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ABSTRACT

As part of the POWADIMA research project, this pagescribes the technique used to
predict the consequences of different control sgs$tion the performance of the water-
distribution network, in the context of real-timmgar-optimal control. Since the use of a
complex hydraulic simulation model is somewhat iagpical for real-time operations as a
result of the computational burden it imposes,dpproach adopted has been to capture its
domain knowledge in a far more efficient form byans of an artificial neural network
(ANN). The way this is achieved is to run the fndic simulation model off-line, with a
large number of different combinations of initiahk storage levels, demands, pump and
valve settings, to predict future tank-storage whgteels, hydrostatic pressures and flow rates
at critical points throughout the network. Theageut/output data sets are used to train an
ANN, which is then verified using testing sets. efdafter, the ANN is employed in
preference to the hydraulic simulation model witthia optimization process. For
experimental purposes, this technique was initafiglied to a small, hypothetical water-
distribution network, using EPANET as the hydrasiimulation package. The application to
two real networks is described in subsequent paypéelss series.

Key words: artificial neural network, hydraulic simulation madPOWADIMA, replication,
water distribution

Short title: POWADIMA: replication of hydraulic simulation model

INTRODUCTION
Need for predictivetechnique

Amongst other things, the first paper of this sena the POWADIMA PotableWater
DistributionM anagement) research project (Jamieson et al., 28ibes the
characteristics of a real-time, near-optimal cdreggstem for water-distribution networks.
These include the requirement of being able toiptéide consequences of changes in the
control settings on the network’s performance,atetmine whether a particular combination
Is capable of meeting the demands without violasing of the operational constraints.



Thereatter, it is a matter of selecting the bestlzimation of feasible control settings so as to
minimize operating costs up to the operating harjzehich is the topic of the next paper in
this series (Rao & Salomons, 2006). However, thexHic paper is restricted to the problem
of predicting the consequences of different pungh\alve settings for different demand
patterns and starting conditions. As such, it fothesfirst constituent part of the DRAGA-
ANN (DynamicReal-timeAdaptiveGeneticAlgorithm —Avrtificial NeuralNetwork) control
system for the efficient and effective operatiomatter-distribution networks.

Required attributes

Including optimization in the overall control systeequires the predictive technique selected
to be computationally efficient in order to keep tomputing time within reasonable limits.
This is especially important in the case of reetj operational control where there is a need
to adjust the control apparatus at frequent tinervals, since the demand for water is highly
variable throughout the day. The predictive techaiglso needs a high degree of accuracy
since some errors, such as those associated withréldlicted water level in storage tanks,
tend to accumulate over the operating period. Asrsequence, it is possible that a different
control strategy could be selected which is neitpimal nor for that matter feasible. The
third attribute required is that the predictivelteicjue has to be robust. Water demand
forecasting is notoriously prone to spectaculahgé errors, which initially have to be
accepted until such time they can be correctedil&iyy) SCADA (SupervisoryControl And
DataAcquisition) facilities are capable of introducingasurement errors relating to the
current state of the network. Whatever method etljation is selected, it has to be robust
enough to cope with all these different types obrsrwithout ‘crashing’.

MODELLING WATER DISTRIBUTION NETWORKS
Empirical models

The hydraulic behaviour of water-distribution netisin general and their hydraulic
dynamics in particular, are time-variant, spattaligtributed and highly non-linear which
traditionally, have been represented either by me&empirical models, as for example,
mass-balance, or process-based models, such auhgdimulation. In this context, mass-
balance models consist of weighted functional iahehips between storage, flows and
pumping-station discharges. The weights associatiothe functional relationships can be
determined using linear regression (Sterling andliik, 1975) or from linearization of the
nonlinear network (Fallside and Perry, 1975). Tlmadvantage of mass-balance models is
that the system response can be determined mueh flaan, say, from a simulation model.
They are, however, more appropriate for regionaewsupply schemes rather than
distribution networks.

Instead of using a simple mass-balance model,ah&near nature of the network hydraulics
could be more accurately represented by using af setnlinear regression equations.
Information required to construct such a modellbambtained in a variety of ways. For
example, regression curves can be generated bgtegpexecutions of a calibrated simulation
model for different tank storage levels and loadingditions or by using information from
actual operations to form a database relating po@ag, pump discharge, tank levels and
network demands (Tarquin and Dawdy, 1989). Regrassiodels have the advantage of
being able to incorporate some degree of non-lityeahile providing a time-efficient
mechanism for estimating the network response. Meweegression curves and databases



only contain information for a particular networkes a given range of demands. If the
network changes appreciably or forecasted demanduside the range of the database, such
an approach provides erroneous results.

Simplified network-hydraulics models

As an intermediate step between empirical modedsfahhydraulic network simulation, a
simplified network-hydraulics model could be cormsil. In such cases, the network
hydraulics are approximated using a macroscopwar&tmodel or analysed using a series of
linearized hydraulic equations. Macroscopic modefsesent the pipe layout by use of a
highly skeletal network model. Typically only a ppniumped resistance term (a pipe) and an
aggregated demand are included. Both DeMoyer Stttz (1975) and Coulbeck (1988)
used macroscopic models that had multiple ternadingl the effect of various network
components, incorporated within a single equatiorertain cases, such as where the
boundary conditions are essentially independeptaiping-station discharge, it might be
possible to represent the network hydraulics bymaed a simple linear model. Jowitt and
Germanopoulos (1992) used an approximate lineaehfoda network dominated by
aggregated hydraulic heads, in which small vanmtiin tank storage levels did not
significantly affect pump operations. In a simidgplication, Little and McCrodden (1989)
developed a simple linear model for a supply nekvwomvhich the hydrostatic head in the
controlling tank was held constant. The coefficselior both types of models can be
determined following extensive analyses. As a tesuth models are site specific and have
to be judged on that basis to determine their dabdjy.

Network simulation models

Network simulation models provide the capabilityrtodel the non-linear dynamics of a
water distribution network by solving the governse of quasi-steady-state hydraulic
equations. For a water-distribution network, theegaing equations include the conservation
of mass and the conservation of energy. In contoalsbth empirical and simplified network-
hydraulics models, network simulation models ang aelaptive to both physical changes and
spatial variations in demand. However, althoughvoet simulation models are usually more
robust than either empirical or simplified netwdrkdraulics models, they generally require a
considerable amount of data in their formulatiohey also need significantly more effort to
calibrate them properly. In addition, since suchdeile need extra computational effort, they
are generally restricted to applications that negthie minimum number of individual
evaluations.

Over the past thirty years or so, a significanestment has been made in developing generic
hydraulic simulation models. Software packages ssxtWWESNET, INFOWORKS, GINAS,
STONER/SynerGEE, EPANET, AQUIS and WATNET, haverbeg&dely used in recent

years for a number of purposes, ranging from plagnand design to operational analysis and
the development of control strategies for watetridhigtion networks. However, their use for
real-time, near-optimal control is somewhat impadtfor large water-distribution networks
because of the computational burden optimizatiqooses. If it were necessary to run a
simulation model for each iterative change of purajye settings, it is more than likely that
the optimal setting would not be found before tegtrupdate was due.

Alternative approach



In recent years, significant progress in the figtlaon-linear pattern recognition and system
control theory have been made possible throughradgain a branch of non-linear modelling
called artificial neural networks (ANN). An ANN &non-linear mathematical structure,
which is capable of representing arbitrarily-comxpleon-linear processes that relate the
inputs and outputs of any system. Mathematiciane Baown that multi-layer, feed-forward
ANNSs have the necessary capability to be a ‘unaldisiction approximator’. In their
landmark papers, Kolmogorov (1957), Sprecher (19%%) Lorentz (1976) proved the
existence of universal function mappings basedmple mathematical structures. Later,
Hecht-Nielsen (1987) showed that a three-layed-feeward ANN meets the requirements to
be a universal function approximator and that mjtivariate function can be approximated
by an ANN having only a finite number of nodeshe hidden layer. This result is referred to
as the ‘Kolmogorov Mapping Neural Network Existericheorem’. Subsequent studies
based on the above-mentioned work have shown tinaée-layer, feed-forward ANN using
sigmoid transfer functions can implement any cardirs and bounded multivariate function
mapping (Funahashi, 198@/hite,1990;Blum and Li, 1991jto, 1992;Takahashi, 1993).

Methodology selected

For the purposes of real-time operational conitdias already been mentioned that the
model selected to predict the consequences @rdiit control settings, needs to be
computationally efficient, highly accurate and nuiredly robust. Based on these criteria,
hydraulic simulation models may have the necessecyracy and robustness but lack the
computational efficiency for large-scale netwoirkmpirical and simplified network-
hydraulics models are likely to be computationafigre efficient but their accuracy and
robustness are questionable. ANNs are computalyoeificient and robust but require
copious numbers of input / output patterns durraging and testing, for which it is
impractical to use the real network. Therefore,approach adopted in the POWADIMA
research project has been to combine two of treetmigues by using an ANN to replicate a
conventional hydraulic simulation model of the netikw In this way, the complex knowledge
base of the hydraulic simulation model is captunea far more computationally-efficient
form. Thereafter, the ANN is used in preferencéhoconventional hydraulic simulation
model for predicting network performance, as pathe optimal-control process.

Whilst this approach is not entirely new, all otkeown applications to date have related to
either planning or design exercises rather thamadjp@al control. Examples of the former
include the design of groundwater remediation s@se(Rogers & Dowla, 1994; Rao &
Jamieson, 1997) and regional wastewater-treatmennimg (Wang & Jamieson, 2002),
where replicating complex simulation models by &tNAhas significantly reduced the
computational burden of the optimization processwelver, computational efficiency is far
more important for operational control in generad aeal-time operational control in
particular, owing to the short time increment bedswsuccessive updates. The other main
advantage of this approach is the high degreeatire, which is imparted by the hydraulic
simulation model prior to the replication by the KNIt will of course be appreciated there is
an implicit assumption that in the first instanites real network can be accurately modelled
using a conventional hydraulic simulation model.

REPLICATION OF A HYDRAULIC SIMULATION MODEL

Artificial neural networks



An ANN is a mathematical representation of interested computing elements (or neurons)
arranged in layers, which process information lgjrtresponse to external inputs, in an
analogous way to the central nervous system. Thactiveness of ANNSs is their potential to
learn from input-output data sets and their abtlitypproximate any continuous non-linear
function to any arbitrary degree of accuracy, usiriged-forward process. In the case of a
three-layer ANNI, J, K) which is shown in Figure 1, the input layer haurons, the hidden
layer has] neurons and the output layer laseurons, with the network being fully
connected between adjacent layers.

In::tLayer llioen utput Layer
1 =—=X1 ‘ 1 ' 1—> n
X2 “") “‘\‘V 9—> Y2
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YA} /\\ W

Figure 1: Architecture of an artificial neural netk

Each hidden neurgrreceives input from every neuroim the input layer. Moreover, each
input (%) is associated with a weighwc ) so that the effective input}) to nodg is the
weighted sum of all the inputs:

Q, =Z|:W;}xi (1)

i=0

wherexo and tho are referred to as the biag € 1.0) and the bias weights, respectively. The

effective input,(2, is passed through a non-linear activation fumc(Bmmetimes called a
transfer function or threshold function) to proddice outputlf;) of the node. The most
commonly used activation function is the sigmoiddiuon. The characteristics of a sigmoid
function are that it is bounded above and belowasiotonically increasing and is
continuous and differentiable everywhere. The signmuanction generally employed for
ANNS is the logistic function:

1
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in which & can vary on the range, buth; is bounded between 0 and 1. The corresponding
output neuronyk, is given by:

Vo= W HE W) k=12..K ©

where W?i is a weight between thé input neuron and thjéh hidden neuronw Is a weight

from thejth hidden neuron to thHe¢h output neuron, anig-) is a sigmoid function as defined
by Equation (2).

Developing a neural network comprises two majgosteamely ‘training’ (or learning) and
‘testing’ (or verification). During the training pcess, combinations of known input-output
data ('training’ sets) are repeatedly presentdti¢cANN and the weights associated with

each neuron\&/;‘i and w) are adjusted until the specified input providesdbsired output.

Through these adjustments, the ANN ‘learns’ theemirinput-output response behaviour.
This training process is usually accomplished bggisome particular algorithm in which a
cost function, specified as the sum of squared-®iyetween the true output and the output
produced by the network, is minimized. When the &asction approaches a minimum, the
network is considered to have converged. The mization of the cost function can be
achieved in different ways. The most popular teghaiis the back-error propagation
algorithm proposed by Rumelhart and McClelland,6L98ter training, the ANN is then
subjected to the verification stage in which ott@mbinations of known input-output data are
introduced (‘testing’ sets), in order to estimdte tesidual error. Based on the performance of
the trained ANN, further adjustments may approprtatmake the model more accurate
and/or robust.

Mapping a hydraulic smulation model using an ANN

In the context of operational control, a converagidmydraulic simulation model of a water-
distribution network can be described in discrateetas an input-output system, which is

depicted in Figure 2.
Pt ::> j‘> E:

hydraulic
Vi Z:> network
simulation

Dt Z:> model j} e
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Figure 2 Input-output model of a water distribatimetwork

Inputs Outputs

where: Py - a vector of control variables representipgpump settings at time t;
Vi - avector of control variables representmgalve settings at time t;
D: - a vector of variables representing values ofa®ds at theq consumer nodes in
the network between times t and\t+
S-  avector of variableepresentingisstorage tank water levels at time t.



E:t- a vector of variables representing power consumption of pumps during the
interval between times t andAt:

H¢ - a vector of variables representing values ekgures at specific nodes during
the interval between times t and\t

Q:- a vector of containing the values of flowfor specific pipesluring the interval
between times t and At;

Si+at - @ vector of variableepresentingps storage tank water levels at time\t:+

The most widely researched and used ANN structutiee multi-layer, feed-forward network
which is ideally suited for modelling input-outmedationships. For the purposes of optimal
operational control, an ANN can be regarded as @pmg function between an input and
output set. In this particular instance, the ingritcontains the combination of pump/valve
setting, demands and initial water levels in stermks whilst the output set corresponds to
the power consumption of pumps, resulting wateelkein storage tanks, pressures and flow
rates at critical locations throughout the netwaiking a feed-forward ANN(J, K), I =np +
v+ Ng + nsis the total number of input valudé = np + Nh+ Nq + nsis the total number of
output values andis the number of hidden neurons to be identifiedrd the training and
testing process. The valuebfis usually found using a strategy of progresyiaelding
neurons to the hidden layer until no further wottilerimprovement in error reduction is
achieved.

Training and testing procedure

Before the replication process can be initiate, first necessary to apply the process-based
hydraulic simulation package to the distributiotwak in question. Thereatfter, critical

points within the network have to be selected asetwill act as operational constraints for
pressures and flow rates in the optimization precéle next stage involves running the
process-based model in steady-state mode withreiiffeombinations of input values (initial
water levels in the storage tanks, demands fovahnieus district-metering areas, pump
settings and valve settings) to ascertain thegot$fon the output values at the next time-step
(water levels in storage tanks, hydrostatic presssat critical nodes in the network, flow rates
in critical pipes and power consumption for theimas pumps). The range of demands used
in these evaluation runs should exceed the valgscged in practice so that the trained ANN
will be capable of predicting all possible evenittirg. Similarly, bearing in mind that the
optimization process (genetic algorithm) needsimanter some infeasible solutions, the
range of initial water levels should exceed thesidgt dimensions of each storage tank.
Depending upon the simulation package chosenpissible that some may have simple, in-
built operating rules such as switching off the psrwhen the storage tank is full. However,
for the purposes of real-time, near-optimal contitué process-based model is only required
to predict the consequences of the input valuesppesed to taking an operational decision.
Therefore, artificially increasing the tank sizeakliminates this potential problem.

The number of training sets required depends osi#geand complexity of the distribution
network but is usually measured in terms of thodsamherefore, a computer program has
been specifically written to generate matching tigutput sets automatically with random
inputs, all data being normalized. With regardesting, again it is a matter of experience in
deciding the number of additional sets requiredtjgoitally, this might be about 20 per cent
of the size used for training. Training the ANNoerformed by adjusting the weighting
factors between the neurons in the input, hiddehaartput layers. The most common
criterion used to measure the goodness-of-fit betvibe predicted and ‘observed’ is the root



mean squared erroRMSE). If the error between the conventional hydraaliaulation model
and the trained ANN is deemed unacceptable forevieatreason, then the whole training
procedure can be repeated, possibly using morarigasets and/or modifying the ANN’s
structure by changing the number of neurons irhitiden layer. A schematic representation
of the entire replication process for capturingkhewledge base of a hydraulic simulation
model by means of an ANN is given in Figure 3.

Model network using a conventional
hydraulic simulation model

\ 4

Select critical points for storage levels,
pressures and flow rates

\ 4
Run model with different combinations
of starting conditions, demands and
control settings

A 4

Train ANN with generated input/output Formulate/modify
sets to predict output values at critical |« ANN structure
points

A 4
Test ANN with generated input/output

sets by comparing predicted values with
‘observed’

Y

Acceptabls
RMSE?

ANN predictor

Figure 3: Replication process for capturing knalgke base of hydraulic simulation model by
means of an ANN

APPLICATIONTO AHYPOTHETICAL WATER-DISTRIBUTION NETWORK
Any Town (Modified) water-distribution model

Rather than embark directly on the two case stuthesprecaution was taken to first
experiment with a somewhat simpler distributionwggk so as to gain experience of the
difficulties that might be encountered in applythg methodology to a real, complex network.
To that end, the hypothetical ‘Any Town’ network &8ki et al., 1987) was chosen for this
purpose since it has the distinct advantage ofgoeill-documented as a result of having



been extensively modelled previously. However,roheo to make the task a little more
challenging for the subsequent optimization stagajmber of modifications have been
introduced including the addition of an extra sggréank and extending the pipe network in
the upper-left portion. The opportunity was alsketato convert the measurements to Sl units.
The resulting network is referred to as the ‘Anwho(Modified)’ network or AT(M). As a

result of these changes, the AT(M) network hadal td 41 pipes, arranged to form 19 nodes,
with 3 fixed-speed pumps and 3 storage tanks, @asrsin Figure 4. Most of the pipe lengths
and diameters are as per the original network tdman those subsequently added, which
have been given appropriate values within the samge. The precise details can be obtained
from the corresponding author, if required.

55

65

265 '\

90

165
170

Pumpl

Pump 2

Pump 3

Figure 4: The Hypothetical Any Town (Modified) wedgistribution network

The AT(M) network has been modelled using the weltwn EPANET hydraulic simulation
package (Rossman, 2000). Again, the selection veakeran the grounds that EPANET is
fully documented and readily available. Since AT ({§a hypothetical network without any
real data on which to calibrate and verify the mipplee-assigned values for parameters such
as the roughness coefficient, have been used,stenswith the original network. The time-
step adopted for the simulation was 1 hour, reptesga compromise between what was
desirable from an operating standpoint and the coatienal burden imposed in the
subsequent optimization stage. In generating thegponding input/output sets for training
and testing the ANN, the hydrostatic pressureat@rarily chosen nodes and the water
levels in the 3 storage tanks were designatedeasritical points in the network.



Developing an ANN for the AT(M) network

Several different approaches were tried duringdheslopment of a suitable ANN for the
AT(M) network, including the use of a separate AfdNeach of the output variables. In the
event, it was found that this was not necessatli@accuracy of the individual predictions
were no better than using one composite ANN fodigteng all the output values at the same
time. Therefore, attention was directed at estinggtine appropriate number of neurons in the
hidden layer of a composite ANN which compriseaput values (the first input representing
the number of pumps on duty; the second beingdhesgated demand for the 19 consumer
nodes and the remainder comprising the 3 initidewigvels, one for each of the storage
tanks) and 7 output values (1 for total pumping @oeonsumption, 3 for hydrostatic
pressures at nodes 170, 90 and 55, together wabuBtant water levels, one for each of the
storage tanks 65, 165 and 265, respectively). @ialeand-error basis, a good representation
of the EPANET model was achieved with 20 neurorthénhidden layer, giving a final
structure of ANN(5,20,7).
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Figure 5: Relationship betwe®&WSE and number of training sets

Having decided the appropriate number of neurortsdérhidden layer, the next issue to be
addressed was the required number of ANN traingtg secessary to achieve an accurate
representation of the EPANET model relating toAfi¢M) network. To that end, different
numbers of training sets were used to ascertaiimtpact on thdRSME between the predicted
and ‘observed’ output values. It can be seen fraggare 5 that starting with random
initialization of parameters, trRSME converges rapidly to 1.65 percent in approximately
2000 iterations, with little or no improvement teafter, regardless of the number of training
sets used. The accuracy of replicating the EPANB#ahby an ANN(5,20,7) is shown in
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Figures 6 and 7 for the resulting hydrostatic press and storage tank water levels, for a
typical sequence of testing sets over a 24-houoger
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Figure 6: Comparison of EPANET and predicted ANBLutts for pressures - Node 90
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Figure 7: Comparison of EPANET and predicted ANBLits for storage tank water level -
Tank 65

Inclusion of water-quality considerations

In addition to the hydraulic variables, an atternvps made to include water quality in the
decision-making process by adopting the same approfausing an ANN to replicate an
EPANET model of the AT(M) network which includedlafine residuals. The selection of
chlorine residual as the water-quality determina@ad an obvious choice since water-
distribution engineers endeavour to maintain a mum prescribed level of concentration to
combat any pollution arising from infiltration cg-growth within the network. As previously,
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a large number of corresponding input/output seiewgenerated, this time including
chlorine residual as an output variable for critmaints within the network. Thereafter, an
ANN was trained and tested. However, the resultewess impressive than those for the
hydraulic variables. Firstly, it took an inordinaount of time for the water-quality
simulation model of the network to stabilize andegconsistent values for chlorine residuals,
even for a very simple network such as AT(M). Seltpnt would seem that the chlorine-
residual values are more a function of the sizgh@mnetwork rather than the control settings.
If that is the case and there is only a weak i@tatiip with the control settings, then it is
hardly the fault of the ANN when somewhat disappomresults are obtained (Figure 8). An
alternative but less satisfactory way of indired¢tglping to maintain chloride-residual
concentrations in the network which has subsequéetn used in this research project, was
to assign minimum flow rates to critical pipes wdh&w velocities occur and treat them as
operational constraints in the near-optimal conprocess, thereby avoiding the possibility of
stagnation.

Chlorine residuals

. T mANN |
7777777777777 OEPANET|

Normalized concentrations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Testing sets

Figure 8: Comparison of EPANET and predicted ANBuits for Chlorine residuals

CONCLUSION

Up until recently, hydraulic simulation models hdeen the only means available to
represent the complex, non-linear behaviour of mdisribution networks. However, in
predicting the dynamic consequences of differentrob settings in relation to the initial
conditions and short-term fluctuations in demahdythave their limitations owing to the
computational burden they impose. Neverthelesgoitld seem plausible that there should be
a substantial opportunity for improving computa#baefficiency if the hydraulic simulation
model could be approximated by an input/outputti@ighip, which in this case, would be
mapped using a multivariate function. With thatrimd, this paper advocates the use of an
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artificial neural network and shows that at leasta simple, hypothetical water-distribution
network, a conventional hydraulic simulation mockeh be replicated with a high degree of
accuracy. The computational advantage of doing smiaverage 10-fold reduction in the
time taken to predict the consequences of diffecentrol settings in comparison with a
conventional hydraulic simulation model. This congtional improvement is expected to
increase with the complexity of the distributiortwerk (see Salomons et al., 2006 and
Martinez et al., 2006), thereby enhancing the prospf making real-time, near-optimal
control a practical reality.
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