data.

But the EnKF has been shown to fail when applied to scenarios in which
the underlying geological properties exhibit patterns of spatial variability
that are difficult, if not impossible, to be reproduced by realizations drawn
from a multiGaussian probability distribution (e.g., Sun et al., 2009; Simon
and Bertino, 2009). The main reason being that the EnKF relies only on two-
point statistics, that is, covariances and cross-covariances; and therefore, it
is optimal only for multiGaussian variates and linear state transfer functions
Aanonsen et al. (2009). For this reason, the main focus on inverse modeling,
at least in the fields of hydrogeology and petroleum engineering, is how to
capture those non-multiGaussian patterns in inverse modeling.

The development of the sequential normal-equation simulation (Guardiano
and Srivastava, 1993a; Strébelle, 2000) has allowed to use statistics higher
than order two in the construction of realizations, and thus, the inclusion
of the spatial features that cannot be characterized simply by a covariance
function on the final models of the geological parameters. The algorithms
that are capable to account for statistics higher-than-order-two are broadly
termed as multiple point statistics (MPS). They rely on the existence of a
training image exhibiting the types of patterns to be present in the final
models, from which to infer the higher-order statistics. Some available algo-
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rithms and codes are SNESIM (Strebelle, 2002), FILTERSIM (Zhang et al.,
2006), SIMPAT (Arpat and Caers, 2007) , DS (Mariethoz et al., 2010), En-
PAT (Li et al., 2013), and others (e.g., Zhou et al., 2012; Chugunova and Hu,
2008; Mirowski et al., 2009; Boucher, 2009; Honarkhah and Caers, 2010).

There have been some attempts to combine MPS and inverse model-
ing: Hu et al. (2012a) used the realization of uncorrelated random numbers
needed for the drawing of the conductivity value from the local distribution
function on sequential normal-equation simulation as the state variables to
be updated during the analysis step if the EnKF, with moderate success;
Zhou et al. (2012); Li et al. (2013) developed a new MPS algorithm (termed
EnPAT) which blends direct simulation (Mariethoz et al., 2010) and the
EnKF to generate inverse conditional realizations of conductivity in chan-
nelized bimodal aquifers; EnPAT works well, but it is still very CPU-time
consuming. Some authors are against the use of MPS arguing that they
are too dependent on the choice of the parameters controlling the algorithm
(Mustapha and Dimitrakopoulos, 2010).

Other approaches to address the issue of non-multiGaussianity include
the works by Sun et al. (2009), who combined the EnKF with a Gaussian
mixture model, or by Liu and Oliver (2005); Gu and Oliver (2007); Franssen
and Kinzelbach (2008) who use an iterative EnKF; plus a set of works who
combine the normal-score transform (sometimes referred as anamorphosis)
and the EnKF (e.g., Simon and Bertino, 2009, 2012; Bertino et al., 2003a,b;
Bocquet et al., 2010; Béal et al., 2010; Schöniger et al., 2012; Zhou et al.,
2011; Li et al., 2012b).

In this paper we describe a new approach for inverse stochastic mod-
eling, applicable for non-multiGaussian fields, which is based on two-point
statistics and on the normal-score transform, termed inverse sequential sim-
ulation. Inverse sequential simulation is inspired on the standard sequential
simulation algorithm and the Monte Carlo concept of the EnKF. The paper
describes, in detail, the algorithm and its implementation, and then per-
forms a sensitivity analysis of the key parameters controlling the algorithm.

6.2 Methodology

The key idea of inverse sequential simulation (iSS) is to use multivariate
multi-Gaussian sequential simulation (Gómez-Hernández and Journel, 1993)
to generate realizations of normal scores of conductivity, conditioned on
conductivity and piezometric head data. The main difference with stan-
dard sequential simulation is that the method does not use an analytical,
stationary model for the auto- and cross-covariances, but rather, as in the
ensemble Kalman filter, the experimental non-stationary auto- and cross-
covariances are derived from an ensemble of conductivity realizations and
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their associated piezometric heads (obtained by solving a groundwater flow
model).

Before describing the whole algorithm, recall the main steps in any se-
quential simulation algorithm are:

1. Define a random path to visit all nodes of the grid on which the real-
ization will be generated.

2. Visit the random path sequentially.

(a) At each node, collect the conditioning data (for all variables)
within a user-defined search neighborhood centered at the point
to simulate (the size and orientation of the search neighborhood,
the number of data to keep within it, and how the retained data
should be distributed between the different variables are param-
eters that must be specified by the user).

(b) Compute the local conditional distribution function. If we adopt
a multivariate multiGaussian random function model, the local
conditional distribution is a Gaussian distribution with mean and
variance given by the simple co-kriging estimate and the simple
co-kriging variance.

(c) Draw, randomly, a value from the local conditional distribution
function.

(d) Include the value in the set of conditioning data for the simulation
of the next nodes and go to next node.

Our proposal is to use this algorithm to generate conductivity fields
conditioned to piezometric heads. For this purpose we need the auto-
covariances of both conductivity and head, and their cross-covariance. These
covariances, particularly the ones involving the piezometric heads, but also
the conductivity auto-covariance when there are conditioning conductivity
data, are clearly non-stationary. Some authors have developed analytical
expressions relating these covariances by approximating the solution of the
groundwater flow equation (e.g., Fiori et al., 1998). We propose to use
experimentally-derived covariances obtained from an ensemble of realiza-
tions, much like it is done in the ensemble Kalman filter.

At any time t, we could derive all necessary covariances experimentally
as follows:

1. Generate an ensemble of Ne realizations of conductivity. Each real-
ization contains N nodes. Ki(j) refers to the conductivity value at
realization i and node j.

2. Given initial and boundary conditions, sources and sinks, solve the
groundwater flow equation for each realization until time t and obtain
an ensemble of piezometric heads.
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3. The cross-covariance between conductivity K at location j and piezo-
metric head H at location l is given by

CK,H(j, l) =
1

Ne

Ne∑
i=1

(Ki(j)−K(j))(Hi(l)−H(l)) (6.1)

where the overbar indicates ensemble average, i.e.,

K(j)) =
1

Ne

Ne∑
i=1

Ki(j) (6.2)

In addition, since we are planning to work with multiGaussian sequential
simulation, it is more convenient to work with the normal-score transform of
the variable of interest, in our case conductivity. Therefore, the sequential
simulation algorithm is performed on a new variable K̃ which is obtained
by the normal-score transform of K according to the following expression:

K̃i(j) = G−1(Fj(Ki(j))) (6.3)

where Fj(Ki(j) is the local cumulative distribution at node j computed
(numerically) from the Ne conductivity values of all realizations at node j,
and G(·) is the standard Gaussian cumulative distribution function.

Once the normal-scores are generated, they are transformed back to
conductivity space for the solution of the groundwater flow equation using
the inverse expression:

Ki(j) = F−1
j (G(K̃i(j))). (6.4)

We expect that by using a good approximation of the non-stationary
cross-covariance between conductivity and piezometric head, the resulting
conditional conductivity fields will be coherent with the piezometric heads,
in the sense that the solution of the groundwater flow equation on the con-
ditional fields will reproduce the observed piezometric heads. However, we
found that this reproduction does not happen, at least in first instance. We
found that, for the algorithm to work, we have to apply an iterative ap-
proach by introducing piezometric heads measured at different time steps
and recomputing the covariances after each time step.

Under these considerations, the inverse sequential simulation algorithm
consists of the following steps:

1. Define the parameters controlling the sequential simulation: search
neighborhood, maximum number of conditioning points to retain within
the search neighborhood, number of realizations to generate.

2. Define the parameters controlling the groundwater flow simulation:
initial conditions, boundary conditions, sources and sinks.
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3. Generate an initial ensemble of conductivity fields conditioned to mea-
sured conductivity data. This ensemble contains Ne realizations dis-
cretized into N nodes. Any stochastic simulation technique can be
used to initialize this ensemble, whether multiGaussian-based or not.
(In the example below we will use a hybrid of multiple-point simula-
tion and Gaussian sequential simulation to generate realizations with
channel-like patterns of sand and shale.)

4. Begin iteration in time.

(a) Solve, for each conductivity realization, the transient groundwa-
ter flow equation from the previous time until time t. The result
is an ensemble of piezometric heads H.

(b) Normal-score transform the conductivity realizations.

(c) Compute the auto- and cross-covariances of K̃ and H(t).

(d) Sample piezometric heads at observation locations. These values
will be used as conditioning data.

(e) Generate a new ensemble of normal-score conductivity fields by
multivariate multiGaussian sequential simulation using both con-
ductivity and piezometric head as conditioning data.

(f) Backtransform the normal-score conductivities into conductivi-
ties and move on to the next time step.

After each time iteration, a new set of conductivity fields results, which
is used to forecast the piezometric heads to the next time. It is important
to notice that after each iteration, the new set of conductivity fields will
have a different statistical structure than the previous one, that is, different
local cumulative distributions, different ensemble mean, different ensemble
variance, different covariance, and different cross-covariance with the piezo-
metric heads as a result of the conditioning effect in the sequential simulation
step. For those readers familiar with the EnKF, there is a fundamental dif-
ference in that iSS builds from scratch the new ensemble of conductivities
at each time step, whereas in the EnKF, each realization of the ensemble is
updated, at each time step, by adding to it a smooth perturbation.

6.3 Synthetic Example

We wish to test the performance of the iSS algorithm in an aquifer with
spatial heterogeneity that is not suited for modeling with a multiGaussian
random function. The marginal histogram of logconductivities must be bi-
modal, and conductivities must show strong connectivity for the high values.
It is well known that these two aspects are difficult to handle by a multi-
Gaussian random function model (Gómez-Hernández and Wen, 1998).
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Table 6.1. Parameters of the random functions describing the spatial continuity
of the sand and shale log-conductivities

Facies Proportion Mean Std.dev Variogram λx λy sill
[ln [m/d]] [ln [m/d]] type [m] [m]

Sand 0.35 3.5 1.0 exponential 20 20 1
Shale 0.65 -2.5 0.6 exponential 20 20 0.35

We use as reference a synthetic confined aquifer composed of sand and
shale. The aquifer occupies an area of 50 m by 50 m by 5 m and it is
discretized into a grid of 50 by 50 by 1 cells. The proportion of sand to
shale is 0.35 to 0.65. The facies distribution should be consistent with the
training image of Figure 6.1 taken from Strebelle (2002). (Note that the
training image extends over a much larger area than the aquifer.)

The synthetic aquifer is built in two steps. On the first step a binary
sand/shale realization is generated using the training image in Figure 6.1
and eight conditioning points distributed as shown in Figure 6.2. The code
used in this first step is SNESIM Strebelle (2002). In the second step, the
facies are populated with log-conductivity values generated, independently,
by sequential Gaussian simulation. The code used in this second step is
GCOSIM3D Gómez-Hernández and Journel (1993). The parameters used
for the generation within each facies are listed in Table 6.1. The resulting
field is shown in Figure 6.3, where the channelized structure is clearly seen.
The histogram of log-conductivities in the reference aquifer is shown in Fig-
ure 6.4, it displays two modes at 3.5 ln(m/d) and -2.5 ln(m/d), its global
mean is -0.9 ln(m/d) and its global standard deviation is 2.9 ln(m/d).

Training Image

Easting

N
o
rt
h
in
g

.0 750
.0

750

Shale

Sand

Figure 6.1. Training image used to generate the ensemble of binary facies real-
izations

Groundwater flow is solved in the aquifer assuming no flow boundary
conditions, an initial head set at 8 m everywhere, two injection wells (coin-
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Table 6.2. Definition of scenarios

Scenario S1 S2 S3 S4 S5 S6

Number of observation piezometers 25 25 25 25 16 25
Number of maximum search nodes 24 24 24 8 24 24
Size of the ensemble of realizations 600 600 600 600 600 100
Number of conditional facies data 8 0 16 8 8 8

ciding with the two facies data in the sand facies along the west side of the
aquifer) injecting 16 m3/d (top one) and 15 m3/d (bottom one), and three
pumping wells (coinciding with the three facies data in the sand facies along
the east side of the aquifer) pumping 7.5 m3/d, 7.5 m3/d (top two ones) and
14.5 m3/d (bottom one). The aquifer specific storage is homogeneous and
equal to 0.03 m−1.

The transient groundwater flow simulator MODFLOW (e.g., McDonald
and Harbaugh, 1984; Harbaugh et al., 2000) is used to solve the transient
groundwater flow equation for a period of 500 days. The time span is dis-
cretized into 100 time steps whose length follows a geometric series of ratio
1.02. (The first time step is 1.6 days.)

The piezometric heads are sampled at each time step at the locations
indicated below, these values will be used for conditioning during the first
50 time steps (135.4 days) and then used for validation afterwards.

We have designed six scenarios to make a sensitivity analysis to several
parameters. These scenarios are described in Table 6.2. The scenarios differ
between them in the number of conditioning facies data, in the number of
realizations in the ensemble, in the maximum number of conditioning data
retained in the sequential simulation step for the computation of the local
conditional distribution function, and in the number of piezometers at which
piezometric head is observed.

The procedure to generate the initial set of realizations for all six sce-
narios is the same one used to generate the reference field. They only differ
in the number of facies conditional data. Scenario S2 has no conditioning
data, scenarios S1, S4, S5 and S6 use the same 8 conditioning data used to
generate the reference field (see Figure 6.2), and scenario S3 uses 8 addi-
tional conditioning data sampled from the reference field. The location and
values of these 16 data can be seen in Figure 6.5.

All scenarios use 25 piezometers for sampling the piezometric head, ex-
cept for scenario S5 that uses only 16. The location of these piezometers
is shown in Figure 6.6. This figure also shows the locations of the two
piezometers used to illustrate the performance of the method (labeled #6
and #7).
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Figure 6.5. Location of the facies data for scenario S3, the one with a larger
number of conditioning points; red nodes for shale and green nodes for sand
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Figure 6.6. (a) Distribution of piezometers of scenarios S1, S2, S3, S4 and S6;
(b) Distribution of piezometers for scenario S5. For reference, the injection (#1,
#2) and pumping wells (#3, #4 and #5) are also shown. The piezometric head
evolution at piezometers #6, #7 is used in the analysis.
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6.4 Analysis

We have generated six sets of conductivity realizations according to the pa-
rameters in Table 6.2, next we are going to analyze up to which point they
are truly conditional on the piezometric heads in the sense that observa-
tions are matched by groundwater flow predictions. Then, we will analyze
the different sets against the reference field to check how close these real-
izations fluctuate about the reference field and how large these fluctuations
are. And finally, we will perform a postaudit analysis to check how these
sets of realizations will perform under completely different conditions, more
precisely, how these realizations will reproduce solute transport as observed
in the reference field.

6.4.1 Conditioning to heads

Figure 6.7 shows the piezometric heads evolution at piezometers #6 and
#7 of Figure 6.6 on the initial sets of realizations, that is, those realiza-
tions that have been generated only conditional on facies data, since no
piezometric head information has been used yet. As expected, the scatter
of the piezometric heads is very wide. Figure 6.8 shows the same results
after having conditioned to piezometric heads in the first 50 time steps (up
to the vertical dashed line). Recall that this means that for each scenario
50 sets of realizations have been generated, one for each time step based
on the auto- and cross-covariances computed on the set of realizations from
the previous time step. The results are quite convincing with regard to
the objective of iSS: the generation of realizations that match the observed
piezometric heads. Comparing with Figure 6.7, the reduction of the spread
is remarkable. Comparing among the graphs in Figure 6.8 we can appreciate
that the conditioning is not equally good for all scenarios or both piezome-
ters. It is clear that the best results are obtained for the set of realizations
with the largest ensemble size and the largest values for all parameters (S3).
Using the results for scenario S1 as benchmark we can also conclude that
reducing the number of conditioning nodes to be retained with the search
neighborhood during the sequential simulation step also reduces the qual-
ity of the conditioning to head observations. Finally, we can comment that
apparently, reducing the size of the ensemble improves the reproduction of
piezometric heads but, as we will discuss afterwards, reducing the number
of realizations has as a consequence a drastic reduction of the experimental
covariances producing all realizations to collapse towards one that, indeed
is coherent with the observed heads, but, as we will see later, it is biased
with respect to the reference field.

As it has already been mentioned, the set of realizations improves as time
passes and new piezometric head data are collected. This can be appreciated
in Figure 6.9 where the piezometric heads predicted at piezometers #6 and
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Figure 6.7. Evolution of piezometric head at piezometers #6 (top row) and #7
(bottom row) on the initial sets of realizations for the different scenarios. Scenarios
S1, S4 and S5 share the same set of initial realizations (first column), scenarios
S2, S3 and S6 are shown in the second, third and fourth columns, respectively.
The gray lines correspond to the evolution in each realization. The red line is the
piezometric evolution in the reference, and the green line is the time average of all
gray lines. The vertical dashed lines indicate the end of the conditioning data.

#7 with the ensembles of realizations generated at time zero, those gener-
ated after 10 time steps and those generated after 50 time steps are shown.
The improvement with time is clear, although for the specific boundary con-
ditions and stresses of this particular exercise, the improvement after time
step 50 halts.

6.4.2 Reproduction of conductivities

From the previous section it is apparent that the final realizations are con-
sistent, from a groundwater flow perspective, with the observed piezometric
heads. The question now is how well they approximate the underlying hy-
draulic conductivity distribution.

Figure 6.10 shows the ensemble mean and ensemble variance computed
locally through the initial ensembles of realizations for the different scenar-
ios. Recall that all sets of initial realizations are generated with the hybrid
method used to generate the reference field, that is, it combines multipoint
geostatistics and Gaussian sequential simulation. Scenario S2 is uncondi-
tional, as a consequence the ensemble mean and variance are uniform and
equal to the global mean and variance: even if each realization displays
channel patterns as in the training image, the fact that no realization has
information where any channel is renders realizations that, in average, are
uninformative. Scenario S1 uses five conditioning points in sand close to the
two vertical boundaries (where injection and production wells are placed)
plus three more in shale in the center; we can notice the effect of condi-



“Phd˙Thesis˙Teng” — 2014/10/20 — 13:55 — page 109 — #135

CHAPTER 6. INVERSE SEQUENTIAL SIMULATION: . . . 109

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

0 100 200 300 400 500
6

8

10

12

14 S1: t50 (#6)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

0 100 200 300 400 500
6

8

10

12

14 S2: t50 (#6)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

0 100 200 300 400 500
6

8

10

12

14 S3: t50 (#6)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

0 100 200 300 400 500
6

8

10

12

14 S4: t50 (#6)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

0 100 200 300 400 500
6

8

10

12

14 S5: t50 (#6)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

0 100 200 300 400 500
6

8

10

12

14 S6: t50 (#6)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
6

8

10

12

14 S1: t50 (#7)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
6

8

10

12

14 S2: t50 (#7)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
6

8

10

12

14 S3: t50 (#7)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
6

8

10

12

14 S4: t50 (#7)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
6

8

10

12

14 S5: t50 (#7)

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
6

8

10

12

14 S6: t50 (#7)

Figure 6.8. Evolution of piezometric head at piezometers #6 (top two rows) and
#7 (bottom two rows) on the sets of realizations generated by iSS after conditioning
to piezometric heads during the first 50 time steps (vertical dashed line) for the
different scenarios. Meaning of lines is the same as previous figure.
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Figure 6.9. Evolution of piezometric head at piezometers #6 (top row) and #7
(bottom row) on the sets of realizations generated by iSS for scenario S1 at three
different times: initial, after 10 time steps, and after 50 time steps. Meaning of
lines is the same as previous figure.

tioning locally in the vicinity of the conditioning points, but we are still
far from identifying the continuous channels present in the reference field.
Scenario S6 yields virtually the same results as S1 with an ensemble of only
100 realizations. Scenario S3 has double the number of conditioning points
well spread over all the aquifer producing realizations that, in average, start
to identify the channels present in the reference.

Figure 6.11 shows the ensemble means and ensemble variances for all
six scenarios after conditioning to piezometric heads for 50 time steps. As
expected, the best results occur for scenario S3, the one with the largest
amount of conditional information for both facies and piezometric head. It
is the only scenario for which the ensemble mean captures the three channels
and their geometry almost perfectly. Scenario S1 with a smaller number of
facies conditional data does a good job, too, but introduces a link between
the bottom two channels that does not exist in the reference and the edges
of the channels are not as well defined as in S3. Scenario S6, which is the
same as S1 but using only 100 realizations yields a channel distribution
almost identical with S1 but it tends to overestimated the conductivity val-
ues, and the channels edges are even more noisy. The ensemble variance
maps support the observations about the ensemble means. The variance
for S3 indicates that there is some residual uncertainty in the edges of the
channels, but otherwise the patterns are well captures in all realizations.
This uncertainty about channel edges is larger in S1, for which there is also
large uncertainty regarding that link area between the two bottom channels.
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Figure 6.10. Ensemble mean (top row) and ensemble variance (bottom row) of
logconductivity for the sets of initial realizations for the different scenarios. First
column is for scenarios S1, S4 and S5, second column for S2, third column for S3,
and fourth column for S6.

Whereas scenario S6 shows an overconfident ensemble variance, with values
close to zero almost everywhere. This extreme reduction of the ensemble
variance is due to an underestimation of the experimental covariance due to
the use of a relatively small number of realizations. (This phenomenon is
similar to the filter collapse observable in ensemble Kalman filtering when
the ensemble size is small, and it is due to the same fact.)

The ensemble means and variances for scenarios S2 and S5 yield the
same conclusions, after 50 time steps, the smaller number of conditioning
data than in S1 (whether facies or piezometers) produce sets of realizations
that start to delineate loosely the channels but that still display a lot of
uncertainty. Had the algorithm kept working for another 50 time steps the
results could have improved.

Finally, for implementation purposes, it is very important to retain a
sufficiently large number of conditioning points within the search neighbor-
hood for the algorithm to work. Reducing this number from 24 (for S1) to 8
(for S4) results in a mean map that misses the connectivity and a variance
map with large values everywhere.

Figure 6.12 shows the evolution of the ensemble mean and ensemble vari-
ance maps for S1 with the initial realizations, with those obtained after 10
time steps, and with those obtained after 50 time steps. We can appreciate
how the channels become better delineated as times passes, and how the
ensemble variance reduces in the areas in which the mean map coincides
with the reference.

The normal-score transform that is applied to transform the conduc-
tivities into Gaussian variates before the sequential simulation step of the
algorithm is applied ensures that the final sets of conductivities have the
bimodal characteristics of the reference field, as can be corroborated with
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Figure 6.11. Ensemble mean (top two rows) and ensemble variance (bottom
two rows) of logconductivity for the sets of realizations for the different scenarios
obtained after 50 time steps.
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Figure 6.12. Ensemble mean (top row) and ensemble variance (bottom row) of
logconductivity for the sets of realizations generated by iSS for scenario S1 at three
different times: initial, after 10 time steps, and after 50 time steps.
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the histograms of the final realizations displayed in Figure 6.13. Overall all
scenarios show the two modes, with the best reproduction of the reference
histograms for those scenarios that we have already seen that perform best.

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.050

0.100

0.150

0.200
S1: t50

Number of Data 1500000

mean 0.3
std. dev. 2.7

coef. of var undefined

maximum 6.5
upper quartile 3.1

median -1.4
lower quartile -2.2

minimum -4.6

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.040

0.080

0.120

0.160

S2: t50
Number of Data 1500000

mean 0.4
std. dev. 2.7

coef. of var undefined

maximum 6.4
upper quartile 3.1

median -0.9
lower quartile -2.1

minimum -4.4

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.050

0.100

0.150

0.200

S3: t50
Number of Data 1500000

mean -0.6
std. dev. 2.7

coef. of var undefined

maximum 6.2
upper quartile 2.7

median -2.1
lower quartile -2.6

minimum -4.9

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.040

0.080

0.120

0.160
S4: t50

Number of Data 1500000

mean 0.8
std. dev. 2.9

coef. of var undefined

maximum 6.8
upper quartile 3.6

median 2.0
lower quartile -2.1

minimum -4.6

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.040

0.080

0.120

0.160

S5: t50
Number of Data 1500000

mean 0.0
std. dev. 2.8

coef. of var undefined

maximum 6.3
upper quartile 3.1

median -1.7
lower quartile -2.4

minimum -4.6

F
re

qu
en

cy
attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.050

0.100

0.150

0.200 S6: t50
Number of Data 250000

mean 0.0
std. dev. 2.7

coef. of var undefined

maximum 5.9
upper quartile 3.0

median -1.7
lower quartile -2.4

minimum -4.5

Figure 6.13. Histograms of logconductivity for the sets of realizations for the
different scenarios obtained after 50 time steps.

The normal-score transform is particularly in this case a non-linear trans-
formation which not only changes explicitly the marginal histograms of the
variables involved, but in this case, it also affects, indirectly, the connec-
tivity, as it can be seen in Figure 6.14. It is quite astonishing to compare
the two columns of this figure; the mean of the normal-score transforms
hardly displays any hint of channeling, and its variance is also quite distant
in relative values and patterns from the variance map of the transformed
log-conductivities. This can be explained because the local cumulative dis-
tribution functions are different from point to point, and for the conditioning
effect of the piezometric heads.

We can quantify the goodness of the final sets of realizations by comput-
ing a single scalar measuring the accuracy with which the ensemble average
matches the reference field and its precision as measured by the ensemble
standard deviation. For this purpose, we define two metrics, the root mean
square error (RMSE) and the average ensemble spread (ES) as:

RMSE =

√√√√ 1

N

N∑
j=1

(
ln(Kref (j))− ln(K(j))

)2
, (6.5)

ES =

√√√√ 1

N

N∑
j=1

σ2j , (6.6)
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Figure 6.14. Ensemble mean (top row) and ensemble variance (bottom row) of
the ensemble of normal scores of logconductivity as generated by the sequential
simulation algorithm for scenario S1 after 50 time steps, and of the corresponding
log-conductivity fields after backtransforming the normal-scores.

where N is the number of model elements; ln(K)ref (j) is the value of log-

conductivity in the reference field at node j, ln(K(j)) is the logconductivity
ensemble mean at node j; σi is the ensemble variance at node i.

Figure 6.15 shows the evolution with time step of both the RMSE and
the ES. Regarding the RMSE we can notice that, at the 50th time step, the
best scenario is S3, as it was appreciated previously, and the worst scenario
is S4, pinpointing the importance of good choice of the parameters control-
ling the sequential simulation step. As the number of facies conditioning
data reduces, the RMSE increases (see the progression from S3 to S1 to S2).
The second worst scenario is the one with the reduced number of piezome-
ters used for the simulation, indicating the importance of having enough
transient piezometric information for the algorithm to work. (Something
that was also observed by Xu et al. (2013) in the context of the normal-
score Ensemble Kalman filter.) Regarding the ensemble spread we notice
how it decreases steadily in time for all scenarios, indicating a progressively
less uncertain set of realizations; although, scenario S6, the one with only
100 realizations, shows a too dramatic decrease of the ES, which, in this
case, indicates overconfidence since it is associated with a high value of the
RMSE. This behavior of S6 is due to an underestimation of the experimental
covariances, which are computed on a small number of realizations.

6.4.3 Postaudit

We have seen how the iSS is capable of generating ensembles of realizations
which are conditioned to both conductivity data and piezometric head data.
As a final check on the performance of the algorithm we perform a postaudit
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Figure 6.15. RMSE and ES of all the scenarios.

of all realizations and solve a solute transport problem, whose information
had not been used for the generation of the realizations. For this purpose,
keeping the same groundwater flow conditions as in the rest of the study, we
model the release of solute at time zero from the vertical segment labeled
“particle injection” in Figure 6.3 and located at x = 2.5 m, and we monitor
its arrival at the two control planes displayed in the same figure, located at
x = 15 m and x = 45 m. The total solute is distributed in 1000 particles,
which are uniformly distributed along the segment and whose movement is
tracked in the aquifer using the random-walk particle-tracking code RW3D
by Fernàndez-Garcia et al. (2005). The solute is assumed to be inert, and
the porosity of the aquifer is assumed to be uniform and equal to 0.3.

Figure 6.16 shows a summary of the breakthrough curves (BTC) at the
two control planes as computed in the initial sets of realizations used for the
different scenarios; it shows, in red, the BTC for the reference field, in green
the median of the BTCs computed timewise, and in black the 90% confidence
interval as delimited by the 5% and 95% percentiles. The reference BTC has
a very long tail, associated with all those particles which are introduced in
the shale part of the release segment. Overall the BTCs show a large spread
for the 90% confidence interval, which, in all cases, encloses the reference
BTC. The spread is the smallest for scenario S3, what is coherent with the
largest number of conditioning facies data used.

Figure 6.17 shows a summary of the same BTCs as the previous figure
but now computed in the ensembles of realizations generated for all scenarios
after 50 time steps. The spread of the BTCs has reduced considerably,
although now some of the scenarios do not produce a 90% confidence interval
fully enclosing the reference BTC.

At control plane 1, the one closest to the release segment, scenarios S1,
S2, S3 and S4 behave similarly. Scenario S5 fails to capture the fast break-
through of the first 75% of particles, what is related to the low conductivity
values simulated in the upper right corner (see Figure 6.11), and which is
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Figure 6.16. Solute breakthrough curves (BTC) at control planes 1 (top row)
and 2 (bottom row) on the initial sets of realizations used in the different scenarios.
The red line is the BTC in the reference, the green line is the median (computed
timewise) of the BTCs from the different realizations, and the two black lines mark
the 90% confidence interval bounded by the 5% and 95% percentiles.

due to the lowest number of conditioning piezometric head data overall,
and specifically in the upper part of the aquifer. The results for S6 show
the overconfident prediction already observed for conductivities (see Figure
6.11) and the bias associated to the highest departure from the reference
field as measured by the RMSE.

At control plane 2 we can see that scenarios S1 and S2 behave similarly
and with a good reproduction of the reference BTC. It is somehow surprising
that scenario S3, which has been the best so far, produces BTCs that depart
from the reference with a clear arrival in two bursts, a first one, which is
faster than the reference, and a second one, slower than the reference. At
this time we do not have an explanation for this behavior in relation with
the proposed method. Scenarios S4 and S5 behave similarly (with slower
travel times for S5) and display a larger spread. Finally, scenario S6 shows
again its overconfidence and bias.

Figure 6.18 shows the evolution of the BTCs for scenario S1 in the initial
realizations, in those generated after 10 time steps, and in those generated
after 50 time steps. As before, we can see the reduction in their spread with
time as a result of the conditioning to the observed piezometric heads.

6.4.4 Discussion

From the analysis of the results for the different scenarios we can conclude
that the iSS is a method that can generate realizations of conductivity in-
verse conditioned on piezometric heads, that is, to generate conductivity
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Figure 6.17. Solute breakthrough curves (BTC) at control planes 1 (top two
rows) and 2 (bottom two rows) on the sets of realizations obtained for the different
scenarios generated after 50 time steps. Meaning of lines is the same as in previous
figure.
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Figure 6.18. Solute breakthrough curves (BTC) at control planes 1 (top row) and
2 (bottom row) for scenario S1 on the initial set of realizations, those generated
after 10 time steps, and those generated after 50 time steps. Meaning of lines is
the same as in previous figure.

realizations that when used in a groundwater flow model will reproduce the
observed heads. The method is not based in any optimization but rather in
a covariance-based sequential simulation paradigm. The method has been
demonstrated here for conductivities and piezometric heads, but it is appli-
cable to any parameter and state variables related by a state equation.

From the different scenarios analyzed we can reach several conclusions,
some affect parameters that can be decided by the user, and some param-
eters that are given. The first parameter that the user must define is how
many realizations to generate: it is important to use a sufficiently large set
of realizations to avoid the underestimation of the experimental covariances
and cross-covariances. In this example 600 realizations were enough; 100
realizations resulted in the collapse of the final ensemble about a single real-
ization. The problem of underestimation of the experimental covariances is
also present in the implementation of the ensemble Kalman filter, and there
it is solved using techniques of covariance inflation (e.g., Wang and Bishop,
2003; Anderson, 2007a; Li et al., 2009; Kurtz et al., 2011), those techniques
could be a solution here, too. As a consequence of this requirement, the
iSS is a method that cannot be used to generate a single conditional real-
ization, there is always the need to generate a sufficiently large ensemble of
realizations.

The standard sequential simulation algorithm has three key aspects that
must be decided by the user, which are of importance for the iSS, too: the
size and shape of the search neighborhood used for the building of the local
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conditional probability distribution, the maximum number of points (and
their spatial distribution) to retain within the search neighborhood, and the
variables to simulate. Regarding the size and shape of the search neighbor-
hood, this is related with the correlation structure of the parameter field,
in our example, the overall horizontal correlation of conductivity is much
larger than the size of the aquifer due to the presence of the horizontal
channels, while the vertical correlation is smaller. We chose a large search
neighborhood, of 25 m radius, so that, if centered in the aquifer it covers
most of it. Regarding the maximum number of points to retain within the
search neighborhood, the results show that a large number is necessary for
a good reproduction of the conductivity patters. We have not analyzed the
spatial disposition of these retained and we have chosen always the closest
points, but it would be interesting to analyze the impact of distributing
these data by quadrants, or by type of conditioning variable. And regard-
ing the variables to simulate, we can choose to generate only conductivities
conditioned on both conductivities and piezometric heads, or to generate
both conductivities and piezometric heads simultaneously. If we choose to
generate only one variable then as the grid is being generated and the num-
ber of simulated nodes increases, the conditioning data retained within the
search neighborhood contains less and less number of piezometric heads
(since they are only 16 or 25 values at all times, while the number of con-
ductivity conditioning data reaches 2499 values for the simulation of the last
node); whereas if we generate both variables simultaneously we can argue
that the cross-correlation between conductivities and piezometric heads are
persistent throughout all the simulation since until the simulation of last
nodes there will always be data within the search neighborhood of both
variables. In this study, we have generated only conductivities; however, we
have tried the alternative of generating both variables at the same time, and
although the results are not shown here we can say that the results are very
similar. Therefore, it is preferable to generate only the variable of interest
since it is faster.

There are other inputs that cannot be controlled by the user, such as
the number of conductivity and piezometric head conditioning data. The
previous analysis gives the obvious result that the larger the number of
conditioning data of either variable, the better the final outcome.

Finally, there is a critical parameter that we have not mentioned before
but which controls the feasibility of the method, which is a nugget effect
that must be added to the experimental covariances and cross-covariances.
It is well known that the experimental covariances are not positive definite
and, therefore, its direct use in the simple kriging equations to compute
the kriging mean and kriging variance during the sequential simulation al-
gorithm could yield singular kriging matrices or, if the kriging equations
can be solved, the resulting kriging variance may be negative. To solve this
problem we must first yield the experimental covariances positive definite.
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Yao and Journel (1998) propose a method based in fast Fourier transforms
to solve this problem. A less elegant, but simpler approach, is to add a
nugget effect to the computed experimental covariances. In our study we
had to add a nugget effect equal to 1% of the total variance to the diagonal
of the experimental covariance matrices to render them positive definite.
This a parameter that must be fine tuned, searching for the smallest value
that will make the sequential simulation possible.
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7
Conclusions

7.1 Summary

The work of this thesis is aimed to fulfill the main objectives described in
Chapter 1.1. Some of the conclusions derived are the following:

• A parallel implementation of the EnKF can reduce significantly the
computing time of the standard EnKF. The parallelization runs with
higher efficiency for large size models and large ensemble sizes than for
small ones. Typically, the efficiency can remain over 0.40 when using
up to 12 processors for the two tests performed using 1200 realizations.

• We have shown that, even with no information about the spatial het-
erogeneity of conductivity but its univariate marginal distribution, the
NS-EnKF can get a proper characterization of conductivities via as-
similating enough transient piezometric heads. Besides, we have also
shown that covariance localization and covariance inflation techniques
are necessary to eliminate the effect of spurious correlations and to
reduce the filter inbreeding.

• We have analyzed in depth the algorithm proposed by (Hu et al., 2013)
to find that it fails in the characterization of a channelized bimodal
hydraulic conductivity field. The approach by Hu is based on the
updating of an initially uncorrelated field of normal Gaussian deviates,
we think that the poor performance of the method is due to the very
weak (almost non-existent) correlation between the variables being
updated and the state variables; based on this premise, we propose the

121
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updating of a field of correlated Gaussian deviates and we prove that
the results with the new updating variables is far superior to the one
proposed by Hu and capable of a proper estimation for non-Gasssian
bimodal hydraulic conductivities.

• Finally, blending some of the ideas underlying multivariate Gaussian
sequential simulation and ensemble Kalman filtering, we have devel-
oped a new stochastic inverse modeling method, which we have termed
inverse sequential simulation (iSS) that can generate realizations of
hydraulic conductivity inverse-conditioned on piezometric heads. The
main steps of the iSS are as follows: first, build normal score trans-
form functions and transform all the conductivity values of all the
realizations in all the grid nodes into Gaussian distributed values; and
then, use these transformed realizations to compute an experimental,
non-stationary conditional cross-covariance between transformed con-
ductivities and piezometric heads, and auto-covariance of both trans-
formed conductivities and piezometric heads; next, a standard multi-
variate sequential Gaussian conditional simulation algorithm is used
to generate a new ensemble of transformed conductivity realizations;
and then back-transform these transformed conductivity values and go
to next time step. We have found that iSS compares favorably with
the NS-EnKF, although it still needs some improvements to make it
computationally attractive.

7.2 Suggestions for Future Research

After reviewing the whole work in this thesis, we find there are still some
issues deserving to study,

• Jointly estimate state parameters conditioning to several types
of data. In this thesis, the estimation of hydraulic conductivities is via
assimilating the transient piezometric head data only. In fact, for real
flow or transport modeling, transient piezometric head is not the only
state variable we can get, but also some other state variables, such
as concentration, or groundwater temperature, which can be jointly
assimilated to estimate the hydraulic conductivities. Moreover, these
state variables can also be used to jointly estimate other uncertain
state parameters, such as leakage coefficient and porosity.

• Propose a parallelized iSS algorithm to reduce the computa-
tional time. The result of chapter 5 shows that although the iSS is
an efficient approach that is capable of coping with non-Gaussian dis-
tribution, the needed CPU time is still high and its application would
be difficult for the modelings with large ensemble size or large model
sizes.
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• Demonstrate the NS-EnKF or the iSS to real case studies.
The cases we employed in this thesis are all synthetic so that we can
control all parameters and where uncertainties are coming from. The
application of these, apparently powerful, methods to read data sets
sometimes fail. It is necessary to carry out those applications and to
analyze the reasons of failure and find solutions.
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A
Normal-score transform

We have Ne realizations, each one discretized into N nodes. Let Ki,j the
conductivity for realization i at node j. For each node, determine the ex-
perimental cumulative distribution function (cdf) from the set of values
{Ki,j , i = 1, . . . , Ne}:

Fj(k) = Prob(K ≤ k), j = 1, . . . , N, (A.1)

these cdfs are generally non-parametric, and they are defined in tabular
form by pairs of (k, Fj(k)) values. Let G(y) be the cumulative distribution
function of a variable y having a Gaussian distribution of zero mean and
unit variance.

The normal-score transformation is given by:

K̃i,j = G−1(Fj(Ki,j)), i = 1, . . . , Ne; j = 1, . . . , N. (A.2)

Similarly, the normal-score back transform is given by:

Ki,j = F−1(G(K̃i,j)), i = 1, . . . , Ne; j = 1, . . . , N. (A.3)
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