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ABSTRACT 

As part of the POWADIMA research project, this paper describes the technique used to 
predict the consequences of different control settings on the performance of the water-
distribution network, in the context of real-time, near-optimal control.  Since the use of a 
complex hydraulic simulation model is somewhat impractical for real-time operations as a 
result of the computational burden it imposes, the approach adopted has been to capture its 
domain knowledge in a far more efficient form by means of an artificial neural network 
(ANN).  The way this is achieved is to run the hydraulic simulation model off-line, with a 
large number of different combinations of initial tank storage levels, demands, pump and 
valve settings, to predict future tank-storage water levels, hydrostatic pressures and flow rates 
at critical points throughout the network.  These input/output data sets are used to train an 
ANN, which is then verified using testing sets.  Thereafter, the ANN is employed in 
preference to the hydraulic simulation model within the optimization process.  For 
experimental purposes, this technique was initially applied to a small, hypothetical water-
distribution network, using EPANET as the hydraulic simulation package.  The application to 
two real networks is described in subsequent papers of this series. 
Key words: artificial neural network, hydraulic simulation model, POWADIMA, replication, 
water distribution 
Short title: POWADIMA: replication of hydraulic simulation model 
 
INTRODUCTION 

Need for predictive technique 

Amongst other things, the first paper of this series on the POWADIMA (Potable Water 
Distribution Management) research project (Jamieson et al., 2006) describes the 
characteristics of a real-time, near-optimal control system for water-distribution networks. 
These include the requirement of being able to predict the consequences of changes in the 
control settings on the network’s performance, to determine whether a particular combination 
is capable of meeting the demands without violating any of the operational constraints. 
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Thereafter, it is a matter of selecting the best combination of feasible control settings so as to 
minimize operating costs up to the operating horizon, which is the topic of the next paper in 
this series (Rao & Salomons, 2006). However, this specific paper is restricted to the problem 
of predicting the consequences of different pump and valve settings for different demand 
patterns and starting conditions. As such, it forms the first constituent part of the DRAGA-
ANN (Dynamic Real-time Adaptive Genetic Algorithm – Artificial Neural Network) control 
system for the efficient and effective operation of water-distribution networks.  
 
Required attributes 

Including optimization in the overall control system requires the predictive technique selected 
to be computationally efficient in order to keep the computing time within reasonable limits. 
This is especially important in the case of real-time, operational control where there is a need 
to adjust the control apparatus at frequent time intervals, since the demand for water is highly 
variable throughout the day. The predictive technique also needs a high degree of accuracy 
since some errors, such as those associated with the predicted water level in storage tanks, 
tend to accumulate over the operating period. As a consequence, it is possible that a different 
control strategy could be selected which is neither optimal nor for that matter feasible. The 
third attribute required is that the predictive technique has to be robust. Water demand 
forecasting is notoriously prone to spectacularly large errors, which initially have to be 
accepted until such time they can be corrected. Similarly, SCADA (Supervisory Control And 
Data Acquisition) facilities are capable of introducing measurement errors relating to the 
current state of the network. Whatever method of prediction is selected, it has to be robust 
enough to cope with all these different types of errors without ‘crashing’.  
  
MODELLING WATER DISTRIBUTION NETWORKS 

Empirical models 
 
The hydraulic behaviour of water-distribution networks in general and their hydraulic 
dynamics in particular, are time-variant, spatially-distributed and highly non-linear which 
traditionally, have been represented either by means of empirical models, as for example, 
mass-balance, or process-based models, such as hydraulic simulation. In this context, mass-
balance models consist of weighted functional relationships between storage, flows and 
pumping-station discharges. The weights associated with the functional relationships can be 
determined using linear regression (Sterling and Coulbeck, 1975) or from linearization of the 
nonlinear network (Fallside and Perry, 1975). The main advantage of mass-balance models is 
that the system response can be determined much faster than, say, from a simulation model. 
They are, however, more appropriate for regional water-supply schemes rather than 
distribution networks.  
 
Instead of using a simple mass-balance model, the nonlinear nature of the network hydraulics 
could be more accurately represented by using a set of nonlinear regression equations. 
Information required to construct such a model can be obtained in a variety of ways. For 
example, regression curves can be generated by repeated executions of a calibrated simulation 
model for different tank storage levels and loading conditions or by using information from 
actual operations to form a database relating pump head, pump discharge, tank levels and 
network demands (Tarquin and Dawdy, 1989). Regression models have the advantage of 
being able to incorporate some degree of non-linearity while providing a time-efficient 
mechanism for estimating the network response. However, regression curves and databases 
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only contain information for a particular network over a given range of demands. If the 
network changes appreciably or forecasted demand are outside the range of the database, such 
an approach provides erroneous results. 
 
 Simplified network-hydraulics models 

As an intermediate step between empirical models and full hydraulic network simulation, a 
simplified network-hydraulics model could be considered. In such cases, the network 
hydraulics are approximated using a macroscopic network model or analysed using a series of 
linearized hydraulic equations. Macroscopic models represent the pipe layout by use of a 
highly skeletal network model. Typically only a pump, lumped resistance term (a pipe) and an 
aggregated  demand are included. Both DeMoyer & Horowitz (1975) and Coulbeck (1988) 
used macroscopic models that had multiple terms relating the effect of various network 
components, incorporated within a single equation. In certain cases, such as where the 
boundary conditions are essentially independent of pumping-station discharge, it might be 
possible to represent the network hydraulics by means of a simple linear model. Jowitt and 
Germanopoulos (1992) used an approximate linear model for a network dominated by 
aggregated hydraulic heads, in which  small variations in tank storage levels did not 
significantly affect pump operations. In a similar application, Little and McCrodden (1989) 
developed a simple linear model for a supply network in which the hydrostatic head in the 
controlling tank was held constant. The coefficients for both types of models can be 
determined following extensive analyses. As a result, such models are site specific and have 
to be judged on that basis to determine their acceptability. 
 
Network simulation models 

Network simulation models provide the capability to model the non-linear dynamics of a 
water distribution network by solving the governing set of quasi-steady-state hydraulic 
equations. For a water-distribution network, the governing equations include the conservation 
of mass and the conservation of energy. In contrast to both empirical and simplified network-
hydraulics models, network simulation models are very adaptive to both physical changes and 
spatial variations in demand. However, although network simulation models are usually more 
robust than either empirical or simplified network-hydraulics models, they generally require a 
considerable amount of data in their formulation. They also need significantly more effort to 
calibrate them properly. In addition, since such models need extra computational effort, they 
are generally restricted to applications that require the minimum number of individual 
evaluations. 
  
Over the past thirty years or so, a significant investment has been made in developing generic 
hydraulic simulation models. Software packages such as WESNET, INFOWORKS, GINAS, 
STONER/SynerGEE, EPANET, AQUIS and WATNET, have been widely used in recent 
years for a number of purposes, ranging from planning and design to operational analysis and 
the development of control strategies for water-distribution networks. However, their use for 
real-time, near-optimal control is somewhat impractical for large water-distribution networks 
because of the computational burden optimization imposes. If it were necessary to run a 
simulation model for each iterative change of pump/valve settings, it is more than likely that 
the optimal setting would not be found before the next update was due. 
 
Alternative approach  
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In recent years, significant progress in the fields of non-linear pattern recognition and system 
control theory have been made possible through advances in a branch of non-linear modelling 
called artificial neural networks (ANN). An ANN is a non-linear mathematical structure, 
which is capable of representing arbitrarily-complex, non-linear processes that relate the 
inputs and outputs of any system. Mathematicians have shown that multi-layer, feed-forward 
ANNs have the necessary capability to be a ‘universal function approximator’. In their 
landmark papers, Kolmogorov (1957), Sprecher (1965), and Lorentz (1976) proved the 
existence of universal function mappings based on simple mathematical structures. Later, 
Hecht-Nielsen (1987) showed that a three-layer, feed-forward ANN meets the requirements to 
be a universal function  approximator and that any multivariate function can be approximated 
by an ANN having only a finite number of nodes in the hidden layer. This result is referred to 
as  the ‘Kolmogorov Mapping Neural Network Existence Theorem’. Subsequent studies 
based on the above-mentioned work have shown that a three-layer, feed-forward ANN using 
sigmoid transfer functions can implement any continuous and bounded multivariate function 
mapping (Funahashi, 1989; White,1990; Blum and Li, 1991; Ito, 1992; Takahashi, 1993). 

Methodology selected 

For the purposes of real-time operational control, it has already been mentioned that the 
model selected to predict the consequences  of different control settings, needs to be 
computationally efficient, highly accurate and numerically robust. Based on these criteria, 
hydraulic simulation models may have the necessary accuracy and robustness but lack the 
computational efficiency for large-scale networks. Empirical and simplified network-
hydraulics models are likely to be computationally more efficient but their accuracy and 
robustness are questionable. ANNs are computationally efficient and robust but require 
copious numbers of input / output patterns during training and testing, for which it is 
impractical to use the real network. Therefore, the approach adopted in the POWADIMA 
research project has been to combine two of these techniques by using an ANN to replicate a 
conventional hydraulic simulation model of the network. In this way, the complex knowledge 
base of the hydraulic simulation model is captured in a far more computationally-efficient 
form. Thereafter, the ANN is used in preference to the conventional hydraulic simulation 
model for predicting network performance, as part of the optimal-control process. 
Whilst this approach is not entirely new, all other known applications to date have related to 
either planning or design exercises rather than operational control. Examples of the former 
include the design of groundwater remediation schemes (Rogers & Dowla, 1994; Rao & 
Jamieson, 1997) and regional wastewater-treatment planning (Wang & Jamieson, 2002), 
where replicating complex simulation models by an ANN has significantly reduced the 
computational burden of the optimization process. However, computational efficiency is far 
more important for operational control in general and real-time operational control in 
particular, owing to the short time increment between successive updates. The other main 
advantage of this approach is the high degree of realism, which is imparted by the hydraulic 
simulation model prior to the replication by the ANN. It will of course be appreciated there is 
an implicit assumption that in the first instance, the real network can be accurately modelled 
using a conventional hydraulic simulation model. 
 
REPLICATION OF A HYDRAULIC SIMULATION MODEL 

Artificial neural networks 
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An ANN is a mathematical representation of interconnected computing elements (or neurons) 
arranged in layers, which process information by their response to external inputs, in an 
analogous way to the central nervous system. The attractiveness of ANNs is their potential to 
learn from input-output data sets and their ability to approximate any continuous non-linear 
function to any arbitrary degree of accuracy, using a feed-forward process. In the case of a 
three-layer ANN(I, J, K) which is shown in Figure 1, the input layer has I neurons, the hidden 
layer has J neurons and the output layer has K neurons, with the network being fully 
connected between adjacent layers.  
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Figure 1: Architecture of an artificial neural network 

Each hidden neuron j receives input from every neuron i in the input layer. Moreover, each 
input (xi) is associated with a weight (h

jiw ) so that the effective input (Ωj) to node j is the 

weighted sum of all the inputs: 

i

I

i

h
jij xw∑

=

=Ω
0

      (1) 

where x0 and h
jw 0

 are referred to as the bias (x0 = 1.0) and the bias weights, respectively. The 

effective input, Ωj, is passed through a non-linear activation function (sometimes called a 
transfer function or threshold function) to produce the output (hj) of the node. The most 
commonly used activation function is the sigmoid function. The characteristics of a sigmoid 
function are that it is bounded above and below, is monotonically increasing and is 
continuous and differentiable everywhere. The sigmoid function generally employed for 
ANNs is the logistic function:  
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in which Ωj can vary on the range ±∝, but hj is bounded between 0 and 1. The corresponding 
output neuron, yk, is given by: 

Kkxwfwfy
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I
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h
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o
kjk ,...,2,1},}{{

0 0

== ∑ ∑
= =

  (3) 

where h
jiw is a weight between the ith input neuron and the jth hidden neuron, o

kjw  is a weight 

from the jth hidden neuron to the kth output neuron, and f(·) is a sigmoid function as defined 
by Equation (2). 
 
Developing a neural network comprises two major steps, namely ‘training’ (or learning) and 
‘testing’ (or verification). During the training process, combinations of known input-output 
data (’training’ sets) are repeatedly presented to the ANN and the weights associated with 
each neuron ( h

jiw  and o
kjw ) are adjusted until the specified input provides the desired output. 

Through these adjustments, the ANN ‘learns’ the correct input-output response behaviour. 
This training process is usually accomplished by using some particular algorithm in which a 
cost function, specified as the sum of squared errors between the true output and the output 
produced by the network, is minimized. When the cost function approaches a minimum, the 
network is considered to have converged. The minimization of the cost function can be 
achieved in different ways. The most popular technique is the back-error propagation 
algorithm proposed by Rumelhart and McClelland, 1986. After training, the ANN is then 
subjected to the verification stage in which other combinations of known input-output data are 
introduced (‘testing’ sets), in order to estimate the residual error. Based on the performance of 
the trained ANN, further adjustments may appropriate to make the model more accurate 
and/or robust. 
 

Mapping a hydraulic simulation model using an ANN 

In the context of operational control, a conventional hydraulic simulation model of a water-
distribution network can be described in discrete time as an input-output system, which is 
depicted in Figure 2.  

 
Figure 2  Input-output model of a water distribution network 

where:  Pt -   a vector of control variables representing np pump settings at time t; 
Vt -  a vector of control variables representing nv valve settings at time t; 
Dt -  a vector of variables representing values of demands at the nd consumer nodes in 

the network between times t and t+∆t; 
St -  a vector of variables representing ns storage tank water levels at time t. 
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Et - a vector of variables representing np power consumption of pumps during the 
interval between times t and t+∆t; 

Ht -  a vector of variables representing values of pressures nh at specific nodes during 
the interval between times t and t+∆t; 

Qt -  a vector of containing the values of flow nq for specific pipes during the interval 
between times t and t+∆t; 

St+∆t - a vector of variables representing ns storage tank water levels at time t+∆t. 
 
The most widely researched and used ANN structure is the multi-layer, feed-forward network 
which is ideally suited for modelling input-output relationships. For the purposes of optimal 
operational control, an ANN can be regarded as a mapping function between an input and 
output set. In this particular instance, the input set contains the combination of pump/valve 
setting, demands and initial water levels in storage tanks whilst the output set corresponds to 
the power consumption of pumps, resulting water levels in storage tanks, pressures and flow 
rates at critical locations throughout the network. Using a feed-forward ANN(I, J, K), I = np + 
nv + nd + ns is the total number of input values, K = np + nh+ nq + ns is the total number of 
output values and J is the number of hidden neurons to be identified during the training and 
testing process. The value of J, is usually found using a strategy of progressively adding 
neurons to the hidden layer until no further worthwhile improvement in error reduction is 
achieved.  
  
Training and testing procedure 

Before the replication process can be initiated, it is first necessary to apply the process-based 
hydraulic simulation package to the distribution network in question. Thereafter, critical 
points within the network have to be selected as these will act as operational constraints for 
pressures and flow rates in the optimization process. The next stage involves running the 
process-based model in steady-state mode with different combinations of input values (initial 
water levels in the storage tanks, demands for the various district-metering areas, pump 
settings and valve settings) to ascertain their effects on the output values at the next time-step 
(water levels in storage tanks, hydrostatic pressures at critical nodes in the network, flow rates 
in critical pipes and power consumption for the various pumps). The range of demands used 
in these evaluation runs should exceed the values expected in practice so that the trained ANN 
will be capable of predicting all possible eventualities. Similarly, bearing in mind that the 
optimization process (genetic algorithm) needs to encounter some infeasible solutions, the 
range of initial water levels should exceed the physical dimensions of each storage tank. 
Depending upon the simulation package chosen, it is possible that some may have simple, in-
built operating rules such as switching off the pumps when the storage tank is full. However, 
for the purposes of real-time, near-optimal control, the process-based model is only required 
to predict the consequences of the input values, as opposed to taking an operational decision. 
Therefore, artificially increasing the tank size also eliminates this potential problem. 
 
The number of training sets required depends on the size and complexity of the distribution 
network but is usually measured in terms of thousands. Therefore, a computer program has 
been specifically written to generate matching input/output sets automatically with random 
inputs, all data being normalized. With regard to testing, again it is a matter of experience in 
deciding the number of additional sets required but typically, this might be about 20 per cent 
of the size used for training. Training the ANN is performed by adjusting the weighting 
factors between the neurons in the input, hidden and output layers. The most common 
criterion used to measure the goodness-of-fit between the predicted and ‘observed’ is the root 
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mean squared error (RMSE). If the error between the conventional hydraulic simulation model 
and the trained ANN is deemed unacceptable for whatever reason, then the whole training 
procedure can be repeated, possibly using more training sets and/or modifying the ANN’s 
structure by changing the number of neurons in the hidden layer. A schematic representation 
of the entire replication process for capturing the knowledge base of a hydraulic simulation 
model by means of an ANN is given in Figure 3. 

 

 Figure 3: Replication process for capturing knowledge base of hydraulic simulation model by 
means of an ANN 
 
APPLICATION TO A HYPOTHETICAL WATER-DISTRIBUTION NETWORK 

Any Town (Modified) water-distribution model 

Rather than embark directly on the two case studies, the precaution was taken to first 
experiment with a somewhat simpler distribution network so as to gain experience of the 
difficulties that might be encountered in applying the methodology to a real, complex network. 
To that end, the hypothetical ‘Any Town’ network (Walski et al., 1987) was chosen for this 
purpose since it has the distinct advantage of being well-documented as a result of having 
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been extensively modelled previously. However, in order to make the task a little more 
challenging for the subsequent optimization stage, a number of modifications have been 
introduced including the addition of an extra storage tank and extending the pipe network  in 
the upper-left portion. The opportunity was also taken to convert the measurements to SI units. 
The resulting network is referred to as the ‘Any Town (Modified)’ network or AT(M). As a 
result of these changes, the AT(M) network has a total of 41 pipes, arranged to form 19 nodes, 
with 3 fixed-speed pumps and 3 storage tanks, as shown in Figure 4. Most of the pipe lengths 
and diameters are as per the original network, apart from those subsequently added, which 
have been given appropriate values within the same range. The precise details can be obtained 
from the corresponding author, if required. 

65

265

165

90

55

170

Pump1

Pump 2

Pump 3

 
Figure 4: The Hypothetical Any Town (Modified) water-distribution network 

 
The AT(M) network has been modelled using the well-known EPANET hydraulic simulation 
package (Rossman, 2000). Again, the selection was made on the grounds that EPANET is 
fully documented and readily available. Since AT(M) is a hypothetical network without any 
real data on which to calibrate and verify the model, pre-assigned values for parameters such 
as the roughness coefficient, have been used, consistent with the original network. The time-
step adopted for the simulation was 1 hour, representing a compromise between what was 
desirable from an operating standpoint and the computational burden imposed in the 
subsequent optimization stage. In generating the corresponding input/output sets for training 
and testing the ANN, the hydrostatic pressure at 3 arbitrarily chosen nodes and the water 
levels in the 3 storage tanks were designated as the critical points in the network. 
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Developing an ANN for the AT(M) network 

Several different approaches were tried during the development of a suitable ANN for the 
AT(M) network, including the use of a separate ANN for each of the output variables. In the 
event, it was found that this was not necessary as the accuracy of the individual predictions 
were no better than using one composite ANN for predicting all the output values at the same 
time. Therefore, attention was directed at estimating the appropriate number of neurons in the 
hidden layer of a composite ANN which comprised 5 input values (the first input representing 
the number of pumps on duty; the second being the aggregated demand for the 19 consumer 
nodes and the remainder comprising the 3 initial water levels, one for each of the storage 
tanks) and 7 output values (1 for total pumping power consumption, 3 for hydrostatic 
pressures at nodes 170, 90 and 55, together with 3 resultant water levels, one for each of the 
storage tanks 65, 165 and 265, respectively). On a trial-and-error basis, a good representation 
of the EPANET model was achieved with 20 neurons in the hidden layer, giving a final 
structure of ANN(5,20,7). 
 

 
Figure 5: Relationship between RMSE and number of training sets  

Having decided the appropriate number of neurons in the hidden layer, the next issue to be 
addressed was the required number of ANN training sets necessary to achieve an accurate 
representation of the EPANET model relating to the AT(M) network. To that end, different 
numbers of training sets were used to ascertain the impact on the RSME between the predicted 
and ‘observed’ output values. It can be seen from Figure 5 that starting with random 
initialization of parameters, the RSME converges rapidly to 1.65 percent in approximately 
2000 iterations, with little or no improvement thereafter, regardless of the number of training 
sets used. The accuracy of replicating the EPANET model by an ANN(5,20,7)  is shown in 
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Figures 6 and 7 for the resulting hydrostatic pressures and storage tank water levels, for a 
typical sequence of testing sets over a 24-hour period. 
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Figure 6: Comparison of EPANET and predicted ANN results for pressures - Node 90 
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Figure 7: Comparison of EPANET and predicted ANN results for storage tank water level - 
Tank 65 
 
Inclusion of water-quality considerations 

In addition to the hydraulic variables, an attempt was made to include water quality in the 
decision-making process by adopting the same approach of using an ANN to replicate an 
EPANET model of the AT(M) network which included chlorine residuals. The selection of 
chlorine residual as the water-quality determinand was an obvious choice since water-
distribution engineers endeavour to maintain a minimum prescribed level of concentration to 
combat any pollution arising from infiltration or re-growth within the network. As previously, 
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a large number of corresponding input/output sets were generated, this time including 
chlorine residual as an output variable for critical points within the network. Thereafter, an 
ANN was trained and tested. However, the results were less impressive than those for the 
hydraulic variables. Firstly, it took an inordinate amount of time for the water-quality 
simulation model of the network to stabilize and give consistent values for chlorine residuals, 
even for a very simple network such as AT(M). Secondly, it would seem that the chlorine-
residual values are more a function of the size of the network rather than the control settings. 
If that is the case and there is only a weak relationship with the control settings, then it is 
hardly the fault of the ANN when somewhat disappointing results are obtained (Figure 8). An 
alternative but less satisfactory way of indirectly helping to maintain chloride-residual 
concentrations in the network which has subsequently been used in this research project, was 
to assign minimum flow rates to critical pipes where low velocities occur and treat them as 
operational constraints in the near-optimal control process, thereby avoiding the possibility of 
stagnation. 
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Figure 8: Comparison of EPANET and predicted ANN results for Chlorine residuals 
 

CONCLUSION 

Up until recently, hydraulic simulation models have been the only means available to 
represent the complex, non-linear behaviour of water-distribution networks. However, in 
predicting the dynamic consequences of different control settings in relation to the initial 
conditions and short-term fluctuations in demand, they have their limitations owing to the 
computational burden they impose. Nevertheless, it would seem plausible that there should be 
a substantial opportunity for improving computational efficiency if the hydraulic simulation 
model could be approximated by an input/output relationship, which in this case, would be 
mapped using a multivariate function. With that in mind, this paper advocates the use of an 
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artificial neural network and shows that at least for a simple, hypothetical water-distribution 
network, a conventional hydraulic simulation model can be replicated with a high degree of 
accuracy. The computational advantage of doing so is an average 10-fold reduction in the 
time taken to predict the consequences of different control settings in comparison with a 
conventional hydraulic simulation model. This computational improvement is expected to 
increase with the complexity of the distribution network (see Salomons et al., 2006 and 
Martinez et al., 2006), thereby enhancing the prospect of making real-time, near-optimal 
control a practical reality. 
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