

Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.
http://www.revistas.unifacs.br/index.php/rsc

Abstract: Model-Driven Engineering (MDE) and Software Product
Lines (SPL) are two software development paradigms that emphasize
reusing. The former reuse domain knowledge is represented as
models and model transformations for product development, and the
latter reuse domain knowledge is represented as core assets to
produce a family of products in a given domain. The adequate
combination of both paradigms can bring together important
advantages to the software development community. However, how
to manage requirements during a model-driven product line
development remains an open challenge. In particular, the
Requirements Engineering (RE) activity must deal with specific
properties such as variability and commonality for a whole family of
products. This paper presents a comparative study of eleven
approaches that perform a MDE strategy in the RE activity for SPL,
with the aim of identifying current practices and research gaps. In
summary, most of the approaches are focused on the Domain
Engineering phase of the SPL development, giving less attention to
the Application Engineering phase. Moreover there is a lack of
coverage of the Scoping activity, which defines the SPL boundaries.
Several approaches apply some model transformations to obtain
architectural and application requirements artifacts. Regarding the
tool support for requirements specification and management, we
found that most of the approaches use only academic prototypes.
Regarding the validation of the approaches, the use of Case Studies
as a proof of concept was the most commonly used method; however,
there is a lack of well-defined case studies and empirical studies to
improve the proposals.

Keywords: Requirement Engineering; Software Product Lines;
Model-Driven Development.

1 INTRODUCTION

Reuse is a key factor in reducing costs and in improving the
quality of software product properties such as security,
reliability, performance, etc. On the one hand, in recent years,
the Software Product Line (SPL) approach has emerged as a
new paradigm to build software based on an intensive reuse
policy. SPL Engineering has proven to be a very useful
approach for developing diverse software products and
software-intensive systems at lower costs, in a shorter time,
and with higher quality (Pohl, Böckle, Van Der Linden, 2005).
On another hand, Model-Driven Development (MDD) is a
trend that is drawing attention in the software development
community. MDD is an approach to software development

that proposes the use of models at various levels of
abstraction, and model transformations as it main artifacts.
The use of models as the main citizens in product
development gives many advantages to developers, for
example by increasing the abstraction level. Moreover, model
transformations allow the conversion of one source model into
another target model, and thereby improves reuse in the
software development process. Both of these paradigms are
based on an intensive reuse strategy, so their appropriate
combination can bring together important advantages to the
software development community.

However, the combination of both MDD and SPL to
produce software products requires the identification of new
ways to define the stakeholder needs. Traditional software
development methods are inadequate to address the challenges
of rapid change and the growth of requirements. In addition, in
the context of SPL, requirements must also capture specific
properties such as variability, commonality or evolution.
Moreover, the Requirements Engineering (RE) activity is
applied to the different activities of the SPL development:
Scoping, Domain Engineering, and Application Engineering.
The Scoping is the activity that defines the SPL boundaries
according to the potential products of interest in the domain.
The result is the set of potential products that could be
produced in the SPL, and the main features of the system. This
information is used as input for the Domain Engineering,
which is the activity that defines a Core Asset Base (a set of
Core Assets associated with the SPL, to support a reuse
strategy). This Core Asset Base is used in the Application
Engineering activity, which creates a product by using a
selection of Core Assets. A Core Asset is a reusable, software
or non-software, artifact or resource that is used on one or
more products. The reusable nature of a Core Asset implies a
higher level of complexity with respect to the traditional RE
activity due to the fact that a new property must be identified
and defined in these core assets: the variability of the Core
Asset.

In the last few years, several approaches have been
proposed to identify and define this variability in the RE
activity with the aim of dealing with these new specific needs.
These approaches have many similarities and differences since

David Blanes
dblanes@dsic.upv.es

Emilio Insfran

einsfran@dsic.upv.es

ISSI Research Group, Department of Information Systems and Computation
Universitat Politècnica de València, Spain.

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING
FOR SOFTWARE PRODUCT LINES

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

4
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

they propose a different number of activities and artifacts in
order to identify and model a requirements specification. The
purpose of this paper is to study the use of RE techniques and
the use of models and model transformations in the RE
activity during SPL development. This analysis will help SPL
developers to identify the strengths and weaknesses of the
approaches regarding MDD characteristics. This paper is
organized as follows: Section 2 introduces the related work;
Section 3 presents a comparison of the RE approaches for SPL
based on their support to the SPL activities, the RE tasks, the
MDD coverage, the degree of automation with tools, and the
type of validation performed. Finally, in Section 4 conclusions
and further work are presented.

2 RELATED WORK

In the last years, several approaches have been proposed to
deal with the RE activity of the SPL development. In this
section we discuss recent works that analyze and compare
some of these proposals.
 Firstly, Kovačević et al. (Kovačević, Aférez, Kulesza,
Moreira, Araújo, Amaral, 2007) present a survey about the
state of the art in Requirements Engineering for SPL and
Model-Driven RE. Two separate comparisons were
performed. Firstly, MDD approaches were analyzed, focusing
on differences between non-aspect and aspect-oriented
approaches. Secondly, several RE approaches for SPL were
analyzed. The authors defined common criteria for both
comparisons (evolvability, verification, trade-off analysis,
scalability, traceability, and tool support), and then specific
criteria for each separate comparison (MDD properties and
SPL properties). On the one hand, regarding the MDD
properties we found: the language used to model the
requirements models and the type of model transformations
support used. On the another hand, regarding the SPL
properties we found: the support for Domain Engineering,
Application Engineering, the type of Adoption Strategy, and
the Validation of the proposal. However, this survey does not
analyze the RE proposals applied to the SPL paradigm using
MDD techniques. Moreover, this work does not analyze which
RE activities are covered by the approaches and the different
types of models used. Finally, this work highlights the fact
that most SPL approaches do not define a coherent and clear
set of requirements and variation models and do not define the
respective relationships between them remarking the need of
well-defined traceability strategies.
 Nicolas and Toval (Nicolás, Toval, 2009) performed a
Systematic Literature Review (SLR) to study the generation of
textual requirements specifications starting from models. The
SLR was conducted with two research questions and assessed
30 papers from the last five years. The research questions
were: 1) What value can be drawn from the literature with
regard to the generation of requirements specifications (textual
requirements and requirements documents) from software
engineering models?; 2) What techniques have been addressed
in this field?. This SLR was not focused on SPLs, however
one section analyzes the product requirements derivation with
a new research question: Which approaches take the

requirements derivation from SPL models into account? In
order to analyze this question 6 papers were selected; the
analysis of these papers shows that the combination modes
(approaches which propose algorithms, rules or patterns to
generate textual requirements starting from models) were
generative, the opposite to the integrative mode (studies which
do not provide algorithms, rules or patterns to generate
requirements from models, but rather a kind of open-ended
guide to relate models and textual requirements). The study
reveals that the papers have a requirements scope (approaches
that deal with the generation of requirements or sets of
requirements), but do not address the requirements documents
in which the requirements should be placed; in contrast they
do not present a documental scope (studies which concentrate
on the manual, automatic or semi-automatic generation of
requirements documents). The initial models were feature and
variability models, and the target models were natural
language and formal notations. Finally, the authors argue that
the research community should pay greater attention to the
product derivation process.

Alves et al. (Alves, Niu, Alves, Valença, 2010) present a
SLR about RE for SPL. The paper is focused on the
assessment of research quality, the synthesis of evidence to
suggest relevant implications for future practice, and the
identification of research trends, open problems, and areas for
improvement. This SLR was conducted with three research
questions and assessed 49 studies dated from 1990 to 2009.
The research questions were: 1) What SPL RE methods and/or
tools are available to practitioners?; 2) How much evidence is
available to support the adoption of the proposed methods?;
and, 3) What are the limitations of current SPL RE methods?.
This review exposes that most of the approaches have
limitations in terms of the validity and credibility of their
findings. Moreover, the study reveals a lack of tool support,
and guidance for adoption of the proposed methods. However,
this work did not analyze the use of requirements in the
different SPL development activities in sufficient detail. It
would have been interesting to have analyzed factors such as
which techniques were used, or which kinds of models were
employed during the different RE activities.
 Finally, these related works were published in the last five
years showing an increasing interest in RE approaches for SPL
development by the software engineering community. In
addition, there has also been an increased interest in the
application of MDD techniques in RE. Currently there are no
studies that focus on the analysis of the current degree of use
of MDD approaches for RE activities in SPL development.

3 COMPARATIVE STUDY

In this section, we present a comparative analysis of the
most important Requirements Engineering proposals that have
been published to support the development of software
products following the Software Product Line and MDD
approaches. The purpose of this study is to collect together the
current knowledge about RE techniques in MDD and SPL in
order to identify common practices and research gaps with the
aim of suggesting areas for further investigation. This has

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

5
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

been summarized in the following research question: “What
requirements engineering techniques have been employed in
model-driven development approaches for Software Product
Lines and what is their actual level of automation?” This
research is focused on analyzing papers that present MDD
approaches for SPL. We used three digital libraries as primary
sources: IEEExplore, ACM Digital Library, and ScienceDirect
(Elsevier), in addition we used the Google Scholar searcher.
These digital libraries include specialized conferences and
workshops in the area such as: Software Product Line
Conference (SPLC), International Conference on
Requirements Engineering (RE), Requirements Engineering:
Foundation for Software Quality (REFSQ), and Model-Driven
Requirements Engineering Workshop (MoDRE). As the
inclusion criteria for relevant contributions, we have only
considered for our study published papers that propose
methods to cover the RE activity in SPL development using
MDD techniques.
 In order to analyze the selected papers, we have defined five
criterions to perform the comparative study. The first criterion
analyzes the support to the SPL development by the RE
approaches. The second criterion is the Requirements
Engineering tasks that where covered by the RE approaches,
which artifacts where employed, the type of requirements
(functional or non-functional), and what type of traceability
was supported. The third criterion is the model-driven
coverage, the desired purpose of this adoption and, if followed
up, which model and input models, language and
transformation type is used. The fourth criterion is the
automatic support to the approach with tool. Finally, the last
criterion analyzed is the type of validation provided by the
approach. In this section there is a brief explanation of the
results obtained from the comparison for each aspect involved.
Following this, we introduce each of these criteria and the
results obtained from them in detail.

a. Software Product Line Support
The aim of this criterion is to examine the given support to

the SPL development by the RE approaches. We analyzed five
sub-criterions: activities, adoption strategy, Scoping tasks,
Domain Engineering tasks, and Application Engineering tasks.

We consider three activities of the SPL process for this
study: Scoping, Domain Engineering, and Application
Engineering. Scoping is the activity concerned with the
establishment of the SPL boundaries and the reusability
strategy. This activity covers the analysis of which products
will be included in the SPL, based on cost and reusability
analysis. The Domain Engineering aims to develop a
requirements specification for the common PL and its related
variability, whereas the Application Engineering aims to
develop a requirement specification for a single product.

In the adoption strategy sub-criterion ways in which the
software product development is supported by these
approaches are analyzed. We use three adoption strategies
proposed by Krueger (Krueger, 2001): the Proactive,
Extractive, and Reactive approaches. In the Proactive strategy,
the organization analyses, designs, and implements a SPL

from scratch to support the full scope of products needed on
the predictable horizon. In the Reactive strategy, the
organization incrementally grows an existing SPL when the
demand arises for new products or new requirements on
existing products. In the Extractive strategy, the organization
extracts existing products into a single SPL.

Regarding the Domain Engineering tasks, we consider:
conceptual modeling, commonality and variability modeling,
feature modeling and scenario modeling. The Conceptual
modeling includes activities to identify, define, and organize
the concepts that are relevant to the domain and their mutual
relationships, in order to facilitate a precise and concise
description of the domain. We consider Commonality and
Variability modeling as activities to identify similarities and
differences between the requirements. The Feature modeling
includes activities to identify, study, and describe features
relevant in a given domain. Finally, in the Scenario modeling
we have found activities to describe and model the run-time
behavior of members of the system family.

In the Application Engineering process we consider two
tasks: derivation and delta identification. We consider that one
approach supports the requirements derivation, if it provides a
mechanism to obtain a requirement specification for a single
product from the domain requirements specification. If the
approach includes a mechanism to identify and model new
requirements in the application requirements specification,
then it supports the Delta Identification.

The last sub-criterion analyzed is the Scoping tasks. We
consider three levels of Scoping: Product Portfolio Scoping,
Domain Scoping, and Asset Scoping. The Product Portfolio
Scoping aims to identify the particular products that ought to
be developed as well as the features that they should provide.
The Domain Scoping is the task of bounding the domains that
likely to be relevant to the product line. The Asset Scoping
aims at identifying the particular (implementation)
components that should be developed in a reusable manner.

The results obtained are shown in Table I. The approaches
mainly support the Domain Engineering activity as the
Application and Scoping activities were considered only in a
few approaches.

Another commonality observed is that the approaches do
not usually describe the adoption strategy followed. Generally
a Proactive strategy was followed by the approaches, implying
that the approaches typically start a SPL from scratch without
considering existing assets or legacy systems. For this reason,
the Proactive strategy is considered the most expensive and
risk-prone (Krueger, 2001). An interesting alternative is to
combine the Proactive with a Reactive strategy, which allows
the addition of new products to an existing product-line, and
the identification and integration in the Domain Requirements
Specification of deltas potentiate this strategy. Moreover, the
approaches that provide model transformations permit this
strategy, with the adaption of an existing SPL to the new
requirements. In only one approach was there not sufficient
support for the Proactive strategy, this is the case of Dhungana
et al., where is it assumed the need of an existing SPL, so it

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

6
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

supported the Reactive strategy only. Other special cases are
those of Corriveau et al. (Corriveau, Bashardoust, Radonjic,
2011), and Guelfi & Perrouin (Guelfi, Perrouin, 2007), which

are approaches focused on testing and requirements analysis,
so they do not follow an adoption strategy to develop a SPL.

TABLE I
SOFTWARE PRODUCT LINE SUPPORT

Approach Activities Adoption Strategy
Domain

Engineering
Tasks

Application
Engineering

Tasks
Scoping Tasks

Alférez et al. Domain,
Application Proactive, Extractive C&V, FM, SM Derivation None

Bragança &
Machado

Domain,
Application Proactive, Reactive C&V, FM, SM None None

Coelho & Batista Domain Proactive, Reactive None None None
Corriveau et al. Domain Not applicable None None None
Dhungana et al. Domain Reactive None Delta ident. None

DREAM Domain, Scoping Proactive, Extractive CM, C&V, SM Derivation Portfolio,
Domain

Guelfi & Perrouin Domain,
Application Not applicable SM Derivation None

I-GANDALF Domain Proactive, Reactive C&V, FM None None

OVM-A
Domain,
Application,
Scoping

Proactive, Reactive,
Extractive C&V, FM Delta ident. Portfolio,

Domain, Asset

SIRENspl Domain Proactive, Reactive CM, C&V, FM,
SM None None

SREPPLine
Domain,
Application,
Scoping

Proactive, Reactive,
Extractive

C&V, SM Delta ident. Portfolio,
Domain, Asset

C&V: Commonality & Variability Modeling, FM: Feature Model, SM: Scenario Modeling

Regarding the Domain Engineering tasks, most of the
approaches support the Commonality & Variability Analysis.
Among these papers, most of the approaches use Feature
Modeling to identify common and variable requirements. The
Orthogonal Variability Model (OVM) is an alternative to the
C&V modeling used in OVM-A (Pohl, Böckle, Van Der
Linden, 2005) and SREPPLine (Mellado, Fernández-Medina,
Piattini, 2007). These approaches use Variation Points and
define traceability from the requirement models to the OVM.
The use of the OVM representation has the advantage of
keeping the functional requirement and the variability
separate.

Regarding the Application Engineering, we only found five
approaches that supported this activity. Alférez et al. (Alférez,
Kulesza, Weston, Araujo, Amaral, Moreira, Rashid, Jaeger,
2008) and DREAM (Moon, Yeom, Chae, 2005) allow the
creation of Application Requirement Specifications from the
Domain Requirements Specification. However, they do not
capture requirement deltas. Guelfi and Perrouin provide a
product derivation technique based on an analysis model
based on UML, OCL, and Use Cases, that implicitly defines
the product line variability and the SPL boundaries by means
of constraints that forbid undesired products. Dhungana et al.
(Dhungana, Seyff, Graf, 2011) propose a solution based on the
tool DOPPLER, where a simulation is created from simple
final-user decisions. This simulation allows developers to
identify new requirements in an existing product line. OVM-A
and SREPPLine provides the most complete solution, since
they include the analysis and identification of requirement
deltas.

Finally, we found only three papers that integrated the

scoping activity in the proposals. This fact evidences a lack of
integration between scoping and the requirement engineering
proposals.

DREAM start with an elaboration of a Domain
Terminology model. This model contains the main terms used
in the SPL and is a way to do the Domain Scoping. This
model is used to identify the Primitive Requirement (PR),
which is a new concept defined by DREAM as a transaction
that has an effect on an external actor. Its granularity is in
between that of a Use Case and an atomic operation of a Use
Case; the purpose of a PR is to make the domain requirements
more concrete and to discover the variability and rationale of
the domain requirements.

OVM-A supports Product Portfolio, Domain Scoping, and
Asset Scoping. The Portfolio Analysis allows a systematic
evaluation of the Product Portfolio. During the analysis, each
product (or product type) is rated according to two variables
and thereby its location in a two-dimensional matrix is
determined. The Asset Scoping and Domain Scoping are
accomplished with the commonality and variability analysis.

The last approach that supports the Scoping is SREPPLine.
This approach starts with the identification of security
features, which can be considered as a way to do Product
Portfolio Scoping. Once the security features are defined,
Security Asset Scoping is performed. In this activity the
security assets for each security feature, and the dependences
between assets are identified. After this the security threats
scoping and risk assessment are executed. In order to derive
security requirements, each pair of asset and security
objectives were analyzed for their possible relevance, together
with their related threats which imply more risk, so that

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

7
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

suitable security requirements, or the suitable package of
security requirements, that adequately mitigate these threats at
the necessary levels with regard to the result of the risk
assessment activity, were identified.

We conclude that there is a need for the integration of
Scoping activity and Requirements Engineering. For example,
between the analyzed approaches only SREPPLine provides
one solution to integrate risk assessment. Other authors like
John (John, Eisenbarth, 2009) pointed out this problem, where
it is said that although scoping is commonly related to
requirements engineering for product lines, it is often executed
in a solitary and upstream development step. The integration
of activities like risk assessment or cost estimations in the RE
approaches could help to set properly the SPL boundaries.

b. Requirements Engineering Support
The goal of this criterion is to analyze the coverage of the

Requirement Engineering process. We analyzed four sub-
criterions: RE tasks, RE artifacts, if these artifacts represent
functional or non-functional requirements, and RE
traceability.

The first sub-criterion is the analysis of the different RE

tasks. We use the classification proposed by (Cheng, Atlee,
2007) that categorize the requirements tasks in: elicitation,
modeling, analysis, validation, verification, and management.

Elicitation refers to the activities performed to enable the
understanding of the goals, objectives, and high-level
functions necessary for the proposed software system.
Modeling allows requirements to be expressed in terms of one
or more models that document the user needs and constraints
clearly and precisely. The Analysis consists of evaluating the
quality of the requirements captured and specified in the

elicitation and modeling tasks. The requirements Validation is
supported if the approach provides mechanisms to check if the
stakeholder needs are satisfied in the requirement
specification. Requirements Verification is the process of
ensuring that the system requirements are complete, correct,
consistent, and clear, whereas requirements Management is
the process of scheduling, coordinating, and documenting the
RE.

The requirement artifacts criterion analyzes the proposed
software artifacts projected by the approaches. For example,
many works employ goals, scenarios, and Use Cases as a
conceptual framework to identify user requirements.

The nature of these artifacts can be functional or non-
functional. A functional requirement is a requirement that
specifies a function that a system or system component must
be able to perform. A non-functional requirement is a
requirement that defines restrictions on a system or system
component that it must satisfy, such as reliability, security,
usability, etc.

Finally, we analyze the traceability, which refers to the
ability to follow the life of a requirement either back to its
origin or forward to its transformation into a design artifact.
We use the classification proposed in Kovačević et al.
(Kovačević, Aférez, Kulesza, Moreira, Araújo, Amaral, 2007)
as a way of understanding two types of traceability: vertical
and horizontal.

We consider vertical traceability as the ability to relate
requirements from domain specific requirements to product
specific requirements. The horizontal traceability is the ability
to relate domain requirements to the domain architecture. It
includes the mapping between variation points of these
artifacts.

TABLE II

REQUIREMENT ENGINEERING TASKS

Approach RE Tasks RE Artifacts
Functional /

Non-functional
Req.

Traceability

Alférez et al. Elicitation, modeling,
management

Feature Model, Use Cases, Activity
Diagrams, Table of Trace links

Functional Vertical

Bragança &
Machado

Elicitation, modeling Use Case Diagram, Feature Model,
Activity Diagram

Functional Both

Coelho & Batista Modeling PL-AOVGraph model Both Horizontal

Corriveau et al. Analysis, verification User Requirement Notation Both None
Dhungana et al. Elicitation, analysis Decision model Functional None

DREAM
Elicitation, modeling,
management

Domain Terminology, PR-Context
matrix, PR-Use Case matrix,
Domain Use Cases.

Functional Horizontal

Guelfi & Perrouin Analysis UML, OCL, Textual Use Cases Functional Vertical
I-GANDALF Elicitation, modeling Goal Model, Feature Model Both Horizontal

OVM-A
Elicitation, modeling,
management, validation,
verification

Application-Requirements Matrix,
Orthogonal Variability Model

Both Both

SIRENspl Elicitation, modeling,
validation

Feature Model, Use Cases, NFR
templates, Textual Requirements

Both

Horizontal

SREPPLine Elicitation, modeling,
validation

Security Use Cases, Misuse Cases,
Orthogonal Variability Model

Both Both

Table II shows the results obtained from the RE covered
tasks comparison. Clearly most of the approaches cover the

elicitation and modeling tasks. We found only three
exceptions: that of Corriveau et al, which. is an approach with
the goal of analyzing a requirement specification, and to

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

8
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

perform requirements verification by using a model-driven
strategy. That of Dhungana et al. only partially supports the
requirement elicitation with a new technique based on tool
assistance. In this approach, the users enter their needs in a
natural language. Based on the text entered the tool identifies
relevant decisions within the variability model and it displays
corresponding questions to the end-user, followed by the
performance of a simulation based on the decisions. This
simulation is used to help the user to identify new
requirements. Finally, Guelfi & Perrouin provides an analysis
model, based on UML, OCL, and Use Cases, that implicitly
defines SPL variability and SPL boundaries by means of
constraints that forbid undesired products.

Regarding validation, OVM-A and SREPPLINE propose
techniques for requirement validation; SIRENspl (Nicolás
Ros, 2009) (Toval Álvarez, Nicolás, Moros, Garcia, 2002)
mention this activity but do not propose any specific
techniques to perform it. In OVM-A, the authors propose the
ScenTED technique (Scenario based TEst case Derivation)
(Reuys, Kamsties, Pohl, Reis, 2005), which is a model-based,
reuse-oriented technique for test case derivation in the system
test of software product families. SREPPLine covers the
requirements validation with the inspection technique.
Another way to check a requirement specification is to
perform a verification. OVM-A can offer requirements
verification with an extension that proposes a technique to
check consistency based on model of checking techniques
(Lauenroth, Pohl, 2008). SIRENspl propose a requirements
validation activity in its guidelines, nevertheless no concrete
technique is proposed. Despite these proposals, there is a lack
of integration of requirement validation and verification
techniques in RE approaches for SPL.

Analyzing the artifacts used, we usually found the creation
of Variability Models. One widely adopted notation of the
Variability Model is the Feature Model. The Feature Model
represents externally visible product characteristics in a
domain. We mainly found two typical notations that
represented the Feature Models: FODA-based (Kang, Cohen,
Hess, Novak, Peterson, 1990) or UML-based notations. Other
alternatives to represent Variability Models are the Orthogonal
Variability Models proposed in OVM-A (Pohl, Böckle, Van
Der Linden, 2005).

Nevertheless, the variability modeling is not limited to
Variability Models. Other classical notations such as Uses
Cases and Goal Notations were adapted to the software
product lines. For example, DREAM uses Use Cases to model
functional requirements and variability. However, the
inclusion of functionality and variability in the same model
could produce an overload, which might have a negative effect
in the legibility. A Goal-oriented notation is used in
approaches like Coelho & Batista’s (Coelho, Batista, 2011)
(Batista, Bastarrica, Soares, Fernandes, 2008), or I-
GANDALF (González-Baixauli, Navarro, Laguna, Sampaio
do Prado Leite, 2009). Here a Goal Model is used as an early
requirement artifact and guides the creation of the Feature
Model. Other approaches combine both notations, for example

in the case of Corriveanu et al., where Use Cases and Goal-
models are combined in the User Requirements Notation
(URN). URN (Amyot, Mussbacher, 2011) (International
Telecommunication Union, 2008) offers an international
standard combining a goal-oriented requirements language
and a scenario-based notation.

Regarding the representation of functional and non-
functional requirements, we observe that the inclusion of
Goal-based models allows the representation of functional and
non-functional requirements. We have found other ways to
represent the NFR in SPL, for example, quality templates as in
SIRENspl, or security requirements as in SREPPLine.
DREAM has support in its meta-model to the concept NFR;
however the method is focused on scenarios that model
functional requirements and its variability. OVM-A provides a
meta-model that relates variations with requirement artifacts.
In this context, a requirement artifact can be a functional or
quality requirement, so in this case, we can consider non-
functional requirement support.

Regarding traceability, the adoption of one model-driven
strategy potentiates traceability support by the above
approaches. If there is a vertical traceability then a relationship
between domain and application requirements is defined, for
example as reported by Alférez et al., who proposed
traceability between requirement models and the Feature
Model. This traceability information is used to obtain the
requirements for a specific application. Guelfi & Perrouin
support vertical traceability from domain artifacts to
application artifacts. The adoption of this traceability strategy
is to analyze the possible configurations from the domain
requirement specification. Other approaches were focused on
store traceability from requirements to architectural artifacts.
Coelho & Batista and I-GANDALF follow the traceability
from requirements to Feature Model and, subsequently, to
architectural artifacts. In DREAM the traceability is defined
based on a meta-modeling approach, which traces variability
from requirements to the architecture. This metamodel extends
the Reusable Asset Specification (Reusable Asset
Specification, 2012) proposed by the OMG. SIRENspl covers
the traceability from the domain models to the textual
requirements. Finally, the approaches that give support to both
horizontal and vertical traceability have been described by
Bragança et al. & Machado, OVM-A, and SREPPLine.
Bragança et al. (Bragança, 2007) (Bragança, Machado, 2007)
store information from Use Cases to Feature Models, from
Feature Models to Configurations, and from a Configuration
implicitly in the transformation rules. This strategy allows
application requirements from the Domain Use Case models
to be obtained. OVM-traces information between the
Orthogonal Variability Model to domain, and application
requirements; SREPPLine supports traceability in a similar
way, but between the Orthogonal Variability Model and the
security requirements.

c. Model-Driven Coverage
The goal of this criterion is to compare the use of the MDD

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

9
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

techniques in the approaches. We include in this criterion the
following sub-criterion: type of coverage, purpose, input
model, output model, transformation language, and type of
transformation.

The first sub-criterion is the type of coverage to the MDD.
We consider two options: the paper proposes a meta-model, or
the paper proposes model transformations. Many approaches
could provide a meta-model with the aim to provide a Domain
Specific Language. Considering a model as an abstraction of a
real world phenomenon, the meta-model is the abstraction
where the model properties are reflected. Other approaches
could provide a transformation between models. Otherwise the
definition of model transformations allows a target model to
be obtained from a source model in an automatable way.

The second sub-criterion analyzes the aimed purpose with a
MDD strategy. For example most of the proposals use the
model transformation as refinement from the source model to
the target model. Other proposals provide only a meta-model
to represent the concept in a specific domain (i.e., SREPPLine
defines a meta-model to represent security requirements for a
SPL).

The third and fourth sub-criterion analyzes the input and
output models used for the approaches to propose model

transformations.
Another sub-criterion used to define the transformations is

the language. In the last years, several specialized languages
have been proposed in order to specify model-driven
transformations (e.g., the QVT language proposed by the
OMG (OMG, 2012)).

The last sub-criterion in this section analyzes the type of
model transformations. We distinguish two types, based on
the classification proposed by Mens et al. (Mens, 2006). When
the source and target model are expressed in the same
language and in the same abstraction level; the transformation
is endogenous. When different modeling languages and
abstraction levels are used to express source and target models
then the transformation is exogenous. Moreover, we
distinguish them based on the abstraction level between:
horizontal, when the source and target model reside at the
same abstraction level; and vertical transformations, when the
source and target model reside at different levels.
Additionally, we can also find bidirectional transformations
(form source to target models, and from target to source
models) or transformations in just one direction
(unidirectional transformations).

TABLE III

MODEL-DRIVEN COVERAGE

Approach

Type of
coverage

Purpose Input Output Language Type of
transformation

Alférez et al.
Transformation Obtain Application

Requirements
Domain Use
Cases, Feature
Model

Application
Use Cases

VML4RE Endogenous,
vertical, single
direction

Bragança &
Machado

Transformation Refine requirements
to software
architecture artifacts

Use Cases Architectural
requirements

QVT
operational

Endogenous,
vertical, single
direction

Coelho & Batista
Transformation Refine requirements

to software
architecture artifacts

Feature Model PL-AOV
Graph

Graph
transformation,
ATL

Endogenous,
vertical,
bidirectional

Corriveau et al.
Transformation Obtain a testable

specification
URN (User
Requirement
Models)

Testable
Requirement
Model

Textual
transformation
language

Endogenous,
horizontal,
single direction

Dhungana et al.
Meta-model Meta-model to

represent Asset and
its variability

None None None None

DREAM Meta-model Meta-model for
domain requirements

None None None None

Guelfi & Perrouin

Transformation Product derivation
following OCL
constraints

Domain
requirements
model, OCL
restrictions

Application
requirements

Imperative
textual language

Endogenous,
horizontal,
single direction

I-GANDALF
Transformation Refine requirement

specifications
Goal Model Feature Model QVT Relations Endogenous,

vertical, single
direction

OVM-A Meta-model Model the SPL
variability

None None None None

SIRENspl

Transformation Obtain a textual
requirement
specification from
domain models

Domain Model Textual
requirements
specification

QVT Relations Endogenous,
horizontal,
bidirectional

SREPPLine Meta-model Provide a repository
of secure artifacts

None None None None

Table III shows the results obtained for this criterion. Most
of the proposals present model transformations between the

models. Four proposals do not provide model transformations
although they provide their meta-model specifications. These
meta-model specifications allow developers to specify

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

10
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

transformations in the future. In this line, Dhungana et al.
supports adapting a core meta-model to different domains and
to define the variability of core assets. In this way, DREAM
(Moon, Chae, Yeom, 2006) provides a meta-model for
representing domain requirements. Domain requirements are
divided into functional and non-functional requirements.
OVM-A provides a meta-model to express the variability of a
SPL and SREPPLine provides a meta-model to support a
security requirement repository. This meta-model is integrated
with a prototype tool. Other authors present the specific model
transformations. One of the uses of these transformations is to
obtain application requirements from the domain requirements
specifications. This is the case described by Alférez et al.,
Coelho & Batista, and I-GANDALF. SIRENspl use the model
transformations as a refactoring from Domain Models to
Textual Requirements specifications. Other proposals use the
model transformations to obtain application requirements from
domain requirements. In Alférez et al. the functional
requirement models and a configuration model are used to
obtain the functional requirements for one specific application
automatically. Guelfi & Perrouin propose a solution to obtain
application requirements combining transformations and OCL
constraints; another use of applying model transformation is to
obtain test cases. Corriveau et al. generate testable models
from an URN requirements specification. Regarding the
transformations, we have found heterogeneous proposals.
VML4RE proposes a language to compose different
requirement models with a Feature Model. Some approaches
follow the Model-Driven Architecture initiative proposed by
the Object Management Group (OMG), specifically the QVT
language. There are two implementations of the QVT
language: the QVT operational, adopted in Bragança &
Machado; and the QVT Relations, used in I-GANDALF and
SIRENspl. These languages are quite similar; however the
declarative nature of QVT Relation allows bidirectional
transformations. This advantage is applied in SIRENspl,
where a script is provided to make transformations in both
directions. Other proposals use the Atlas Transformation
Language (ATL) for example as described by Batista et al.
Finally, we have found other experimental languages such as
that presented by Corriveau et al. (ACL contract language), or
Guelfi & Perrouin (which sketch a language to restrict the
product derivation).

d. Tool support
This criterion analyzes if the approach gives tool support.

The idea of this criterion is to analyze the type of tools
provided by the approaches rather than to analyze all available
tools. In many cases, only academic prototypes are presented
(e.g. plug-ins for the Eclipse platform). If the tool is used in an
industrial environment or with a commercial use, then it is
considered as an industrial tool (e.g. IBM Rational DOORS
(Telelogic AB, 2004)).

TABLE IV
TOOL SUPPORT

Approach Type of provided tool (none,
academic prototype, industrial)

Alférez et al. Academic prototype
Bragança & Machado Academic prototype
Coelho & Batista Academic prototype
Corriveau et al. Academic prototype
Dhungana et al. Academic prototype
DREAM Academic prototype
Guelfi & Perrouin None
I-GANDALF Academic prototype
OVM-A Academic prototype
SIRENspl Academic prototype
SREPPLine Academic prototype

The results obtained are shown in Table IV. Alférez et al.
provides a tool to support product derivation of requirements
models in SPL by using a domain-specific language. It also
supports trace link generation from features to requirements
model elements, for further analysis. Bragança & Machado
present a prototype based in the Eclipse Modeling Framework
(EMF) and SmartQVT. The EMF project is a modeling
framework and code generation facility for building tools and
other applications based on a structured data model.
SmartQVT is a tool set for model-to-model transformations
that implements the QVT relations language in a Java
language. Coelho & Batista propose a tool called MaRiSa
(Mapping Requirements to Software Architecture) that
implements bidirectional transformations between the
requirements (represented as AOV-Graphs) and the
architecture (represented in AspectualACME). The models are
represented as XML files and the transformation engine is
codified in Java. Corriveaunu et al. propose a prototype that
takes a requirements model with variability (i.e., a domain
requirements model) and enables the generation of a member's
requirements model from it in such a way that the member's
requirement model (necessarily without variability) can then
be bound and tested against the actual behavior of this
member's corresponding implementation. Dhungara et al.
provides a prototype EuReCuS (End-user Requirements
Elicitation and Customization of Services), which enables
end-users to enter a user story using natural language text and
presents relevant questions, as the user enters their story.
EuReCuS is currently utilizing the product line variability
modeling capabilities of the DOPLER tool suite. DREAM
provides a tool that supports the management of the
commonalities and variability of domain requirements and
customizes the requirements of individual systems from these
domain requirements. The Domain Use Case modeling relies
on external third-party modeling tools, such as Rose XDE by
IBM or Together Control Center by Borland. DREAM
supports the export and import of domain Use Case models
to/from XMI files. The use of this format allows the
importation of entities from repositories and providing
connectivity to other tools. The MORPHEUS tool gives
support to the I-GANDALF approach. MORPHEUS allows
the description of metamodels customized according to the
project’s semantic needs. Moreover, MORPHEUS is able to

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

11
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

execute QVT transformations by using external engines.
OVM-A presents a prototype as an extension to the DOORS
tool. This prototype provides features such as determining
overlaps and differences between the variability of two
product lines, retrieval of all product lines offering a certain
variant, retrieval of all variants common for all product lines
or retrieval of all variants defined for a given variation point.
SIRENspl has a tool called SirenSPLTool, which is a
graphical editor based on Eclipse that supports traceability
from Feature Models and Uses Cases and textual
requirements. Finally SREPPLine has the REPPLineTool.
This tool provides the management and the visualization of the
artifacts variability and traceability links and the integration of
the security standards, as well as the management of the
security reference model proposed by SREPPLine.

We observe that many proposals have provided a
prototyping tool with limited examples. This is a good first
step, however in order to gain a broader acceptance the
authors should test their tools in industrial environments with
much more complex projects.

e. Validation
We consider five levels of validation for the analyzed

studies. From lower to higher degree the type of validation is
categorized as follows: simple example; academic case study;
industrial-based case study; empirical controlled experiment
with a control group; and industrial case study. Many papers
provide only an example to illustrate the proposed method.
The case study examines a phenomenon or unit, collects data,
and analyzes the results in a single case. If the case study is
applied in an academic context then we consider that it is an
academic case study (e.g., a University). If the case study is
applied in an industrial environment (e.g., automotive
projects) then it is considered an industrial-based case study.
In an empirically controlled experiment, the goal is to validate
the hypothesis based on an analysis of the result differences
between the control and the experimental group. Finally, the
highest degree of validation is to apply an empirical
experiment in an industrial environment.

TABLE V
VALIDATION

Approach Validation

Alférez et al. Academic case study
Bragança & Machado Academic case study
Coelho & Batista Academic case study
Corriveau et al. Example
Dhungana et al. Example
DREAM Industrial-based case study
Guelfi & Perrouin Academic case study
I-GANDALF Academic case study
OVM-A Industrial-based case study
SIRENspl Industrial-based case study
SREPPLine Industrial-based case study

Table V contains the results obtained. Two approaches only
provide examples to illustrate their proposals Corriveanu et al.
provides an example to generate Variability Contract.
Dhungana et al. argues that model-driven approach to

requirements verification in the presence of variability is
entirely feasible. However, the proposals provide only a
simple example.

Other approaches use case studies to illustrate their
feasibility. Alférez et al. use a case study based on a Smart
Home SPL to illustrate their proposal. In (Bragança, 2007) it
is applied to a case study to derive the architectural
requirements of a product line, based on a library product line.
Coelho & Batista apply a case Study that models an E-
Commerce system. This system represents business
transactions via the internet. Guelfi & Perrouin illustrate the
proposal with an Automatic Teller Machines (ATM) case
study. I-GANDALF applies the proposal with a case study in
the e-commerce system domain.

Finally, many proposals were applied in industrial
environments. DREAM was applied to a case study of e-
Travel Systems (e-TS). The case study was developed in
cooperation with the Electronics and Telecommunications
Research Institute, which is supported by the Korean national
government, and Daewoo Information Systems Corporation,
one of the top five IT and software companies in Korea.
OVM-A documents experiments inside a project in the
automobile industry. The goal of the project was the
development of a sophisticated way to reuse requirements for
electronic control units (ECUs) among different vehicle lines.
After the application of the approach, the resulting variability
model described around 40 variation points with
approximately 150 variants for the climate control. SIRENspl
was applied in TeleOperated Systems for ship hull
maintenance (TOS). TOSs are robotic systems used to perform
ship maintenance tasks, such as cleaning or painting a ship’s
hull. The research was done by applying a qualitative research
method (Action Research) (Barkerville, 2001). SREPPLine
provides a case study to the Public Registry Online Product
Line of a Spanish Public Administration.

In conclusion, most of the approaches use the Case Study as
“proof of concept” instead of using it as an evaluation method.
Furthermore, the approaches should improve their validations
with rigorous design experimentations (e.g., randomization,
replication of the studies etc).

4 CONCLUSION

In this study, we analyzed eleven Requirement Engineering
approaches that use MDD techniques for SPL development.
We used five comparison criteria: SPL activity support, RE
covered tasks, MDD strategy support, the degree of automatic
support with a given tool, and the type of validation of the
proposals. This comparison provides information about the
advantages and disadvantages of the approaches included in
the study. The results obtained from this comparison have
allowed us to identify commonalties among the different
approaches as well as several research gaps. Firstly, most of
the research is focused on the Scoping and Domain
Engineering activities, but the Application Engineering is the
less supported. The approaches should provide better

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

12
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

mechanisms to incorporate new deltas to the SPL (SPL
evolution) instead of just producing derivations based on the
Domain Requirements specifications and extending the
product requirements specification at the Application Domain.
Regarding the development strategy, the Proactive strategy
adoption was the most common. However, this strategy is the
most expensive and it assumes a higher level of risk over other
strategies. It would be interesting to combine a Proactive
strategy with the Reactive or the Extractive strategies to avoid
these disadvantages. Another observation was that most of the
approaches give support to the Commonality & Variability
modeling, however, in many cases this variability is modeled
with the functional requirements (e.g., Uses Cases extended
with Variation Points). This can produce model overloading
and maintainability problems, which can be avoided with a
clear separation between the variability and the functional
requirements. This is the case of OVM-A, where the
variability is stored in a separate model. Another interesting
solution is proposed by Alférez et al., where the requirement
models and variability are modeled in different models but are
composed with the VML4RE language. This solution has the
advantage of allowing the relation of multiple requirement
models with the Feature Model. A further problem is the lack
of integration with the scoping activity; this problem was
reported in other reviews such as (John, 2009). The integration
between both of these activities could be improved to set the
SPL boundaries aligned with the requirements established in
the Domain Engineering.

Regarding the RE tasks, most of the approaches usually
cover the elicitation and modeling of requirements. Regarding
the elicitation, Dhungara et al. offers a tool where partial
elicitation and requirement analysis can be performed, with
the simulation in components based on end-user decisions.
Guelfi & Perrouin also cover the requirements analysis with a
technique to derive requirements and check OCL constraints.
The requirements validation is mentioned in OVM-A,
SIRENspl and SREPPLine, however only OVM-A proposes a
technique called ScenTED (Scenario based TEst case
Derivation): a model-based, reuse-oriented technique for test
case derivation. Regarding the requirements verification, we
found two proposals: Corriveau et al. and OVM-A. Corriveau
et al. offers an interesting technique based on a MDD strategy
to generate test cases. OVM-A proposes a requirements
verification based on model-checking techniques. Including
these activities, requirement validation and verification, in the
SPL development could allow us to check whether or not the
used artifacts satisfy the stakeholder needs. Regarding the
employed artifacts, we found some approaches that adapted
traditional notations such Use Cases in the SPL requirements.
For example, DREAM extends traditional Use Cases to model
functionality and requirements variability. However, the use of
both functional and requirements aspects in the same model
can produce legibility problems. Another notation used is the
Goal Model notation (i.e., the Intentional Modeling of I-
GANDALF). This notation has the advantages of covering
both functional and non-functional requirements and its

variability. Dealing with non-functional requirements in the
Domain Engineering could help to improve the quality of the
products obtained from the product line. The system
variability was usually modeled with Feature Models using the
FODA-notation or extended UML class models to represent
variation points. A widely used notation is the Orthogonal
Variability Model, which represents the variability in a
separate model and has traceability relationships with other
models. This notation has the advantage of explicitly setting
up the traceability relations to architectural and application
artifacts. We only found three approaches that supported both
vertical and horizontal traceability. A well-defined traceability
strategy could improve the quality of the software products in
the product family.

Regarding the Model-driven coverage, we found two
common ways to use model-driven transformations in the SPL
development. Many authors provide refinements from
requirements to model artifacts; others provide
transformations from domain requirements to application
requirements to perform an automatic derivation of the
requirements of a product. Another interesting application of
the MDD strategy is the refactoring of Uses Cases and Feature
Models into textual requirements in SIRENspl, or to obtain
testable requirement models as has been presented in the
approach by Corriveau et al. We found several academic
prototypes in the proposals; however there is a clear need to
test these tools in industrial environments. With respect to the
validation, most of the approaches only provide simple
examples to illustrate their proposals. There is common use of
the Case Study as “proof of concept” instead of using it as a
well-defined validation method. The use of empirical studies
with practitioners and experienced subjects could help to
improve their methods and tools.

All these issues provide a clear motivation for further
research on RE for SPL development following MDD
approaches. Our future work will include the tailoring of a
specific RE approach for dealing with scoping in conjunction
with the domain requirements engineering, and the study of
approaches to deal with the evolution of SPL when new
products and requirements arise.

ACKNOWLEDGMENTS

This research is part of the MULTIPLE project (with ref.
TIN2009-13838).

REFERENCES

Alférez, M., Kulesza, U., Weston, N., Araujo, J., Amaral, V.,
Moreira, A., Rashid, A., Jaeger, M. C., A (2008). Metamodel for
Aspectual Requirements Modeling and Composition. Technical
report. Universidade Nova de Lisboa, Portugal.
Alves, V., Niu, N., Alves, C., Valença, G. (2010). Requirements
Engineering for Software Product Lines: A Systematic
Literature Review. In: Information and Software Technology 52
(8), (pp. 806 – 820), Elsevier.

A COMPARATIVE STUDY ON MODEL-DRIVEN REQUIREMENTS ENGINEERING FOR SOFTWARE PRODUCT LINES

13
Revista de Sistemas e Computação, Salvador, v. 2, n. 1, p. 3-13, jan./jun. 2012.

http://www.revistas.unifacs.br/index.php/rsc

AMPLE Project Research Group, Available:
http://ample.di.fct.unl.pt
Amyot D., Mussbacher G. (2011). User Requirements Notation:
The First Ten Years, The Next Ten Years. In Special Issue:
Selected Papers of the IEEE International Conference on
Computer and Information Technology, 6(5), (pp.747-768),
Academy Publisher.
Barkerville, R. (2001). Conducting Action Research: High Risk
and High Reward in Theory and Practice. Qualitative Research
in Information Systems, (pp. 192-218). Idea Group Publishing.
Batista, T., Bastarrica, M.C., Soares, S., Fernandes, L. (2008). A
Marriage of MDD and Early Aspects in Software Product Line
Development. In: Early Aspects Workshop at 12th International
Software Product Line Conference (SPLC), (pp. 97–104).
Limerick, Ireland. IEEE.
Bragança, A. (2007). Methodological Approaches and
Techniques for Model Driven Development of Software Product
Lines. PhD thesis. Universidade do Minho, Portugal.
Bragança, A., Machado, R. J. (2007). Automating Mappings
between Use Case Diagrams and Feature Models for Software
Product Lines. Proceeding of the 11th International Software
Product Line Conference (SPLC), (pp. 3-12). Kyoto, Japan.
IEEE.
Cheng, B. H. C., Atle, J. M. (2007). Research Directions in
Requirements Engineering. Proceeding of Workshop on the
Future of Software Engineering held on International
Conference on Software Engineering, (pp. 285-303).
Minneapolis, MN, USA. IEEE.
Coelho K., Batista T. (2011). From Requirements to
Architecture for Software Product Lines. In Proceedings of the
9th IEEE/IFIP Working Conference on Software Architecture
(WICSA), (pp. 282 - 289). Boulder, Colorado, USA. IEEE
Computer Society.
Corriveau, J.P., Bashardoust S., Radonjic, V.D. (2011).
Requirements Verification in the Presence of Variability.
Proceedings on Model-Driven Requirements Engineering
Workshop (MoDRE), (pp.74-78). Trento, Italy. IEEE.
Dhungana, D., Seyff, N., Graf, F. (2011). Research Preview:
Supporting End-User Requirements Elicitation Using Product
Line Variability Models. Proceeding on the 17th International
Working Conference of Requirements Engineering: Foundation
for Software Quality, (pp. 66-71), Essen, Germany Springer.
Gomaa H. (2004). Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software Architectures.
Addison-Wesley.
International Telecommunication Union (2008), User
Requirements Notation (URN) – Language definition.
Recommendation Z.151 (11/08), Available:
http://www.itu.int/rec/T-REC-Z.151/en.
González-Baixauli, B., Navarro, E., Laguna, M.A., Sampaio do
Prado Leite, J.C. (2009). Goals to Features: a Model Driven
Proposal in I-GANDALF. GIRO Technical Report 2009.
University of Valladolid, Spain.
Guelfi N., Perrouin G. (2007). A Flexible Requirements
Analysis Approach for Software Product Lines. Proceedings on
13th International Working Conference REFSQ, (pp. 78-92).
Trondheim, Norway. Spinger
John I., Eisenbarth, M. (2009). A Decade of Scoping – A
Survey. Proceeding of the 13th International Software Product
Line Conference, (pp. 31-40). San Francisco, California,
USA.ACM.
Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S. (1990).
Feature-oriented domain analysis (FODA) feasibility study.
Technical Report CMU/SEI-90-TR-21. Software Engineering
Institute, Carnegie Mellon University, USA.

Kovačević, J., Aférez, M., Kulesza, U., Moreira, A., Araújo, J.,
Amaral, V. (2007). Survey of the state-of-the-art in
Requirements Engineering for Software Product Line and
Model-Driven Requirements Engineering. AMPLE Deliverable
D1.1. Available:
http://ample.holos.pt/gest_cnt_upload/editor/File/public/Deliver
able%20D1.1.pdf
Krueger, C. W. (2001). Easing the Transition to Software Mass
Customization. Proceedings of the 4th International Workshop
on Software Product-Family Engineering (PFE 2001), (pp. 282-
293). Bilbao, Spain. Springer.
Lauenroth K., Pohl K. (2008). Dynamic Consistency Checking
of Domain Requirements in Product Line Engineering.
Proceedings of the IEEE International Requirements
Engineering Conference, (pp. 193–202). Barcelona, Spain.
IEEE.
Pohl, K., Böckle, G., Van Der Linden, F. (2005). Software
Product Line Engineering: Foundations, Principles, and
Techniques. Springer
Reusable Asset Specification (2012) .Object Management
Group. Available:
http://www.omg.org/technology/documents/formal/ras.htm
Reuys, A., Kamsties, E., Pohl, K., Reis, S. (2005). Model-Based
System Testing of Software Product Families. Proceeding of the
Advanced Information Systems Engineering (CAiSE), (pp. 519-
534). Porto, Portugal. Springer.
Mellado, D.. Fernández-Medina, E., Piattini, M. (2007).
SREPPLine: Towards a Security Requirements Engineering
Process for Software Product Lines. In: Proceedings of the 5th
International Workshop on Security in Information Systems
(WOSIS), (pp. 220-232). Funchal, Madeira, Portugal. INSTICC
Press.
Mens T., Van Gorp P. (2006). A Taxonomy of Model
Transformation. Proceedings of the International Workshop on
Graph and Model Transformation (GraMoT5), (pp. 125–142).
Tallinn, Estonia. Mendeley.
Moon, M., Yeom, K., Chae, H. S. (2005). An Approach to
Developing Domain Requirements as a Core Asset Based on
Commonality and Variability Analysis in a Product Line. In:
IEEE Transactions on Software Engineering, 31 (7), (pp. 551-
569), Piscataway, NJ, USA. IEEE.
Moon M., Chae H. S., Yeom K. (2006). A Metamodel Approach
to Architecture Variability in a Product Line. Proceeding of the
9th International Conference on Software Reuse (ICSR), (pp.
115-126). Turin, Italy. Springer.
Nicolás Ros, J. (2009). Una Propuesta de Gestión Integrada de
Modelos y Requisitos en Líneas de Productos Software. PhD
thesis. Departamento de Informática y Sistemas, Universidad de
Murcia.
Nicolás, J., Toval, A. (2009). On the generation of requirements
specifications from software engineering models: A systematic
literature review. In: Information and Software Technology 51
(9), (pp. 1291- 1307), Butterworth-Heinemann Newton, USA.
Elsevier.
Toval Álvarez J. A., Nicolás J., Moros B., García F., (2002).
Requirements Reuse for Improving Information Systems
Security: A Practitioner's Approach. Requirements Engineering
6 (4), (pp. 205-219). Springer.
Object Management Group, OMG, Available:
http://www.omg.org/
Telelogic AB (2004). DXL Reference Manual, DOORS 7.1

