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Unlocked evanescent waves in periodic structures
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We predict the existence of evanescent modes with unlocked phases in two-dimensional (2D) dielectric periodic
structures. Contrary to what is known for one-dimensional structures, where evanescent fields lock to the host
modulation, we show that in 2D systems a new class of evanescent modes exists with an unlocked real part of
the wave vector. Hence, beams constructed from such unlocked evanescent waves can exhibit spatial effects. A
significant focalization of a beam propagating within the band gap of a flat photonic crystal slab is also shown.

The predicted phenomenon is expected to be generic for spatially modulated materials.
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Periodic nanophotonic structures allow precise control
over both temporal and spatial dispersion of light. Pho-
tonic crystals (PhCs) form band gaps (BGs), i.e., bands of
frequencies at which plane waves do not propagate or,
more precisely, propagate evanescently [1,2]. Recently,
attention was paid to the possibility of engineering the
propagation of light beams in such structures, mediated
by anomalous spatial dispersion [3]. Among the reported
novel effects are propagation without diffractive broad-
ening (self-collimation) [4-8], or negative diffraction (flat
PhC lensing) [9-12]. Flat PhC lensing is accounted for by
convex-curved isofrequency contours in wave vector, k,
space [13,14]. The anomalous phase shifts accumulated
trough a PhC slab are compensated by normal diffraction
behind the structure, determining the focalization dis-
tance of the flat PhC lens. Beam focalization, however,
has never been considered for frequencies within BGs.

Although evanescent waves decay exponentially,
their transmission through finite-sized PhCs is never
zero, and they can still lead to relevant effects [15]. In
one-dimensional (1D) modulated structures, the phase
of evanescent waves is fixed by the periodicity. The
real part of their wave vectors locks to a multiple of the
lattice vector of the host modulation, laying on straight
lines in real k-space at the Brillouin zone (BZ) edges.
The situation is generally analogous in two-dimensional
(2D) PhCs. Note that neither beam focalization nor flat
lens imaging is possible with locked waves.

We report here an unexpected observation: apart from
the conventional locked evanescent waves, we find a
new class of “unlocked” evanescent solutions. The wave
vectors of such waves have a nonzero imaginary part,
but its real part is not fixed by the host periodicity.
Hence, they are able to present curved isofrequency con-
tours and, potentially, “evanescent beams” constructed
from them can show focalization behind a PhC slab,
similar to flat PhC lensing for propagating modes [13].
We show that, under particular conditions, a substantial
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focalization can be obtained. Since all evanescent solu-
tions are excluded from conventional w(k) methods,
such as the plane wave expansion (PWE), we apply an
inverted or extended PWE (EPWE) method [16-18] or
k(w) method, which allows complex solutions, to deter-
mine the unlocked evanescent waves and to obtain the
complex dispersion relations. We confirm the predicted
beam spatial effects by a numerical integration based
on the finite-difference time-domain (FDTD).

The various theoretical approaches to PhCs can be
regarded either as an initial or a boundary condition
problem. In the first case, the frequency of each spatial
mode is determined for each given real-valued k; there-
fore, these methods are useful to describe infinite peri-
odic structures. Frequency is purely real-valued in PhCs;
only for gain/loss modulated materials can the imaginary
part be nonzero, indicating the nonstationary growth
or decay of propagating field [19]. The standard PWE
is a modal method following this approach, widely used
while limited to the description of propagating fields. On
the other hand, to properly solve propagation through
finite-sized PhCs, all field modes have to be considered,
both propagating and evanescent. in a boundary condi-
tion problem where the amplitude, phase and frequency
of the incident wave are fixed, and frequency is a real-
valued magnitude. The exponential decay or growth of
each mode in space is accounted for by the imaginary
part of a complex-valued k, while its real part determines
spatial dispersion [16-18,20]. In particular, the EPWE
method considers the stationary Maxwell equations,
fixes frequency and solves a non-Hermitian eigenvalue
problem for k [16-18].

Light propagation in 2D PhCs, for certain directions
and frequencies, can be approximately regarded as a 1D
problem, if essentially only forward and backward
waves come into play. This is the case for low frequen-
cies in the crystallographic I'X direction of a square
lattice. Figure 1(a) displays the real and imaginary parts
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Fig. 1. TM complex dispersion relations calculated by the

EPWE method for a high contrast PhC, ¢;/e; = 11.34, made of
a square lattice of cylinders with radius R = 0.15a, where a is
the lattice constant; for propagation along (a) I'X and (b) I'M.
The real and imaginary parts of k, k" and k* (horizontal axis)
are represented, depending on frequency, w (vertical axis), in
normalized units, where c is the speed of light in a vacuum.
The shaded areas show evanescent locked/unlocked modes.

of k, depending on frequency, as obtained by the EPWE
method for TM polarization. As expected, the real part
of k locks to the boundary of the first BZ within the first
BG. However, for propagation along I'M the situation is
different [see Fig. 1(b)]. Within the first BG, the EPWE
method yields the appearance of additional unlocked
evanescent modes, where the real part of k is not con-
stant but depends on frequency. A careful inspection
of Fig. 1(b) shows that at the lower part of the BG the
evanescent mode remains locked, while increasing fre-
quency the attenuation rates of two locked evanescent
modes approach and merge, resulting in the appearance
of an unlocked evanescent mode. Evanescent modes are
represented by lines connecting the closest points of the
dispersion curves from two adjacent propagation bands.
If the frequency maxima and minima from both bands are
not at high symmetry points of the BZ, the modes become
unlocked, bearing some analogy with “indirect band
gaps” known in semiconductors, e.g., [21]. The existence
of such unlocked evanescent modes is the first basic re-
sult presented in this work. Moreover, analog solutions
are also present in higher order BGs along the same I'M
direction as well as in the I'X direction. We also report
that for TE polarization unlocked evanescent modes
appear, connecting the closest points of higher bands.
In the following, we concentrate on the diffractive
propagation of monochromatic beams. Beam propaga-
tion is determined by isofrequency contours in k-space,
shown in Fig. 2 for the first and second propagation
bands. The top small frames, Figs. 2(a) and 2(d), show
the real part of k, while the bottom frames, Figs. 2(b)
and 2(e), depict the corresponding imaginary part, for
the same frequency. We first consider a frequency lying
already in the first BG for the I'X direction, but still on
the first propagation band for the I'M direction [the
inferior line on Fig. 2(c)]. Propagation is evanescent
along I'X, the wave vectors are complex in this direction
and their real parts lock to the boundary of the BZ, see
Fig. 2(a). The flower-like pattern on Fig. 2(b) indicates
the decay of evanescent modes along I'X. In I'M direction
k’'s are purely real-valued, and propagation is free or
unlocked. Precisely this regime has previously been con-
sidered for self-collimation [8], or for PhC lensing [13],
either due to flat or negatively curved segments in the
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Fig. 2. TM band structure and complex dispersion relations
calculated by the EPWE method, for the structure of Fig. 1.
Isofrequency contours at two frequencies; (a)/(b) and (d)/(e)
depict the real/imaginary parts of k. In (a)/(d) black (dark) lines
correspond to the first propagation band, while blue/orange
(light) lines correspond to the locked/unlocked evanescent
modes. (c¢) Conventional representation of the band diagram,
showing real parts of both evanescent and propagating bands.

spatial dispersion, respectively. The frames on the right-
hand side, Figs. 2(d) and 2(e), describe another situation.
A constant frequency line at the top part of the BG in
Fig. 2(c) intersects the second band along I'X, but still
lays in the BG along I'M direction. However, as shown
in Fig. 2(d), the propagation is unlocked along both I'X
and I'M directions. Comparing Figs. 2(b) and 2(e), the
flower-like pattern in Fig. 2(e) is now rotated, indicating
evanescent propagation in the I'M direction). Most im-
portantly, the character of the evanescent wave is now
completely different. The real part of k is not locked to
the edge of the BZ, and the dispersion curve is no longer
flat. In this particular case, as the frequency is close to
the second band and hence laying in the second BZ, the
curvature is slightly concave indicating normal diffrac-
tion. Note that the second BZ is adjacent to the depicted
one translated by a reciprocal lattice vector. Hence, a
convex segment of the spatial dispersion curve indicates
negative diffraction, and may enable focalization of a
beam by a thin PhC. However, differently from flat PhC
lensing, we report here an analogous effect mediated by
evanescent modes.

Next, we examine the predicted focalization of evan-
escent beams by direct numerical simulations. We gener-
ally find that strongly modulated PhCs with large index
contrast and large filling factor result in concave spatial
dispersion curves, leading to normal diffraction. Never-
theless, for low index contrasts, we obtain the opposite
result: the curvature becomes positive along I'M [see
Fig. 3(a)]. As a consequence, focalization of an evanescent
beam behind a thin PhC can be expected. Figure 3(b)
shows the propagation of a linearly polarized Gaussian
beam, obtained numerically by FDTD, where the intensity
distribution clearly indicates focalization. Although the
beam is relatively weak after evanescent propagation,
the focalization behind the PhC is evident, especially when
compared with a reference beam propagated in free space
[see Fig. 3(b)]. Figures 3(c) and 3(d) summarize beam
transmission in a frequency scan around the area of evan-
escent propagation. The intensity along the optical axis
shows a maximum at a particular distance depending
on frequency. Moreover, the x-position of the maximum
(focusing distance) follows the tendency obtained from
the calculation of isofrequency curves: increasing
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Fig. 3. Focalization of an evanescent beam by a low contrast
PhCslab, €;/e; = 1.5, made of a square lattice of cylinders, with
R =0.2a. (a) Isofrequency contours at wa/2zc = 0.633 for
complex k’s. (b) Instantaneous field distribution inside and
behind the system, for an incident Gaussian beam with the
same central frequency, width w, = 2a, propagating along
I'M; the dotted line shows propagation in free space at 1/e?
maximum intensity. (¢) I'M band diagram, whit the unlocked
mode in the shaded area. (d) Transmitted intensity map
along the propagation direction, x, on the beam axis (z = 0) for
different normalized central wavelengths (vertical axis).

frequency, decreasing wavelength, curvature and focal
distance increase. For completeness we also show the
conventional focalization at the upper part of the first
propagation band. Further increasing the crystal length
the evanescent focusing is no longer observable.

In conclusion, we predict and numerically demon-
strate unlocked evanescent waves in 2D PhCs. The
common understanding is that evanescent waves in BGs
lay at the edges of the BZ; i.e., that the field oscillations
lock to the modulation of the host material. We show
that, in addition, another class of unlocked evanescent
modes exists. The arguments of the present work allow
the expectation of them also in 3D. Unlocked evanescent
waves are predicted by modifying the EPWE method,
which extends the class of possible solutions including
all evanescent modes. Besides, in order to prove their
physical character, we show that beams formed by evan-
escent waves with unlocked wave vectors, hold spatial
effects. Indeed, significant focalization of a Gaussian
beam propagating within the BG, in the unlocked evan-
escent regime through a low index contrast PhC slab,
is numerically shown using direct FDTD simulations.
For high contrast PhCs, we do not observe beam focali-
zation in full accordance with our calculations. All calcu-
lations presented throughout the Letter are performed

in TM polarization. Nevertheless, unlocked evanescent
solutions are also found for the TE polarization. This sug-
gests that the effect could be generic, originating from
the periodicity and symmetry of the modulation rather
than from the specific field and matter. Hence, we expect
the predicted effect to be observed for the other kinds of
waves in periodic structures, e.g., acoustic waves propa-
gating in sonic crystals [22] or surface polariton waves,
among others.
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